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Abstract

The weighted vertex p-center problem (PCP ) consists of locating p facilities among a set of available

sites such that the maximum weighted distance (or travel time) from any demand node to its closest

located facility is minimized. This paper studies the exact solution of the two-stage robust weighted

vertex p-center problem (RPCP2). In this problem, the location of the facilities is fixed in the

first stage while the demand node allocations are recourse decisions fixed once the uncertainty is

revealed. The problem is modeled by box uncertainty sets on both the demands and the distances.

We introduce five different robust reformulations based on MILP formulations of (PCP ) from the

literature. We prove that considering a finite subset of scenarios is sufficient to obtain an optimal

solution of (RPCP2). We leverage this result to introduce a column-and-constraint generation

algorithm and a branch-and-cut algorithm to efficiently solve this problem optimally. We highlight

how these algorithms can also be adapted to solve the single-stage problem (RPCP1) which is

obtained when no recourse is considered. We present a numerical study to compare the performances

of these formulations on randomly generated instances and on a case study from the literature.

Keywords: discrete location; p-center problem; robust MILP formulations; column-and-constraint

generation algorithm; branch-and-cut algorithm

1 Introduction

The (vertex) p-center problem (PCP ) is one of the most studied facility location problems in the

literature. It consists of locating p facilities out of m available sites, and allocating n demand nodes
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to them, in order to minimize the radius which corresponds to the maximum distance (or travel

time) between a demand node and its closest located facility. These p located facilities are called

centers.

The p-center problem under uncertainty is also well studied in the literature ([Çalık et al., 2019]).

This problem arises when parameters, such as demands or distances between the demand nodes and

the available sites, vary across time or when their exact value is uncertain. Uncertainty is generally

represented by parameters which can take any value in an uncertainty set. Each realization of the

uncertainty set is called a scenario. The most classical sets are the box, the ellipsoidal and the

budgeted uncertainty sets (see e.g., [Ben-Tal et al., 2009, Bertsimas and Sim, 2004, Du and Zhou, 2018,

Paul and Wang, 2019]).

Two major approaches have been developed to address uncertainty: stochastic optimization and

robust optimization. Stochastic optimization requires that a discrete or continuous probabilistic

distribution of the uncertain parameters is known, and tries to have the best value on average.

Robust optimization tries to protect itself against the worst case ([Ben-Tal et al., 2009]). In this

sense, stochastic optimization is more relevant in the context of repeated experiments while robust

optimization is more suitable when one wishes at all costs to avoid the worst case, for example, when

human lives are at stake.

The incorporation of uncertainty in (PCP ) has important applications in emergency logistics

problems, where a prompt response to the urgent need for relief is required in affected areas

immediately following a disaster (such as earthquakes, tsunamis, landslides, among others). The

consequences of these disasters make it challenging to precisely estimate the demand for relief

materials or the travel times between relief centers and affected locations ([Sheu, 2007]). Two

approaches can be considered depending on whether the demand node allocations to the centers are

made before (see e.g, [Averbakh and Berman, 1997], [Lu, 2013]) or after (see e.g, [Du et al., 2020,

Demange et al., 2020]) the uncertainty is revealed. The first case corresponds to single-stage problems

while the second case leads to two-stage problems in which the demand node allocations are

recourse variables. In this context, most of the works have been focused on the investigation

of integer programming modeling and heuristic solution approaches (see e.g., [Baron et al., 2011,

Hasani and Mokhtari, 2018, Paul and Wang, 2015, Trivedi and Singh, 2017, Trivedi and Singh, 2019]).
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1.1 Contribution and Outline

To the best of our knowledge this work is the first one to study the exact solution of the two-stage

robust weighted vertex p-center problem (RPCP2), with p > 1, in which the uncertainty on the node

demands and distances are modeled by box uncertainty sets. We present robust reformulations of

this problem based on five MILP formulations of (PCP ). We prove that a finite subset of scenarios

from the infinite box uncertainty set can be considered without losing optimality. We use this result

to propose a column-and-constraint generation algorithm (C&CG) and a branch-and-cut algorithm

(B&C) for the exact solution of (RPCP2). We highlight how these algorithms can be adapted to the

single-stage problem (RPCP1). Finally, we show their efficiency on randomly generated instances.

To illustrate the usefulness of our proposal we also consider the case study presented in [Lu, 2013]

which is inspired from an earthquake that hit central Taiwan in 1999.

The rest of the paper is organized as follows. Section 2 presents the literature review of the

deterministic and robust versions of (PCP ). Section 3 describes the robust two-stage problem

(RPCP2), proves how to reduce the number of considered scenarios, and introduces our five MILP

formulations as well as the (C&CG) and (B&C) algorithms. Section 4 presents the computational

results. In Section 5 we draw conclusions together with research perspectives.

2 Literature review

The p-center problem was introduced by [Hakimi, 1965], who presented and solved the absolute

1-center problem on a graph. In the absolute p-center problem, the centers can be located either

on the edges or the vertices of the graph. Later, [Minieka, 1970] extended the problem to the case

p > 1 and proposed a method to restrict the continuous set of candidate centers to a discrete set of

points, without losing optimality. Since then, the problem was commonly referred to as the vertex

p-center problem or directly as the p-center problem. Several formulations, solution methods, and

variants of this problem have been presented. We refer to [Çalık et al., 2019] for a more exhaustive

review of applications and solution methods of the p-center problem. In this section, we first focus

on the deterministic p-center problem formulations and then on its robust counterparts.

2.1 MILP formulations of the deterministic weighted vertex p-center

Let U be the set of available sites, and V be the set of demand nodes. The distance (or travel time)

between any possible pair of demand node i ∈ V and site j ∈ U is denoted by tij . Each demand node
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i ∈ V faces a demand di and must be allocated to a single center j. In the following formulations, no

demands were originally considered. They directly considered a distance lij between each demand

node i and site j. Nevertheless, to model the weighted vertex p-center, lij can be replaced by the

product of demand di and distance tij .

The classical formulation of the p-center problem was presented in [Daskin, 1996]. This model

considers binary variables xj equal to 1 if and only if site j ∈ U is located, binary variables yij equal

to 1 if and only if demand node i is allocated to site j, and a variable z equals to the radius:

(F1)



min z,

s.t. z ≥
∑
j∈U

ditijyij , i ∈ V,

∑
j∈U

yij = 1, i ∈ V,

yij ≤ xj , i ∈ V, j ∈ U,∑
j∈U

xj = p,

xj ∈ {0, 1}, j ∈ U,

yij ∈ {0, 1}, i ∈ V, j ∈ U.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Constraints (3) ensure that each demand node is allocated to only one center and Constraints (4)

ensure that no demand node is allocated to a site that is not located. Constraint (5) fixes the

number of centers to p. Constraints (2) indicate that the distances between each demand node and

its nearest center are less than or equal to the radius. We minimize the radius through Objective

function (1).

An alternative formulation was introduced in [Elloumi et al., 2004]. This formulation proposes to

associate one variable to each weighted distance in the considered instance. Let D0 < D1 < . . . < DK

be the different values in {ditij , ∀i ∈ V, ∀j ∈ U} and let K be the set {1, 2, . . . ,K}. The radius

variable z and the allocation variables y are replaced by variables zk with k ∈ K equal to 1 if and

only if the radius is greater than or equal to Dk. The initial formulation they obtain is as follows:
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(F2init)



min D0 +
∑
k∈K

(
Dk −Dk−1

)
zk,

s.t. zk +
∑

j:ditij<Dk

xj ≥ 1, i ∈ V, k ∈ K,

∑
j∈U

xj = p,

xj ∈ {0, 1}, j ∈ U,

zk ∈ {0, 1}, k ∈ K.

(8)

(9)

(10)

Constraints (9) indicate that a demand node is covered by a center at a distance less than Dk, or

that the radius is at least Dk. Thus, in Objective (8), if zk = 1, (Dk −Dk−1) is added to the radius.

[Elloumi et al., 2004] show that (F2init) provides a continuous relaxation bound that dominates

that of (F1).

[Ales and Elloumi, 2018] presented an improvement of the previous formulation (F2init) which may

significantly reduce the number of constraints:

(F2)



min D0 +
∑
k∈K

(
Dk −Dk−1)zk,

s.t. zk +
∑

j:ditij<Dk

xj ≥ 1, i ∈ V, k ∈ K : ∃j such that ditij = Dk,

zk ≥ zk+1, k ∈ {1, 2, . . . ,K − 1},∑
j∈U

xj = p,

xj ∈ {0, 1}, j ∈ U,

zk ∈ {0, 1}, k ∈ K.

(11)

(12)

Constraints (12) allow to remove a significant number of Constraints (9). Constraints (11) represent

the subset of (9) that are not redundant. Indeed, when there is no site j such that ditij = Dk,

Constraint (9) for i and k is dominated by Constraint (9) for i and k + 1 and can therefore be

omitted. It is proved in [Ales and Elloumi, 2018] that even if (F2) is much lighter than (F2init), it

has the same continuous relaxation bound.

[Ales and Elloumi, 2018] also presented another compact formulation, which contains less variables

and constraints than (F2). They replace the K binary variables zk with a unique integer variable r
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which represents the index of the optimal radius:

(F3)



min r,

s.t. r + k
∑

j:ditij<Dk

xj ≥ k, i ∈ V, k ∈ K,

∑
j∈U

xj = p,

xj ∈ {0, 1}, j ∈ U,

r ≥ 0.

(13)

(14)

(15)

Constraints (14) play a similar role to that of Constraints (9). This formulation (F3) provides a

weaker linear relaxation than the previous formulations.

[Calik and Tansel, 2013] introduce two mathematical formulations. The second, denoted by (F4) in

this article, is a tighter version of the first. They consider binary variables x of (F1) and a binary

variable uk for all k ∈ K ∪ {0} which is equal to 1 if and only if the optimal radius is equal to Dk.

Thus, exactly one of these new binary variables is equal to one. The solutions of these formulations

can be mapped to those of (F2init) by setting u0 = 1− z1, uk = zk − zk+1, and zk = 1−
K∑
k=0

uk.

(F4)



min
K∑
k=0

Dkuk,

s.t.
∑

j:ditij≤Dk

xj ≥
k∑

q=0

uq, i ∈ V, k ∈ K ∪ {0},

K∑
k=0

uk = 1,

∑
j∈U

xj = p,

xj ∈ {0, 1}, j ∈ U,

uk ∈ {0, 1}, k ∈ K ∪ {0}.

(16)

(17)

(18)

(19)

Finally, [Gaar and Sinnl, 2022] recently presented a formulation obtained from a Benders decomposition

of (F1) which is closely related to a formulation of the uncapacitated facility location problem (UFL)

from [Cornuejols et al., 1980] and [Magnanti and Wong, 1981]. This formulation also considers

binary variables x from (F1) and a single continuous variable θ to represent the radius which is

minimized in the objective function.
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(F5)



min θ,

s.t. θ ≥ ditij −
∑

j′:ditij′<ditij

(ditij − ditij′)xj′ , i ∈ V, j ∈ U,

∑
j∈U

xj = p,

xj ∈ {0, 1}, j ∈ U

θ ∈ R.

(20)

(21)

(22)

Constraints (21) ensure that the radius is at least the weighted travel time to the nearest center for

each demand node.

Table 1 presents the CPU times of the 5 formulations on the ORLIB instances. We have considered

the default setting of CPLEX 20.1 and a time limit of 3 hours. These instances and the characteristics

of our computer are detailed in Section 4. Since (F1) cannot solve all the instances, the best solution

value found and the corresponding optimality gap are represented in the last two columns.

(F4) is the fastest formulation in average closely followed by (F2). However they can both be

significantly faster than the other depending on the instances. Note that when CPLEX pre-solve is

disabled only formulations (F2) and (F4) solve most of the instances in less than 30 minutes, with

(F2) performing better than (F4).

We will see in Section 4 that the best formulations for the deterministic problem are not necessarily

the best for the robust problem.

2.2 Uncertainty representation and solution methods

The location of facilities is a long-term decision which takes into account parameters such as demands

or distances between demand nodes and facilities. Since these parameters are likely to vary, several

models have been developed to study facility location problems under uncertainty. Stochastic

optimization and robust optimization are the two main approaches to address uncertainty. We

refer to [Snyder, 2006] and [Correia and Saldanha-da Gama, 2019] for a review of the literature on

stochastic and robust facility location problems.

In robust optimization, box, budgeted, ellipsoidal and discrete uncertainty sets are commonly

considered (see e.g. [Ben-Tal et al., 2009, Baron et al., 2011, Du and Zhou, 2018, Paul and Wang, 2019,

Paul and Wang, 2015, Snyder, 2006]). Since most robust facility location problems are generally

harder to solve than their deterministic counterparts, heuristic approaches have taken precedence
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Instance Time (s) F1

name |V | = |U | p opt F1 F2 F3 F4 F5 obj gap

pmed01 100 5 127 13 3 10 25 15 127 0%
pmed02 100 10 98 8 2 16 25 15 98 0%
pmed03 100 10 93 7 3 18 26 19 93 0%
pmed04 100 20 74 4 2 194 25 20 74 0%
pmed05 100 33 48 2 2 11 21 16 48 0%
pmed06 200 5 84 106 18 68 64 61 84 0%
pmed07 200 10 64 81 20 56 64 65 64 0%
pmed08 200 20 55 51 11 421 83 108 55 0%
pmed09 200 40 37 27 21 72 73 108 37 0%
pmed10 200 67 20 12 12 57 49 60 20 0%

pmed11 300 5 59 282 19 134 61 45 59 0%
pmed12 300 10 51 248 25 117 75 142 51 0%
pmed13 300 30 36 218 104 513 97 217 36 0%
pmed14 300 60 26 127 101 429 117 390 26 0%
pmed15 300 100 18 54 55 127 82 139 18 0%
pmed16 400 5 47 875 17 194 63 141 47 0%
pmed17 400 10 39 4652 113 298 64 224 39 0%
pmed18 400 40 28 965 688 3601 243 445 28 0%
pmed19 400 80 18 679 255 780 173 292 18 0%
pmed20 400 133 13 165 44 194 29 238 13 0%

pmed21 500 5 40 3001 29 65 69 68 40 0%
pmed22 500 10 38 TL 381 770 106 775 42 11%
pmed23 500 50 22 2729 456 1768 310 759 22 0%
pmed24 500 100 15 1538 322 906 130 384 15 0%
pmed25 500 167 11 574 70 378 54 687 11 0%
pmed26 600 5 38 10426 514 105 508 333 38 0%
pmed27 600 10 32 TL 41 1140 86 138 35 9%
pmed28 600 60 18 10289 550 2906 129 883 18 0%
pmed29 600 120 13 5195 134 1373 545 602 13 0%

pmed30 600 200 9 1234 87 544 60 426 9 0%
pmed31 700 5 30 TL 34 93 78 180 47 57%
pmed32 700 10 29 TL 1007 4285 1514 1600 116 300%
pmed33 700 70 15 TL 1086 3894 397 857 60 300%
pmed34 700 140 11 8794 761 1026 171 818 11 0%
pmed35 800 5 30 TL 2116 262 129 201 74 147%
pmed36 800 10 27 TL 4243 4889 1875 314 87 222%
pmed37 800 80 15 TL 1681 3922 1595 3251 63 320%
pmed38 900 5 29 TL 89 1235 183 609 84 190%
pmed39 900 10 23 TL 1932 521 1687 1932 115 400%
pmed40 900 90 13 TL 1419 6397 1570 2341 53 308%

Average 4279 462 1095 316 498

Table 1: Performance comparison of (PCP ) formulations. TL=7200s.
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over exact solution methods ([Correia and Saldanha-da Gama, 2019]). Most robust facility location

problems based on discrete uncertainty sets deal with generalizations of the p-median problem,

focusing exclusively on analytical results or approximated polynomial-time algorithms (see e.g. [Serra and Marianov, 1998,

Hasani and Mokhtari, 2018]).

The presence or absence of recourse variables, the variables which are fixed once the uncertainty

is revealed, has a great influence on the mathematical formulation of the problem. A single-stage

problem can be considered when there is no recourse variables while a two-stage is required otherwise.

Two-stage models are usually very difficult to solve ([Ben-Tal et al., 2009]). When the second

stage problem is a linear program, Benders decomposition method can be used to seek optimal

solutions ([Bertsimas et al., 2013, Rahmaniani et al., 2017]).

[Zeng and Zhao, 2013] develop another exact solution method, the (C&CG) generation algorithm

(also called row-and-column or scenario generation), which has performed better on different problems

including facility location problems (see e.g. [An et al., 2014, Chan et al., 2018]).

Several robust variants of (PCP ) with either a single stage or two stages have been considered. For

example, [Averbakh and Berman, 1997] consider the weighted p-center problem on a transportation

network with uncertain node weights. They minimize the regret of the worst-case scenario and

show that the problem can be solved through a number of particular weighted p-center problems.

[Averbakh and Berman, 2000], consider a box uncertainty set for the weighted 1-center problem on

a network with uncertainty node weights and edge lengths. Each uncertain parameter is assumed to

be random with an unknown distribution. They present a polynomial algorithm to find the robust

solution for the problem on a tree. [Lu and Sheu, 2013] consider the single-stage weighted vertex

p-center with uncertain edge lengths using box uncertainty sets. They consider the single-stage

robust problem (RPCP1), prove that it is sufficient to consider a discrete subset of scenarios, and

propose a simulated annealing heuristic to solve the problem, then in [Lu, 2013] they extend this

research to the weighted vertex p-center with uncertain nodal weights and edge lengths using also

box uncertainty sets. [Du and Zhou, 2018] apply a single-stage approach to a p-center problem based

on a multiple allocation strategy, i.e, they allowed the allocation of a client to several sites, and

three types of symmetric uncertainty sets over units costs: box uncertainty, ellipsoidal uncertainty,

and cardinality-constrained uncertainty, where a symmetric interval is defined as an interval where

the lower and upper bounds are equidistant from the center. [Du et al., 2020] propose a two-stage

robust model for a reliable facility location problem, i.e., when some facilities can be disrupted and

the demand nodes can be reallocated to another available facility. They consider uncertain demand
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and cost, and propose three solution methods: a linear reformulation, a Benders dual cutting planes

method, and a column-and-constraint generation method. [Demange et al., 2020] introduce the

robust p-center problem under pressure motivated by the context of locating shelters for evacuation

in case of wildfires, where the uncertainty is in the available network connections. They present a

MILP formulation and a decomposition scheme to solve it.

Allocation
level

Decision
level

Number of
centers

Uncertainty
Messure of
robustness

Solution
approach

Article Single Multiple Single-stage Two-stage p=1 p>1 Distance Demand Centers Regret
Worst

Case Value
Heuristic Exact

[Averbakh and Berman, 1997] x x x x x x

[Averbakh and Berman, 2000] x x x x x x x

[Lu and Sheu, 2013] x x x x x x

[Lu, 2013] x x x x x x x

[Du and Zhou, 2018] x x x x x x

[Du et al., 2020] x x x x x x

[Demange et al., 2020] x x x x x x

Our Proposal x x x x x x x

Table 2: A summary of related work

Other robust facility location problems have been studied in the literature, mostly considering

uncertainty in customer demand and/or facility disruption. Their solution methods are carried out by

dualization techniques or column and constraint generation algorithms ([Nikoofal and Sadjadi, 2010,

An et al., 2014, Cheng et al., 2021]). For a more detailed literature review we refer you to [Snyder, 2006]

Our research focuses on the exact solution of the two stage weighted vertex p-center problem

(RPCP2), with p > 1, with uncertainty in both nodal weights and edge lengths, as shown in the last

row of Table 2. We also show how these algorithms can be adapted to solve (RPCP1) exactly.

3 Robust weighted vertex p-center problem

We first define (RPCP2). We then prove that it is sufficient to consider a subset of the infinite

scenarios in the box uncertainty set to obtain an optimal solution of the problem. Finally, we present

(C&CG) and (B&C) algorithms for the exact solution of both (RPCP2) and (RPCP1).

3.1 Problem definition

Following [Lu, 2013], we consider that the node demands and distances can take any value in a box

uncertainty set. More precisely, the demand di of demand node i ∈ V is assumed to be in [d−i , d
+
i ]

where 0 ≤ d−i ≤ d
+
i , while the distance tij between station i ∈ V and site j ∈ U takes its value in

[t−ij , t
+
ij ] where 0 ≤ t−ij ≤ t

+
ij .
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Let W ⊂ R|V |+|U |×|V | be the Cartesian product of intervals [d−i , d
+
i ] and [t−ij , t

+
ij ] for each i ∈ V and

j ∈ U . Let Ω = {x ∈ {0, 1}|U | |
∑

j∈U xj = p} be the set of vectors representing p located facilities

and let Jx = {j ∈ U | xj = 1} be the set of located facilities for vector x ∈ Ω. For a given scenario

w ∈W let dwi and twij respectively be the demand of node i ∈ V and the distance between demand

node i and site j ∈ U in scenario w.

In (RPCP2), the demand nodes are allocated after the uncertainty is revealed. This corresponds

to a two-stage approach in which the location of centers is fixed at the first stage and the demand

node allocations are the recourse decisions of the second stage. Consequently, the optimal radius

associated with x ∈ Ω when scenario w ∈W occurs is:

Z(w, x) = max
i∈V

{
min
j∈Jx

dwi t
w
ij

}
(23)

which represents an optimal allocation of demand nodes in scenario w when sites Jx are located. Let

x∗(w) ∈ Ω be a vector such that the location of Jx∗(w) leads to an optimal radius for the deterministic

p-center problem in which the uncertain data takes value w ∈W . We define the robust deviation of

x ∈ Ω for scenario w as:

DEV (w, x) = Z(w, x)− Z(w, x∗(w)) (24)

It is a non-negative value corresponding to the increase in radius incurred when locating centers Jx

rather than Jx∗(w) in scenario w. The following lemma allows us to characterize situations where

the deviation is zero.

Lemma 1 Let x ∈ Ω and let w be a scenario. Let (i, j) ∈ V × Jx be such that Z(w, x) = dwi t
w
ij, i.e.,

(i, j) allow to reach the optimal radius Z(w, x). Let j = argminj∈Jx∗(w)
twij, i.e., node i is optimally

assigned to site j when sites set Jx∗(w) of solution x∗(w) are opened. It holds that if j ∈ Jx then

DEV (w, x) = 0.

Proof DEV (w, x) ≥ 0 by definition. Suppose DEV (w, x) > 0 i.e. Z(w, x) > Z(w, x∗(w)). As i is

assigned to j for solution x∗(w), Z(w, x∗(w)) ≥ dwi twij . Therefore, Z(w, x) = dwi t
w
ij > dwi t

w
ij

and then

twij > tw
ij

. This contradicts the fact that twij ≤ twij that follows from j ∈ Jx.

�

The robustness cost of solution x ∈ Ω corresponds to the maximal possible robust deviation if sites

Jx are located:

RC(x) = max
w∈W

DEV (w, x) (25)
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We denote by worst-case scenario a scenario which solves (25). (RPCP2) aims to minimize the

regret in the worst-case scenario for all feasible solution x ∈ Ω:

(RPCP2) : min
x∈Ω

RC(x) (26)

We now show that it is not necessary to consider the whole uncertainty set W to optimally solve

(RPCP2).

3.2 Reducing the number of scenarios

Since a box-uncertainty set contains an infinite number of scenarios for a given solution x ∈ Ω,

the evaluation of the robustness cost (25) is a major challenge when solving (RPCP2). Following

[Lu, 2013], we prove that it is sufficient to consider n = |V | scenarios per solution x ∈ Ω to

optimally solve (RPCP2), i.e., |V | ·
(|U |

p

)
scenarios, instead of the p|V | · |V | ·

(|U |
p

)
scenarios considered

in [Lu, 2013].

Definition 1 Let x ∈ Ω be a feasible solution and let i ∈ V be any demand node. We define wi(x)

as the following scenario:

• d
wi(x)
i =

 d+
i if i = i

d−i otherwise

• t
wi(x)
ij =

 t+ij if i = i and xj = 1

t−ij otherwise

Hence, in scenario wi(x), node i is at its maximal demand value while the other nodes are at their

minimal demand value. Also, the traveling time of any node-site pair is set to its minimal value

except for node i for which its travel times are maximal.

We now prove that at least one of the scenarios in {wi(x)}i∈V leads to a maximal deviation for

x ∈ Ω.

Theorem 1 Let x ∈ Ω be a first-stage solution of (RPCP2). There exists i ∈ V such that wi(x) is

an optimal solution for RC(x).

Proof: Let w0 ∈ W be an optimal solution to RC(x) (i.e., RC(x) = DEV (w0, x)). We build a

sequence of three other optimal scenarios w1, w2, w3 and prove that w3 is equal to wi(x) for some

i ∈ V .

12



Let us consider, for any k ∈ {0, 1, 2, 3}, the (node, site) pair (ik, jk) ∈ V × Jx such that Z(wk, x) =

dw
k

ik
tw

k

ikjk
(i.e., (ik, jk) allows to reach the optimal radius Z(wk, x)).

Scenario w1

Let w1 be a scenario identical to w0 except for dw
1

i0
which is equal to d+

i0
. This amounts to multiplying

any weighted travel time from i0 by the same constant
d+i0
dw

0
i0

. This ensures that an optimal radius

in w1 is still obtained for (i0, j0) and that one can set (i1, j1) = (i0, j0). We below prove that the

deviation of w1 is not lower than that of w0.

DEV (w1, x)−DEV (w0, x) = Z(w1, x)− Z(w0, x)−
[
Z(w1, x∗(w1))− Z(w0, x∗(w0))

]
(27)

It holds that:

Z(w1, x)− Z(w0, x) = dw
1

i1 t
w1

i1j1 − d
w0

i0 t
w0

i0j0 = d+
i0
tw

0

i0j0 − d
w0

i0 t
w0

i0j0 = (d+
i0
− dw0

i0 )tw
0

i0j0 (28)

Now, let j̃ = argminj∈Jx∗(w0)
tw

0

i0j
, i.e., node i0 is optimally assigned to site j̃ when sites set Jx∗(w0)

of solution x∗(w0) are opened. We aim at proving the following inequality:

Z(w1, x∗(w1))− Z(w0, x∗(w0)) ≤ (d+
i0
− dw0

i0 ) tw
0

i0j̃
(29)

First, Z(w1, x∗(w1)) ≤ Z(w1, x∗(w0)) holds from the definition of x∗(w). Second, let us consider

solution x∗(w0) and its opened sites set Jx∗(w0). In scenario w0, node i0 is assigned to site j̃ at

distance dw
0

i0
tw

0

i0j̃
. In scenario w1, node i0 is optimally assigned to the same site j̃, at distance d+

i0
tw

0

i0j̃
.

All the other nodes are assigned in the same way in w0 and in w1. Therefore, Inequality (29) is

satisfied.

From (27), (28), and (29) we deduce the following inequality:

DEV (w1, x)−DEV (w0, x) ≥ (d+
i0
− dw0

i0 )(tw
0

i0j0 − tw
0

i0j̃
) (30)

It remains to prove that tw
0

i0j0
− tw

0

i0j̃
≥ 0. It comes from the definition of j̃ and Z that dw

0

i0
tw

0

i0j̃
≤

Z(w0, x∗(w0)). It also comes from the definition of x∗(w) that Z(w0, x∗(w0)) ≤ Z(w0, x) = dw
0

i0
tw

0

i0j0
.

Consequently, DEV (w1, x) is at least as large as DEV (w0, x), and scenario w1 is optimal for RC(x).

Scenario w2
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Let w2 be a scenario identical to w1 except for tw
1

i1j
which is equal to t+i1j for all j ∈ Jx. This ensures

that an optimal radius in w2 is still obtained for (i1, j1) and that one can set (i2, j2) = (i1, j1) since

i1 was already leading to the largest weighted travel time in w1 and some of its travel times have

been increased in w2. Let j = argminj∈Jx∗(w1)
tw

1

i1j
, i.e., node i1 is optimally assigned to site j when

sites set Jx∗(w1) of solution x∗(w1) are opened. We discuss two cases:

• Case 1: j ∈ Jx, i.e., site j is open in x. In this case, we can deduce from Lemma 1 that

DEV (w1, x) = 0. As w1 is an optimal scenario for RC(x) we can deduce that DEV (w2, x) ≤ 0

and, as deviations are non-negative, DEV (w2, x) = 0. Scenario w2 is also optimal.

• Case 2: j /∈ Jx. Here, solution x∗(w1) is also optimal for scenario w2 since node i1 is assigned

to j 6∈ Jx when sites Jx∗(w1) are located, and since the only difference between w1 and w2 is

an increase of the travel time between i1 and the sites in Jx. Consequently, Z(w1, x∗(w1)) =

Z(w2, x∗(w2)). Moreover, the increase of travel times leads to Z(w2, x) ≥ Z(w1, x) which

ensures that DEV (w2, x) ≥ DEV (w1, x). Therefore, scenario w2 is optimal for RC(x).

Scenario w3

Let w3 be a scenario identical to w2 except for dw
3

i which is equal to d−i for all i ∈ V \{i2} and tw
3

ij

which is equal to t−ij for all i ∈ V \{i2} and j ∈ U . This ensures that we can have (i3, j3) = (i2, j2)

since the demand and travel times of i2 are not modified and the others are reduced. This also ensures

that Z(w3, x) = Z(w2, x) and that Z(w3, x∗(w3)) is not greater than Z(w2, x∗(w2)). Consequently,

DEV (w3, x) is not lower than DEV (w2, x) which proves that wi3(x) is an optimal scenario.

Finally, since i3 = i2 = i1 = i0, we can sum up the changes that were progressively made on w0 to

reach w3, and observe that w3 is precisely wi0(x). Therefore, scenario wi0(x) is optimal for RC(x).

�

Since Ω is finite, Theorem 1 enables to only consider a finite set of scenarios

W = {wi(x) | x ∈ Ω, i ∈ V } without losing the optimality:

(RPCP2) : min
x∈Ω

{
max
w∈W

DEV (w, x)
}

(31)

3.3 MILP formulations of the robust weighted vertex p-center problem

We present how the five formulations presented in Section (2.1) can be adapted to solve (RPCP2).

Let Z∗w be the optimal value of (PCP ) when the uncertain parameters take value w ∈ W (i.e.,
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Z∗w = Z(w, x∗(w))). Note that in the following formulations, the value of Z∗w is assumed to be

known for all w ∈W . We present in Section 3.6 how these values can be computed efficiently in our

algorithm when required.

Our robust formulation based on (F1) uses one set of allocation variables ywij for each scenario

w ∈W to allow different demand node allocations depending on the scenario:

(RF1)



min RC

s.t. RC ≥
∑
j∈U

dwi t
w
ij · ywij − Z∗w, i ∈ V, w ∈W,

∑
j∈U

ywij = 1, i ∈ V, w ∈W,

ywij ≤ xj , i ∈ V, j ∈ U, w ∈W,∑
j∈U

xj = p,

xj ∈ {0, 1}, j ∈ U,

ywij ∈ {0, 1}, i ∈ V, j ∈ U, w ∈W.

(32)

(33)

(34)

(35)

(36)

Constraints (33) set a lower bound on the value of the robustness cost (RC) for each scenario.

Objective (32) provides a solution with the lowest maximal deviation. This formulation contains an

exponential number of variables and constraints as the size of W is proportional to |Ω|.

We now adapt the other formulations to (RPCP2). For each scenario w ∈W , let Kw be the number

of different values {dwi twij}i∈V,j∈U and let Kw be the set of indices {1, . . . ,Kw}. One needs to sort

these values in increasing order and obtain a set of distinct distances Dk
w for k ∈ Kw. We also

consider one set of radius variables zkw:
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(RF2)



min RC

s.t. RC ≥ D1
w +

Kw∑
k=2

(
Dk

w −Dk−1
w

)
zkw − Z∗w, w ∈W,

zkw +
∑

j:dwi twij<Dk
w

xj ≥ 1, w ∈W, i ∈ V, k ∈ Kw :
∃j such that dwi twij=Dk

w

zkw ≥ zk+1
w , w ∈W,k ∈ Kw \ {Kw},∑

j∈U
xj = p,

xj ∈ {0, 1}, j ∈ U,

zkw ∈ {0, 1}, w ∈W,k ∈ Kw.

(37)

(38)

(39)

(40)
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Formulation (F3) does not directly provide the value R of the optimal radius but its index r instead,

such that Dr = R. This raises a problem when considering the adaptation of (F3) to the solution of

(RPCP2) as a given index does not necessarily correspond to the same distance in different scenarios.

Consequently, we first modify (F3) so that it provides a distance rather than its index. We replace

Constraints (14) by:

R ≥ Dk(1−
∑

j:ditij<Dk

xj), ∀ i ∈ V, k ∈ K : ∃j such that ditij = Dk, (41)

We can now obtain a reformulation of (RPCP2) based on (F3):

(RF3)



min RC

s.t. RC ≥Dk
w(1−

∑
j:dwi twij<Dk

w

xj)− Z∗w, w ∈W, i ∈ V, k ∈ Kw,
∃j such that dwi twij=Dk

w∑
j∈U

xj = p,

xj ∈ {0, 1}, j ∈ U.

(42)

Similarly to (RF2), with the same set of distinct distances Dk
w, we can adapt (F4) to (RPCP2).

(RF4)



min RC

s.t. RC ≥
Kw∑
k=1

Dk
wu

k
w − Z∗w, w ∈W,

∑
j:dwi twij≤Dk

w

xj ≥
k∑

q=1

uqw, w ∈W, i ∈ V, k ∈ Kw,

Kw∑
k=1

ukw = 1, w ∈W,

∑
j∈U

xj = p,

xj ∈ {0, 1}, j ∈ U,

ukw ∈ {0, 1}, w ∈W,k ∈ Kw.

(43)

(44)

(45)
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Finally, we can also directly adapt (F5) to (RPCP2).

(RF5)



min RC

s.t. RC ≥dwi twij −
∑

j′:dwi tw
ij′<dwi twij

(dwi t
w
ij − dwi twij′)xj′ − Z∗w, w ∈W, i ∈ V, j ∈ U,

∑
j∈U

xj = p,

xj ∈ {0, 1}, j ∈ U.

(46)

Note that both (RF3) and (RF5) do not require an exponential number of variables, which is a

significant advantage compared to (RF1), (RF2), and (RF4). However, the five reformulations have

an exponential number of constraints.

3.4 Column-and-constraint generation algorithm

To solve these robust MILP formulations, we first propose the column-and-constraint generation

algorithm (C&CG) represented in Algorithm 1 in which (RF ) can be any of our five robust

formulations (RF1), (RF2), (RF3), (RF4), or (RF5) with W initially empty.

At each iteration, Algorithm 1 generates a solution (x,RC) which satisfies all the scenarios currently

in W by solving (RF ) (Step 3). If the solution does not satisfy one of the scenarios {wi(x)}i∈V

(Step 10), the most violated scenario is added to W (Step 14). When no violated scenario is found,

an optimal solution is returned.

The value of the optimal radius considering a scenario wi(x) can be calculated by solving a

deterministic (PCP ) (Step 7). Note that the radius associated with a feasible solution x in a

scenario wi can be obtained quickly as it only requires to determine the distance between each

demand node and its closest center in Jx (Step 8).

18



Algorithm 1: column-and-constraint generation algorithm

input :

• Instance data (V , U , p, [d−i , d
+
i ] and [t−ij , t

+
ij ] for each i ∈ V and j ∈ U).

• A robust formulation (RF ) for (PCP ).

output :

• An optimal solution x of (RF ) and its robustness cost RC.

1 RC ← 0, W ← ∅, isOptimal ← false

2 while isOptimal = false do

3 (x,RC)← solve (RF ) with scenarios W

4 isOptimal ← true

5 w ← ∅

6 for i ∈ V do

7 Z∗ ← optimal radius of the deterministic (PCP ) for scenario wi(x)

8 Z ← radius for x in scenario wi(x)

9 DEV ← Z − Z∗

10 if DEV > RC then

11 isOptimal ← false

12 RC ← DEV

13 w ← wi(x)

14 W ←W ∪ {w}

15 return x and RC

3.5 Branch-and-cut algorithm

The main advantage of (RF3), and (RF5) over (RF1), (RF2), and (RF4) is that no new variable

is required when a scenario is added to W . Consequently, using (RF3) or (RF5) , we can define a

branch-and-cut algorithm (B&C) which checks, at each node of the search tree, if each obtained

integer solution (x,RC) satisfies all the scenarios {wi(x)}i∈V . If it does not, we generate the

corresponding violated inequalities and the solution is ignored by the solver. This can be performed

through callbacks which is a feature provided by mixed integer programming solvers. Consequently,

Steps 4-14 of Algorithm 1 are performed within a callback. This modification allows us to only

generate a single search tree instead of solving (RF ) from scratch at each iteration of the while loop.
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3.6 Solving the deterministic p-center problems

One of the most time consuming steps in these two algorithms is solving the deterministic (PCP )

associated with the current feasible solution x ∈ Ω and scenario wi(x) in order to obtain Z∗wi(x)

for each i ∈ V (Step 7 in Algorithm 1). Any of the formulations presented in Section 2.1 could

be considered to solve these deterministic problems. However, to improve the performances, we

consider the two following improvements.

3.6.1 Reducing the number of deterministic problems solved

For a given i ∈ V , if we know beforehand that a solution x satisfies scenario wi(x) (i.e., that

Z(wi(x), x)−Z∗wi(x) ≤ RC), the solution of the associated deterministic (PCP ) can be avoided. In

particular, this is the case if we know a lower bound Z∗ilb on Z∗wi(x) such that Z(wi(x), x)−Z∗ilb ≤ RC.

Indeed, in that case we have Z(wi(x), x)− Z∗wi(x) ≤ Z(wi(x), x)− Z∗ilb ≤ RC. Now, let us consider

the scenarios defined as follows.

Definition 2 Let i ∈ V . We define wi
lb as the following scenario:

• d
wi

lb
i =

 d+
i if i = i

d−i otherwise

• t
wi

lb
ij = t−ij ∀j ∈ U

The following lemma shows that the optimal value of the deterministic (PCP ) associated to wi
lb

provides a lower bound on Z∗wi(x).

Lemma 2 For any i ∈ V and x ∈ Ω, Z∗
wi

lb
≤ Z∗wi(x).

Proof:

We know that Z∗
wi

lb
≤ Z(wi

lb, x
∗(wi(x))). Moreover, since the only difference between scenarios wi(x)

and wi
lb is a reduction of travel times Z(wi

lb, x
∗(wi(x))) ≤ Z∗wi(x).

�

Note that scenarios {wi
lb}i∈V do not depend on any feasible solution x ∈ Ω and therefore the |V |

corresponding lower bounds can all be computed in a pre-processing step. We observed that this

improvement enables a significant reduction of the solving time.
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3.6.2 Binary search

Solving deterministic (PCP ) through MILP solvers is not the most efficient approach. To the best

of our knowledge, the best methods are those of [Contardo et al., 2019] and [Gaar and Sinnl, 2022].

The former initially considers a subset of clients, solves the (PCP ) associated to this subset,

and adds new clients until an optimal solution is obtained. The latter method is based on a

branch-and-cut algorithm, considering Benders cuts strengthened with a lifting procedure, and a

specialized separation scheme. Both methods can solve very large-scale instances.

These two methods are sophisticated. In order to reach a good compromise between performance

and ease of implementation, we solve the deterministic (PCP ) through a binary search algorithm

well known in the literature ([Toregas et al., 1971]). This algorithm is based on the fact that we can

determine if the radius of a deterministic (PCP ) is at most Dk by solving a set covering problem

(SCP ). In this context, the objective is to open as few centers as possible such that for each demand

node i ∈ V a site at distance at most Dk of i is opened:

(
SCP (V,U,Dk)

)


min

m∑
j=1

xj

s.t.
m∑

j:ditij≤Dk

xj ≥ 1 i ∈ V

xj ∈ {0, 1} j ∈ U

The radius of (PCP ) is at most Dk if and only if the solution value of (SCP ) is at most p. The

smallest distance Dk that needs at most p centers is the optimal solution of the corresponding (PCP).

To find the minimum distance Dk, a binary search is used so that at most log2(K + 1) set cover

problems need to be solved. This improvement can significantly reduce the execution time of our

exact algorithms for (RPCP2).

3.7 Adaptation to the single-stage problem

The (C&CG) and (B&C) algorithms previously presented can be adapted to solve the single-stage

problem (RPCP1) using (RF1). For this purpose, we only consider one single set of allocation

variables yij which ensures that the demand node allocations are the same regardless of the scenario.

These adaptations are not possible for the (C&CG) and (B&C) algorithms based on the others

formulations. Indeed, in these formulations it is not possible to ensure that the demand node

allocations are the same in all scenarios. Only considering one set of variables zk in (RF2) or uk
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in (RF4) would only ensure that the distance index of the radius is the same in each scenario, not

that the demand node allocations are. For the algorithms based on (RF3) or (RF5) the adaptation

seems even less possible as these formulation do not contain scenario variables and as the demand

node allocations are determined implicitly in the corresponding constrains.

Note that for (RPCP1) the finite set of scenarios that a solution must satisfy to ensure its optimality

is different from {wi(x)}i∈V as proved in Theorem 1 of [Lu, 2013].

4 Computational study

We evaluate the efficiency of our (C&CG) and (B&C) algorithms on a case study presented

in [Lu, 2013] and on randomly generated instances. It was not possible to make a direct comparison

with [Lu, 2013], because the solution values presented in [Lu, 2013] are not consistent with the ones

obtained by our exact solution approach. This is illustrated in A.

Our study was carried out on an Intel(R) Xeon(R) Gold 6144 processor 3,5 GHz, with 32 threads, but

only 1 was used, and 378 GB of RAM. IBM ILOG CPLEX 20.1 was used as solver. For the (B&C)

algorithm, we use the GenericCallback of CPLEX, which gets called whenever a feasible integer

solution is found. We set the absolute tolerance to the best integer objective (EpGap) to 10−10. All

times presented in the tables are CPU times in seconds. All our instances files are available online1.

4.1 Case Study

[Lu, 2013] presents a case study on the location of urgent relief distribution centers (URDCs) in a

relief supply distribution network responding to the massive earthquake which hit central Taiwan

on September 21, 1999. Specifically, relief supplies were collected from six unaffected counties

transported to two URDCs, and then delivered to the 51 relief stations in the 11 townships. Five

other candidate sites for URDCs were considered. They divided the number of survivors by the

number of relief stations of each township to estimate the relief demand faced by each relief station.

They use the data collected in previous research for the travel time between a URDC and a relief

station.

Following [Lu, 2013], we consider a distance uncertainty box [tij ; tij(1 + α1)], and the demand

uncertainty box [di(1− α2); di(1 + α2)] with α1 ∈ {0.5, 1.5, 2.5} and α2 ∈ {0.2, 0.4, 0.6}. Thus,

we have 9 combinations of parameter values α1 and α2 considering 51 demand nodes, 7 possible

1https://osf.io/87u6f/
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sites, and the selection of 2 centers. Table 3 shows the results obtained when solving (RPCP2) by

applying our algorithms to the case study.

Instance Iterations Time(s)

|V | |U | p α1 α2 RC
C&CG B&C C&CG B&C

RF1 RF2 RF3 RF4 RF5 RF3 RF5 RF1 RF2 RF3 RF4 RF5 RF3 RF5

51 7 2 0.5 0.2 495,000 5 5 5 5 5 5 5 1.0 1.0 0.9 10.0 0.9 1.2 1.2
51 7 2 0.5 0.4 838,500 6 6 6 6 6 10 6 1.1 1.0 1.0 14.1 0.9 1.2 1.1
51 7 2 0.5 0.6 1,159,200 7 6 6 6 6 6 6 1.3 1.0 0.8 11.7 0.9 1.1 1.1

51 7 2 1.5 0.2 1,238,400 14 16 16 15 16 16 15 5.7 4.3 1.9 153.5 1.9 1.9 1.9
51 7 2 1.5 0.4 1,705,800 16 15 15 14 16 16 15 8.0 3.0 1.8 109.1 1.8 1.9 1.8
51 7 2 1.5 0.6 2,150,400 16 15 15 14 15 14 15 7.2 2.8 1.7 100.3 1.6 1.8 1.8

51 7 2 2.5 0.2 1,981,800 18 19 22 19 21 18 18 11.6 5.4 2.5 238.9 2.5 2.2 2.2
51 7 2 2.5 0.4 2,573,100 19 19 21 19 20 18 19 12.4 4.7 2.3 209.9 2.2 2.2 2.2
51 7 2 2.5 0.6 3,141,600 20 19 19 19 19 19 19 13.4 4.3 2.1 181.7 2.1 2.1 2.1

Average 13 13 14 13 14 14 13 6.9 3.0 1.6 114.3 1.6 1.7 1.7

Table 3: Results of the C&CG and B&C algorithms for (RPCP2) on the case study instances.

One can observe in Table 3 that the optimal value of (RPCP2) increases with α1 and α2. The

fastest algorithm is (C&CG) using the (RF3) and (RF5) formulations, closely followed by the two

(B&C). Unlike the deterministic problem, (RF2) and (RF4) are not the most efficient. Moreover,

(RF4) requires many more variables and constraints than the other formulations, resulting in a

much longer solving time per iteration of the (C&CG) algorithm.

We also have observed that the robust solution of all these instances also is the deterministic solution

which consists of opening sites 3 and 4. This may be due to the fact that the bounds of the

uncertainty boxes are all increased in the same proportion for all the nodes. We will avoid this in

the following by considering random intervals for all uncertain parameters.

4.2 Randomly generated instances

Following [Lu, 2013], two dimensional coordinates were uniformly drawn from [0, 100] × [40; 60] for

the two set of demand nodes and available sites. The distances tij between demand nodes and sites

were set to the nearest integer of their Euclidean distance. The demand di of each demand node

i ∈ V was uniformly drawn from the interval [1, 000; 2, 000]. Nevertheless, we do not consider the

same uncertainty sets as in [Lu, 2013]. For all i ∈ V and j ∈ U , tij and di can take any value in

[tij ; tij(1 + αij
1 )] and [di(1− αi

2); di(1 + αi
2)]. We consider three cases depending on whether αij

1

and αi
2 are randomly generated in [0.1, 0.3], [0.4, 0.6], or [0.7, 0.9].

Firstly, we generate 18 instances for (RPCP2) with the following parameters: |V | = |U | ∈ {15, 25, 40},

and p = {2, 3}. The results obtained for these instances are presented in Tables 4, and 5 respectively.
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The last columns represent the robust solution and the deterministic solutions. Since both problems

may have several optimal solutions, we include in the tables the solutions that are the most frequent

among those of the seven methods considered. For theses instances, we consider a time-limit of 600

seconds (TL2).

Similarly to Table 3, both RC and the solving time increase with α1 and α2 in this first set of

instances. (RF3) and (RF5) are also the fastest (C&CG) algorithm. This could be explained by

the fact that the addition of a scenario does not lead to the addition of any variable. The (B&C)

algorithms are much faster even though they perform more iterations. The better performances of

(RF5) with the (B&C) algorithm is due to its smaller number of iterations.

We observe that our box uncertainty sets with random bounds lead to robust solutions which are

different from the deterministic one, in contrast to the case study. Note that the CPU time increases

with p. Indeed, none of the (C&CG) algorithms is able to solve all the instances for p = 3. This

could be explained by the number of feasible solutions which is proportional to
(
m
p

)
.

Instance Iterations Time (s)
Robust
Solution

Nominal
Solution|V | |U | p (α1, α2) RC

C&CG B&C C&CG B&C
RF1 RF2 RF3 RF4 RF5 RF3 RF5 RF1 RF2 RF3 RF4 RF5 RF3 RF5

15 15 2 [0.1, 0.3] 45,870 5 8 6 5 5 8 8 0.5 1.4 0.4 8.7 0.4 0.4 0.5 10 14
11 1415 15 2 [0.4, 0.6] 136,587 17 16 15 14 17 21 19 6.1 3.2 0.6 31.1 0.7 0.5 0.5 11 14

15 15 2 [0.7, 0.9] 228,429 34 28 33 33 33 37 35 26.4 3.4 1.3 144.5 2.0 1.6 1.1 11 14

25 25 2 [0.1, 0.3] 40.205 8 8 8 8 8 16 12 3.1 6.6 1.0 184.9 1.0 1.2 1.1 21 22
13 2125 25 2 [0.4, 0.6] 142,096 21 20 21 16 22 32 30 41.6 33.3 3.0 TL 3.7 2.1 1.7 7 22

25 25 2 [0.7, 0.9] 228,195 36 34 38 20 38 47 35 230.9 14.5 4.5 TL 5.3 2.2 1.9 13 15

40 40 2 [0.1, 0.3] 54,082 12 12 13 3 11 19 14 51.4 58.8 4.1 TL 7.4 8.0 6.9 10 26
8 2640 40 2 [0.4, 0.6] 143,310 23 23 34 3 33 45 36 TL TL 94.5 TL 63.0 18.0 14.7 25 26

40 40 2 [0.7, 0.9] 283,119 30 56 89 6 96 122 108 TL TL 67.6 TL 91.2 17.6 15.4 23 32

Average 29 29 39 33 19.7 19.4 5.7 4.9

Table 4: Results of the C&CG and B&C algorithms on randomly generated instances for (RPCP2)
with |V | = |U | ∈ {15, 25, 40} and p = 2. TL2=600s.

Instance Iterations Time (s)
Robust
Solution

Nominal
Solution|V | |U | p (α1, α2) RC

C&CG B&C C&CG B&C
RF1 RF2 RF3 RF4 RF5 RF3 RF5 RF1 RF2 RF3 RF4 RF5 RF3 RF5

15 15 3 [0.1, 0.3] 56,689 8 7 8 8 8 10 11 0.7 0.7 0.4 15,5 0.5 0.4 0.4 1 6 8
1 6 1215 15 3 [0.4, 0.6] 97,360 16 15 16 15 17 24 16 3.6 5.1 0.8 59.7 1.0 0.7 0.5 1 6 12

15 15 3 [0.7, 0.9] 166,252 33 36 35 37 36 44 43 19.6 14.4 1.5 200.3 2.0 1.0 1.0 1 6 12

25 25 3 [0.1, 0.3] 40,950 12 8 7 7 10 16 8 6.7 4.7 0.9 157.3 1.7 1.1 0.7 2 12 14
3 7 2525 25 3 [0.4, 0.6] 84,827 16 16 18 13 18 45 21 18.6 27.3 6.3 TL 5.5 3.2 2.0 2 14 50

25 25 3 [0.7, 0.9] 165,978 50 51 54 20 57 66 64 305.8 94.8 14.6 TL 17.9 3.9 4.1 6 7 17

40 40 3 [0.1, 0.3] 48,123 18 17 15 3 18 40 33 213.1 TL 20.6 TL 22.7 9.4 8.5 25 26 40
8 26 4040 40 3 [0.4, 0.6] 125,024 23 19 54 4 52 197 103 TL TL 389.7 TL 161.7 26.9 18.1 18 25 35

40 40 3 [0.7, 0.9] 236,529 33 44 152 6 132 537 589 TL TL TL TL TL 71.2 74.9 25 29 40

Average 109 99 13.1 12.2

Table 5: Results of the C&CG and B&C algorithms on randomly generated instances for (RPCP2)
with |V | = |U | ∈ {15, 25, 40} and p = 3. TL2=600s.

Since the limit of the (C&CG) algorithms is reached, we only focus on the (B&C) algorithms in the
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following. We now consider a time limit of 9000 seconds and instances with the following parameters:

|V | = |U | ∈ {60, 80, 100}, and p = {2, 3, 4, 5}. The results are presented in Tables 6, 7, 8, and 9.

Both algorithms were able to solve most instances. However, due to memory limitations, the optimal

solution is not obtained for all instances with 80 and 100 nodes in particular for those with the

largest uncertainty sets. The results of the two formulations are similar, with (RF3) performing

better on average for p = {3, 4, 5}, and worse for p = 2. Their solving time is still closely related to

the number of iterations even if for a few instances, (RF3) performs more iterations but is faster.

Instance B&C
Robust
Solution Nominal

Solution
|V | |U | p (α1, α2) RC

Iterations Time (s)
RF3 RF5

RF3 RF5 RF3 RF5

60 60 2 [0.1, 0.3] 45,075 31 15 16 9 9 32 9 32
60 60 2 [0.4, 0.6] 112,704 81 38 37 21 31 32 31 32 4 32
60 60 2 [0.7, 0.9] 216,104 176 73 66 37 32 45 32 45

80 80 2 [0.1, 0.3] 37,245 21 18 25 26 2 61 2 61
80 80 2 [0.4, 0.6] 147,825 117 62 113 74 27 61 27 61 54 61
80 80 2 [0.7, 0.9] 243,722 338 296 251 275 25 27 25 27

100 100 2 [0.1, 0.3] 53,119 55 26 109 66 33 65 65 84
100 100 2 [0.4, 0.6] 146,640 183 154 265 241 9 64 33 64 33 64
100 100 2 [0.7, 0.9] 246,597 460 497 630 716 64 84 64 84

Average 162 131 168 163

Table 6: Results of the B&C algorithm on randomly generated instances for (RPCP2) with
|V | = |U | ∈ {60, 80, 100} and p = 2.

Instance B&C
Robust
Solution Nominal

Solution
|V | |U | p (α1, α2) RC

Iterations Time (s)
RF3 RF5

RF3 RF5 RF3 RF5

60 60 3 [0.1, 0.3] 45,430 92 79 29 27 24 32 36 24 32 56
60 60 3 [0.4, 0.6] 117,659 354 310 127 127 10 42 44 10 33 38 2 32 48
60 60 3 [0.7, 0.9] 209,352 1015 1024 444 507 20 31 42 14 31 42

80 80 3 [0.1, 0.3] 33,439 55 48 83 95 32 41 58 32 41 58
80 80 3 [0.4, 0.6] 128,900 386 332 399 336 32 63 74 32 63 74 9 71 73
80 80 3 [0.7, 0.9] 206,001 980 1033 1295 1647 10 58 61 10 58 61

100 100 3 [0.1, 0.3] 35,780 52 58 122 175 12 76 84 12 76 84
12 32 83

100 100 3 [0.4, 0.6] 124,704 498 323 1403 1192 19 88 89 12 19 88

Average 429 401 488 513

Table 7: Results of the B&C algorithm on randomly generated instances for (RPCP2) with
|V | = |U | ∈ {60, 80, 100} and p = 3.
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Instance B&C
Robust
Solution Nominal

Solution
|V | |U | p (α1, α2) RC

Iterations Time (s)
RF3 RF5

RF3 RF5 RF3 RF5

60 60 4 [0.1, 0.3] 36,737 50 42 44 36 3 8 18 55 2 8 18 55
60 60 4 [0.4, 0.6] 99,544 326 293 379 408 2 8 26 32 2 26 32 35 2 8 32 43
60 60 4 [0.7, 0.9] 171,749 1684 1519 2918 3371 26 32 48 53 12 26 48 53

80 80 4 [0.1, 0.3] 31,788 92 58 482 325 3 32 58 69 21 32 58 60
1 3 32 58

80 80 4 [0.4, 0.6] 108,312 736 633 2152 3259 1 32 48 55 17 32 39 55

100 100 4 [0.1, 0.3] 32,841 203 142 941 1816 12 14 35 44 12 14 35 73 1 4 12 35

Average 515 448 1153 1536

Table 8: Results of the B&C algorithm on randomly generated instances for (RPCP2) with
|V | = |U | ∈ {60, 80, 100} and p = 4.

Instance B&C
Robust
Solution Nominal

Solution
|V | |U | p (α1, α2)

RC /
BKV

Iterations Time (s)
RF3 RF5

RF3 RF5 RF3 RF5

60 60 5 [0.1, 0.3] 29,709 52 28 51 31 2 8 12 18 37 3 8 18 18 37
60 60 5 [0.4, 0.6] 86,466 386 185 970 774 2 8 18 28 38 2 8 28 28 38 2 8 12 18 40
60 60 5 [0.7, 0.9] 138,852 888 1323 5596 6461 2 8 21 38 39 2 21 38 38 39

80 80 5 [0.1, 0.3] 29,259 147 129 3086 2366 1 44 48 58 59 1 44 58 58 59
11 15 16 18 40

80 80 5 [0.4, 0.6] 99,449 643 547 TL3 TL3 2 11 42 47 73 2 11 47 31 73

100 100 5 [0.1, 0.3] 31,107 142 133 803 6066 13 14 90 95 100 13 14 95 95 100 3 12 14 50 85

Average 372 395 2011 2747

Table 9: Results of the B&C algorithm on randomly generated instances for (RPCP2) with
|V | = |U | ∈ {60, 80, 100} and p = 5. TL3=9000s.
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4.3 ORLIB instances

We consider the deterministic ORLIB instances ([Beasley, 1990]), which are symmetrical instances,

since the set of clients is also the set of candidate sites. In these instances the travel times tij are

provided. To create (RPCP2) instances, we randomly generate demand values in [1, 100] and we

consider for the travel times the same box uncertainty set than in the previous section, with αi and

αij randomly generated in [0.1, 0.9] and such that αij = αji for i ∈ V and j ∈ U . The results are

presented in Tables 10, 11, and 12. For theses instances, we consider a time-limit of 9000 seconds

(TL3).

Starting from p = 2, we can see that the solving time increases rapidly with p. Particularly, instance

pmed3 is only solved for p = 2 and instance pmed1 could not be solved for p = 4 due to memory

issues. As for the random instances, the formulations have similar performances which depend

strongly on the number of iterations. We were unable to solve larger ORLIB instances with |V | ≥ 200

due to memory limitations.

Instance B&C
Robust
Solution Nominal

Solution
Name |V | = |U | p (α1, α2) RC

Iterations Time (s)
RF3 RF5

RF3 RF5 RF3 RF5

pmed1 100 2 [0.1, 0.9] 14,706 392 494 511 663 8 57 8 57 60 95
pmed2 100 2 [0.1, 0.9] 16,138 595 626 672 738 23 64 23 64 7 21
pmed3 100 2 [0.1, 0.9] 25,443 717 633 825 758 15 88 15 88 89 99
pmed4 100 2 [0.1, 0.9] 19,293 761 778 1070 1134 32 100 32 99 2 98
pmed5 100 2 [0.1, 0.9] 13,336 267 186 274 193 52 68 52 68 15 52

Average 546 543 670 697

Table 10: Results of the B&C algorithm on adapted ORLIB instances for (RPCP2) with |V | =
|U | = 100 and p = 2.

Instance B&C
Robust
Solution Nominal

Solution
Name |V | = |U | p (α1, α2) RC

Iterations Time (s)
RF3 RF5

RF3 RF5 RF3 RF5

pmed1 100 3 [0.1, 0.9] 14,094 675 587 2876 2188 9 42 94 9 42 64 9 13 94
pmed2 100 3 [0.1, 0.9] 17,718 567 615 1137 1245 35 65 88 35 68 88 2 9 22
pmed4 100 3 [0.1, 0.9] 15,423 395 459 1303 1413 32 88 99 32 51 99 1 69 87
pmed5 100 3 [0.1, 0.9] 12,228 601 536 1348 1346 51 68 97 51 68 97 7 32 46

Average 560 549 1666 1548

Table 11: Results of the B&C algorithm on adapted ORLIB instances for (RPCP2) with |V | =
|U | = 100 and p = 3.
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Instance B&C
Robust
Solution Nominal

Solution
name |V | = |U | p (α1, α2) RC

Iterations Time (s)
RF3 RF5

RF3 RF5 RF3 RF5

pmed2 100 4 [0.1, 0.9] 12,600 1032 1134 3457 4980 23 58 77 97 23 58 76 97 2 8 22 40
pmed4 100 4 [0.1, 0.9] 13,812 507 648 6299 4463 7 26 52 99 7 26 52 99 8 23 51 55
pmed5 100 4 [0.1, 0.9] 11,650 1150 - 5563 - 60 71 90 97 - - - - 23 51 69 97

Table 12: Results of the B&C algorithm on adapted ORLIB instances for (RPCP2) with |V | =
|U | = 100 and p = 4. TL3=9000s.
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5 Conclusions

The weighted vertex p-center problem consists of locating p facilities among a set of potential sites

such that the maximum weighted distance from any demand node to its closest located facility

is minimized. The incorporation of uncertain information within a robust optimization approach

allows us to solve practical emergency logistics problems. However, the robust counterpart of such

problems is even more difficult. Therefore, most studies propose a heuristic approach instead of an

exact solution approach.

We studied the solution of a robust weighted vertex p-center problem, considering uncertain nodal

weights demand and edge lengths using box uncertainty sets. Two variants of this problem are

possible depending on whether the demand node allocations to the centers are made after the

uncertainty is revealed (RPCP2) or not (RPCP1).

Similarly to (RPCP1), we prove that for (RPCP2) a finite subset of scenarios from the box

uncertainty set can be considered without losing optimality. We use this result to propose five

robust reformulations based on different MILP formulations of the vertex p-center problem. To

optimally solve these reformulations, we introduce a column-and-constraint generation algorithm

and a branch-and-cut algorithm. Moreover, we identify a lower bound on the optimal value of the

deterministic p-center problem associated with the identified finite subset of scenarios. We use this

result to significantly reduce the solving time of our algorithms. Finally, we highlight how our

methods can be adapted to optimally solve (RPCP1).

We present a numerical study to compare the performances of the algorithms on a case study, on

randomly generated instances, and on a few instances from ORLIB. We are able to solve optimally

the 68 considered instances. The column-and-constraint generation algorithm based on formulation

(RF3) and (RF5) is more efficient than the one based on (RF1), (RF2) and (RF4). This is because

adding a scenario does not require the addition of any variable. This formulation enables the

implementation of a branch-and-cut algorithm which significantly reduces the solving time.

In future work, analysis of larger instances with other random box uncertainty sets could be considered.

To further improve the performances of the branch-and-cut algorithm, alternative branching strategies

could be evaluated and integrality cuts (UserCuts) could be dynamically generated. The algorithms

could also be improved by solving the deterministic (PCP ) at each iteration with some other exact

method such as that of [Contardo et al., 2019] or [Gaar and Sinnl, 2022].
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A Comparison of results with Lu (2013)

We were not able to compare the performances of our exact algorithms and the one of the heuristic

in [Lu, 2013] as its results do not seem to be correct. We prove that several robustness costs obtained

with this heuristic and reported in [Lu, 2013] are undervalued.

Since we consider problem (RPCP1), the demand node allocations are fixed before the uncertainty

is revealed. Consequently, unlike (RPCP2), allocation variables y are necessary to compute the

radius and the robustness cost of a solution. Given a feasible solution (x, y), let twi be the distance

(or travel time) in scenario w ∈ W between a demand node i ∈ V and its allocated center (i.e.,

twi = twij with j ∈ U the only center such that yij = 1). In this single-stage problem, the radius of

solution (x, y) is max
i∈V

dwi t
w
i and its robustness cost is RC(x, y) = max

w∈W

{
max
i∈V

dwi t
w
i − Z∗w

}
, where Z∗w

is the optimal solution of the deterministic p-center problem in which the uncertain parameters take

value w.

A difficulty to evaluate the robustness costs reported in [Lu, 2013] is that for each solution only one

demand node allocation is provided. Let us consider the instance described in Subsection 4.1 in

which p = 2, α1 = 0.5, and α2 = 0.2 and let (xh, yh) be its associated solution in [Lu, 2013]. The

only information available on (xh, yh) is that centers 1 and 2 are located (xh1 = xh2 = 1) and that

demand node 21 is allocated to center 1 (yh21,1 = 1). Nevertheless, this is sufficient to obtain a lower

bound on the robustness cost as for any scenario w ∈W and any demand node i ∈ V , the expression

dwi t
w
i − Z∗w constitutes a lower bound of RC(xh, yh). Let us consider a scenario w21 in which the

demand of node 21 is dw21 = d+
21 = 34, 800 and its distance to center 1 is tw21,1 = t+21,1 = 41. The

optimal radius Z∗w21
= 495, 600 is obtained by solving a deterministic p-center problem. Consequently,

a lower bound on the robustness cost of value 34, 800× 41− 495, 600 = 931, 200 is obtained, which is

higher than the value 93, 619 reported in [Lu, 2013].

Table 13 present similar results on nine instances. The third column contains the robustness costs

reported in [Lu, 2013] which are almost all undervalued. Indeed, they are significantly lower than

their associated lower bounds presented in Column 4. Column 5 contains the robustness cost of

optimal solutions obtained by our (B&C) algorithm adapted to (RPCP1) (see Section 3.7). Note

that the branch-and-cut always returns a solution which robustness cost is always lower than the

lower bound of the heuristic solution.
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Instance
Robustness cost

Heuristic solution from [Lu, 2013] Optimal solution

α1 α2 Results from [Lu, 2013] According to this article

0.5 0.2 = 93,619 ≥ 931,200 = 495,000
0.5 0.4 = 587,837 ≥ 1,292,900 = 838,500
0.5 0.6 = 1,477,709 ≥ 1,906,600 = 1,159,200
1.5 0.2 = 940,858 ≥ 1,870,800 = 1,238,400
1.5 0.4 = 1,859,069 ≥ 2,389,100 = 1,705,800
1.5 0.6 = 2,934,605 ≥ 3,362,600 = 2,150,400
2.5 0.2 = 1,883,309 ≥ 2,810,400 = 1,981,800
2.5 0.4 = 3,400,291 ≥ 4,029,900 = 2,573,100
2.5 0.6 = 4,356,480 ≥ 4,129,600 = 3,141,600

Table 13: Comparison of the robustness cost of solutions obtained by the heuristic presented
in [Lu, 2013] and optimal solutions obtained by the branch-and-cut algorithm adapted for (RPCP1).

References

[Ales and Elloumi, 2018] Ales, Z. and Elloumi, S. (2018). Compact milp formulations for the p-center

problem. In International Symposium on Combinatorial Optimization, pages 14–25. Springer.

[An et al., 2014] An, Y., Zeng, B., Zhang, Y., and Zhao, L. (2014). Reliable p-median facility

location problem: two-stage robust models and algorithms. Transportation Research Part B:

Methodological, 64:54–72.

[Averbakh and Berman, 1997] Averbakh, I. and Berman, O. (1997). Minimax regret p-center

location on a network with demand uncertainty. Location Science, 5(4):247–254.

[Averbakh and Berman, 2000] Averbakh, I. and Berman, O. (2000). Algorithms for the robust

1-center problem on a tree. European Journal of Operational Research, 123(2):292–302.

[Baron et al., 2011] Baron, O., Milner, J., and Naseraldin, H. (2011). Facility location: A robust

optimization approach. Production and Operations Management, 20.

[Beasley, 1990] Beasley, J. E. (1990). Or-library: Distributing test problems by electronic mail. The

Journal of the Operational Research Society, 41(11):1069–1072.

[Ben-Tal et al., 2009] Ben-Tal, A., Ghaoui, L., and Nemirovski, A. (2009). Robust Optimization.

Princeton Series in Applied Mathematics. Princeton University Press.

32



[Bertsimas et al., 2013] Bertsimas, D., Litvinov, E., Sun, X. A., Zhao, J., and Zheng, T. (2013).

Adaptive robust optimization for the security constrained unit commitment problem. IEEE

Transactions on Power Systems, 28(1):52–63.

[Bertsimas and Sim, 2004] Bertsimas, D. and Sim, M. (2004). The price of robustness. Operations

Research, 52(1):35–53.
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