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come    

We are interested here in high-order numerical solutions to hyperbolic systems of conservation laws (1.1)

∂ t u + ∇ • f (u) = 0, in D × (0, ∞), u(x, 0) = u 0 (x), in D,
where u(x, t) represents the vector of conserved variables with values in the set of states Ω a ⊂ R m which is assumed to be convex. The flux tensor f = (f 1 , . . . , f d ) :

Ω a ∋ u → f (u) ∈ R m×d is assumed to be smooth.

Solutions to (1.1) may develop discontinuities in finite time even if the initial data is smooth, therefore the equations have to be understood in the sense of distributions.

Nevertheless, in this setting we lose uniqueness of the solution and (1.1) must be supplemented with further admissibility criteria. We here focus on entropy inequalities on some twice differentiable strictly convex function η : Ω a → R associated with a smooth entropy flux q : Ω a → R d satisfying

(1.2) η ′ (u) ⊤ f ′ i (u) = q ′ i (u) ⊤ ∀u ∈ Ω a , 1 ≤ i ≤ d.
A weak solution to (1.1) is called an entropy weak solution if for every entropy pair of (1.1) we have

(1.3) ∂η(u) ∂t + ∇ • q(u) ≤ 0,
in the sense of distributions. Classical (smooth) solutions respect this condition with an equality. The inequality for discontinuous solutions may be derived from a vanishing viscosity or semilinear relaxation approximations to (1.1), the regularizing effect allowing to have a smooth unique solution in this case. Then, under some structural assumptions on (1.1), regularized approximations converge to an entropy measure valued solution to (1.1) and (1.3) [?, ?]. These results are in particular based on the existence of convex invariant domains B ⊂ Ω a for (1.1): if u is in B, then it remains in B almost everywhere in D × (0, ∞) [?, ?, ?, ?]. This property generalizes the notion of maximum principle for scalar equations. Numerical methods keeping this property at the discrete level are called invariant domain preserving (IDP).

We are here interested in the approximation of (1.1) using high-order discontinuous spectral methods (see, e.g., [?, ?, ?, ?, ?] and references therein) where the solution to ( The main contribution of this work is the derivation of a CFL condition on the time step (in Theorem 3.5) for a large class of discretization methods on general unstructured meshes with explicit time stepping, that guarantees that each cell-averaged solution is a convex combination of states lying in invariant domains, provided those domains are preserved by the numerical flux at mesh interfaces. As a consequence, the cell-averaged scheme inherits some robustness and stability properties of the firstorder finite volume scheme with the same numerical flux. The CFL condition is general in the sense that it only requires the scheme to be conservative, to satisfy some geometric conservation law, and to allow the existence of a quadrature rule to evaluate the cell-averaged solution that includes the traces of the numerical solution used to evaluate the numerical fluxes in the scheme. This CFL condition relies on two other contributions of this work. The first one concerns the existence of a state in the invariant domains which satisfies a trivial flux balance over the faces of the each element (Lemma 3.4). We call this state the pseudo-equilibrium state and then use tricks from [?] to expand the cell-averaged approximate solution as a convex combination of states lying in the invariant domains. The second one concerns the construction of the quadrature rule which generalizes [?, Eq. (3.5)] on triangular grids to general curved polygonal and polyhedral elements.

The interest in this CFL condition is that it allows the use of limiters to make the full high-order approximate solution within the cell IDP. Linear scaling limiters [?, ?, ?] represent an important contribution in this direction. These limiters scale the cellwise approximate solution around its cell average to impose bounds on the solution such as positivity (i.e., with B = Ω a ), maximum and minimum principles, etc., while preserving conservation of the method. Such limiters therefore require the cell-averaged solution to be IDP and were limited to Cartesian and simplicial meshes for this reason. We also refer to the works in [?, ?] which generalize the CFL condition to unstructured quadrangular meshes with straight-sided elements. In contrast, the present CFL condition holds for a broad class of time explicit spectral discontinuous methods on general unstructured multidimensional meshes with possibly curved elements. For application purposes, we use the IDP states appearing in the convex combination defining the cell-averaged solution as local bounds which we impose by
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limiting the solution in modal and nodal discontinuous Galerkin (DG) schemes. This strategy is closely related to convex limiting [?] based on first-order IDP approximations defining local bounds and then forcing the high-order approximation to satisfy these bounds through flux limiting [?, ?]. This latter approach has been applied to finite element approximations in [?] and DG spectral element method in [?] among others.

The paper is organized as follows. In section 2 we introduce the notion of invariant domain preserving approximate Riemann solvers (ARS). In section 3 we state and prove our theorem on the existence of the pseudo-equilibrium state and the CFL condition for high-order schemes, and then introduce an algorithm for their evaluations. in Ω a , it is convenient for the present analysis to consider the Riemann problem in the direction n:

(2.1)

∂ t u + ∂ x f (u) • n = 0, in R × (0, ∞), u(x, 0) = u L , if x < 0, u R , if x > 0.
We will integrate (2.1) over the space time slab [-h 2 , h 2 ] × [0, ∆t] with h > 0 and ∆t > 0 the space and time steps. We suppose here that all the Riemann problems we consider have a self-similar entropy weak solution W( x t ; u L , u R , n). Let introduce the self-similar variable ξ = x ∆t and assume that there exist σ L , σ R such that:

W(ξ; u L , u R , n) = u L for ξ < σ L and W(ξ; u L , u R , n) = u R for ξ > σ R .
We then define the maximum wave speed in (2.1) by

(2.2) |λ|(u L , u R , n) = max (|σ L |, |σ R |),
and for ∆t h |λ|(u L , u R , n) ≤ 1 2 , we define the average over the Riemann fan [?, ?]

(2.3) ū(u L , u R , n, ∆t h ) := 1 h h 2 -h 2 W x ∆t ; u L , u R , n dx = u L + u R 2 - ∆t h f (u R )-f (u L ) •n, which satisfies (2.4) η ū(u L , u R , n, ∆t h ) ≤ η(u L ) + η(u R ) 2 - ∆t h q(u R ) -q(u L ) • n.
We will also use the definition of invariant domain from [?]: a convex set B ⊂ Ω a is an invariant domain for (1.1) if for all u L and u R in B, we have

ū u L , u R , n, ∆t h ∈ B ∀ ∆t h |λ|(u L , u R , n) ≤ 1 2 .
2.2. Two-point numerical fluxes and approximate Riemann solvers.

The discretization of (1.1) will rely on two-point numerical fluxes [?, ?] for the approximation of f (u) • n and we assume them to be consistent and conservative:

(2.5) h(u, u, n) = f (u) • n, h(u L , u R , n) = -h(u R , u L , -n) ∀u, u L , u R ∈ Ω a ,
and Lipschitz continuous. We also define the notions of IDP and entropy stable twopoint flux in the following definitions.

Definition 2.1. A two-point flux is said to be invariant domain preserving (IDP)

for B an invariant domain if we have

u - ∆t h h(u, u R , n) -h(u L , u, n) ∈ B ∀ u L , u, u R ∈ B,
under the half CFL condition

(2.6) ∆t h max |λ|(u L , u, n), |λ|(u, u R , n) ≤ 1 2 .
Definition 2.2. A two-point flux is said to be entropy stable for the pair (η, q)

in (1.3) if, under the half CFL condition (2.6) and for all u L , u, u R in Ω a , we have

η u - ∆t h h(u, u R , n) -h(u L , u, n) ≤ η(u) - ∆t h Q(u, u R , n) -Q(u L , u, n)
for some consistent and conservative numerical flux Q(•, •, •).

We now introduce the notion of ARS and IDP ARS, which will be used to derive IDP two-point fluxes. 

(2.7) 1 h h 2 -h 2 W a x ∆t ; u L , u R , n dx = u L + u R 2 - ∆t h f (u R ) -f (u L ) • n.
Using consistency in (2.5), and setting ξ = x ∆t , one defines a two-point flux from an ARS as

h W a (u L , u R , n) = f (u L ) • n - 0 -λ W a (ξ; u L , u R , n) -u L dξ (2.8a) = f (u R ) • n + λ 0 W a (ξ; u L , u R , n) -u R dξ, (2.8b)
where λ = |λ|(u L , u R , n). Both definitions are equivalent due to (2.7). We can now define the notion of IDP ARS.

Definition 2.4. An ARS W a (ξ; u L , u R , n) is IDP for an invariant domain B if we have 1 λ 0 -λ W a (ξ; u L , u R , n)dξ ∈ B, 1 λ λ 0 W a (ξ; u L , u R , n)dξ ∈ B ∀u L , u R ∈ B.
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As a consequence 

|λ|(u L , u R , n) ≤ 1, we have u L - ∆t h h W a (u L , u R , n) -f (u L ) • n ∈ B, (2.9a) u R - ∆t h f (u R ) • n -h W a (u L , u R , n) ∈ B. (2.9b)
Proof. Let consider (2.9a), a similar argument holds for (2.9b). From (2.8a), we have 

u L - ∆t h h W a (u L , u R , n)-f (u L )•n = 1- ∆t h λ u L + ∆t h λ 1 λ 0 -λ W a (ξ, u L , u R , n)dξ
(2.10) u - ∆t h h W a (u, u R , n) -h W b (u L , u, n) ∈ B ∀u L , u, u R ∈ B,
under the half CFL condition (2.6).

Proof. We rewrite (2.10) as

1 2 u -2 ∆t h h W a (u, u R , n) -f (u) • n + 1 2 u -2 ∆t h f (u) • n -h W b (u, u R , n)
and apply Lemma 2.5 to both terms with 2 ∆t h λ ≤ 1.

The previous lemma with W b = W a also proves that the three-point scheme built from an IDP ARS is also IDP [?].

3. A general CFL condition. We here state and prove our main results on the existence of an explicit condition on the time step to ensure that the cell-averaged solution from a high-order spectral discontinuous scheme is IDP. In subsection 3.1

we clarify the schemes we are considering in this work. Our results are based on the existence of a pseudo-equilibrium state allowing a balance of the numerical fluxes at the faces of each element which is introduced in subsection 3.2 where we prove its existence. The main result (Theorem 3.5) on the CFL condition on the time step is given in subsection 3.3, while subsection 3.4 introduces a fast algorithm to evaluate the pseudo-equilibrium state, and so the time step. For application purposes a limiting strategy based on convex bounds is described in subsection 3.5.

3.1. Cell-averaged fully discrete scheme. We now describe the main properties of the numerical methods we are considering in this work. We consider here discretely conservative high-order approximations of (1.1). Without loss of generality, we use an explicit forward Euler discretization in time. High-order time integration
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is then performed using strong-stability preserving Runge-Kutta methods [?] that are convex combinations of explicit first-order schemes in time and thus keep their stability properties. For the spatial discretization, the approximate solution u h (x, t) is defined locally over each element κ of the partition Ω h of the domain D in a local function cell space V p h (κ). By u

(n+1) h (•) = u h (•, t (n+1)
) we denote the solution at time t (n+1) = t (n) + ∆t (n) with t (0) = 0 and ∆t (n) > 0 the time step. The approximate solution is assumed to satisfy the following relation for the cell-averaged solution

⟨u h ⟩ κ : (3.1) ⟨u (n+1) h ⟩ κ = ⟨u (n) h ⟩ κ -∆t (n) N f k=1 s κ k h u - h (x κ k , t (n) ), u + h (x κ k , t (n) ), n κ k ∀κ ∈ Ω h ,
where the x κ k are some points on the faces f in ∂κ and u

± h (x κ k , t (n) ) = lim ϵ→0 + u h (x κ k ± ϵn κ k , t (n)
) denote evaluations of the traces of the solutions at x κ k (see Fig. 1). The 

S κ := N f k=1 s κ k . u - h u + h n κ k x κ k y κ i • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
Fig. 1: Notations for d = 2 on a quadrangle: definitions of the unit outward normal vector n κ k , element quadrature nodes y κ i (black bullets), surface quadrature node x κ k (gray bullets), and inner and outer traces u ± h at x κ k .

The geometrical quantities depend on the numerical method under consideration and examples will be given in section 4. By h we denote a consistent, conservative h ⟩ κ is supposed to be evaluated through a suitable quadrature rule, that includes N v volume quadrature points y κ i in κ together with the N f surface points x κ i on ∂κ introduced in (3.1) (see Fig. 1):

(3.3) ⟨u (n) h ⟩ κ = Nv i=1 ν κ i u h (y κ i , t (n) ) + N f i=1 β κ i u - h (x κ i , t (n) ),
where the weights ν κ 1≤i≤Nv ≥ 0 and β κ 1≤i≤N f > 0 are assumed to satisfy

(3.4) Nv i=1 ν κ i + N f i=1 β κ i = 1.
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Lemma 3.1 and Corollary 3.3 give a theoretical basis on the existence of such a quadrature on polygonal or polyhedral mesh elements. An explicit example is also

given in [?] in the case of triangles and in section 4.

Lemma 3.1. Let κ be a compact subset of R d and P κ a finite dimensional subspace of C 0 (κ, R), that contains the constant function f ≡ 1 κ . Suppose that there exists a quadrature (ϖ κ i , y κ i ) 1≤i≤Nv with positives weights ϖ κ i > 0 and points y κ i in κ that integrates exactly products of functions in P κ :

(3.5) 1 |κ| κ f (y)g(y)dV = Nv i=1 ϖ κ i f (y κ i )g(y κ i ) ∀f, g ∈ P κ .
Then, for given points

(x κ i ) 1≤i≤N f in κ there exist nonnegative (ν κ i ) 1≤i≤Nv and positive (β κ i ) 1≤i≤N f coefficients such that ⟨f ⟩ κ = Nv i=1 ν κ i f (y κ i ) + N f i=1 β κ i f (x κ i ) ∀f ∈ P κ . Proof. It is known that (f, g) → 1 |κ| κ f (y)g(y)
dV defines a scalar product on C 0 (κ, R) and therefore on P κ . Then using the Riesz representation theorem, every linear form φ : P κ → R can be represented using this scalar product: there exists f φ ∈ P κ such that for every

g ∈ P κ , φ(g) = 1 |κ| κ f φ (y)g(y)dV , then let α φ i = ϖ κ i f φ (y κ i ),
we obtain for every

g ∈ P κ , φ(g) = Nv i=1 α φ i g(y κ i ). Now, since f → N f i=1 s κ k f (x κ i )
defines a linear form on P κ , for any s κ k > 0, it can be represented this way: there exist

(α κ i ) 1≤i≤Nv such that (3.6) N f i=1 s κ i f (x κ i ) = Nv i=1 α κ i f (y κ i ) ∀f ∈ P κ .
As the constant function is in P κ , we have for

f in P κ , ⟨f ⟩ κ = Nv i=1 ϖ κ i f (y κ i ), so for ε κ > 0 ⟨f ⟩ κ = Nv i=1 ϖ κ i f (y κ i ) = Nv i=1 ϖ κ i f (y κ i ) -ε κ N f i=1 s κ i f (x κ i ) + ε κ N f i=1 s κ i f (x κ i ) = Nv i=1 ϖ κ i f (y κ i ) -ε κ Nv i=1 α κ i f (y κ i ) + ε κ N f i=1 s κ i f (x κ i ) = Nv i=1 (ϖ κ i -ε κ α κ i )f (y κ i ) + ε κ N f i=1 s κ i f (x κ i ).
Since the ϖ κ i are positive, for ε κ = min {i:α κ i >0} (

ϖ κ i α κ i ) > 0, the (ϖ κ i -ε κ α κ i ) are nonnegative, then (3.3) holds with (3.7) ν κ i = ϖ κ i -ε κ α κ i ≥ 0 ∀1 ≤ i ≤ N v , β κ i = ε κ s κ i > 0 ∀1 ≤ i ≤ N f .
Remark 3.2. Note that κ is usually a polyhedron and P κ a polynomial space, we can subdivide κ into simplices and since there are quadrature rules integrating

This manuscript is for review purposes only.

exactly arbitrary order polynomials on simplices, the previous lemma can be applied.

Likewise, the existence of the quadrature in Lemma 3.1 is required only for modal methods or when the DOFs are not defined at the x κ k in (3.1), so the present framework also holds for non polynomial nodal approximations with DOFs at the faces as in [?].

The following corollary allows to explicitly define the quadrature (3.3) for modal polynomial based methods.

Corollary 3.3. Given a basis (ϕ j ) 1≤j≤Np of P κ , of dimension N p , which is orthonormal with respect to the inner product (i.e., κ ϕ i (x)ϕ j (x)dV = δ ij where δ ij is the Kronecker symbol), then the α κ i in (3.7) read

(3.8) α κ i = ϖ κ i Np j=1 N f k=1 s κ k ϕ j (x κ k )ϕ j (y κ i ).
Proof. We know that there exists g ∈ P κ such that (see proof of Lemma 3.1) (3.9)

N f i=1 s κ i f (x κ i ) = Nv i=1 ϖ κ i f (y κ i )g(y κ i ) ∀f ∈ P κ . Expanding g ≡ Np k=1
g k ϕ k in the orthonormal basis and using (3.9) with f ≡ ϕ j we get

N f i=1 s κ i ϕ j (x κ i ) = Nv i=1 ϖ κ i ϕ j (y κ i ) Np k=1 g k ϕ k (y κ i ) = g j ,
for all 1 ≤ j ≤ N p , by orthonormality of the basis. Substituting g in (3.9) by its expansion in the basis gives

N f i=1 s κ i f (x κ i ) = Nv i=1 ϖ κ i f (y κ i ) Np j=1 N f k=1 s κ k ϕ j (x κ k )ϕ j (y κ i ) ∀f ∈ P κ ,
and we conclude by comparing this result with (3.6).

Finally, the scheme is assumed to preserve uniform states in the following sense:

(3.10)

N f k=1 s κ k n κ k = 0,
which is a discrete version of 

h λ (u L , u R , n) = f (u L ) • n + f (u R ) • n 2 - λ 2 (u R -u L ),
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for λ ≥ |λ|(u L , u R , n) defined in (2.
2). Note that the Rusanov flux is derived from the following ARS:

W λ (ξ, u L , u R , n) =    u L , ξ < -λ, u L +u R 2 -1 2λ (f (u R ) • n -f (u L ) • n), -λ < ξ < λ, u R , λ < ξ, so from (2.
3) we know that it is IDP, see also [?]. It is also entropy stable in the sense of Definition 2.2 with Q(•, •, •) defined by

(3.12) Q λ (u L , u R , n) = q(u L ) • n + q(u R ) • n 2 - λ 2 η(u R ) -η(u L ) .
We now state a result that will allow us to rewrite (3.1) with updates of threepoint schemes.

Lemma 3.4 (pseudo-equilibrium state). Suppose that the numerical scheme satisfies (3.1), (3.3) and (3.10). Let B be an invariant domain for (1.1) and suppose that the internal traces u

- h (x κ k , t (n) ) 1≤k≤N f are in B, then there exist u ⋆ κ = u ⋆ κ (t (n) ) in B and λ ⋆ κ = λ ⋆ κ (t (n) ) > 0 finite such that (3.13) N f k=1 s κ k h λ ⋆ κ u ⋆ κ , u - h (x κ k , t (n) ), n κ k = 0, with h λ ⋆ κ defined in (3.11) and λ = λ ⋆ κ where (3.14) λ ⋆ κ ≥ max 1≤k≤N f |λ|(u ⋆ κ , u - h (x κ k , t (n) ), n κ k ) ,
and the pseudo-equilibrium state is defined by

(3.15) u ⋆ κ = N f k=1 γκ k u - h (x κ k , t (n) ) - f u - h (x κ k , t (n) ) • n κ k λ ⋆ κ , γκ k := s κ k S κ .
Proof. For the sake of clarity, we remove the time dependence of u h since all evaluations are done at t (n) and write u

- h (x κ k ) for u - h (x κ k , t (n)
). We first remark that from (3.2) and (3.15), we have

(3.16) N f k=1 γκ k = 1.
We introduce the following two sequences:

(3.17)

                 u ⋆ 0 = N f k=1 γκ k u - h (x κ k ), λ 0 = max 1≤k≤N f |λ|(u ⋆ 0 , u - h (x κ k ), n κ k ) , λ p+1 = max λ p , 1 d(u ⋆ p ,∂B) + max 1≤k≤N f |λ|(u ⋆ p , u - h (x κ k ), n κ k ) , p ≥ 0, u ⋆ p+1 = N f k=1 γκ k u - h (x κ k ) + u ⋆ p 2 - f u - h (x κ k ) • n κ k -f (u ⋆ p ) • n κ k 2λ p+1 , p ≥ 0,
where d(u, ∂B) = inf v∈∂B ∥u-v∥ is the distance from u to the boundary of B. We will show that both sequences converge and the limits satisfy (3.13) and (3.14). We first
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remark that (λ p ) is non decreasing and therefore converges to some λ ⋆ κ in R ∪ {+∞} and that for all p ≥ 0, 

u ⋆ p is in B since λ p+1 ≥ |λ|(u - h (x κ k ), u ⋆ p , n κ k ) so
u ⋆ p+1 = N f k=1 γκ k u - h (x κ k ) + u ⋆ p 2 - f (u - h (x κ k )) • n κ k 2λ p+1 = u ⋆ p 2 + 1 2 N f k=1 γκ k u - h (x κ k ) - 1 2λ p+1 N f k=1 γκ k f (u - h (x κ k )) • n κ k .
Then the first step of the sequence (3.17) for u ⋆ κ reads

u ⋆ 1 = N f k=1 γκ k u - h (x κ k ) - 1 2λ 1 N f k=1 γκ k f (u - h (x κ k )) • n κ k ,
so applying the recurrence relation p more times, we obtain

(3.18) u ⋆ p+1 = N f k=1 γκ k u - h (x κ k ) - p+1 i=1 1 2 i λ (p+2-i) × N f k=1 γκ k f (u - h (x κ k )) • n κ k .
Let show that p i=1

1 2 i λ (p+1-i) above converges to 1 λ ⋆ κ . Assume λ ⋆ κ is finite and let ϵ > 0, since λ p converges to λ ⋆ κ , there exists p 0 such that | 1 λp -1 λ ⋆ κ | < ϵ for all p > p 0 .
Then for p > p 0 , we set

p i=1 1 2 i λ (p+1-i) - 1 λ ⋆ κ = p k=1 1 2 (p+1-k) λ k - 1 λ ⋆ κ = p0 k=1 1 2 (p+1-k) λ k + p k=p0+1 1 2 (p+1-k) λ k - 1 λ ⋆ κ = 1 2 p+1 p0 k=1 2 k λ k + p k=p0+1 2 k 2 p+1 1 λ k - 1 λ ⋆ κ - 1 λ ⋆ κ 1- p k=p0+1 2 k 2 p+1
and using a triangle inequality we obtain This manuscript is for review purposes only.

p i=1 1 2 i λ (p+1-i) - 1 λ ⋆ κ ≤ 1 2 (p+1) p0 k=1 2 k λ k + p k=p0+1 2 k 2 p+1 1 λ k - 1 λ ⋆ κ + 1 λ ⋆ κ 1 - p k=p0+1 2 k 2 p+1 ≤ 1 2 (p+1) p0 k=1 2 k λ k + p-p0 i=1 1 2 i ϵ + 1 λ ⋆ κ 1 - p-p0 i=1 1 2 i = 1 2 p+1 p0 k=1 2 k λ k + 1 - 1 2 p-p0 ϵ + 1 2 p-p0
Let now prove that λ ⋆ κ is finite by contradiction. Suppose that λ p → +∞, then

u ⋆ p → N f k=1 γκ k u - h (x κ k ), but the application u → max 1≤k≤N f (|λ|(u, u - h (x κ k ), n κ k )) + 1 d(u, ∂B)
is continuous in the interior of B and is hence locally bounded around

N f k=1 γκ k u - h (x κ k ),
implying that λ p is bounded and λ ⋆ κ is finite which is a contradiction. By (3.17), we

obviously have λ p+1 ≥ max 1≤k≤N f |λ|(u ⋆ p , u - h (x κ k ), n κ k
) and passing the inequality to the limit we obtain (3.14).

Let now prove that u ⋆ κ is in B, since for all p ≥ 0, u ⋆ p is in B, we already know that u ⋆ κ is in the closure B. Now by contradiction, assuming that u ⋆ κ is not in B, we necessarily have u ⋆ κ in ∂B, so d(u ⋆ p , ∂B) → 0 inducing λ p → +∞ by (3.17) which a contradiction. It remains to prove (3.13). Using (3.10), we add

1 λ ⋆ κ f (u ⋆ κ )• N f k=1 γκ k n κ k =
0 to (3.15) and get

u ⋆ κ = N f k=1 γκ k u - h (x κ k ) - f (u - h (x κ k )) • n κ k + f (u ⋆ κ ) • n κ k λ ⋆ κ .
Moving u ⋆ κ to the right-hand side and using (3.16) we obtain

N f k=1 γκ k u - h (x κ k ) -u ⋆ κ - f (u - h (x κ k )) • n κ k + f (u ⋆ κ ) • n κ k λ ⋆ κ = 0,
and multiplying the above quantity by -

λ ⋆ κ 2 N f i=1 s κ i = - λ ⋆ κ
2 S κ we finally get 

N f k=1 s κ k f (u - h (x κ k )) • n κ k + f (u ⋆ κ ) • n κ k 2 -λ ⋆ κ (u - h (x κ k ) -u ⋆ κ ) 2 =
± h (x κ k , t (n) ) 1≤k≤N f and u h (y κ i , t (n) ) 1≤i≤Nv
are in B an invariant domain for (1.1), then under the following condition on the time step

(3.19) ∆t (n) max κ∈Ω h max 1≤k≤N f s κ k β κ k max λ ⋆ κ , |λ| u - h (x κ k , t (n) ), u + h (x κ k , t (n) ), n κ k ≤ 1 2 ,
where λ ⋆ κ is defined by (3.14), ⟨u

(n+1) h ⟩ κ is also in B.
Proof. Once again we remove the time dependence of u h when possible for the sake of clarity, except when explicitly needed in the evaluation of ⟨u 

⟨u (n+1) h ⟩ κ =⟨u (n) h ⟩ κ -∆t (n) N f k=1 s κ k h(u - h (x κ k ), u + h (x κ k ), n κ k ) -h λ ⋆ κ (u ⋆ κ , u - h (x κ k ), n κ k )
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= Nv i=1 ν κ i u h (y κ i ) + N f k=1 β κ k u - h (x κ k ) -∆t (n) s κ k h(u - h (x κ k ), u + h (x κ k ), n κ k ) -h λ ⋆ κ (u ⋆ κ , u - h (x κ k ), n κ k ) = Nv i=1 ν κ i u h (y κ i , t (n) ) + N f k=1 β κ k U κ,n k , (3.20)
where, from Lemma 2.6 and the condition (3.19), the updates

(3.21) U κ,n k := u - h (x κ k ) - ∆t (n) s κ k β κ k h u - h (x κ k ), u + h (x κ k ), n κ k -h λ ⋆ κ u ⋆ κ , u - h (x κ k ), n κ k , are in B. Then by (3.4) ⟨u (n+1) h
⟩ κ is a convex combination of quantities in B, which concludes the proof.

Note that when explicitly using the quadrature (3.3) defined by Lemma 3.1

(see subsection 4.1 for an example), from (3.7) and (3.8) and the definition ε κ = min {i:α κ i >0} (

ϖ κ i α κ i
), we have

(3.22) s κ k β κ k = 1 ε κ = max {i:α κ i >0} ( α κ i ϖ κ i ) = max 1≤i≤Nv Np j=1 N f l=1 s κ l ϕ j (x κ l )ϕ j (y κ i ) ∀1 ≤ k ≤ N f ,
and the CFL condition (3.19) now reads

(3.23) ∆t (n) max κ∈Ω h 1 ε κ max λ ⋆ κ , max 1≤k≤N f |λ| u - h (x κ k , t (n) ), u + h (x κ k , t (n) ), n κ k ≤ 1 2 .
Remark 3.6. Since the set of states Ω a is in general a convex invariant domain, Theorem 3.5 can then be applied to B = Ω a to ensure robustness of the scheme. Likewise, using the convex combination (3.20) with (3.4), other properties such as discrete minimum and maximum principles can be proved according to the conservation laws under consideration.

We end this section with a result on entropy stability that directly follows from Theorem 3.5. 

(n+1) h ⟩ κ ) ≤ ⟨η(u (n) h )⟩ κ -∆t (n) N f k=1 s κ k Q u - h (x κ k , t (n) ), u + h (x κ k , t (n) ), n κ k .
Proof. Again we remove the time dependence when possible. By (3.1), (3.10), and (3.15), we decompose u ⋆ κ into

u ⋆ κ 2 + u ⋆ κ 2 + 1 2λ ⋆ κ f (u ⋆ κ )• N f k=1 γκ k n κ k = N f k=1 γκ k u ⋆ κ + u - h (x κ k ) 2 - f (u - h (x κ k )) -f (u ⋆ κ ) • n κ k 2λ ⋆ κ ,
and then using (2.3) and (2.4)

with ∆t h = 1 2λ ⋆ κ we obtain η(u ⋆ κ ) ≤ N f k=1 γκ k η(u ⋆ κ ) + η(u - h (x κ k )) 2 - q(u - h (x κ k )) • n κ k -q(u ⋆ κ ) • n κ k 2λ ⋆ κ
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= N f k=1 γκ k η(u ⋆ κ ) + η(u - h (x κ k )) 2 - q(u - h (x κ k )) • n κ k + q(u ⋆ κ ) • n κ k 2λ ⋆ κ
where we have used (3.10) to subtract

q(u ⋆ κ ) λ ⋆ κ • N f k=1 γκ k n κ k = 0 in the last step.
Moving everything to the left-hand side, we deduce that (3.12) satisfies (3.25)

N f k=1 s κ k Q λ ⋆ κ u ⋆ κ , u - h (x κ k ), n κ k = S κ λ ⋆ κ N f k=1 γκ k q(u - h (x κ k )) • n κ k + q(u ⋆ κ ) • n κ k 2 - λ ⋆ κ 2 η(u - h (x κ k )) -η(u ⋆ κ ) ≤ 0.
Finally, by (3.4) and (3.20) and then (3.21) and the entropy stability of h and h λ ⋆ κ in the sense of Definition 2.2, we obtain η(⟨u 

(n+1) h ⟩ κ ) ≤ Nv i=1 ν κ i η u h (y κ i ) + N f k=1 β κ k η(U κ,n k ) ≤ Nv i=1 ν κ i η u h (y κ i ) + N f k=1 β κ k η u - h (x κ k ) - ∆t (n) s κ k β κ k Q u - h (x κ k ), u + h (x κ k ), n κ k -Q λ ⋆ κ u ⋆ κ , u - h (x κ k ),
               λ 0 = 1 ϑ max 1≤k≤N f |λ| u - h (x κ k , t (n) ), u + h (x κ k , t (n) ), n κ k , u ⋆ 0 = N f k=1 γκ k u - h (x κ k , t (n) ), λ p+1 = max λ p , 1 ϑ max 1≤k≤N f |λ|(u ⋆ p , u - h (x κ k , t (n) ), n κ k ) , p ≥ 0, u ⋆ p+1 = N f k=1 γκ k u - h (x κ k , t (n) ) - f u - h (x κ k ,t (n) ) •n κ k λp+1 , p ≥ 0,
where

ϑ = max 0 ≤ t ≤ 1 : u ⋆ 0 - t λ1 N f k=1 γκ k f u - h (x κ k , t (n) ) • n κ k ∈ B ,
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λ1 = max 1≤k≤N f |λ| u - h (x κ k , t (n) ), u + h (x κ k , t (n) ), n κ k , |λ| u ⋆ 0 , u - h (x κ k , t (n) ), n κ k .
Since u ⋆ 0 ∈ B, we have 0 < ϑ ≤ 1 and then u ⋆ 1 ∈ B by definition of ϑ. Now λ p is non-decreasing and

u ⋆ p+1 ∈ [u ⋆ 0 , u ⋆ p ] ⊂ [u ⋆ 0 , u ⋆ 1 ]
for all p ≥ 1 which is enough to prove convergence of both sequences and ensure that u ⋆ p ∈ B. Since [u ⋆ 0 , u ⋆ 1 ] is closed, the limit is also in B (no need to add the distance term as in (3.17)). Obviously, the limits satisfy (3.13), (3.14) and (3.15). But this time, if λ p+1 = λ p for p ≥ 1, then u ⋆ p+1 = u ⋆ p and from this point both sequences are stationary. Now, the evaluation of u ⋆ p is really fast and we only need to evaluate max

1≤k≤N f (|λ|(u ⋆ p , u - h (x κ k , t (n) ), n κ k )).
In the supplementary materials, we investigate the possibility of using local wave speed estimates λ ⋆k κ at each vertex x k κ in ∂κ instead of the global estimate λ ⋆ κ . Numerical experiments however show that there is no improvement in the solution, while the algorithm for computing λ ⋆k κ and u ⋆ κ is slower to converge. 

λ i = 1, we have ψ( i λ i u i ) ≥ min i ψ(u i ) for all u i in B.
From Theorem 3.5 we see that for any quasiconcave function ψ we have

(3.27) ψ(⟨u (n+1) h ⟩ κ ) ≥ m ψ κ := min ψ u h (y κ i , t (n) ) 1≤i≤Nv , ψ U κ,n k 1≤k≤N f
, where the updates U κ,n k are defined in (3.21). We now limit the solution around its cell-average ⟨u

⟩ κ so that it satisfies the same bounds and we rely on scaling limiters introduced in [?, ?] to enforce the bounds from quasiconcave functions to points where u h needs to be evaluated. The limited solution is thus defined as

(3.28) ũ(n+1) h (x) ≡ (1 -θ κ )u (n+1) h (x) + θ κ ⟨u (n+1) h ⟩ κ ∀κ ∈ Ω h , where (3.29) θ κ = min z∈(y κ 1≤i≤Nv )∪(x κ 1≤i≤N f ) max 0 ≤ t ≤ 1 : ψ (1-t)u h (z, t (n+1) )+t⟨u (n+1) h ⟩ κ ≥ m ψ κ .
This strategy may be applied to a finite family (ψ i ) 1≤i≤nc of n c quasiconcave functions by using the minimum value θ κ = min{θ κ (ψ i ) : 1 ≤ i ≤ n c }. The limiter (3.28) is then applied locally to each cell κ. The cell-average is not modified, 

⟨ũ (n+1) h ⟩ κ = ⟨u (n+1) h ⟩ κ ,
u h (x, t) = Np k=1 ϕ κ k (x)U κ k (t) ∀x ∈ κ, κ ∈ Ω h , ∀t ≥ 0,
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Algorithm 3.1 Algorithm flowchart of the IDP time integration with limiting. In 3, R h denotes the space residuals and depends on the chosen discretization. where the basis functions ϕ κ k span the function space V p h (κ) restricted onto κ and N p is its dimension. For simplicity we consider a discrete scheme of the form

(4.2) M κ k U κ k,n+1 -U κ k,n ∆t (n) + R κ k (u (n) h ) = 0 ∀κ ∈ Ω h , 1 ≤ k ≤ N p , n ≥ 0, where U κ k,n = U κ k (t (n)
), the M κ k are the entries of the diagonal mass matrix, and 

R κ k (u h ) represent
V p h = κ∈Ω h V p h (κ) = {ϕ ∈ L 2 (D) : ϕ| κ • x κ ∈ P p ( K) ∀κ ∈ Ω h },
where P p ( K) is a polynomial space over a reference element K of polynomials of total degree lower or equal to p and N p = (p+d)! d!p! is its dimension. Each physical element κ is the image of K through the mapping x = x κ (ξ) with ξ = (ξ 1 , . . . , ξ d ).

Likewise, each face f in F h is the image of a reference face F through the mapping

x = x f (ξ 1 , . . . , ξ d-1
). We further define the Jacobians of the transformations by

J κ (x) = |x ′ κ (ξ)| and J f (x) = |x ′ f (ξ 1 , . . . , ξ d-1 )|.
We consider a quadrature rule (ξ V i , ω V i ) 1≤i≤Nv on K and denote y κ i = x κ (ξ i ) (see Fig. 1). Similarly, we consider a quadrature (ξ f k , ω f k ) 1≤k≤n f on F and denote the faces of κ (f j κ ) 1≤j≤Nκ where N κ is the number of faces of κ and the f j κ ∈ F are distinct.

We define the x κ i in (3.1) by x κ (j-1)n f +k = x f j κ (ξ

f j κ k ) for 1 ≤ j ≤ N κ and 1 ≤ k ≤ n f and N f = N κ × n f .
The DG method consists in defining a discrete weak formulation of (1.1) by multiplying it with test functions ϕ κ k spanning V p h and integrating over κ, using integration by parts and approximating f (u h ) • n by two-point numerical fluxes and the integrals by the quadrature rules. The space discretization in (4.

2) reads
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(4.3) R κ k (u h ) = - Nv i=1 ω V i J κ (y κ i )f u h (y κ i , t (n) ) • ∇ϕ κ k (y κ i ) + N f i=1 ω f i J f (x κ i )h u - h (x κ i , t (n) ), u + h (x κ i , t (n) ), n κ i ϕ κ k (x κ i ).
We build an orthonormal basis with respect to the discrete inner product on κ by using a Gram-Schmidt algorithm, hence

M k κ = |κ| := Nv i=1 ω V i J κ (y κ i ).
Setting 

ϕ κ k = 1 κ
s κ k = ω f k J f (x κ k ) |κ| and β κ k = ε κ s κ k in (3.
3) where ε κ is evaluated from (3.22). Then by (3.23), the scheme (4.2) and (4.3) is IDP under the condition 

(4.4) ∆t (n) max κ∈Ω h 1 ε κ max λ ⋆ κ , max 1≤k≤N f |λ| u - h (x κ k , t (n) ), u + h (x κ k , t (n) ), n κ k ≤ 1 2 .

Discontinuous Galerkin

k = k(i 1 , . . . , i d ) := 1 + d j=1 i j (p + 1) j-1 0 ≤ i 1 , . . . , i d ≤ p.
We define a basis (ϕ κ k ) 1≤k≤Np of V p h (κ) by using tensor products:

ϕ κ k (x) = ϕ κ k (x κ (ξ)) = Π d j=1 ℓ ij (ξ j )
, where ℓ 0≤i≤p denote the ith Lagrange interpolation polynomial associated to ζ i the ith Gauss-Lobatto quadrature node with 2) and by ω i we denote the associated weight. We therefore have the following cardinality relation at quadrature points

ζ 0 = -1 < ζ 1 < • • • < ζ p = 1 (see Fig.
ξ k ′ = (ξ i ′ 1 , . . . , ξ i ′ d ) in K: ϕ κ k (x κ k ′ ) = ϕ κ k (x κ (ξ k ′ )) = δ i1,i ′ 1 . . . δ i d ,i ′ d with δ i,i ′ the
Kronecker symbol, so the DOFs correspond to the point values of the solution:

U κ k (t) = u h (y κ k , t) with y κ k = x κ (ξ k )
and interpolation and quadrature points are collocated, hence

N v = N p .
Let introduce the discrete derivative matrix with entries

D ij = ℓ ′ j (ζ i ) with 0 ≤ i, j ≤ p. The DGSEM discretization takes the form (4.2) with M κ k = ω V k J κ (y κ k ), ω V k = Π d j=1 ω ij for k = k(i 1 , . . . , i d ) and (4.5) R κ k (u h ) = 2ω V k d j=1 p l=0 D ij l h sym U κ k , U κ k ′ j , {J κ ∇ξ j } (k,k ′ j ) + N f i=1 ϕ κ k (x κ i )ω f i J f (x κ i ) h U κ k,n , u + h (x κ i , t), n κ i -f U κ k,n • n κ i where for d = 3 k ′ 1 = k(l, i 2 , i 3 ), k ′ 2 = k(i 1 , l, i 3 ) and k ′ 3 = k(i 1 , i 2 , l), hence k ′ j = k + (i ′ j -i j )(p + 1) j-1 , N f = 2d(p + 1) d-1 , ω f i = Π d-1
j=1 ω ij , and the

{J κ ∇ξ} (k,k ′ j ) = 1 2 J κ (y κ k )∇ξ j (ξ k ) + J κ (y κ k ′ j )∇ξ j (ξ k ′ j ) ,
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κ = κ - κ + f u - h u + h n κ k x κ k y κ i • • • • • • • • • • • • • • • •
Fig. 2: Notations for the DGSEM and d = 2: inner and outer elements κ -and κ + ; traces u ± h on the interface f and of the unit outward normal vector n κ k ; element quadrature nodes y κ i and surface quadrature node x κ k that are also included in the y κ i .

have been introduced to keep conservation of the scheme [?]. By h sym we denote a twopoint flux supposed to be symmetric in the sense that

h sym (u, v, n) = h sym (v, u, n). Note that ϕ κ k (x κ i ) = 1 if x κ i = y κ k and ϕ κ k (x κ i ) = 0 else.
The choice of the y κ k in the quadrature (3.3) is not unique and we here use the following decomposition

⟨u (n) h ⟩ κ = 1 |κ| y κ i ∈κ ω V i J κ (y κ i )U κ i,n = 1 |κ| y κ i ∈int(κ) ω V i J κ (y κ i )U κ i,n + 1 |κ| N f i=1 1 α κ i ω V i J κ (x κ i )u h (x κ i , t (n) ),
where int(κ) denotes the interior of κ, while

α κ i = d if x κ i = y κ j is a vertex of the d-dimensional hexahedron, α κ i = d -1 if x κ i = y κ j is on some edge, α κ i = 1 else. Summing (4.2) over 1 ≤ k ≤ N v gives for the cell-averaged solution ⟨u (n+1) h ⟩ κ = ⟨u (n) h ⟩ κ - ∆t (n) |κ| Nv k=1 R κ k (u (n) h ) = ⟨u (n) h ⟩ κ - ∆t (n) |κ| N f i=1 ω f i J f (x κ i )h u - h (x κ i , t (n) ), u + h (x κ i , t (n) ), n κ i ,
by conservation of the DGSEM [?, ?] and providing that the so-called metric identities are satisfied at the discrete level [?]. This relation can be identified with (3.1) with

s κ k = ω f k J f (x κ k ) |κ|
. Then we can apply Theorem 3.5 with

β κ k = ω V k Jκ(x κ k ) α κ k |κ|
and the DGSEM scheme (4.2) is IDP under the condition

(4.6) ∆t (n) max κ∈Ω h max 1≤k≤N f α κ k ω f k J f (x κ k ) ω V k J κ (x κ k ) max λ ⋆ κ , |λ| u - h (x κ k , t (n) ), u + h (x κ k , t (n) ) ≤ 1 2 . 
Remark 4.1. The CFL conditions (4.4) and (4.6) may be compared with results in the literature. First, bounding the wave speeds by λ ∞ and assuming a first-order scheme, p = 0, and straight-sided elements we have ε κ = |κ|/|∂κ| from (3.22), so (4.4)

reduces to ∆t (n) max κ∈Ω h |∂κ| |κ| λ ∞ ≤ 1 2 which is the estimate obtained in [?, Th. 3].
Then, assuming a Cartesian grid with elements of size h and p ≥ 1, using This manuscript is for review purposes only. We aim to test the robustness and efficiency of the present approach on simulations of (1.1) and (5.1) with discontinuous solutions on one-dimensional and unstructured two-dimensional grids. We use the modal DG method in subsection 4.1 and the DGSEM in subsection 4.2, where the time step is respectively evaluated from conditions (4.4) and (4.6) with the wave estimate λ ⋆ κ from algorithm (3.26). The cell-averaged solution is thus guaranteed to be IDP and we apply the limiter (3.28) to further impose the high-order solution to be IDP. We will compare the following as expected because the solution remains all the time positive, so does the IDP scheme with the smoothness indicator. Removing the smoothness indicator (IDP (no TCI)) affects the accuracy and order of convergence, especially on the finest mesh. We also tested the bound relaxation (IDP (Rel)), see [?, Sec. 7.6], which allows to recover the expected convergence order. These results are in agreement with results observed in the literature [?, ?, ?, ?, ?, ?, ?]. We conclude that the limiter may alter the formal accuracy of the scheme, but there exist ways to fix this issue.

α κ k = d, J f (x κ k )/J κ (x κ k ) = 2 h and min ω ij = 2 p(p+1) , (4.6) becomes ∆t (n) λ∞ h ≤ 1 2dp ( 
∥ L 1 (Ω) O 1 ∥e h ∥ L 2 (Ω) O 2 ∥e h ∥ L ∞ (Ω) O ∞ POS 1/8

Riemann problems.

We here consider Riemann problems (2.1) with initial data given in Tab. 3. Results are shown in Figs. 3 to 5. The flow features are well captured by the schemes with the four present strategies. We observe some spurious This manuscript is for review purposes only.

oscillations in the DGSEM solution with POS limiter that are slightly damped with the IDP limiter. The POS limiter only ensures that the solution remains in the set of states Ω a and does not control spurious oscillations, while the IDP strategy further reduces the oscillations. In contrast, the oscillations almost vanish with the modal DG scheme and there is no evident benefice of using the IDP limiter compared to the POS limiter. Imposing the IDP property at all quadrature points may result in stronger limitation of the solution with the modal DG scheme as these are more quadrature points (compare Figs. 1 and2). Note that all the computations (with either DGSEM, or modal DG scheme) require to apply one of the limiting strategy to avoid non-physical solution.

5.3. Two-dimensional problems. We now consider two-dimensional problems and first consider the reflection of a Mach 10 shock over a 30 • wedge [?]. Ahead of the shock, the gas is at rest and has a density of 1.4 and pressure of 1. Inflow and outflow conditions are applied at the left and bottom boundaries, while a symmetry condition is applied at the top boundary. Initially, the shock is located at x = 0 corresponding to the beginning of the wedge. We use an unstructured mesh with 164850 quadrangles to solve the horizontally moving shock interacting with the inclined wall where slip conditions are applied. In Fig. 6 we plot the density contours and post-process the solution by splitting each element into four subelements to evaluate the resolution within elements, but also oscillations of the polynomial solution. We observe qualitatively similar results for all the tests. Some spurious oscillations remain after limiting, but the computations proved to be robust.

We then consider the diffraction of a shock wave at a corner. The computational domain is the union of [0, 1] × [START_REF] Bouchut | Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources[END_REF][START_REF] Crean | Entropy-stable summation-by-parts discretization of the Euler equations on general curved elements[END_REF] and [START_REF] Avriel | r-convex functions[END_REF][START_REF] Don | Numerical study of pseudospectral methods in shock wave applications[END_REF] 6. Conclusions. We here investigate robustness and stability properties of highorder spectral discontinuous methods on general unstructured meshes with explicit time stepping for the approximation of hyperbolic systems of conservation laws. We derive a condition on the time step to guarantee that the cell-averaged approximate solution is a convex combination of DOFs at preceding time step and updates of IDP and entropy stable three-point schemes. As a consequence, the cell-averaged scheme preserves the invariant domains of the equations. For the sake of illustration, we apply

This manuscript is for review purposes only. balance over each mesh element, and the existence of a quadrature rule including the traces to evaluate the cell-averaged solution. We here prove their existence in the general case and provide an iterative algorithm to evaluate the pseudo-equilibrium state. We illustrate these results with the classical modal DG and DGSEM schemes.

Numerical experiments in one and two space dimensions are provided to illustrate the robustness and stability of the present approach. The extension of this framework to parabolic systems of conservation laws, e.g., the compressible Navier-Stokes, is a
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1 .

 1 Introduction. Let D ⊂ R d be an open domain with d the space dimension.

  s κ k > 0 are local contributions to |f | |κ| with |f | and |κ| approximations of the face surface and element volume, and we introduce (3.2)

( 2 . 5 )

 25 , and IDP (see Definition 2.1) two-point flux derived from an ARS. The cellaveraged solution ⟨u (n)

  which clearly converges to ϵ when p → ∞, proving our statement and (3.15).

  0, which is exactly (3.13) from the definition of the Rusanov flux (3.11).3.3. Invariant domain preserving schemes. Using Lemma 3.4 we now state and prove the main result of this work in the theorem below. Theorem 3.5 (Time step condition). Assume that the numerical scheme satisfies (3.1), (3.3) and (3.10) and assume that u

  add the trivial quantity ∆t (n) × (3.13) to (3.1) and use (3.3) to get

Corollary 3 . 7 .

 37 Under the assumptions of Theorem 3.5 and further assuming that the two-point flux in (3.1) is entropy stable in the sense of Definition 2.2, we have (3.24) η(⟨u

3. 5 .

 5 Application to convex limiting. Convex limiting enforces the numerical solution to preserve invariant domains [?] through quasiconcave constraints [?]. Let recall that a function ψ : B → R is quasiconcave iff. for every family of convex coefficients (λ i ) ≥ 0, with

4 .

 4 and cellwise discrete conservation (3.1) still holds. Algorithm 3.1 describes the procedure of the IDP time integration with the above limiter at each time step with an explicit time integration. Examples of high-order spectral discontinuous methods. We here review some high-order spectral discontinuous approximations of (1.1) which satisfy the assumptions of discrete conservation (3.1), existence of a quadrature rule (3.3) and preservation of uniform states (3.10). Then, there exists pseudo-equilibrium states u ⋆ κ such that Lemma 3.4 and Theorem 3.5 hold, and the limiter (3.28) can be applied.In the following, we consider a partition Ω h of D ⊂ R d , composed of non-overlapping and non-empty elements κ, and by F h we denote the set of faces in the partition. The approximate solution is sought under the form(4.1) 

  the indicator function of κ, the first sum vanishes and we obtain (3.1) with

  Spectral Element Method. In the DG spectral element method (DGSEM), the reference element is an hypercube : K = I d := {ξ = (ξ 1 , . . . , ξ d ) : -1 ≤ ξ j ≤ 1} and the polynomial space P p (I d ) is formed by tensor products of polynomials of degree at most p in each direction. The approximate solution is sought under the form (4.1) where (U κ k ) 1≤k≤Np are the N p = (p + 1) d DOFs in the element κ with indexing

2 . 4 . 3 .

 243 p+1) , which results in a time step reduced by a factor 2 when compared with [?,Th. 3.1]. This latter result however assumes Cartesian meshes to rewrite the numerical flux balance of opposite faces as the space residuals of a three-point scheme, thus gaining this factor Other methods. Properties (3.1),(3.3), and (3.10) also hold for other discretely conservative spectral difference methods on general curved elements provided the discretization operators satisfy the metric identities at the discrete level, which imposes some limits on the order of approximation of the mesh elements compared to the approximation order of the solution [?]. The limiter (3.28) may hence be applied to make these methods invariant domain preserving. We list some examples below. The skew-symmetric entropy stable modal DG methods [?] uses skew-hybridized summation-by-parts (SBP) operators allowing conservation and free-stream preservation under standard accuracy requirements of volume and surface quadratures. In [?] multidimensional discretization schemes based on SBP operators on general curved elements generalize the staggered finite differences from [?]. The discretizations with curved elements remain accurate, conservative, and entropy stable. Spectral differences [?] and staggered Chebyshev [?] methods on curved elements belong to a same family of conservative approximations satisfying the discrete metric identities. The methods use two sets of interpolation points for the solution and fluxes and impose the discrete residuals to be satisfied at solution points. Flux points contain points at faces of the elements where two-point numerical fluxes are used. Then, the space derivatives at solution points are evaluated by differencing the polynomials interpolating the fluxes. 5. Numerical experiments. Let consider the compressible Euler equations of gas dynamics. The conservative variables and fluxes in (1.ρvv ⊤ + pI d (ρE + p)v ⊤   , where ρ, v, and E denote the density, velocity vector, and specific total energy, respectively. The system is closed by defining the equation of state p = p( 1 ρ , e) with e = E -1 2 v • v the specific internal energy and the system is hyperbolic over the set of states Ω a = {u ∈ R d+2 : ρ > 0, v ∈ R d , e > 0}. We focus here on the polytropic ideal gas law p = (γ -1)ρe where γ = Cp Cv = 7 5 is the ratio of specific heats. The compressible Euler equations (1.1) and (5.1) possess the natural entropy -entropy flux pair η = -ρs, q = -ρsv, s = C v ln p ρ γ , and B = {u ∈ Ω a : s(u) ≥ s 0 }, with s 0 in R, is an invariant domain. We use the convex limiting strategy with the quasiconcave functions ψ 1 ≡ ρ and ψ 2 ≡ ρe.

5 . 1 .

 51 limiting strategies: a positivity limiter (POS) which imposes the solution to remain in B = Ω a thus extending [?] to unstructured grids; an IDP limiter which imposes the solution to remain in the convex hull of the states in (3.20) on density and internal energy. Imposing the IDP property may result in over-limiting of the solution and some strategies are usually applied such as bound relaxation [?], or subcell smoothness indicator [?]. We here follow the second strategy which relies on the smoothness indicator from [?] (see [?, Sec. 4.4] for details). Finally, we use the Suliciu pressure relaxation based numerical flux from [?, Sec. 2.4.6] at interfaces, while for h sym in the DGSEM scheme (4.5) we use the Kennedy and Grubber splitting from [?]. We systematically evaluated the convergence efficiency of algorithm (3.26) in terms of iterations to converge. Tab. 1 indicates the global average number of iterations evaluated over the whole computations for all schemes and different approximation orders. We observe that algorithm (3.26) converges very fast with a global average always lower than 1.2 iterations, thus meaning that most of the time u ⋆ κ = u ⋆ 1 given in (3.26) satisfies the requirement (3.14) so no more step is needed. Convection of an isentropic vortex. We first evaluate the accuracy of the fourth-order DGSEM scheme together with a limiter on the convection of an isentropic vortex in a uniform subsonic flow. Results with the modal DG method and with different approximation orders lead to the same conclusions. Error norms are gathered in Tab. 2 for different limiters. The POS scheme keeps high-order accuracyThis manuscript is for review purposes only.

  × [0, 11]. The initial condition is a pure right-moving shock of Mach 5.09, initially located at x = 0.5 and 6 ≤ y ≤ 11, moving into undisturbed air ahead of the shock with a density of 1.4 and pressure of 1. The boundary conditions are inflow at x = 0, 6 ≤ y ≤ 11, outflow at x = 13, 0 ≤ y ≤ 11, and 1 ≤ x ≤ 13, y = 0, and reflective at the walls 0 ≤ x ≤ 1, y = 6 and x = 1, 0 ≤ y ≤ 6, and top boundary 0 ≤ x ≤ 13, y = 11. Figure 7 shows the density contours (post-processed into four subelements) obtained on an unstructured mesh with 110242 quadrangles and we observe similar results as in the previous test. We finally consider the problem of a two-dimensional Kelvin-Helmholtz instability [?] in a square domain [-1, 1] 2 with periodic conditions and initial data as ρ 0 (x) = 1 2 + 3 4 B(x), u 0 (x) = 1 2 (B(x) -1), v 0 (x) = 1 10 sin(2πx) and p 0 (x) = 1 where B(x) = tanh(15y + 7.5) -tanh(15y -7.5). Though these are no shocks, the strong variations in the initial density and velocity fields make this test challenging the robustness and resolution capabilities of the methods. Figure 8 displays snapshots of density fields obtained on a Cartesian mesh where we observe a wide range of scales that slightly differ between different methods due to the sensitivity of the flow to small perturbations. All the computations where stable and robust with a resolution similar to computations with the same accuracy [?].

Fig. 3 :

 3 Fig. 3: Sod problem at t = 0.2 with p = 3 and N = 100 elements.

Fig. 4 :

 4 Fig. 4: Lax problem at t = 0.13 with p = 3 and N = 100 elements.

Fig. 5 :

 5 Fig. 5: Toro 4 problem at t = 0.035 with p = 3 and N = 100 elements.

Fig. 6 :

 6 Fig. 6: Double Mach reflection problem at t = 0.2: 41 equispaced density contours between 2.1 and 22.1.

Fig. 7 :

 7 Fig. 7: Shock diffraction problem at t = 2.3: 28 equispaced density contours between 0.5 and 7.5.

Fig. 8 :

 8 Fig. 8: Two-dimensional Kelvin-Helmholtz instability: density field at t = 10 with p = 3 and N = 64 × 64 elements.

  1.1) is sought under the form of discontinuous piecewise truncated series of analytic functions over a partition of the domain D. Such methods have been applied to a wide range of applications [?, ?], and have the potential to achieve high-order accuracy efficiently on modern parallel architectures [?, ?]. Unfortunately these approximations suffer from spurious oscillations around discontinuities of the exact solution due to

Gibbs phenomenon [?, ?] that may cause the approximate solution to become locally nonphysical, leading to robustness issues. A large body of research has been proposed to address such issues with, e.g., solution and flux limiters [?, ?, ?, ?, ?], entropy conservative subcell flux differencing [?, ?, ?], artificial viscosity [?, ?], shock-capturing terms [?, ?], entropy projection [?].

  W a (ξ, u L , u R , n)dξ is also in B. We have the following results linking IDP ARS and two-point numerical flux.Lemma 2.5 (Interface invariant domain preservation [?]). The ARS W a is IDP for B iff. for all u L , u R in B, and ∆t h

	1	λ
	2λ	-λ

  Let h W a and h W b be two-point fluxes from two different ARS that are IDP for B. Then, we have

	,
	and since 0 < ∆t h λ ≤ 1 this is a convex combination of states in B and therefore is in B. Conversely, taking ∆t h λ = 1 the above integrals are B iff. (2.9a) and (2.9b) hold
	and we conclude from Definition 2.4.
	This allows us to state the following result.
	Lemma 2.6.

Table 1 :

 1 Global average number of iterations required for algorithm (3.26) to converge for the different numerical experiments in section 5 (DMR: double Mach reflection; SDP: shock diffraction problem; KHI: Kelvin-Helmholtz instability) and different polynomial degrees 1 ≤ p ≤ 3.

	p	1	2	3	1	2	3	1	2	3
	test case		Sod			Lax			Toro 4	
	POS DGSEM 1.02 1.03 1.06 1.00 1.05 1.13 1.02 1.08 1.09
	IDP DGSEM 1.02 1.03 1.06 1.00 1.05 1.12 1.02 1.10 1.10
	POS DGM	1.08 1.15 1.11 1.18 1.20 1.18 1.08 1.14 1.14
	IDP DGM	1.08 1.15 1.11 1.18 1.20 1.18 1.08 1.14 1.14
	test case		DMR			SDP			KHI	
	POS DGSEM 1.02 1.14 1.18 1.12 1.18 1.18 1.04 1.11 1.15
	IDP DGSEM 1.02 1.14 1.18 1.12 1.18 1.18 1.04 1.11 1.15
	POS DGM	1.04 1.18 1.17 1.14 1.17 1.18 1.06 1.15 1.19
	IDP DGM	1.04 1.18 1.17 1.14 1.17 1.18 1.06 1.15 1.16

Table 2 :

 2 Convection of an isentropic vortex in a subsonic flow at Mach number M ∞ = 0.5. Domain [0, 1] 2 discretized with a Cartesian mesh with a 4th-order DGSEM (p = 3), 1/h×1/h elements and periodic boundary conditions. The vortex is isentropic with an exponential decay type profile and a radius of 0.05. Different norms of the error on the pressure field after 5 convection time scales, i.e., t = 5 × 1/U ∞ .

	limiter	h	∥e h

Table 3 :

 3 Initial conditions of Riemann problems (2.1) where x 0 indicates the abscissa separating the initial states.problem left state (ρ L , u L , p L ) ⊤ right state (ρ R , u R , p R ) ⊤ x 0

			1.3932e+01	-	3.6193e+01	-	5.6936e+02	-
		1/16 4.3118e+00 1.69 9.7078e+00 1.90 1.6683e+02	1.77
		1/32 1.1530e-01 5.22 3.9447e-01 4.62 9.2519e+00	4.17
		1/64 5.1484e-03 4.49 2.3328e-02 4.08 5.8875e-01	3.97
		1/8	1.3932e+01	-	3.6193e+01	-	5.6936e+02	-
	IDP	1/16 4.3118e+00 1.69 9.7078e+00 1.90 1.6683e+02 1/32 1.1530e-01 5.22 3.9447e-01 4.62 9.2519e+00	1.77 4.17
		1/64 5.1484e-03 4.49 2.3328e-02 4.08 5.8875e-01	3.97
		1/8	1.3559e+01	-	3.6117e+01	-	5.7004e+02	-
	IDP (no	1/16 4.3035e+00 1.66 1.0000e+00 1.85 1.7109e+02	1.74
	TCI)	1/32 1.1568e-01 5.22 3.9849e-01 4.65 8.6409e+00	4.31
		1/64 2.8711e-02 2.01 2.2270e-01 0.83 1.0147e+01 -0.23
		1/8	1.3932e+01	-	3.6193e+01	-	5.6936e+02	-
	IDP	1/16 4.3118e+00 1.69 9.7078e+00 1.90 1.6683e+02	1.77
	(Rel)	1/32 1.1530e-01 5.22 3.9447e-01 4.62 9.2519e+00	4.17
		1/64 5.1484e-03 4.49 2.3328e-01 4.08 5.8875e-01	3.97
	Sod		(1, 0, 1) ⊤		(0.125, 0, 0.1) ⊤	0
	Lax		(0.445, 0.698, 3.528) ⊤	(0.5, 0, 0.571) ⊤	0
	Toro 4 [?] (5.99924, 19.5975, 460.894) ⊤ (5.99242, -6.19633, 46.0950) ⊤ -0.1
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