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Estimating Age without Measuring it: 
A New Method in Paleodemography

At what age did humans die in the past? To estimate age at death 
in ancient populations for which no civil records exist, skeletons 
are often the only information source. Bones and teeth provide 
indications of the stage of growth or ageing reached by individuals 
at the moment of their death, but they cannot be used to estimate 
age with certainty. Skeletons of individuals whose age at death 
is known, and for whom these biological parameters have been 
measured, provide a reference population for constructing statistical 
models to estimate the age distribution at death of persons whose 
skeletons have been uncovered. But these individuals are not 
necessarily representative of the general population to which 
they belonged: skeletal conservation depends on burial conditions 
and the circumstances of death. One way to resolve this problem 
is to work on homogeneous groups, such as the convent of nuns 
whose data are presented here as an illustrative example. How can 
statistical inferences be drawn from these data? Henri CAUSSINUS 
and Daniel COURGEAU fi rst describe the methods generally used in 
paleodemography and demonstrate their limits. They then propose 
a new method, based on the principle of Bayesian inference, and 
compare it with standard methods to demonstrate its greater 
accuracy and fl exibility. 

Age, a fundamental concept in demography, cannot be directly measured 
for most past populations as they did not keep vital statistics. All we can do is 
to estimate age from biological growth indicators for immature individuals, 
or ageing for adults, measured on a small number of skeletons belonging to a 
given population, with the aid of bone or dental remains. Unfortunately, these 
indicators can give us only a broad range for an individual’s age at death because 
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there is no precise relationship between age and bone condition, but only a 
rather weak correlation.

To advance the study of that correlation, paleodemographers have long 
been using what are known as “reference” data (Masset, 1971), obtained on 
sites where it has been possible to determine both the age at death and biological 
indicator(s) for each individual. These data are described in greater detail in 
Section I, as are data from the “target” site, where only data on indicators are 
available. The statistical problem consists in estimating the distribution of ages 
at death on the target site from data observed there and from reference data. 
Various methods have been proposed for the purpose over the years. We recall 
the main developments in Section II, focusing on the most common approach: 
the discrete case where bone characteristics and ages are distributed into 
classes. We consider the case where only one biological indicator is observed, 
but the generalization to several indicators is straightforward. The fi rst hypothesis 
centres on the conditional probabilities of the ages associated with each indicator 
value. It is less satisfactory than the second, called “invariance hypothesis”, 
which assumes that the conditional distribution of indicators, at a given age, 
is constant over time in the periods concerned, at least for a first 
approximation.(1)

Although the performance of methods proposed earlier has gradually 
improved, it remains disappointing. The results are often visibly aberrant with 
respect to prior knowledge and plain common sense. In fact, they tend to be 
general methods, most of which fail to address all random aspects of the data 
or the specifi c characteristics of the problem (we shall see, for example, that 
a widely used method is borrowed from ichthyology, with a basic model that 
is formally identical but remains far too general). Given that we are dealing 
with samples that are often small for an estimation problem marked by 
intrinsically high instability, it is important to set up a methodology that best 
incorporates the sum of prior paleodemographic knowledge. The most logical 
means to this end is a Bayesian method – as suggested in Section III.

The method we propose is Bayesian as commonly understood in statistics. 
By contrast, certain earlier methods are improperly referred to as Bayesian, for 
the sole reason that – at some point or other – they make use of Bayes’ famous 
formula. Recall that, unlike a frequentist method in which the unknown 
parameters are assumed to be fi xed, a Bayesian method treats these parameters 
as random variables. We choose a prior distribution, i.e. before observation, 
for the parameters, and we determine the posterior distribution, i.e. the 

(1) This hypothesis has been hotly debated by paleodemographers for some fi fteen years 
now: “While the possibility of a secular drift of biological age indicators cannot be ruled out, 
paleodemographers have tended to neglect it, given their inability to measure it, while hoping that 
any possible divergences will not be too signifi cant” (Séguy and Buchet, 2010). To guard against this, 
paleodemographers use pre-industrial reference populations that had not begun their demographic 
transition, or had done so on a modest scale.
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distribution revised for a given target site on the basis of data observed at the 
site. In the prior distribution, we can introduce information preceding the 
actual data, notably the fact that the probabilities to be estimated refl ect a 
mortality distribution (in some cases, in a specifi c known environment). We 
shall also see that, in our problem, it is logical to assume that the reference 
data supply a prior distribution for certain parameters that are most often 
deemed to be known – quite unjustifi ably, since the data are affected by sampling 
errors (not to speak of the necessarily approximate nature of the invariance 
hypothesis). 

As shown in Section IV, our method compares very favourably with earlier 
ones. In Section V, its application is illustrated with two examples.

Data, mathematical formulation, notationI.  

We have a reference population, in which we distinguish c age groups and 
l stages for the bone index measured, and an observed population, in which 
we distinguish the same l stages. Table 1 shows the data: number of individuals 
nij drawn from the reference population, by age class j, and stages i, and number 
of individuals mi observed for stage i on a given site (target population).

Table 1. Matrix of reference population by stage and age class, 
and observed population by stage

Reference population Observed 
population

Age classes (j) Totals 
by 

stage

Totals by 
stage

Stages (i) n11 . . . n1j . . . n1c n1. m1

. . . .

. . . .

. . . .

ni1 . . . nij . . . nic ni. mi

. . . .

. . . .

. . . .

nl1 . . . nlj . . . nlc nl. ml

Totals 
by age n.1 . . . n.j . . . n.c n.. m

The left-hand side of Table 1 allows us to compute the frequency of age j

in the reference population, knowing stage i: 
.i

ij
ij n

n
f = , and the frequency

of stage i, knowing the age j: 
j

ij
ji n

n
f

.

= . We can also calculate the frequency
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by age of the reference population, 
..

.

n

n
f j

j =  and the frequency by stage of

the reference population 
..

.

n

n
f i
i = .

The right-hand side of Table 1 gives the frequencies by stage of the observed 
population: 

m
mi .

These measured frequencies are associated with various unknown 
probabilities. We shall write pij the probability that a random individual in the 
target population studied belongs to stage i and age class j. The sum on i of the pij 
values will be written p.j or simply pj (the probability that an individual is of 
age j). The sum on j of the pij values will be written pi. or simply πi (the probability 
that an individual is in stage i). The conditional probability of stage i, knowing 
age j, will be noted pi | j. These probabilities are positive and satisfy the equations

∑∑ ==π
j

j
i

i p 1, and 1=∑
i

jip  for all j. They are also linked by the following

relationship:

 
iji

j
j pp π=∑  for all i = 1,…,l (1)

Under the assumptions made, several solutions are possible for estimating 
the probabilities pj, i.e. for obtaining the age structure of the paleodemographic 
population observed. Let us examine the main estimates proposed in the 
past.

Methods currently usedII.  

We shall not describe certain methods that are less useful today, for which 
Masset (1973) provides an excellent critical discussion. The only approaches 
examined here are those currently used by most paleodemographers, as well 
as their most recent extensions.(2)

1. Tables of minimum distance between each cell

The fi rst method consists in estimating the cells of a matrix of the observed 
population, each of whose cells is as close as possible to its counterpart in the 
reference population matrix; the stage frequencies are those of the observed 
population. The age frequencies obtained will provide the solution to the 
problem set. Under this option, we need to defi ne a total distance between the 

(2) We shall not discuss situations where several biological indicators are available, or where the 
indicators are continuous rather than discrete (Konigsberg and Frankenberg, 1992). Likewise, we 
shall not examine the use of viability theory to address this problem (Bonneuil, 2005). Viability 
theory regards the age distribution of deaths, imperfectly observed, as a target in a large space; one 
looks for the solution that is closest to a stable population (as well as to its confi dence interval) and 
that produces this age distribution of deaths at the end of the observation period.
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cells of the two matrixes. The most commonly used distance is a χ2 distance 
that divides the squares of each difference by the number of individuals observed 
in the reference population.(3)

It is easy to show that, in this case, the solution is written:

  
ij

l

i

i
j f

m

m
p ∑

=

=
1

ˆ  

This method therefore assumes that the probabilities are correctly estimated 
by the frequencies in both the reference population and the observed 
population.

The method is derived from many earlier studies on other subjects. 
Introduced by Fridriksson (1934), who was working on fi sh statistics, then 
Kruithof (1937), who was investigating telephone networks, it was taken up 
by statisticians (Deming and Stephan, 1940), economists (Leontief, 1941), and 
numerous other researchers including Friedlander, (1961); Thionet, (1963, 
1964); Caussinus, (1965); Tugault, (1970); and Willekens, (1977). Many authors 
now call it the IPFP (Iterative Proportional Fitting Procedure) or ALK (Age 
Length Key) method.

The method was adopted in paleodemography by Masset (1971), who called 
it the probability vector method, then by Konigsberg and Frankenberg (1992), 
who continued to refer to it as the ALK method.

Note that the resulting distribution depends strongly on the age distribution 
in the reference population and is “fl attened by the infl uence of the reference 
sample” (Masset, 1995). This is unsurprising, given the assumption that each 
cell of the estimated matrix must be as close as possible to each cell of the 
reference matrix.

In reality, this method introduces artefacts by focusing as much on the 
row probabilities as on the column probabilities deduced from the reference 
matrix shown in Table 1. We should, instead, only consider the biological 
uniformity hypothesis (Howell, 1976), also called “invariance hypothesis” 
(Müller et al., 2002). This states that, for any bone belonging to an individual 
of a given age at death, the probability that the bone will be classifi ed in a given 
stage depends only on that age, regardless of the population from which the 
bone was extracted. In consequence, the reference data are considered solely 
via the “column profi les”, i.e. the conditional distributions of bone stages for 
each age class. Hence the search for another estimation method based on that 
hypothesis alone.

(3) Of course, one can use other distances, such as a Euclidean distance, but the results are generally 
similar.
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2. Tables of minimum distance between each column

The second method therefore seeks to estimate the columns of a table that 
are as close as possible to each column of the reference table. For this, we can 
use an iterative method that takes a random or uniform initial structure ˆ 0

jp   
and estimates the structure of the observed population, ˆ jp , through successive 
iterations, with the aid of the recurrence formula:

  

∑
∑

=

=

+
= c

j
ji

n

j

n

j jil

i

in

j

fp

fp

m

m
p

1

1

1

ˆ

ˆ
ˆ

We perform as many iterations as needed for 1ˆ +n
jp  to differ from ˆ n

jp  by as 
small a quantity as we want. This algorithm is aimed at obtaining maximum-
likelihood estimators by assuming fixed jif  values and a multinomial 
distribution of on-site observations. We show that the algorithm does indeed 
supply the estimators, at least in the case of a regular maximum (where the 
gradient is set to zero).

This method, fi rst introduced by ichthyologists (Hasselblad, 1966; Kimura 
and Chikuni, 1987) under the name IALK (Iterative Age Length Key), was 
adopted in paleodemography by Masset (1982) as the method of successive 
approximations to avoid the overly fl at result obtained with the method of 
probability vectors. It was taken up by Konigsberg and Frankenberg (1992), 
again under the name IALK. The two approaches – which we shall call American 
and French for simplicity’s sake – provoked much controversy between 1992 
and 2002.(4) In the end, however, they proved virtually identical(5) (Konigsberg 
and Frankenberg, 2002).

The method requires l to be greater than or equal to c, in order to obtain 
a single solution. Otherwise, system (1) is undetermined, admitting an infi nite 
number of solutions. Unfortunately, some paleodemographers disregard this 
condition, causing them to obtain unsatisfactory solutions. For example, Jackes 
(2000) tries to estimate seventeen age classes with only six stages, and obtains 
a large number of age classes of zero proportions. The same applies to Bocquet-
Appel and Bacro (1997), who estimate seven age classes with only six stages 
(Konigsberg and Frankenberg, 2002).

Moreover, this estimation method can yield clearly unsatisfactory solutions. 
Masset (1982) takes a reference population comprising seven age classes and 
seven stages and a stage vector for the observed population without zero 
elements – yet he obtains an age structure of the observed population with 
four zero elements.

(4) See especially Bocquet-Appel and Masset (1996), who now call the method IPFP despite its 
being different from what statisticians refer to under that name.

(5) For more details on the differences between these methods, see Courgeau (2010).
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3. Methods proposed more recently

At a seminar held in Rostock (Hoppa and Vaupel, 2002), the American 
school proposed introducing a continuous age rather than a discretized one, 
and modelling the probability density of the observed population by means of 
a parametric event-history model such as a Gompertz model (two parameters), 
a Gompertz-Makeham model (three parameters) or a Siler model (fi ve parameters). 
This avoids the problem of zero age classes. But such methods still closely 
resemble the IALK method, as Konigsberg and Herrmann point out in Hoppa 
and Vaupel’s book: “Our current methods fi t fairly comfortably within the 
approaches taken during the Rostock workshop”.

However, these methods introduce a number of additional hypotheses that 
we have hardly any means of verifying. They include: a stationary or stable 
population to ensure that the event-history model applies to current conditions; 
and continuity in the age distribution of a given stage, leading to different distributions 
according to the methods used. Lastly, the Rostock methods continue to assume 
that the frequencies offer correct estimates of the probabilities.

Bocquet-Appel (2005, 2008a, 2008b) and Bocquet-Appel and Bacro (2008) 
propose two changes. First, the reference population should no longer be viewed 
as perfectly estimated by the frequencies. For this purpose, they perform 1,000 
draws using the bootstrap procedure in each of the reference population’s age 
classes. Second, they reduce the set of probability vectors (p1,…,pc) to a family 
(a mix of Gompertz-Makeham distributions and extreme values) that they 
construct in order to represent the largest possible number of cases of mortality 
in this family of “candidates”. They seek the vector that best satisfi es system (1) 
when πi is replaced by the corresponding observed frequency and ji

p  is replaced 
by one of the results of the above-mentioned bootstrap draw. The 1,000 draws 
thus supply 1,000 estimates, each equal to one of the candidate vectors. For the 
fi nal estimate, the authors can choose either (a) the “best” of the 1,000 vectors 
obtained, i.e. the one with the minimum distance between the fi rst and second 
members of equation (1); or (b) the mean of the 1,000 estimates obtained (as we 
shall do when applying their method in Section IV). This ad hoc estimation is 
accompanied by “confi dence intervals” based on the 1,000 intermediate results. 
While this method is theoretically worth considering for the ad hoc estimation 
(we shall examine its performance later), the confi dence intervals that it produces 
are problematic. The authors offer no theoretical validation for it, and the fact 
that they disregard the inevitable random disturbances in the observed stage 
frequencies clearly makes these subject to caution, and certainly far too optimistic, 
as we have been able to verify by simulation.

A new estimation methodIII.  

We propose a new estimation method that is truly Bayesian, being based 
on the typical ingredients of Bayesian statistics. It therefore contrasts with 
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some earlier proposals sometimes described as Bayesian because they use 
Bayes’ formula or introduce priors in their approach.(6) Our method accordingly 
features:

parameters that are assumed to be random, with a prior distribution • 
through which we seek to capture characteristics known independently of the 
observed data,

calculation of the probability distribution of these parameters conditional • 
upon the observations; this is known as a posterior distribution and serves as 
the basis for statistical inference.

1. Model and principle of the method

It is logical to view the stage frequencies mi (i = 1,…l) observed on site as 
the observed values of a multinomial distribution whose parameters πi are 
linked to the pj and ji

p  parameters through system (1). We shall use the latter 
parameters to continue our modelling.

Let G be the prior density of parameters ji
p , i = 1,…, l and j = 1,..., c (we 

shall see how to express it in the following subsection) and let us suppose that 
the parameters pj (j = 1,…, c) have a prior density g (also discussed in the 
following subsection) and are independent of the ji

p  parameters.

With M as the mi vector, P as the ji
p  vector (matrix), and p as the pj vector, 

the joint density of (M, P, p) will be f, given by: 

  
⎠

( )
im

i j
jij

i
i

pp
m

m
PGpgpPMf ∏ ∑

∏ ⎥⎟
⎞

⎜⎜⎝

⎛
=

!

!
)()(,,

The marginal density of the (M, p) pair is:

  ( )dPpPMfpMf ∫= ,,),(

and the marginal density of M is:

  ( ) dPdppPMfMf ∫∫= ,,)(

The integrals are taken from the variation domains of P and/or p, which 
are a simplex (for p) or a product of simplexes (for P).

The conditional density of p given M is therefore:

  
( )

( )∫∫
∫=

dPdppPMf

dPpPMf
Mpf

,,

,,
)(

(6) The Bocquet-Appel and Bacro method (2008) uses “prior” vectors to take into account the 
fact that the probability distribution to be estimated is a mortality distribution with necessarily 
specifi c characteristics. However, this leads them to wisely reduce the parametric space of a method 
that remains basically frequentist, rather than to adopt a strictly Bayesian approach. To avoid all 
confusion, we refer to these vectors here as “candidate” vectors, all the more so as we shall propose 
using them to build a true prior distribution for our Bayesian method.
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This is the posterior density of the pj (j = 1,…c) parameters – the basic tool 
for Bayesian estimation.

For example, the posterior mean of pj will be:

  
( )

( )∫∫
∫∫=

dPdppPMf

dPdppPMfp
MpE

j

j
,,

,,
)(

More generally, the conditional expectation given M of a function ϕ of p 
will be:

   ( ) ( ) ( )
( )∫∫

∫∫=
dPdppPMf

dPdppPMfp
MpE

,,

,,
)(

ϕ
ϕ  (2) 

We thus obtain, for example, the kth-order moment of pj with ( ) k
jpp =ϕ . 

Taking for ϕ(p) the function that equals 0 for pj > x and 1 for pj < x (indicator 
variable of the event pj < x), we express the posterior distribution function for 
pj at point x.

The various integrals of equation (2) can be evaluated using a Monte Carlo 
method (Robert, 2006) as follows.

Let X = (X1,…,Xc) be a random vector with a density distribution g and Y 
a family of c vectors Y = (Y1j,…,Ylj) (j = 1,…,c), whose joint distribution is 
independent of X and admits density G. We verify that equation (2) is equivalent 
to:
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Let us generate S independent sets of such random vectors (X,Y), with 
s (s = 1,…,S) representing the repetitions. By virtue of the law of large numbers, 
if S is large enough, the expression above is approximated by:
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This notably supplies the posterior expectation of each pj (j = 1,…,c) – which 
can be taken as a point estimate – or the posterior variance useful for characterizing 
the accuracy of the estimate. The same principle can be applied to evaluate 
cross-moments, such as the covariance matrix of the posterior distribution of 
the pj parameters. Lastly, a pj parameter’s posterior distribution function allows 
us, for example, to calculate intervals containing that pj with a given probability. 
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Called credible intervals in the Bayesian framework, they correspond to 
confi dence intervals in the classic framework.

Some authors have recommended taking the posterior distribution mode 
rather than posterior expectation as a point estimate of the parameters. We 
prefer the expectation value for several reasons. First, writing the estimate

obtained as ˆ jp , it minimizes the average cost of the loss function ( )∑ −
j

jj pp
2

ˆ , 

which occurs naturally in our problem since the function penalizes errors in 
proportion to their amplitudes (by contrast, the mode is optimal for a zero 
loss if the estimate is extremely close to the true value, and a constant positive 
loss otherwise, which does not seem suitable here). To this essential reason, 
we can add the ease of computation and the fact that the posterior density may 
not be bounded and may therefore exhibit an infi nite mode for one or more 
zero estimated probabilities, yielding a scarcely realistic result.

2. Practical use

Choice of prior distributions

Density G

The only source of information on conditional probabilities ji
p  is the 

reference data. If they are raw data merely obtained by recording the stage 
frequencies on a sample of skeletons of known ages, we can logically conclude 
that, for each age class j (j = 1,…,c), the frequencies nij are the observed values 
of a multinomial distribution with a total nj and probabilities ji

p  (i = 1,…,l). 
Adopting a prior distribution for the ji

p  probabilities, we deduce a posterior 
distribution, conditional upon the reference data. We take this, in turn, as the 
prior distribution of the ji

p  probabilities in the fi nal model. Given the scarcity 
of supplementary information on these ji

p  probabilities beyond what is 
contained in the reference data, it makes sense to adopt a uniform distribution 
as the prior distribution of the ji

p  probabilities for each j. For a given j, we 
fi nd a posterior distribution of ji

p  probabilities that consists of a Dirichlet 
distribution of parameters αij = nij + 1 (i = 1,…,l).(7) 

(7) The random vector X = (X1,…,Xk) follows a Dirichlet distribution of parameter a = (a1,…,ak)

if it admits the density ∏
∏ =

−

=
Γ

Γ=
k

i

a

ik

i
i

i
x

a

a
xd

1

1

1
)(

)(
)( , on the simplex D defi ned by

( ) 1,...,10,...,
1

1 ==>⇔∈= ∑
=

k

i
iik xandkiallforxDxxx , Γ being Euler’s gamma function. For 

the properties of this distribution, see, for example, Robert (2006).
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The density G is the product of these c Dirichlet densities:

  

( )

( ) ∏ ∏
∏ ∏

∏
−

Γ

Γ
=

i j
ji

i j
ij

j
j

ijpPG 1
.

)( α

α

α

The multinomial nature of the reference data is mentioned merely for 
clarifi cation purposes: it is only notional and not essential to obtaining this 
prior distribution G.

One can refi ne the choice of G, but that does not seem to achieve notable 
improvements (for fuller details, see Caussinus and Courgeau, 2010); we shall 
therefore not elaborate on the option here.

Density g

The choice of prior distribution for the pj parameters is more delicate. As 
there is no clearly designated “class” of distributions from which to select the 
prior distribution, the most sensible course is to opt for a Dirichlet distribution, 
which is well-suited to probability vectors. This leaves the problem of choosing 
the distribution parameters, say (β1,…,βc). In the absence of specifi c information, 
we can, as above, choose a uniform distribution and take βj = 1 for all j. Such 
a choice allows us to remain “neutral” and may sometimes be justifi ed. It also 
yields reasonable results on simple examples. However, in paleodemography, 
other choices would appear to be preferable as certain information is naturally 
available. We can, for example, take a “standard” mortality distribution and 
calculate the probabilities of each of its age classes. The class probabilities 
become the means of the prior distribution. This gives the parameters βj 

up 
to a proportionality coeffi cient, i.e. the βj / β• values, where β• is the sum of the 
βj parameters over j = 1,…,c. The remaining step is to choose β•, i.e. in practice, 
the prior distribution variances. Note that the variances need to be relatively 
large in order to express the fact that the prior means are not very reliable and 
that the prior distribution should not play a dominant role – in other words, 
that the family of possibilities envisaged covers a broad fi eld. The β• variances 
should thus be fairly small, say, below unity or barely above. Some simulations 
have shown that a simple and effi cient criterion is to take β• = c, as in the case 
of the uniform prior distribution (for a concise account, see Caussinus and 
Courgeau, 2010). That is what we shall do here.

The standard used will be the pre-industrial standard (Séguy et al., 2008; 
Séguy and Buchet, 2010) for men, women, or the two sexes together, as best 
suits the circumstances. When using our method with this prior distribution, 
it will be referred to as BayesPI. In some situations, the paleodemographer may 
have specifi c information. For example, regarding the monastic cemetery of 
Maubuisson (France), we know that the remains are of women presumably in 
better health than the average population, and not exposed to certain major 
mortality risks for younger women, notably maternal mortality.
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The principle of the above choice of prior distribution can be extended in 
several ways. For instance, instead of taking a standard mortality distribution 
as a base for constructing the prior distribution, two “standard” distributions 
can be combined, giving a mixture of two Dirichlet distributions. This could 
consist of a combination (in sensibly chosen proportions) of a standard mortality 
distribution (attrition) and a catastrophic mortality distribution.

A wide variety of approaches are possible, of course. For example, somewhat 
in the spirit of Bocquet-Appel and Bacro’s proposals (2008), the prior distribution 
can be defi ned as a uniform distribution over a discrete set of distributions 
consisting of standard mortality distributions. It is a far more cumbersome 
solution to implement than the previous one, but it becomes easy to use when 
the task of building such vector sets has already been performed. We shall use 
it below (under the name BayesUnif) and compare it with the Bocquet-Appel 
and Bacro method since it is precisely when the latter method is usable that 
BayesUnif is easier to apply. From a technical standpoint, note that one of the 
integrals defi ning the posterior distribution is now a fi nite sum. This allows 
us to simplify the Monte Carlo calculations slightly by applying some mathematics: 
with the notations of subsection III.1, only Y needs to be simulated, but no 
longer X.

Posterior distribution and credible intervals

Earlier, we saw how to calculate the posterior distribution function for 
each pj probability, point by point. We can thus determine α-credible intervals 
(Robert, 2006, p. 278) in which a pj parameter has a probability 1 – α conditional 
upon the observations. The posterior distribution function is calculated 
laboriously, point by point. Another approach, for heuristic purposes, is to 
approximate the posterior density of each pj by a beta density with the same 
mean and variance; approximation quality can be controlled to a certain extent 
via higher-order moments: for example, we can check the closeness of the beta 
distribution’s third- and fourth-order moments to the corresponding moments 
of the “true” posterior distribution, easily calculable by simulation, as seen 
earlier. In all the examples treated, the posterior distribution functions were 
calculated exactly and by proxy, and the approximation has generally proved 
acceptable, indeed excellent in most cases. We can approximate an α-credible 
interval for each pj by the interval between the α/2 and 1 – α/2 quantiles of its 
posterior distribution. In general, it is not the shortest possible (HPD) interval 
but for practical purposes it is reasonable. It is extremely inadvisable to use 
an interval of the “mean plus or minus one (or two) standard deviations” type 
because the posterior distribution is, in most cases, highly dissymmetrical.

Size of the data table

System (1) described in Section I is undetermined if the number of rows 
(stages) l is smaller than the number of columns c (ages). In other words, the 
parameters of interest are not identifi able, given that several values lead to the 
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same distribution of observable samples. The Bayesian method enables us to 
get around the diffi culty since we start with a prior distribution and the aim 
is simply to make it change by means of the data. The posterior distribution 
steers us toward a distribution of the unknown parameters, which is wholly 
compatible with the fact that they are not completely determined. This method 
can therefore be used with l < c. Obviously, the posterior distribution can be 
somewhat dispersed, which merely refl ects the indeterminacy inherent in the 
situation. 

Comparison with earlier methodsIV.  

When proposing a new method, one must start by comparing its performance 
with that of the main methods currently used. In addition to the mathematical 
diffi culties that a theoretical study would raise, it will always be hard to compare 
methods based on different paradigms – frequentist for earlier methods, 
Bayesian for ours. We shall therefore proceed through simulations under the 
following conditions in order to mimic reality as closely as possible.

We take a vector of probabilities • pj (j = 1,…,c) as the target value to be 
estimated and a reference matrix such as the one in Table 1.

As the reference matrix is a sample rather than a population, we assume• 

that the “true” probabilities ji
p  are not exactly the quantities 

j

ij
ji n

n
f

.

=  but

that, for each j, the jif  values should be regarded as the probabilities of a 
multinomial distribution totalling nij. We therefore draw a new reference matrix 
at random based on this principle (which is the same as the bootstrap draws 
used in the method proposed by Bocquet-Appel and Bacro, 2008). At the same 
time, this procedure allows us to take account of the fact that, even apart from 
the sampling uncertainties, the real ji

p  matrix may not be the reference 
distribution matrix but may lie only within a certain vicinity of the latter.

The given • pj values and the ji
p  values simulated as above yield the stage 

probabilities πi via system (1). We draw the number of individuals mi in these 
stages at random under a multinomial distribution with l categories, πi (i = 1,…,l) 
probabilities, and a given total t.

We perform • R independent repetitions. To each, we apply the various 
estimation methods to be compared. Naturally, we implement the methods 
only with the resources actually at our disposal, i.e. in particular, with the 
observed reference data and not the simulated data. We can choose an identical 
pj vector for all R trials if we want to measure the effi cacy of the methods in a 
given case. Alternatively, the vector can vary with each trial so as to cover a 
reasonable range of possible values, allowing a broader study at minimal cost. 
For each trial, we give two measures of divergence between the target vectors 
and the vectors estimated by the various methods being compared. The fi rst

divergence is the square of the Euclidean distance, i.e. 
2
)ˆ( j

j
j pp −∑  ; the second
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divergence weights the different terms like a chi-square, i.e. ∑
−

j j

jj

p

pp
2

)ˆ(
. 

We average the terms found in the R trials and multiply by 100 to obtain “unit 
percentages”. We designate the resulting divergences as a (absolute) and χ 
(chi-square type).(8) We envisaged other divergence measures, for example by 
replacing the squares with absolute values or comparing the cumulative 
frequencies. As the results are entirely similar to those presented here, these 
alternatives will be omitted so as not to burden the discussion. 

The simulation model thus designed differs substantially from the one we 
used in Caussinus and Courgeau (2010). The model just described is slightly 
more complex but seems closer to reality. However, the results given below 
and those of Caussinus and Courgeau (2010) are, on the whole, very 
consistent.

As seen in Section II, the poor performance of the ALK method was already 
clearly recognized, and we shall not return to the issue here. Instead, we shall 
examine the IALK method. It is, in essence, a maximum-likelihood method 
applied to a multinomial distribution whose probabilities πi are linked to the 
parameters to be estimated pj by the system (1), in which the ji

p  values are 
taken as known (deduced from the reference data). In practice, the original 
algorithm (which is very slow) was replaced by a classic optimum search 
algorithm: the constrOptim procedure of the R software package (R Development 
Core Team, 2008).

Next, we consider Bocquet-Appel and Bacro’s recent method (2008). To 
use it, we need situations in which it is applicable, i.e. ones for which the 
authors have supplied a set of candidate vectors. We have chosen a division 
into seven 10-year age classes from 20 to 90 years; the fi nal class can be 
interpreted as age 80+. The method is used with the set of 756 vectors included 
in their ProbAtri20-90.txt fi le (probability distribution models for standard 
pre-industrial mortality, called attritional mortality(9)). 

Lastly, we use our method with two versions of the prior distribution. The 
fi rst version – easily usable whatever the subdivisions into classes – is a Dirichlet 
prior distribution with the parameters derived from the pre-industrial standard 
as noted above. The second version is a uniform prior distribution on the set 
of 756 vectors of the ProbAtri20-90.txt fi le. This procedure is easy to follow 
when the Bocquet-Appel and Bacro method is applicable. Since the aim is to 
compare our method with frequentist methods, we have consistently reduced 
its scope to ad hoc estimation using posterior expectation. However, our 
Bayesian method supplies other elements of analysis, as shown in the examples 
in Section V.

(8) The designation adopted comes from the analogy with a χ2, for the observed differences are 
roughly divided by their standard deviations.

(9) See Iterage software at http://www.evolhum.cnrs.fr/bocquet/index.html
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We began by performing some simulations with predetermined pj (j = 1,…,c) 
vectors to be estimated. These represent distributions that can be realistic, but 
are remote enough from the pre-industrial standard to ensure that our method 
does not have undue advantage.(10) We verifi ed that the IALK method yielded 
much less satisfactory results than our method and the Bocquet-Appel and 
Bacro method. Compared with the latter, our method seemed to give similar, 
but rather better results (particularly for small samples) when applied with a 
Dirichlet prior distribution, and distinctly better in every instance when applied 
with the second prior distribution mentioned above (uniform on the candidate 
vectors). It is therefore the comparison between our method and the Bocquet-
Appel and Bacro method that needed to be performed most carefully. So as not 
to disadvantage the Bocquet-Appel and Bacro method, we conducted the R 
repetitions by consistently choosing as the target vector one of the prior vectors 
of the ProbAtri20-90.txt fi le through equiprobable random selection. Seven 
age classes were kept for the reasons given earlier, but we introduced variations 
for (1) the site sample size m (successively 25, 50, 75, and 100, which are 
standard orders of magnitude) and (2) the number of classes of bone stages 
chosen (successively l = 5, 7, and 8). In each example, the number of repetitions 
is R = 1,000.

The three reference matrixes used are those of “Lisbon Men” deduced from 
the three Portuguese collections (Ferraz de Macedo in Lisbon, Coimbra, and 
Bocage Museum of Lisbon), for which cranial suture closure has been measured 
in 42 stages.(11) All three matrixes comprise seven 10-year age classes from age 
20 and the following stage groupings: 0-8, 9-15, 16-21, 22-28, and 29-41 for 
the fi rst; 0-4, 5-7, 8-12, 13-18, 19-23, 24-34, and 31-41 for the second; and class 
13-18 split into 13-15 and 16-18 for the third.

We deduce the βj vector from the “male pre-industrial” standard:
(0.70   0.77   0.98   1.19   1.47   1.33   0.56).

The values obtained for the two criteria are shown in Figure 1 with, from 
top to bottom, the criteria a and χ. The IALK method cannot be used for l < c, 
i.e. in the present case, for the subdivision of stages into fi ve classes.

To begin with, the results in Figure 1 show the very poor performance of 
the IALK method. Note that the divergences were divided by eight for the a 
values and by four for the χ values to make the fi gure more legible. In addition 
to the large divergences in the fi gure, the estimates supplied are almost always 
on the boundary (at least one of the ˆ jp  parameters is zero). Logically enough, 
all the methods improve when the sample size increases. More unexpectedly, 
the performance of the Bocquet-Appel and Bacro method improves slightly 
when more stage classes are considered, whereas the opposite is observed for 

(10) By way of example, one of the vectors examined is: (0.20 0.15 0.10 0.20 0.20 0.10 0.05).

(11) For a fuller account of these collections and the measurements made, including detailed tables, 
see Masset (1982) and Séguy and Buchet (2010).
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Figure 1. Divergences between estimated and target vectors 
for IALK method, Bocquet-Appel and Bacro method, Bayes method 
with pre-industrial (PI) standard prior, and Bayes with uniform prior

Figure 1A. Criteron a
Ined 2010
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Figure 1B. Criteron χ
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Note: Horizontal axis: sample size m; l × c. For IALK, a values have been divided by eight 
and χ values have been divided by four.

Source: Authors’ calculations based on Masset (1982), and Séguy and Buchet (2010). 
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our method, whatever the prior distribution. With the Dirichlet prior distribution 
deduced from the pre-industrial standard, the performance of the Bayesian 
method turns out to be generally similar to that of the Bocquet-Appel and 
Bacro method – although, as already noted, the choice of target vectors is bound 
to favour the latter. The comparison depends significantly on the index 
considered. This suggests that our method tends to be better than the Bocquet-
Appel and Bacro method for estimating small probabilities and less so in 
estimating larger ones. It is also superior for small samples and loses its 
advantage for larger ones. Lastly, if used with the uniform prior distribution 
on the candidate vectors of the Bocquet-Appel and Bacro method, the Bayesian 
method consistently produces distinctly better results. The comparison can 
be summarized as follows:

The IALK method should be defi nitively rejected.• 
In a situation where a family of candidate vectors has not been established, • 

our method is very easy to apply with a Dirichlet prior distribution and its 
performance is comparable to that of the Bocquet-Appel and Bacro method. 
The considerable task of developing the vector set thus becomes unnecessary, 
particularly if the sample on the target site is small (in Section V, we shall also 
see that it is sometimes easy to adjust the parameters of the Dirichlet distribution 
to further improve performance).

If a set of candidate vectors has been prepared to apply the Bocquet-Appel • 
and Bacro method, it should be used in preference to determine the prior 
distribution of our method rather than to apply the Bocquet-Appel and Bacro 
method itself.

Archaeological applicationsV.  

We shall now discuss two examples to highlight various aspects of our 
proposed method: its implementation (in particular, the choice of prior 
distribution) and the information that it can provide for point estimates and 
beyond. 

1. The nuns of Maubuisson (seventeenth-eighteenth centuries)

Our fi rst example concerns the monastic cemetery of the royal abbey of 
Maubuisson (France), where 162 Cistercian nuns are buried and where 
37 skeletons have been exhumed to measure the stages of cranial suture 
closure.(12) The women, most of whom belonged to the higher nobility, enjoyed 
very privileged conditions in childhood and adolescence. Their monastic life, 
while harsh in some respects, sheltered them from the hazards to which their 
lay contemporaries were exposed during their reproductive years (Séguy and 
Buchet, 2010).

(12) We thank Luc Buchet and Isabelle Séguy for supplying us with the site data. For more details, 
see Séguy and Buchet (2010).
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We adopt a division into seven age classes (ten-year classes from ages 20-29 
to 70-79 and one open-ended class for ages 80 and over), and seven skeletal 
stages. The frequencies observed for these stages on a sample of 37 skulls are 
(6   2   4   5   3   9   8).

We have important prior information on this site, which is especially useful 
given the very modest size of the observed sample. The individuals are nuns, 
therefore women, presumably over 20 years old. This determined our above-
mentioned choice of age classes and of a specifi c reference data set: “Lisbon 
women” (see Séguy and Buchet, 2010). On the basis of this information, we 
shall take a Dirichlet prior probability distribution for the seven parameters 
to be estimated. The βj parameters of the distribution are proportional to the 
values of standard pre-industrial mortality (female) and sum to 7, i.e. 
(0.70   0.77   0.84   1.05   1.47   1.47   0.70). This is the fi rst estimate presented 
for comparison purposes. But the fact that the population consists of nuns 
provides additional information. As noted earlier, for many reasons, these 
women were certainly in better health when they entered the convent than the 
average population. They were then shielded from several major mortality 
risks, notably maternal mortality. On the prior assumption that these factors 
reduced mortality among the 20-29 age group by slightly over 50% and among 
the 30-39 age group by just under 50%, we replace the prior distribution 
parameters by: (0.30   0.40   0.84   1.05   1.47   1.47   0.70) or rather by the 
proportional values (0.337   0.449   0.944   1.180   1.652   1.652   0.786) summing 
to 7, as recommended in subsection III.2. Using this prior distribution, we 
offer a second estimate, which, on the evidence, is the one we believe should 
be adopted in practice. We shall see how the results obtained confi rm this 
assumption, and examine ways of refi ning the estimate.

Lastly, we have a major item of additional information. Thanks to the abbey 
registers, the actual ages at death of the 162 nuns who lived at Maubuisson 
can be determined directly. On these data, we estimate the probabilities of the 
age classes considered as follows: (0.012   0.025   0.087   0.170   0.289   0.210   
0.207).

We therefore have an objective means of gauging the effi cacy of the method. 
Admittedly, some caution is in order – fi rst, because this evaluation is probably 
no more than approximate, second, because the 37 skulls examined are only 
a sample (and possibly even biased: was it selected strictly at random? (13)).

Let us begin by an analysis with a prior distribution conforming to the 
female pre-industrial standard. This gives us the posterior expectations of the 
seven age classes (0.048   0.067   0.071   0.135   0.301   0.219   0.159) and the 

(13) With the reference probabilities used here, the sample is nonetheless highly compatible 
with the register values. If we calculate theoretical frequencies for the stages using these data and 
compare them with the values observed by a chi-square, we obtain 1.93 for six degrees of freedom, 
a value well below the threshold of signifi cance at the 5% level (12.59).
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posterior standard deviations (0.050   0,.068   0.069   0.114   0.166   0.142   
0.135).

It is interesting to compare the posterior means with the prior means, 
which are (0.10   0.11   0.12   0.15   0.21   0.10). We see that the data make it 
necessary to revise the probabilities of the “young” classes sharply downwards, 
and the probabilities of two of the three oldest classes sharply upwards. This 
is consistent with our earlier discussion. We shall therefore end the present 
analysis here and move on to the Bayesian analysis with a prior distribution 
of parameters (0.337   0.449   0.944   1.180   1.652   1.652   0.786) corresponding 
to a modifi ed pre-industrial standard (MPI), in keeping with the previous 
discussion. We obtain the posterior means (0.025   0.041   0.083   0.151   0.311   
0.230   0.159) and the posterior standard deviations (0.037   0.054   0.074   0.119   
0.163   0.142   0.132). Note, in passing, that by replacing the pj values of system 
(1) with the values just estimated, and by estimating the ji

p  values from the 
reference data, we obtain (7.5   2.5   4.3   5.6   4.3   6.8   5.9) as the “theoretical” 
stage frequencies, which are very close to the observed values.

We can now move on to the posterior densities. By comparing the exact 
posterior distribution function and the function approximated by the beta 
distribution, we found that the beta densities offer an excellent approximation. 
These proxies were therefore used to calculate the credible intervals given in 
Figure 2.

Figure 2. Maubuisson example (MPI prior distribution). 
Probability estimates using posterior mean 

and quantiles giving 90% and 50% credible intervals

Ined 2010

0.4

0.3

0.2

0.7

0.0

0.6

0.1

0.5

Age

20-29 40-49 80+70-7930-39 50-59 60-69

0.95 quantile
0.75 quantile
0.25 quantile
0.05 quantile
Register data
Posterior mean

Source: Authors’ calculations based on Séguy and Buchet (2010).
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Clearly, with such a small sample, it is not possible to obtain very precise 
estimates, as evidenced by the width of the credible intervals. We can, however, 
obtain relevant information by analysing the data. The analysis leads us, once 
again, to revise the probabilities of the fi rst three classes downwards and those 
of the fi fth and seventh classes upwards: the prior means here are (0.048   0.064   
0.135   0.169   0.236   0.236   0.112).

The estimates obtained prove very similar to the values yielded by the 
registers, as Figure 2 shows. The most signifi cant differences, especially in 
terms of relative value, concern the fi rst two probabilities (whose register-
based value is so low as to be hard to imagine a priori) and, to a lesser extent, 
the last value, which is correlatively higher. In fact, given the highly 
dissymmetrical distributions for the very low probabilities, the mean can be 
misleading. In the fi rst class, for example, we see that 50% of the posterior 
probability lies in the interval [0.001 – 0.032], whose midpoint 0.017 comes 
close to the target value. The same is true of the second class. We may 
legitimately assume, therefore, that for these two classes, the posterior means 
overestimate the true values – a pattern that turns out to be fairly consistent 
with reality. More generally, we see that the shortest credible intervals (at 
50%) effectively bracket the target values, which are even very close to their 
centres. Overall, in a standard “blind” situation, the posterior means give 
basic information that can be usefully supplemented by a set of other factors, 
such as their change from the prior means and the credible intervals. In 
particular, we should stress the importance of this type of factor in the case 
of very small probabilities, as will again be apparent in the Frénouville 
example below.

To conclude the analysis of the Maubuisson example in keeping with our 
comparisons in Section IV, the IALK method yields highly aberrant results 
here, with several zero probabilities. The Bocquet-Appel and Bacro method 
applied with the candidate vectors of the ProbAttri20-90 fi le gives the estimates 
(0.025   0.036   0.073   0.133   0.209   0.268   0.255), which are broadly consistent 
with the registers, but inferior to ours: for example, the sum of the squares of 
errors is 0.014 versus 0.004 using our method; the maximum error over the 
seven classes is 0.080 versus 0.048 with our method. Lastly, we can apply our 
method here with the uniform prior distribution for the ProbAttri20-90 fi le 
vectors. The estimated age-class probabilities obtained are (0.059   0.057   0.096   
0.149   0.204   0.232   0.203), and the above criteria for distance from register 
values are 0.011 and 0.085 respectively. This second prior distribution therefore 
yields poorer estimates than the fi rst. They are fairly close to the estimate 
supplied by Bocquet-Appel’s Iterage programme. While this prior distribution 
provided good estimates in the simulations in Section IV, it cannot incorporate 
the prior knowledge specifi c to the population concerned. By contrast, the fi rst 
version of our method does so extremely simply and, as we have seen, 
effectively.
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2. The Frénouville cemetery (Merovingian period)

In this example, the bone stages of 200 skulls were distributed into fi ve 
classes (the same as in the fi ve-class example of Section IV), whose observed 
frequencies are (92   29   22   27   30).(14) The age distribution was performed 
for two subdivisions: eight and fourteen classes. In both alternatives, the fi rst 
class is age 18-19, the last class is age 80+. The 20-79s were divided into ten-
year classes (for a total of eight classes) and fi ve-year classes (for a total of 
fourteen classes) respectively.

As no indication of sex is taken into account, the Lisbon reference data 
were used for both sexes combined. The Bayesian method was applied with a 
Dirichlet prior distribution, which makes it easy to examine any subdivision 
into age classes. There is no specifi c information here on the population 
concerned. We therefore chose the βj values proportional to the probabilities 
of the pre-industrial standard (both sexes combined), i.e.:

for eight classes: (0.02   0.10   0.11   0.13   0.16   0.20   0.19   0.09)• 
for fourteen classes: (0.02   0.05   0.05   0.05   0.06   0.06   0.07   0.007   • 

0.09   0.10   0.11   0.11   0.09   0.09). The sum of βj values is equal to the number 
of classes.

With eight age classes, we obtained the results reported in Table 2 and 
Figure 3 (the quantiles are calculated on the approximation of posterior 
densities through beta densities: the result is not as good as the one obtained 
in the fi rst example, but quite suffi cient in practice). Recall that the 5% and 
95% quantiles are the extremes of the 90% credible intervals, while the 25% 
and 75% quantiles are the extremes of the 50% credible intervals. The 
interquartile range (IQR) is a means of measuring dispersion that usefully 
complements the standard deviation, in particular for highly dissymmetrical 
distributions.

Table 2. Frénouville example, eight age classes. 
Selected characteristics of posterior distribution

Age class 18-19 20-29 30-39 40-49 50-59 60-69 70-79 80+

Mean 0.173 0.312 0.070 0.056 0.071 0.138 0.092 0.088

Standard deviation 0.174 0.192 0.072 0.053 0.059 0.080 0.065 0.067

Inter-quartile range 0.225 0.283 0.082 0.062 0.073 0.106 0.083 0.085

Source: Authors’ calculations based on Séguy and Buchet (2010). 

The posterior expectations (“Mean” Table 2) warrant two revisions. The 
fi rst is a sharp upward revision of the mortality of the two youngest classes 

(14) We thank Luc Buchet and Isabelle Séguy for supplying us with the data for this site. For more 
details, see Buchet (1978).
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relative to the prior values; however, a high uncertainty persists, as witnessed 
by the standard deviations and the interquartile ranges of Table 2, and the 
credible intervals of Figure 3. The second is a downward revision for the other 
classes, with a lesser uncertainty.

These results can be explained by examining the charts in Figure 4, which 
give the following details for four of the age classes: beta approximation of 
posterior density (in black), prior density (in green), and posterior and prior 
means shown by black and green vertical lines, respectively. For the fi rst class 
(ages 18-19), the densities are hard to read, as the distributions are concentrated 
on small values; clearly, however, the estimated probability signifi cantly exceeds 
that of the pre-industrial standard, although the dissymmetry of the distribution 
may overstate the phenomenon when the estimation is based on the mean. 
The centre of the 50% credible interval (0.148) is below that mean, and the 
posterior distribution median is even more so (0.116). For the second class 
(ages 20-29), the estimate greatly exceeds the pre-industrial standard, with a 
major imprecision and a nearly symmetrical posterior distribution (hence the 
closeness of the mean, median, and centre of the inter-quartile interval).(15) 

(15) For this class, and to a lesser extent for the fi rst, note that the approximation via the beta 
distribution is relatively poor (an exception among all the cases we have examined). We have, 
however, kept it for simplicity’s sake, as the discussion based on the exact distribution would have 
been entirely similar regarding the aspects addressed here.

Figure 3. Frénouville example. Probability estimates using posterior mean 
and quantiles giving 90% and 50% credible intervals

Ined 2010

0.4

0.3

0.2

0.8

0

0.6
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0.7

0.5

Age

20-2918-19 40-49 80+70-7930-39 50-59 60-69

0.95 quantile
0.75 quantile

0.25 quantile
0.05 quantile

Posterior mean

Source: Authors’ calculations based on Séguy and Buchet (2010). 
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For the oldest class (age 80+, not shown in Figure 4), the estimate is practically 
identical to the pre-industrial standard (the prior and posterior distributions 
are very close). For all the other classes, the estimated probabilities are smaller 
than the probabilities of the pre-industrial standard. For the 50-59, 60-69, and 

Figure 4. Frénouville example. Prior distributions (thin green lines) 
and posterior distributions (thick black lines) for four age classes, 

with respective means (vertical lines)
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18-19 age class
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50-59 age class
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20-29 age class
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Prior distribution

Posterior distribution

Density
Mean

Density
Mean

Note: For the 18-19 class, the values on the x-axis range from 0 to 0.25 in order to improve legibility. 
The legends are the same for all four graphs.

Source: Authors’ calculations based on Séguy and Buchet (2010). 
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70-79 classes (of which two are shown in Figure 4), the posterior densities are 
quite sharply “pointed”, a sign that the estimates using the posterior mean are 
reliable.

To conclude our analysis, here are the means and posterior standard 
deviations for the 14 age classes:

means: (0.130   0.231   0.070   0.049   0.034   0.045   0.041   0.050   0.066   • 
0.073   0.061   0.045   0.071)

standard deviations: (0.135   0.135   0.078   0.057   0.038   0.036   0.043   • 
0.035   0.039   0.047   0.055   0.044   0.036   0.051)

From these values, we can recalculate estimates for eight classes through 
groupings. To this end, we use the additivity of means and the classic formula 
for the variance of a sum: ( ) ( ) ( ) ( )YXCovYVarXVarYXVar ,2++=+  (in our 
presentation of the method, we saw that posterior covariance was easily 
calculable as well). We obtain:

means: (0.130   0.301   0.084   0.079   0.090   0.139   0.105   0.071)• 
standard deviations: (0.135   0.127   0.068   0.057   0.051   0.061   0.054   • 

0.051)
Comparing these results with the estimates obtained directly for eight 

classes, we fi nd a high level of consistency. The most distinct gap concerns the 
fi rst class, whose estimated value is lower here (as noted earlier, there are grounds 
for concluding that this estimate may have been artifi cially high). For standard 
deviations, we can see that – apart from one instance of near-equality – 
this second estimation approach yields lower values, sometimes signifi cantly 
so. (An interesting possible extension of this study would be to investigate 
whether this property is contingent or systematic and, if the latter, for what 
reason.)

Conclusion

Our simulations and the proposed archaeological applications have 
highlighted several advantages of our suggested method for estimating the age 
structure of past populations in cases where no recorded data on age at death 
are available, but where they are replaced by measures of biological indicators. 
Let us summarize these main advantages.

First, our method is simple to use(16) and very fl exible: it is valid whatever 
the divisions into age classes and bone stages, and users’ prior knowledge can 
be very easily introduced. Yet despite its generality and simplicity, the method 
is effective: only some of the results obtained with the more elaborate Iterage 
algorithm can match it when it is employed with an “all-purpose” prior 
distribution. However, the latter method – developed by Bocquet-Appel and 
Bacro – is more complex to apply than ours and more limited in scope. Moreover, 

(16) An R calculation programme (R Development Core Team, 2008) is available from the authors.
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in cases where it is usable, the inputs needed to apply it can be incorporated 
into our own method in the form of a new prior distribution, making our 
method preferable.

Second, our method fi ts into a clear statistical environment that allows a 
proper validation of its theoretical properties. We would mention, in particular, 
the reliability of the credible intervals provided.

However, like any new method, it needs to be refi ned in the light of user 
feedback. Above all, therefore, we hope that paleodemographers will test it so 
as to complement our experience with their own, explore the application 
procedures in detail, and promote the necessary improvements.
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Henri CAUSSINUS, Daniel COURGEAU • ESTIMATING AGE WITHOUT MEASURING IT: A NEW 
METHOD IN PALEODEMOGRAPHY

To estimate the structure of past populations by age at death, with only biological indicators available, 
paleodemographers have developed several methods that rely on a reference population whose biological 
indicators and ages at death are known. First, we examine these approaches with their underlying assumptions, 
and show their weaknesses. To remedy these shortcomings, we propose a new statistical method that provides 
a more reliable estimate of the age distribution of deaths. It is a Bayesian method, whose principle and practical 
use involve choosing a prior distribution, determining a posterior distribution, and applying credibility intervals. 
A simulation-based comparison with earlier methods shows the clear superiority of our approach, which we 
then apply to actual archaeological data. The article concludes with an overview of the main advantages of 
the proposed method: fl exibility and effi ciency.

Henri CAUSSINUS, Daniel COURGEAU • ESTIMER L’ÂGE SANS LE MESURER EN 
PALÉODÉMOGRAPHIE

Pour estimer la structure par âge au décès des populations du passé, alors qu’ils ne disposent que d’indicateurs 
biologiques, les paléodémographes ont développé un certain nombre de méthodes, qui s’appuient sur une 
population de référence pour laquelle indicateurs biologiques et âges au décès sont connus. Nous présentons 
d’abord ici ces différentes approches avec leurs hypothèses sous-jacentes, et montrons leurs points faibles. 
Pour pallier ces inconvénients nous développons une nouvelle méthode statistique qui permet une estimation 
mieux assurée de la structure des décès par âge. Il s’agit d’une méthode bayésienne dont nous présentons 
d’abord le principe et l’utilisation pratique : choix de la loi a priori, calcul de la loi a posteriori, intervalles de 
crédibilité. La comparaison avec les méthodes antérieures, à l’aide de simulations, montre un net avantage de 
cette approche, que nous appliquons ensuite à des données archéologiques observées. Une vue synthétique 
des principaux avantages de la méthode proposée, souplesse et effi cacité, conclut cet article.

Henri CAUSSINUS, Daniel COURGEAU • ESTIMAR L A EDAD SIN MEDIRL A EN 
PALEODEMOGRAFÍA

Para estimar la edad al morir en las poblaciones del pasado, no disponiendo que de indicadores biológicos, los 
paleodemógrafos han desarrollado un cierto número de métodos que se apoyan en una población de referencia 
para la cual los indicadores biológicos y la edad al morir son conocidos. En primer lugar, presentamos estos 
diferentes enfoques con sus hipótesis subyacentes, y mostramos sus puntos fl acos. Para corregir estos 
inconvenientes desarrollamos después un nuevo método estadístico que permite una estimación más segura 
de la estructura de los muertos por edad. Se trata de un método bayesiano del cual presentamos el principio 
y su utilización práctica : elección de la ley a priori, cálculo de la ley a posteriori, intervalos de credibilidad. La 
comparación con los métodos anteriores, gracias a simulaciones, muestra claramente la ventaja de este enfoque, 
que aplicamos después a datos arqueológicos observados. Concluimos con una síntesis de las principales 
ventajas del método propuesto, es decir su fl exibilidad y su efi cacia.

Translated by Jonathan Mandelbaum.
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