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Introduction

Iodine in seawater exists in two major forms, iodide (I -) and iodate (IO - 3 ). Total inorganic iodine (I -+ IO - 3 ) remains approximately constant across most of the oceans, but the ratio of iodide to iodate varies has been shown to vary by [START_REF] Chance | The distribution of iodide at the sea surface[END_REF] with latitude, depth and oxygen level . A small amount of iodine (<10%) is thought to be present in organic forms in the open ocean (e.g. [START_REF] Wong | The marine geochemistry of iodine[END_REF]), however, this may be a larger fraction in coastal waters (e.g. [START_REF] Wong | Dissolved organic iodine in marine waters: Determination, occurrence and analytical implications[END_REF]). The processes controlling the distribution of the ratio between iodide and iodate remain poorly understood [START_REF] Chance | The distribution of iodide at the sea surface[END_REF].

A reason for gaps in our understanding is that the observational dataset of iodide and iodate remains relatively sparse [START_REF] Chance | The distribution of iodide at the sea surface[END_REF][START_REF] Chance | Global sea-surface iodide observations[END_REF]. Despite this paucity in observations, iodine's role in the Earth system has driven multidisciplinary interest in the distribution of iodine compounds in seawater from a number of different research communities, including paleoceanography [START_REF] Lu | Oxygen depletion recorded in upper waters of the glacial Southern Ocean[END_REF][START_REF] Lu | Late inception of a resiliently oxygenated upper ocean[END_REF]Zhou et al., 2015), atmospheric composition (Saiz-Lopez et al., 2014;Sherwen et al., 2016a), and air-quality prediction [START_REF] Sarwar | Impact of Enhanced Ozone Deposition and Halogen Chemistry on Tropospheric Ozone over the Northern Hemisphere[END_REF]Luhar et al., 2017Luhar et al., , 2018)).

The atmospheric science community has seen a particularly large growth in interest in iodine chemistry in the atmosphere and at the sea-surface, as sea-surface I -is believed to be the main driver of atmospheric iodine emissions. The reaction of I - with ozone in the sea-surface micro-layer removes ozone from the atmosphere (dry deposition) [START_REF] Ganzeveld | Atmosphere-ocean ozone exchange: A global modeling study of biogeochemical, atmospheric, and waterside turbulence dependencies[END_REF] and results in the emission of inorganic iodine (HOI and I 2 ) into the atmosphere (Carpenter et al., 2013), which can subsequently catalytically destroy ozone [START_REF] Chameides | Iodine: Its possible role in tropospheric photochemistry[END_REF]. A number of model studies have discussed the impact of oceansourced iodine on atmosphere composition in the context of air quality [START_REF] Gantt | The impact of iodide-mediated ozone deposition and halogen chemistry on surface ozone concentrations across the continental United States[END_REF][START_REF] Sarwar | Technical note: Examining ozone deposition over seawater[END_REF]Sherwen et al., 2017b), climate (Sherwen et al., 2017b;Saiz-Lopez et al., 2012), aerosols (Sherwen et al., 2017a), and stratospheric ozone [START_REF] Sarwar | Impact of Enhanced Ozone Deposition and Halogen Chemistry on Tropospheric Ozone over the Northern Hemisphere[END_REF]. These atmospheric modelling studies have used relatively simple parameterisations for predictions of sea-surface iodide.

Early parameterisations for sea-surface iodide were based on limited datasets, and used either an observed range of iodide concentrations [START_REF] Coleman | Regional-scale ozone deposition to North-East Atlantic waters[END_REF][START_REF] Chang | Ozone deposition to the sea surface: chemical enhancement and wind speed dependence[END_REF], or a reported relationship with biogeochemical parameters (e.g. chlorophyll [START_REF] Oh | Modeling the effect of iodide distribution on ozone deposition to seawater surface[END_REF] or nitrate [START_REF] Ganzeveld | Atmosphere-ocean ozone exchange: A global modeling study of biogeochemical, atmospheric, and waterside turbulence dependencies[END_REF]). However, more recent attempts [START_REF] Chance | The distribution of iodide at the sea surface[END_REF][START_REF] Chance | [END_REF] have focused on using correlation analysis to fit compilations of observed iodide concentrations to a variety of commonly measured sea-surface variables, notably sea-surface temperature, but also chlorophyll, salinity, and nitrate. A summary of parameterisations that have been used in previous studies is given in Appendix Table A1. Compilation of all available observations confirmed a strong latitudinal gradient, and identified sea-surface temperature as the strongest single predictor of iodide concentration [START_REF] Chance | The distribution of iodide at the sea surface[END_REF]. This approach has led to the equation Eqn. 1 from [START_REF] Chance | The distribution of iodide at the sea surface[END_REF] and Eqn. 2 from [START_REF] Chance | [END_REF].

I - aq (nM ) = 0.225 • T ( • C) 2 + 19
(1)

I - aq (nM ) = 1.46 × 10 6 • exp( -9134 T ( • K) ) • 1 × 10 9 (2)
Fig 1 shows the global annual mean distribution of sea-surface iodide calculated using these parameterisations (Eqn 1 and 2) and sea-surface temperature fields (Locarnini et al., 2013). Although both equations predict a similar distribution (higher concentrations in tropical waters and lower in polar waters), Eqn 1 generally predicts iodide concentrations 2-4 times higher than Eqn. 2. In developing Eqn. 1, [START_REF] Chance | The distribution of iodide at the sea surface[END_REF] compiled iodide observations from both coastal and non coastal sites. However, Eqn. 2 used a relatively small subset (14%) of these observations, which did not include coastal sites, which may explain the lower concentrations. Eqn. 2 also has an Arrhenius form, which could be interpreted to suggest that iodide concentrations are controlled by abiotic reaction kinetics. However, this has not been demonstrated, and [START_REF] Chance | The distribution of iodide at the sea surface[END_REF] discussed how microbiological activity and oceanic mixing are currently thought to be the primary controls. The choice of different parameterisation (Eqn. 2 versus Eqn. 1) results in a difference of 50% in the calculated global emissions of iodine into the atmosphere (Sherwen et al., 2016a).

Considering the need for spatially-resolved sea-surface iodide field by models and the paucity of observations, parameterisations are required that can yield predictions from ancillary variables. This is a regression problem and a number of approaches are available. Conventional linear and linear multi-variant approaches have been used in the past (e.g. see summary in Appendix Table A1). However, they need to assume a functional relationship between the dependent and independent variables. Another approach is machine learning, which uses algorithms to build predictive models. These algorithms take a different approach and use a non-parametric formulations. Machine learning approaches range from interpretable options such as the "Random

Forest" algorithm [START_REF] Breiman | Random forests[END_REF] to less interpretable ones such as artificial neural networks [START_REF] Gardner | Artificial neural networks (the multilayer perceptron)-a review of applications in the atmospheric sciences[END_REF].

On the more interpretable end, machine learning algorithms are being used increasingly within environmental sciences, with recent examples including linear Ridge Regression and Random Forest models to replace computationally-expensive processes [START_REF] Keller | Application of random forest regression to the calculation of gas-phase chemistry within the GEOS-Chem chemistry model v10[END_REF][START_REF] Nowack | Using machine learning to build temperature-based ozone parameterizations for climate sensitivity simulations[END_REF] and Gaussian Process emulation to explore model biases on a global scale (Lee et al., 2011;Revell et al., 2018).

Here, we use a recently expanded compilation of sea-surface iodide observations [START_REF] Chance | Global sea-surface iodide observations[END_REF] to build a new seasurface iodide parameterisation using a data-driven machine learning approach. We choose to use the Random Forest Regressor (RFR) algorithm [START_REF] Breiman | Random forests[END_REF][START_REF] Pedregosa | and Others: Scikit-learn: Machine learning in Python[END_REF], which is relatively simple and produces results that are also easy to understand. We aim to be able to predict global sea-surface iodide based on observations and ancillary physical and chemical variables (e.g. sea-surface temperature, depth, and salinity etc.) from a number of publicly available sources. We first describe the input datasets we use (Sect. 2), then we explain the methodology taken (Sect. 3), and finally present the predictions at observational locations and globally (Sect. 4). We make the resulting high resolution, global, monthly dataset of predicted iodide available to the community [START_REF] Sherwen | Global predicted sea-surface iodide concentrations v0.0.0[END_REF]; DOI:https://doi.org/10/gfv5v3). When new observations become available, they will be incorporated into the model and updated versions will be provided through a "living data" model.

Input datasets

Chance et al. (2019b) provides a compilation of the available 1342 sea-surface (< 20 m depth) iodide observations. The dataset is available from the British Oceanographic Data Centre (BODC, [START_REF] Chance | Global sea-surface iodide observations[END_REF]; DOI:https://doi.org/10/czhx).

It includes 45 % more data points, and has greater spatial coverage, than the previous compilation of 925 observations [START_REF] Chance | The distribution of iodide at the sea surface[END_REF]. Observations are categorised in [START_REF] Chance | Global sea-surface iodide observations[END_REF] as "coastal" or "non-coastal", according to the designation of their static Longhurst biogeochemical province [START_REF] Longhurst | Ecological geography of the sea[END_REF]. We adopt the same categorisation here. This sea-surface iodide dataset then forms the dependent variable for our regression.

We require a number of physical, chemical and biological parameters as the independent variables in our regression models.

Consistent in-situ measurement of these parameters are not available for the iodide observations. Thus we have used a number of ancillary datasets (Table 1) to provide this information. There are a number of criteria for these datasets: they need to be available at an appropriate resolution as a gridded product; they need to represent potential processes that could control iodide concentrations and they need to be in some way orthogonal to the other independent variables. Gridded datasets of dissolved organic carbon (e.g. Roshan and DeVries (2017)) and phytoplankton primary productivity (e.g. [START_REF] Behrenfeld | Photosynthetic rates derived from satellite-based chlorophyll concentration[END_REF]) may have some usefulness, but they themselves are built using statistical models with other variables and thus we do not use those here. The selected ancillary variables (Table 1) were first extracted from their native resolution using the nearestneighbour method, onto a consistent high-resolution monthly grid (0.125 • x0.125 • , ∼12.5km). This horizontal resolution was used as this is the highest resolution of the current generation of global atmospheric chemistry simulations (Hu et al., 2018). We calculate monthly means because the chemical lifetime of iodide in the surface oceans is thought to be at least several months [START_REF] Campos | A comparison of dissolved iodine cycling at the Bermuda Atlantic Timeseries Station and Hawaii Ocean Time-series Station[END_REF]Žic et al., 2013), and possibly years [START_REF] Edwards | Regeneration of Inorganic Iodine Species in Loch Etive, a Natural Leaky Incubator[END_REF]Tsunogai Shizuo and Henmi, 1971).

Indeed, the lifetime of iodide is thought to be sufficiently long that, where deep vertical mixing occurs on a seasonal timescale, this may be the dominant loss process from surface waters (e.g. [START_REF] Chance | A comparison of spectrophotometric and denuder based approaches for the determination of gaseous molecular iodine[END_REF]). The values for bathymetric ocean depth we set to a minimum depth of 2 metres, to remove terrestrial locations, and the same value was used for all months.

For each iodide observation, the nearest point in space and time was extracted from the high resolution gridded ancillary data.

For the 31 iodide observations where a month was not available [START_REF] Luther | Iodine speciation in chesapeake bay waters[END_REF]Tsunogai Shizuo and Henmi, 1971;[START_REF] Wong | Dissolved organic iodine in marine waters: Determination, occurrence and analytical implications[END_REF], an arbitrary month was chosen (of March for Northern hemispheric observations and September for Southern hemispheric observations). Outliers within the observations are removed as described in Sect. 2. A further single dataset [START_REF] Truesdale | Summer and winter distributions of dissolved iodine in the Skagerrak[END_REF] was also excluded from this analysis. This is discussed in Appendix Sect. A1.

Methods

Here we first explain the way in which we use the machine learning algorithm (Sect. 3.1). We then explain how we have calculated uncertainty (Sect. 3.2), how observations considered outliers have been removed from the data (Sect. 3.3), and how we have decided which ancillary variables (e.g. temperature, salinity, etc) to use as independent variables for an ensemble prediction (Sect. 3.4). Finally we describe the interpretable ensemble prediction model that results from this methodology in both numerical and graphical terms (Sect. 3.5).

Random Forest Regressor algorithm

As the aim here is to predict a continuous numerical value for sea-surface iodide, a regression approach is taken. As discussed in the introduction, previous approaches have been made to parameterise sea-surface iodide, and the most commonly used relationships employ sea-surface temperature as the predictor variable. Here we take a different multivariate and non-parametric approach, using the computationally cheap and interpretable Random Forest Regressor (RFR) algorithm [START_REF] Breiman | Random forests[END_REF][START_REF] Pedregosa | and Others: Scikit-learn: Machine learning in Python[END_REF].

Random forest regression is based on finding a number of decisions trees, which predict the dependent variable. As all of the trees contribute to the prediction and they are collectively referred to as a "forest". These trees can be explained as a record of the way the algorithm has linearly traversed a subset of the training data, splitting the data into two parts at each decision point or "node" in a way that minimised the internal differences of the parts. The best split is chosen between the available variables based on an error metric (e.g. mean square error) and this process is continued until a criterion of purity is reached or a minimum number of data points are left from a split. This is essentially a classification problem. The prediction of the forest is the mean value of the prediction of all of the different decision trees, which attempts to make the results more of a regression problem. More details of this approach can be found in [START_REF] Friedman | The elements of statistical learning: data mining, inference, and prediction[END_REF].

This approach differs to previous approaches which have individually tested proposed relationships and selecting the best performing model(s) as a parameterisation (e.g. Table A1). Here, an algorithm uses the data it is provided to build a model that gives a prediction and therefore it is the data itself that defines the model that is used to predict new values. A key difference of this approach is also that only a subset, the "training" set, is used to build the model and the rest (or "withheld" set) is then used to test the performance of the model. Here we use 80 % of the data for the "training" set and use the remaining 20 % as the "withheld" set (also commonly referred to as the "testing set").

To ensure that the models built are generalisable and mitigate overfitting, the Random Forest approach used here artificially increases the randomness within the forest [START_REF] Pedregosa | and Others: Scikit-learn: Machine learning in Python[END_REF]. This is done by randomly combining single decision trees by an approach referred to as "bootstrap aggregation" or "bagging" [START_REF] Breiman | Random forests[END_REF]Tong et al., 2003). This additional "bagging" approach randomly samples observations within the training dataset and so mitigates over-fitting of the trees to the dataset [START_REF] Friedman | The elements of statistical learning: data mining, inference, and prediction[END_REF]. Furthermore, to maintain the statistical distribution between the training and withheld datasets and the dataset as a whole, a stratified sampling approach is used to randomly select data within the quartiles of the dataset.

Machine learning algorithms can generally be tuned to increase performance using settings called hyperparameters. However, Random Forests are known to generally perform well without tuning. The default hyperparameters therefore were used here [START_REF] Pedregosa | and Others: Scikit-learn: Machine learning in Python[END_REF], except for increasing the number of trees ("n_estimatators") from 10 to 500. Mean Square Error (MSE) was used as the criterion for evaluating each split (also referred to as a "node"). The maximum number of "features"

(the ancillary variables provided to the algorithm, such as temperature or nitrate concentration) considered when looking for the best split is set to the number provided to the algorithm. The number of splits a tree is allowed to make ("max_depth") is not restricted and further nodes are made until leaves contain less than two samples ("min_samples_split") and a minimum of one ("min_samples_leaf"). All forests are built here use bootstrapping.

Error and uncertainty calculations

Understanding the errors and uncertainties in the global iodide distribution is important due to any sensitivities to this value within the modelled Earth system. We consider three sources of error in our predictions: the "dataset selection" error due to the splitting of the dataset into training and withheld parts; the "model selection error" due to the choice of dependent variables;

and the "observational error" on the iodide measurements.

To quantify the "dataset selection" error, we construct models from 20 pseudo-random splits of the dataset into training and withheld parts. The hyperparameters and input ancillary variables are kept the same for the generation of the 20 models, so that the only difference between the models is the training dataset. These 20 models are then used to predict the withheld data. Performance metrics (Root Mean Square Error (RMSE) and average absolute prediction etc.) can then be calculated for each model. This gives a range of 20 values, which can then be converted to a percentage range as the error. This is done by dividing the maximum within the range over the maximum value to give a maximum value and minimum within the range over the maximum value to give minimum value. Significant differences between model's performance metrics would suggest important sensitivity to the training / withheld dataset splits.

We define the "model selection" error as the uncertainty resulting from the choice of input ancillary variables. A number of combination of input variables are possible in generating the models, and each will generate a different prediction. We quantify this error as the difference in performance against the withheld dataset and prediction value (e.g. average global value). Similarly to our calculation of "dataset selection" error, this can be converted to percentage error by considering the range in these values and dividing them by minimum and maximum values.

For the "observational error" we refer to [START_REF] Chance | Global sea-surface iodide observations[END_REF], who provide individual error estimates for each of the iodide observations in the data compilation. Over half (51 %) of the data points have an error of 5 % or less, and a further ∼25% have an uncertainty in the range of 5-10 %.We therefore use a value of 10 % as a conservative estimate of the "observational error".

Outlier identification and removal

Our dataset consists of values for ancillary variables and iodide concentration for all of the 1342 measurement locations in the observational dataset (Sect 2). As discussed in Sect 3.1, we split this dataset into two parts: (i) a training set for use in building and optimising models, and (ii) a withheld set to evaluate the models built. Particular care was taken to ensure the withheld and training datasets were representative of the entire dataset in the way the models built, therefore improving performance and "generalisability" to unseen data (See Sect. 3.1).

We take a Random Forest Regressor (RFR) model built with variables that were intuitively assumed to give a reasonable ability to differentiate the observations (using depth, temperature, and salinity as the independant variables -abbreviated to "RFR(DEPTH+TEMP+SAL)" following Table 1). The "RFR(DEPTH+TEMP+SAL)" model was then used to explore the variation of error in the predictions using the "dataset selection" error approach described in Sect. 3.2. This builds multiple versions of the same model with different splits of training data and yields a distribution of Root Mean Square Error (RMSE) in the predicted iodide for withheld data as summarised in the final column of Table 2 and shown graphically in Appendix Fig. A1.

We define outliers here as values greater than the 3 rd quartile plus 1.5 times the interquartile range [START_REF] Frigge | Some implementations of the boxplot[END_REF].

Removing these forty nine values categorised as outliers (>309.5 nM) leads to a vast improvement in the RMSE error in the ensemble prediction from 95.1 nM to 37.6 nM (Table 2). This is shown graphically in Appendix Fig A1 , with the other subsets of the data explored (Table 2). This demonstrates that the high values are not well enough represented by the dataset to be able to be captured by the RFR approach. The removal of these high values from the dataset can also be justified as the driver for these concentrations is not yet well understood [START_REF] Chance | The distribution of iodide at the sea surface[END_REF](Chance et al., , 2019c;;[START_REF] Cutter | Multiple oxidation state trace elements in suboxic waters off Peru: In situ redox processes and advective/diffusive horizontal transport[END_REF].

Removing these outliers reduces RMSE in the prediction with the twenty independent model builds from 48.2 nM to 2.3 nM (3 rd quartile -1 st quartile). Once these outliers are excluded, more modest changes in average RMSE are then seen if models are built only using coastal or non-coastal data. Fig. A1 also shows this is seen when removing lower salinity data ('Salinity ≥30 PSU & no outliers'), which is indicative of estuarine water. This highlights the strength in this approach's ability to predict iodide in different biogeochemical regions (i.e. not just coastal or non-coastal locations).

An additional removal of a single dataset of nineteen observations from the Skagerrak strait [START_REF] Truesdale | Summer and winter distributions of dissolved iodine in the Skagerrak[END_REF] was made due to it exerting a disproportionate influence on iodide prediction in high Northern latitudes (>=65 • N), an area that is almost entirely unconstrained by local observations. We note that the Skagerrak is relatively unusual oceanographically, being an estuarine location with high ship traffic, and is considered unlikely to be an analogue for iodine speciation in the Arctic. This is decision is discussed further in Appendix A1 and the predictions made including this dataset are also included in the shared output (Sect. 5).

From here, only the 1293 observational points excluding outliers and the data from the Skagerrak strait [START_REF] Truesdale | Summer and winter distributions of dissolved iodine in the Skagerrak[END_REF] are used.

Selection of ancillary variables and building an ensemble prediction

To decide which ancillary variables (temperature, salinity, etc, -see Table 1 and Sect. 2) should be used to predict sea-surface iodide concentration, RFR models were built and evaluated with different combinations of variables. Thirty eight combinations were considered (see 1 st column of Appendix Table A2) .

The top twenty performing models, based on their Root Mean Square Error (RMSE) against the withheld data, are plotted in Fig. 2, alongside existing parameterisations. The standard deviation for all predicted values is also shown to illustrate variation in the predictions. A complete list of the performance and of all models built here and their performance is given in the appendix

(Table. A2).
The RMSE values in Fig. 2 shows the increased skill present in the new predictions compared to the existing parameterisations. The RMSE improves from the 75. The best-performing model in the list is only marginally better than the 10 th best performing, therefore there is not an obvious "best" performing set of ancillary variables. Thus going forwards we use an ensemble prediction approach based on the mean value from an ensemble of the 10 top-performing models.

Model Descriptions

Unlike many machine learning approaches, the Random Forest Regressor algorithm is interpretable. The decision trees can be visualised to explain the main features driving the splits. Figure 3 shows schematically the whole regression approach taken here. Panel (a) shows single trees, of which 500 are built with the same input variables and then combined into forest (b). Then this forest is combined with the nine other top-performing models (made from different combinations of ancillary variables) to make an ensemble (c). The ten predictions of (c) are then arithmetically averaged into a single prediction, which thus includes the predictions of 5000 trees with 10 different combinations of input variables. In Fig 3a, the colour of a limb or "branch" following a node is given by the variable driving that split within the training dataset. For Fig. 3b and 3c it shows the percent of that times that a variable drives that node within the forest. The value of the ancillary variable that sets the split is shown inside the circle (a,b,c). The thickness of the branch scales to the throughput of training dataset samples contained within that split. The trees are shown to a depth of five nodes for aesthetic reasons and due to increased divergence of the trees within a forest the deeper you go. However the trees themselves are unlimited in the depth they can reach.

The first and larger splits in the data at decision "nodes" in the models can be simply read, which can provide understanding of the main variables driving the initial and largest splits in the prediction. For all models in the ensemble, the initial split is driven by temperature, with a split occurring at around 21.1 • C (with a standard deviation of 1.2 • C). The data is then split by two further nodes from this, a left and right hand split (e.g. Fig. 3b). If depth or temperature is present as a variable, then they drive the majority of the next splits. If depth is not present as a variable, then either nitrate or mixed layer depth (MLD) is the most common variable to dictate the split in the data at the next node in the tree. Thus a qualitative way of interpreting the initial splits of the dataset would be to say that the model is primarily differentiating between warmer and shallower locations.

Results

Here we evaluate the performance of the ensemble prediction against the observational dataset (Sect. 4.1) and then we explore the predicted global monthly surface concentrations (Sect. 4.2). The "dataset selection" error, which shows the the influence of the choice of how the dataset is split into training and with data on model prediction, is described in Section 3.2. Within the 20 member ensemble of different testing/withdrawn choices, the average variation in RMSE was 8.4 nM (5.9-11.02 nM) and in the range of average predicted values was 6.1 nM (5.4-6.6 nM). This translates to a percentage error of 16.1-29.5 % on the RMSE and 5.6-7.0 % on the average predicted value.

Prediction of iodide at observational locations

The "model selection" error, which is the influence of the different independent variables used, is described in Section 3.2.

The difference in the average prediction of the 10 members of the ensemble is 1.8 nM (with a range of average prediction from 96.0 to 97.8 nM) and the range of the difference in model performance is 3.9 nM (33.2-37.2 nM). As a percentage this "model selection" translates to a percentage uncertainty on the the RMSE of 10.6-11.9 % and on the average of 1.8-1.9 %.

The "dataset selection" and "model selection" compares to an error on the observations of ∼10 %. Uncertainty from "dataset selection" has a far greater effect on the prediction error than "model selection". This is can be expected due to the small dataset size. The combined error in the prediction ("dataset selection"+"model selection" error) is either comparable to (7.4-8.9 % in terms of average prediction) or greater (27-41 % in terms of RMSE) than the observational error.

From this analysis we have shown that the new ensemble RFR model performs significantly better than those currently in the literature. We now turn to explore the predicted global distribution of sea-surface iodide using our ensemble model.

Global sea-surface iodide distribution

From the ensemble prediction system we calculate monthly global grids (0.125 • ×0.125 • , ∼12.5 km) of sea-surface iodide using the gridded ancillary data (Sect. 2). The annual average spatial predictions are shown in Fig. 6 with the observations overlaid in circles. Similar to previous work, annual average maximum concentrations of 220 nM are found in tropical and coastal regions (e.g. Oceania and in the Caribbean/Gulf of Mexico) with the lowest concentrations in mid-latitude waters (22.4 nM). Seasonal variability is also seen within the monthly prediction (Appendix Fig. A3). However, this spatial and temporal variability is bot well constrained by observations. For example, the some of the highest concentrations are predicted for the South China sea, a region without any observations (Fig. 6). Some features are visible in the concentration field appear to be associated with deep bathymetric features (e.g. the higher concentrations over the mid Atlantic ridge -Fig. 6)), even though a physical explanation for such a link seems unlikely.

Summary statistics on the global predictions are shown in Table 4. These show that, as for comparisons at the observed locations (Section 4.1), the ensemble prediction is broadly in between the two existing parameters. The new ensemble model predicts a mean value of 106 nM (with members ranging from 102.3 to 108.8 nM), with predicted values from existing parameterisations ranging from 58.9 [START_REF] Chance | [END_REF] to 128.1 nM [START_REF] Chance | The distribution of iodide at the sea surface[END_REF].

The annual latitudinal average of these fields, together with predictions from [START_REF] Chance | The distribution of iodide at the sea surface[END_REF] and MacDonald et al.

(2014), and the observations are shown in Fig. 7. Far greater structure is seen compared to the two existing parameterisations (Fig. 7) due to the multivariate and non-parametric ensemble approach used here. All parameterisations capture the broad observed feature of decreasing iodide from lower to higher latitude. The new predicted values lay between [START_REF] Chance | The distribution of iodide at the sea surface[END_REF] and [START_REF] Chance | [END_REF] in the tropics, however, within the polar regions, the new prediction is significantly higher than both of the previous parameterisations. The lower concentrations in the predicted values from MacDonald et al. ( 2014) for most of the global sea-surface is clear.

The "dataset error" is found for the 20 models with different training data splits, as described in Sect. 3.2. This gives an uncertainty in the form of a average range in predicted global mean surface iodide for all of the multiple build of ensemble members of 4.0 nM (2.8 -5.0) compared to a annual mean prediction of 106 nM. This maximum and minimum of this range in predicted values can then be divided by the minimum and maximum predicted global mean surface iodide values (98 nM and 109.3 nM, respectively) to give percent range of 2.6 to 5.0 %. This is lower than that calculated for the individual locations of observations (Sect. 4.1) due to large global areas being similar in chemical and physical regimes compared to the subset of sampled locations within the observations.

The "model selection" error due to variability within ensembles' 10 members, generated with different independent variables, gives a global average surface concentration between 102.3 to 108.8 nM. This range in prediction gives a "model selection" error of 6.45 nM, which equates to 6.0-6.3 %. Like with the global uncertainty from "dataset selection", the global value would be expected to be lower than the uncertainty at the specific locations of the observations (Sect. 4.1) due to the more homogeneous nature of the predicted areas. However, a greater variation is seen from different model predictions than within predictions for the observation locations. This highlights the importance of the different ancillary variables considered here and also therefore the strength gained from the ensemble approach taken here.

Within members of the ensemble, variation is modest except for two ensemble members which divergence north of >=65 In addition to the three errors we described above, we also attempt to gain to an understanding of the spatial uncertainty in the ensemble prediction. We do this via calculating the differences in the predicted spatial fields from the 10 ensemble members. 

Data availability

The monthly ensemble mean and standard deviation between ensemble members for the main prediction presented here ("RFR(Ensemble)"), along with the individual ensemble members are archived at the United Kingdom's Centre for Environmental Data Analysis (CEDA) as monthly files in NetCDF-4 format [START_REF] Sherwen | Global predicted sea-surface iodide concentrations v0.0.0[END_REF]; DOI:https://doi.org/10/gfv5v3). To enable use in atmospheric and oceanic models, we have additionally bi-linearly re-gridded the outputted fields onto common model grids (Appendix Table A5) using the open-source Python xESMF package [START_REF] Zhuang | JiaweiZhuang/xESMF: v0.1.1[END_REF]. We recommended use of the standard output provided, but have also provided the predictions made by the model with the Skagerrak dataset [START_REF] Truesdale | Summer and winter distributions of dissolved iodine in the Skagerrak[END_REF] included (which was excluded from the analysis presented here, as discussed further in Appendix Sect A1).

Ancillary data extracted for observation locations and used to predict spatial fields is available from sources stated in Table 1. Iodide observations are described by [START_REF] Chance | Global sea-surface iodide observations[END_REF] and made available by the British Oceanographic Data Centre (BODC, [START_REF] Chance | Global sea-surface iodide observations[END_REF]; DOI:https://doi.org/10/czhx).

Discussions and conclusions

Here we have explored the ability of an algorithmic approach combined with various physical and chemical variables to predict sea-surface iodide, without aiming to represent the biogeochemical or abiotic processes occurring. This approach instead gives a data-driven "best guess" at concentrations and an ability to quantify where the greatest uncertainty lies. However, certain features such as prediction of an apparent relationship between ocean bathymetry and sea-surface iodide concentrations, where the ocean is very deep (e.g. over the Mid-Atlantic Ridge) are unlikely to have a plausible physical explanation (Fig 6 A1) to calculate ocean iodine emissions, a higher emission would therefore now be expected. This would result in larger decreases in tropospheric ozone burden than previously suggested (Sherwen et al., 2016a). A higher iodide sea-surface concentration would also result in a greater calculated ozone deposition (Luhar et al., 2017;[START_REF] Sarwar | Technical note: Examining ozone deposition over seawater[END_REF].

We have calculated the errors in sea-surface iodide concentrations at observational locations due to the "dataset selection" of 16.1-29.5 %, and due to "model selection" of 1.8-1.9 % (Sect 4.1 and 4.2). These error estimates can be compared to an approximated error in the observations of ∼10 % [START_REF] Chance | Global sea-surface iodide observations[END_REF] The choice of the algorithm used here is subjective and numerous other options are available. The Random Forest Regressor was chosen due to appropriateness for the continuous regression task performed here, its relatively cheap computation cost, and its interpretability. Considering the greatest uncertainty is driven by the paucity and sparsity of observations, using more complex techniques would not be expected to yield particularly different or drastically better results, considering other tradeoffs.

We have developed a new way to build a spatially and temporally resolved dataset from a spatially and temporally sparse input of observations. This has allowed for use of use more of the observations, than traditional approaches, which is particularly important with a paucity of data. This approach has demonstrated a large improvement in skill in terms of capturing observations compared to the existing parameterisations in use. It captures the increasing trend of iodide with latitude seen in the observations, as well as the greater spatial variation seen in the observations.

Code availability

Data analysis and processing used open-source Python packages, including Pandas (Wes McKinney, 2010), Xarray [START_REF] Hoyer | xarray: N-D labeled arrays and datasets in Python[END_REF] and Scikit-learn [START_REF] Pedregosa | and Others: Scikit-learn: Machine learning in Python[END_REF]. Spatial re-gridding used the xESMF package [START_REF] Zhuang | JiaweiZhuang/xESMF: v0.1.1[END_REF]. Plots presented here were created using the Matplotlib [START_REF] Hunter | Matplotlib: A 2D graphics environment[END_REF] and Seaborn [START_REF] Waskom | mwaskom/seaborn: v0.8.1[END_REF] Right hand y-axis is standard deviation of the prediction for the withheld data (orange). Top ten performing models and the two exiting parameterisations considered here [START_REF] Chance | The distribution of iodide at the sea surface[END_REF][START_REF] Chance | [END_REF] • C), depth (orange, metres), chlorophyll-A (green, mg m -3 ), salinity (pink,PSU), nitrate (brown, µg m -3 ), mixed layer depth (MLD; purple, metres), phosphate (red, µg m -3 ), and shortwave radiation (grey, Wm -2 ).

  3 and 50.2 nM found for the[START_REF] Chance | The distribution of iodide at the sea surface[END_REF] and[START_REF] Chance | [END_REF] parameterisations, respectively, to 33.2-37.4 nM for the top ten models created here. Only modest gains are seen in RMSE between models with three variables or more. 7 Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2019for journal Earth Syst. Sci. Data Discussion started: 26 March 2019 c Author(s) 2019. CC BY 4.0 License.

Figure 4

 4 Figure4shows a point-by-point comparison between parameterised and observed iodide for the: entire dataset; the withheld dataset; withheld coastal dataset and withheld non-coastal dataset. Predictions are shown for the ensemble Random Forest Regressor (RFR) approach described here, and for both the[START_REF] Chance | The distribution of iodide at the sea surface[END_REF] and[START_REF] Chance | [END_REF] parameterisations.The Root Mean Square Errors (RMSE) of observed and predicted values are given in the Figure4and in Table3.

Figure 5

 5 Figure 5 shows comparisons between the probability distribution functions (PDFs) of the observed iodide and the predictions, together with the PDFs of the biases for the entire, coastal and non-coastal withheld datasets. The PDF of the new parameterisation shows the greatest similarity to the observations. The PDF from Chance et al. (2014) show a similar range to the observations and structure to the observations, whereas the PDF from MacDonald et al. (2014) shows again a significant underestimate. The bias plots show the new predictions are generally clustered around zero with a relatively narrow peak. Chance et al. (2014) is again roughly clustered around zero but shows a wider peak. The largest biases are found from MacDonald et al. (2014) which systematically underestimates observed iodide concentrations.

  A2). As noted earlier (Sect 2), the values in this region are very poorly constrained by the observational dataset (Fig 6).

Fig. 8

 8 Fig. 8 shows the monthly average of the standard deviation of the 10 model ensemble as a percentage of the annual mean of the ensemble prediction. This is also shown in absolute terms in the Appendix (Fig A4). Uncertainties are largest at the poles

  review for journal Earth Syst. Sci. Data Discussion started: 26 March 2019 c Author(s) 2019. CC BY 4.0 License. observations, and particularly observations representative of under-sampled areas and seasons, will be required to reduce this error. The error caused by "dataset selection" is also reduced when the predictions are considered spatially over the global sea-surface.

  python packages. The decision tree figures (Figs.3 and A5) were made using the TreeSurgeon[START_REF] Ellis | wolfiex/TreeSurgeon: Epiphyte[END_REF] package.

Figure 1 .Figure 2 .

 12 Figure 1. Annual average sea-surface iodide concentrations predicted by (A) Eqn. 1 from Chance et al. (2014) and (B) Eqn. 2 from Mac-Donald et al. (2014). Temperature fields used to make spatial predictions were from the World Ocean Atlas(Locarnini et al., 2013).

  are shown in bold. Parameterisations are ordered by their RMSE. Abbreviations are given inTable 1.22Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2019

Figure 3 .

 3 Figure 3. Schematic illustration of how (a) multiple decision trees are combined into (b) a forest and then combined into an (c) ensemble. (a) shows individual trees in a forest. (b) represent a forest of 500 trees as a single figurative tree. (c) shows the ten forsts of 500 trees combined into a single prediction. The branches in plots (a)-(c) are coloured by the percentage of the decisions at a given node that are driven by a given variable. That value within the circle gives the value of the main ancillary variable driving a split. Thickness of branches gives the throughput of the dataset through a given node for single trees (a), or the average for plots of forests (b,c). The 10 forests shown as thumbnails in panel (c) are also shown in larger form in Appendix Fig. A5. Variable names are coloured as per the following coloured text: temperature (blue,

  

  

  

  

  

  

  

  

  

  

  

  ). The new spatial prediction presented here differs from what has been used previously in atmospheric models (e.g. Chance et al. (2014); MacDonald et al. (2014)). Although the average value lies between these parameterisations, the prediction is closest to that from Chance et al. (2014) even with larger values found at higher latitudes. As most atmospheric models have used the iodide parameterisation from MacDonald et al. (2014) (Appendix Table
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Appendix A A1 Removed Skagerrak dataset

Ideally with sparse datasets, as much data as possible would be included for training the regression models used. If a feature in the data is different enough to the rest of the dataset and not sufficiently be represented for the regressor model to characterise it, then it has potential to introduce a large "dataset error" (See Sect. 3.2 for details). This was shown when the iodide values above the outlier threshold were included (Sect. 3.2). There could be many other affects of including data that is significantly different to the rest of the dataset.

The data from the Skagerrak strait [START_REF] Truesdale | Summer and winter distributions of dissolved iodine in the Skagerrak[END_REF], which is included in the [START_REF] Chance | Global sea-surface iodide observations[END_REF]) compilation of iodide data, was excluded from this analysis. This is because upon inclusion, high iodide at high latitudes (>= 65 • N) are calcuated (Appendix Fig. A6). An increasing trend is seen with latitude, reaching values comparable to the highest predicted values in the tropics. This region has a paucity of observations within the [START_REF] Chance | Global sea-surface iodide observations[END_REF] compilation and there are none further north than Iceland. This means that any prediction in this region would be unconstrained by observations. Exclusion of this data leads to Fig 7 where iodide is generally constant above 65 • N.

The Skagerrak strait data [START_REF] Truesdale | Summer and winter distributions of dissolved iodine in the Skagerrak[END_REF] is also from region where the observed ancillary variables compare poorly with those extracted from ancillary datasets. Observed salinity is between 24.0 and 33.5 PSU, whereas the climatological value is 31.7 to 35.8 PSU. This equates to a bias of the climatology versus the in-situ observations of up to 9.6 PSU or 40 %. The Skagerrak is biogeochemically different from the Arctic, and its large influence on predicted values in the Arctic may arise simply from its latitudinal proximity, given the lack of observations from the regions itself.

The area this dataset is sampling in is also unusual in the [START_REF] Chance | Global sea-surface iodide observations[END_REF] compilation due to its estuarine nature.

However, this cannot entirely explain its behaviour as their are other estuarine datasets included (such as those from around the Chesapeake Bay [START_REF] Luther | Iodine speciation in chesapeake bay waters[END_REF][START_REF] Wong | The marine geochemistry of iodine[END_REF]Cheng, 1998, 2008)) which do not cause the same issue.

As the feature of high predicted Arctic iodide is driven by a single dataset of 19 samples (of which 4 would be removed as outliers) from a different region, it is highly uncertain. Not only do the in-situ salinity observations compare poorly to the extracted ancillary ones, but the location itself represents a heterogeneity within the [START_REF] Chance | Global sea-surface iodide observations[END_REF] Solid lines give mean values and shaded regions give (±) the average standard deviation. The standard deviation is the monthly standard deviation across a latitude between all ensemble members ("RFR(Ensmeble)") or within a single prediction for existing parameterisations [START_REF] Chance | The distribution of iodide at the sea surface[END_REF][START_REF] Chance | [END_REF]. different models built from 20 different pseudo-random initialisations for different selection of the dataset as described in Table 2 andSect 3.2. Models built using the whole dataset ("all"), including outliers, show a significantly higher RMSE due to observations with higher iodide