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Prediction in function-on-function linear model with partially

observed functional covariate and response

Christophe Crambes’ and Chayma Daayeb™! and Ali Gannoun’ and Yousri Henchirit®*

July 11, 2023

Abstract

In this work, we are interested in a function-on-function linear model in which the
response and the covariate are partially observed curves. First, we reconstruct the missing
part of the covariate using the observed parts. Then, we consider two strategies for dealing
with the missing part of the response. The first one consists in a reconstruction in the same
way as for the covariate. The second one uses regression imputation. Once the dataset is
reconstructed, we estimate the slope function and give the mean square prediction error
for a new observation of the covariate. Both methods are compared from a theoretical
and a practical point of view.

Keywords. Functional linear model, Missing parts, Imputation, Partially observed functional data,

Functional Principal Components, Reconstruction operator.

1 Introduction

Functional data analysis (FDA) is becoming progressively more and more important in Statis-
tic (Bosq, 2000; Ramsay and Silverman, 2005; Ferraty and Vieu, 2006; Hsing and Eubank,
2015; Kokoszka and Reimherr, 2018). The functional linear model is specially a very popular
model in both theoretical and applied research such as climatology, meteorology, economy,
image analysis and many other fields. There is a large amount of work done on the functional
linear model. In the case where the response is a real variable, the model has been widely
studied (e.g. Cardot et al., 2003; Cai and Hall, 2006; Li and Hsing, 2007; Hall and Horowitz,
2007; Crambes et al., 2009; Comte and Johannes, 2012; Cai and Yuan, 2012; Brunel et al.,
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2016). In contrast, fewer researchers have tackled the problem of function-on-function linear
models where the covariate and the response are both functional (e.g. Ramsay and Silverman,
2005; Yao et al., 2005; Prchal and Sarda., 2007; Aguilera et al., 2008; Lian, 2011; Ferraty et al.,
2012; Crambes and Mas, 2013; Crambes et al., 2016; Luo and Qi, 2017; Benatia et al., 2017,
Imaizumi and Kato, 2018; Sun et al., 2018).

In recent years, applications producing partially observed functional data have emerged.
Sometimes each individual trajectory is collected only over individual specific subintervals,
densely or sparsely, within the whole domain of interest. Several recent works have begun
addressing the estimation of covariance functions for short functional segments observed at
sparse and irregular grid points, called functional snippets (Lin and Wang, 2022; Lin et al.,
2021) or for fragmented functional data observed on small subintervals (Delaigle et al., 2020).
For densely observed partial data, existing studies have focused on estimating the unobserved
part of curves (Kneip and Liebl, 2020; Kraus and Stefanucci, 2020), prediction (Goldberg
et al., 2014), classification (Kraus and Stefanucci, 2018; Park and Simpson, 2019), functional
regression (Gellar et al., 2014), and inferences (Kraus, 2019; Park et al., 2022).

To our knowledge, few articles investigate the theoretical properties of the slope operator
or kernel estimators in the framework of partially observed data. In the framework of a real
response, we can notice the works from Crambes and Henchiri (2019) and Crambes et al.
(2023). The objective of this paper is to study the prediction problem when the covariate
and the response are partially observed in the function-on-function linear regression setting,
for which we propose two methods. The paper is organized as follows. We present the model
with fully observed functional data in section 2. In section 3, we study the case of partially
observed covariate and response. We reconstruct the missing parts of the functional explana-
tory variable and the functional response using the work Kneip and Liebl (2020), and we
get theoretical results for the prediction error rate. In section 4, we propose an alternative
method which consists in imputing the functional response after having reconstructed the
missing parts of the functional covariate as in the previous section. We also obtain a conver-
gence rate for the mean square prediction error. In section 5, we conduct a numerical study
over simulated data in order to compare the methods in practice. Section 6 is devoted to a

real dataset application. Finally, all the proofs are postponed to section 7.

2 The centered function-on-function linear model

2.1 Functional principal components regression

Let f: 7 > Rand g: .9 x.% — R be two square integrable functions defined in the Hilbert
space L?(.7) (resp.L?(7 x ./)) i.e. the space of square integrable functions on the interval

1/2
T S R (resp. # < R). For all t € .7 (resp. s € ), we set ||f| = (Sy f2(t)dt> / and

loll = (1,55 (k. 5)atas)



We use the following notation for the tensor product, defining u ® v : L?(.7) — L2(.7),
by u®v = (u,.)v, for any functions u,v € L?(.7). We define the Hilbert-Schmidt integral
operator G : L*(.7 x ) — L*(.7) by (G -u)(s) = §,u(t)g(t,s)dt for all g belonging to
L2(% x ) and §, §,|g(t,s)?dtds < oo. The function g is the Hilbert-Schmidt kernel
corresponding to the operator G. Moreover, the operator G is continuous (i.e bounded) and

compact.

We assume here that 2 takes values in the space L?(.7) and % in L2(.7), 2" = {2°(¢) |
t € J} is the predictor variable and % = {#(s) | s € .} the response variable. We
observe a sample {(%;, %;)};_,, of identically distributed and independent copies (2, %),
with E(| 27)?) < o0 and E(|#|?) < oo. In practice, functional responses %(s) and functional
covariates Z;(t) are observed on grid points s; = (si1,...,8i) and ¢ = (ti1,...,tip,). For
the sake of simplicity, we assume those to be identical vectors s, t with lengths ¢ and p,
respectively, for each observation 1.

We consider a centered function-on-function linear regression model (FFLRM) character-

izing a linear relationship between the functional response and the functional predictor

[ —E[#]](s) = L (2 —E[27]]()0(t, s)dt + (s).

where the bivariate functional coefficient (¢, s) ~— 6(t, s) is assumed to be in L2(.7 x .%), that
is, §, §,10(t, s)|*dtds < oo. Natural estimators of E[ 2"| and E[#/] are the empirical means,
X =1/ Ziand ¥ = 1/n)" | %. The centered random error function e is assumed
to be independent of 2, and E|¢|? < .

We define the elements of the centered model as follows, X = 2~ —E[%] andY = & —E[@/],
and the centered FFLRM writes

¥(s) = f X0+ (o). (2.1)

Denote
Cx(tl,tg) = E(X(tl)X(t2>>, tl,tQ (S} 97

and

Cy(sl, 82) = ]E(Y(Sl)Y(SQ)>, S1,82 € y,

as the covariance functions of X and Y, respectively. As Cx € L2(.72) and Cy € L?(.7?) are a
positive self-adjoint operators, then, according to Mercer’s theorem (Hsing and Eubank, 2015,

Theorem 4.6.5), Cx and Cy admit spectral expansions in L2(.7?) and L2(.#?) respectively

+a0 +00
Cx(t1,t2) = D Mdr(t)r(ta) and  Cy(s1,52) = D pyibi(s1)ib;(s2),
h=1

j=1



where A\;1 > Ao > ... > 0 and pu; > po > ... > 0 are the eigenvalue sequences of the covari-
ance functions Cx and Cy, respectively, while {gbk} =1 and {@Zy }j>1 are the corresponding
orthonormal bases of eigenfunctions in L2(.7) and L?(.%).

The Karhunen-Loeve (KL) expansions of the curves X and Y (Hsing and Eubank, 2015,
Theorem 7.3.5) in L?(.7) and LL?(.#) are respectively

X(t) = > &or(t) and Y(s)= > Bjty(s),
k=1 Jj=1

forallt € J and s € ., where &, = § , X (t)¢x(t)dt and 3; = {, Y'(s)1p;(s)ds are uncorrelated
random variables with zero mean and variances E(¢2) = Ay, and IE(BJQ) = p; for all k,j > 1.
These coefficients & and 3; are called functional principal components scores. By Parseval’s

identity and Fubini’s theorem, we have
+00 to
DIEE) <o and Y E(S}) < .
k=1 j=1

Ramsay and Silverman (2005, Chapter 16, Section 1.1), Park and Qian (2012), Crambes
and Mas (2013) and Imaizumi and Kato (2018) suggest that 6(¢, s) can be expressed in terms

of a double basis expansion

+00 +00
0(t,s) = > > Ok idr(t)h;(s),
k=1j=1
where 65 = §, §, or(t)0(t, s)1p;(s)dtds.
Noticing that
00 +0
| etesxar =3 3060500,
7 k=1j=1

and

+00
E(ﬁkY(S)) = Ak ) Ot (9),
j=1
we obtain the following characterization of the bivariate functional coefficient 6(¢, s) as

o (&Y (9))
0(t,s) = Z Aifﬁk(t)-
k
k=1
This characterization leads to a method for estimating (¢, s). For example, Park and Qian
(2012) and Crambes and Mas (2013) use the following truncation estimator with k, — o as

n — oo,

s = =373 )G, ) (22)



where Xk and qgk are the estimators of the eigenvalues Ar and the eigenfunctions ¢ and the
estimates of the FPC scores are & = §,X )gbk( )dt. We will use this characterization in
this paper.

Benatia et al. (2017) propose an estimator similar to (2.2). The sum over k is not trun-

cated, but regularized with the term Xk + K
1 n n

ot (¢, — X

” nggx

Ramsay and Silverman (2005) obtain the following characterization of the bivariate func-

f“)

tional coeflicient, for some small or large numbers ¢1 and ¢, as

S E(&kB;
5) = Z Z gk,jﬁbk(t)l[}j(s), where 9k7j = <)\9)
' k
k=1j=1
Therefore Imaizumi and Kato (2018) obtain the following characterization

os) = > 2O o),

. M

Notice that 07(, s) and 677(¢, s) based on truncating the double series, namely, the double

truncation, which will not be discussed here.

2.2 Operatorial point of view

We notice in this subsection that the model (2.1) can be seen from an operatorial point of

view. Indeed, we can write the model

Y(s) = (e : X) (5) + (),

where the slope operator © : ]LQ(? x .7 ) — LL2(.%) is an integral continuous operator defined
for all w e L?(7) by (© - u)(s) = §, u(t)0(t, s)dt which kernel is 6 € L2(7 x .%).

To close this section, we mtroduce the operators that will be used through the following
theorems in which we describe prediction convergence rates. The covariance operator of X,
denoted I', is defined by

M(u) =E(X ®X(u)), foralluelL?(7).

Note that the covariance operator is a natural extension of the covariance matrix, in the
infinite dimensional framework. We also introduce the cross-covariance operator A of (X,Y)
given by
Au) =E(Y ® X(u)), forall ueL?*(7).
For any integer k, we define ITj the orthogonal projection operator on the subspace Span(¢1, . ..
given by
k
I = > ¢, ® ;.

j=1

5

’gbk)a



Empirical counterparts of I'; A and Ilj, respectively, are denoted f‘n, An and ﬁkn These
operators are naturally defined by T, = %2?;1 X;® Xi, A, = %Z?:l Y; ® X; and ﬁkn =
Z?gl <$j ® $j. The functional principal component regression estimator O of O is defined by

~

3 The centered Function-on-function linear model with par-

tially observed covariate and response: Reconstructing X
and Y

In this section, we are interested in the most general case of missing data in the centered
function-on-function linear regression: when both the functional covariate and the functional
response are partially observed. We follow the methodology studied in Kneip and Liebl (2020)
for reconstructing the missing parts of the curves. Next, once the initial sample is completed,
we will present the estimation of the slope operator © or its kernel 8 and predict new values
for the response.

In the following, we denote ?OM17 7 Mf¥17 2 OlX]» and » MIX1” a given production of
OZ[Yi], Mi[m, OZ-[Xi] and MZ-[XJ, respectively corresponding to the observed domain and the
missing domain of Y; included in .¥ and the observed domain and the missing domain of X
included in 7. In addition, the corresponding parts of the curve X; are denoted XiO "™ and

XZ-M = Similarly, the corresponding parts of Y; are denoted Y;O[Y] and YZ»M s

3.1 Curve reconstruction of the covariate and the response

The Karhunen-Logve expansions of the observed sample curves X " in 12 (OX1) and Yio[y]
in L2(OM]) are written

+00 +00
olx] olX1  olx] olYl] olYl olv]
X7 () = 2 k. ¢r () and Y™ (s) = Z Bii Wy (s),
k=1 j=1

where fi%m =, XiO[X] (t)¢g[x] (t)dt and Bg[Y] =1, }/Z.O[X](s)wjo[x](s)ds are uncorrelated

2 2
random variables with zero mean and variances E (fko[x]> = )\kO[X] and E (BJ.O[Y]) = u?[y]
for all k,5 = 1.

We consider a reconstruction problem relating the missing part of the curves to the ob-

served part, writing
XMy = LXI(XO™ (1)) + 2¥(1y),  for all t; € OIXT and ¢, e MIXT,

and
YMM (55) = LVIvO™ (51)) + 2 (sy),  for all 51 € O and sy € MDY,

(2



where LIXT : Ly (O] — Ly(MX]y and LIYT : Ly(OM]) — Ly (MIY]) are linear reconstruction
operators and %[X] € Ly(M™X]) and .,@”Z-[Y] € Ly(MY]) are reconstruction errors. We need
to minimize the mean square error between the curves with fragmentary data and the linear

reconstruction operators LIX1 and LY as follows
[X] [X]\)2 [v] [Y]y2
(| - 1P )F) ana B(I - LMy 0M)?). (3.1)

Thes operator LIX] (or L[Y]) has been studied by Kraus (2015) and Kneip and Liebl
(2020). Kraus (2015) proposed to use the ridge regularization method. The estimator is
introduced by 2@ = %’Moﬁgxo)_l where Z is the covariance operator defined on L2(.7)
and %éao)_l = Zoo + a_Zo where a is a positive parameter and _#o is the identity operator
on L2(OX]). Besides, Kraus and Stefanucci (2020) prove that the reconstruction operator
(considered in Kraus (2015)) can be seen as Hilbert-Schmidt integral operator from L2(OX])
to L2(OWX]) writing

L(xO™) - f ai (. X ()dt,
olx]

for all i = 1,...,n, where a is a square integrable function on MX1 x OX1,
The optimal reconstruction operators minimizing (3.1) are denoted .2 (X [X]) and ¢ (Yio[
and defined by

olYl

400 +00
g Xo[X] Z O[X] <¢k a’yt2> and / Yo[ Z BO[Y] <Z/1 7732>

AT W’ (32)

where v, (1) = E (XZ-M[X] (tg)XiO[X] (t1)>, for all t; € O] and ty € MY, and 74, (s1) =

E (nM[Y](SQ)no[Y](sl)), for all s; € O] and sy € MY,

The operators in relation (3.2) are estimated as in Kneip and Liebl (2020, Section 2) and
Crambes et al. (2023, Subsection 2.1 and Subsection 2.2) by g;n (Xio[x]) and Zn (YiO[Y]),
where the truncation parameters k, and j, are positive integers that can be fixed automat-
ically with a grid search. The solution of (3.2) uses local linear smoothers for unknown
quantities in (3.2), considering the following notations. Let x; and ) be kernels and hx and
hy be bandwidths of the local linear smoothers of the curves Xio " and YiO[Y]7 respectively.
Moreover, let ko and xf be bivariate kernels and hy,, and h,, be bandwidths of the local

linear smoothers of the covariance functions ~y;, and 7s,, respectively.

In the following, we consider the whole sample 2,, = {(X7,Y7"),..., (X}, Y,r)}, with pos-
sibly reconstructed curves on the missing parts, that is
. xO™ @) if t e O, . YoM (s) if s e O],
L. (X0 (1) if t e MIX] /Jn( )(s) if s e MY],

Y])



3.2 Estimation of slope operator and its kernel and prediction

We estimate the kernel function 6 with

n kn £x Y*(s
tS :%ZZ e l()d)krec() (33)

*
1k=1 Ak rec
where @7 0y qbk rec and )\1 e - )\2 rec T represent respectlvely the k,, first eigenfunctions

and eigenvalues of the covariance operator I and

zk rec Sy X* (bk rec( )dt are the

n,rec
estimates of the FPC scores.

From an operatorial point of view, the covariance operator I';.. of X* and the cross-

. =E[X*®X*] and A, = E[Y*®X*],

covariance operator Az, of (X*,Y™) are given by I' Y ec

re
for all u € L?(.7). The orthogonal projection operator IT} . on the subspace Span(¢} N
Ar. . and II7

rec? rec
The estimator of the slope operator © is

k,rec

is given by II} = ZJ 1 qﬁj ree @ qﬁ; rec- The emplrlcal counterparts of '
Az ... and IIt

n,rec? n,rec

k,rec’

are denoted respectively r ke rec”

given by
~ ~ ~ —1
0" = <9 ('7 8)7 > = Hkn,recAn rec (Hkn,recrn rechn,rec> .

Finally, we obtain the prediction of the response when a new explanatory curve X, is
given, by
N 1 U z*k 'rec new;k, recY*(S)
new f Xnew 0 t 8 EZ Z )\* ’

k,rec

for all s € .7, where §new ke = 37 Xnew( <Z>k oc(t)dt. Alternatively, it is also given with the
operatorial quantities

Yn*ew = Hzn,recA* (Hk F* Hzn,rec> X

n,rec n,T€CT N,rec new:*

3.3 Assumptions

To achieve our theoretical results, we need first to adopt some classical assumptions which
have been similarly used in Kneip and Liebl (2020) and Crambes et al. (2023) to control the

curve reconstruction for the covariate and the response.

(A.1) X and Y have finite fourth moment order.

(A.2) Let np — oo when n — o0, where p = p(n) is the number of observation points of the
covariate. Similarly, ng — o0 when n — o0, where ¢ = ¢(n) is the number of observation
points of the response. We assume in the following that p = n™ with 0 < n; < c© and
g =n% with 0 < ¢ < 0.

(A.3) e The bandwidth hx satisfies hx — 0 and (phx) — o as p — co. For instance, we
assume that hx = n% with 0 < n2 < 1. The bandwidth h%2 satisfies h%2 — 0 and

(n(p? — p)hy,,) — o0 as n(p? — p) — . For example, we can take ey, = with

nns



0<mn3 <2+ 1.

e Let k1 and k9 be nonnegative, second order univariate and bivariate kernel functions
with support [—1,1]. For example, we can use univariate and bivariate Epanechnikov
kernel functions with compact support [—1,1], namely 1 (z) = 2(1 — ;132)]1[_1,1] () and
Ko(z,y) = 1%(1 —a?)(1— 3/2)]1[—1,1](95)]1[—1,1](9)'

(A.4) e For any subinterval OX] ¢ .7, we assume that the eigenvalues A\; > Xy > ... > 0
have multiplicity one. Moreover, we assume that there exist ap > 1 and 0 < co < 0
such that (1) AQ™ — A0 = cokmo0-1 (11) AQ™ = g(k=0), (111) 1/AQ™
O (k%) as k — o0.

CE(sh) - 0(3).
e For any subinterval OIX] € .7 we assume that there exists 0 < Ap < oo such that the
eigenfunctions satisfy sup;c 7 supy>1 ‘qgg[ (t )‘ Ao, where qZ)O[ ]( o) = <¢g[x] , 'yt2>/)\g[x]

(A.5) e The bandwidth hy satisfies hy — 0 and (ghy) — o as ¢ — . Moreover, we
assume that hy = n% with 0 < (5 < (1. The bandwidth h%2 satisfies h%Q — 0 and
(n(q® — q)hy,, — o0 as n(q> — q) — . For example, we can take hy,, = n%d with
0<(3<2¢G +1.

o Let /<Ll1 and /1/2 be nonnegative, second order univariate and bivariate kernel functions
with support [—1,1].

(A.6) e For any subinterval OYl ¢ .7, we assume that g1 > po > ... > 0 have multiplicity
oYl

one and we assume that there exist bp > 1 and 0 < dp < o0 such that (j) ,uj _MJ+1 >
doj ™", 53 i = 0(70), (553 1u§ = 0(j0) as j - 0.

« B (B) = Oui) -

e For any subinterval OIY] € .7, we assume that there exists 0 < Bp < oo such that
P,y supj1 |99 (5)| < Bo, where 90" (s2) = ™ 7, /x".

Assumption (A.1) holds for many processes X and Y (Gaussian processes, bounded
processes). Assumption (‘A.2) is mild and can be satisfied even if the number of observation
points p and ¢ do not go fast to infinity. (A.3) and (A.5) are classic assumptions in the
context of local polynomials smoothers. Assumptions (A.4) and (A.6) are similar to the
ones in Kneip and Liebl (2020).

3.4 Asymptotic results

Under assumptions (A.1)-(A.6), it is proved in Kneip and Liebl (2020) that, in the case
where p ~ n and ¢ ~ n% with 71, (; < 1/2 we have for any t € .7 and s € .

| X7 (t) — Xi(t)| = O, (n—n1(ao—1)/(2(ao+2))> and |Y*(s) — Yi(s)| = O, (n—Cl(bo—l)/(Q(boJr?))) )

The previous result allows to obtain some bounds between quantities related to functional

principal components analysis between the reconstructed curves and with the original curves.



We finish this subsection with the main result giving a bound for the prediction error of

Y,.ew With a new value of the covariate X,y -

Theorem 3.1. Under assumptions (A.1)-(A.6), taking k, ~ p/@0+2) p ~ pm j ~
g /(o2 and g ~ nS, with n, G < 1/2, we get

E:()(@* X, — O iY&mJH2) = 0(n (0 /G0 1 ym/e0+D 101/ 0042

Corollary 3.2. We make a comparison between the parameters to find the best convergence

error. We summarize the error rates in Table 1.

Table 1: Convergence error rates depending on the observation points and the regularity of
the curves X and Y.

, ao <bo O(n~ m(ao—1)/ ao+2)))

() m==C (0042)—1—m (b —1)/ (b2
ao > bo ﬁ(n”l/ o —m(bo—1)/(bo ))

(i) m < G 0 (nm/(ao+2)-1-0i(bo-1)/(bo +2))

(#11) m > G 0 (n~m{ao-1)/((a0+2)))

Comparing the parameters, we remark all the convergence rates depend in particular on
the parameter ap > 1, which is directly linked to the smoothness of the stochastic process
X. The larger ap is, the smoother X is. In the case (i) when the number of observation
points of the covariate is equivalent to that of the response for ap > bp and in the case (i7),
the convergence rates depend of the parameter ap and also of the parameter bp > 1, which
is directly linked to the smoothness of the stochastic process Y. In these cases, the final rate
of convergence will be linked to the parameter ap or bp corresponding to the less smooth

process (either X or Y).

4 The centered function-on-function with partially observed

covariate and response: Reconstructing X and imputing Y

We have seen in the previous section the methodology for reconstructing the missing parts
of the explanatory curves. In this section, we try another strategy to deal with missing data
on the response. After reconstructing the missing parts of the covariate X, we apply the
regression imputation methodology as presented in Crambes et al. (2023) for a real response.
Next, we will present the estimation of the kernel function 6 and predict the new response

once all sample is completed.

10



4.1 Regression imputation on the functional response

We consider the following missing data mechanism for the response, through a variable 51
leading to the sample (6Z,[Y])i:1,myn such that,

s OlfM 75@,
i Lo = .

We assume that the response is missing at random (MAR), which means that the fact
that Y contains missing parts does not depend on the response of the model, but can possibly

depend on the reconstructed covariate,
P =1 x*v) =Pl = 1| Xx*).

We denote the number of curves partially observed by

n
Y] _
= 2 L)
=1

Using the exponent notation ”obs” to make reference to the units for which the response is

completely observed, we define the covariance operator I'?%% and the cross-covariance operator

A% with the reconstructed curves by robs = | ((5[Y]X* ® X*) and A% = E (5[Y]Y ® X*).

rec rec rec

The empirical counterparts of I'%%$ and A% are denoted respectively F;’f:ﬁec and A%bf:ec

[Y]

Let Y; be a response curve such that ¢,” ' = 0, we define the imputed response Yy ;,; by

Viam(s) = | X (0t s)at

with [ |
n obs *
~ o 1k ,rec z ( )Y; (8) “obs
9(t7 S) B Z Z )\obs qbk,rec(t)? (41)
n mn i=1k=1 k,rec

forall (t,5) € 7 x., where €25 = §, X7 (£)o5%, . (t)dt and ¢, ..., 2%, and AP, ... Agbs
represent respectively the k,, first eigenfunctions and eigenvalues of the covariance operator
robe...

Alternatively, if we denote %3 the projection on the space spanned by the k, first

kn,rec

eigenfunctions of I‘ﬁf’;‘few the estimation of the slope operator © is given by

@ Hobs Aobs < st fxobs ﬁobs )_1 ]

n,rec—/n,rec ;rec kn,rectky,rec

and the imputation Yy ;,,, can also be written

n,rec—/n,rec kn,rec™ ky,rec"kn,rec

—1
}/ﬁ,imp( ) Hobs Aobs ( obs I-\obs Hobs ) XZ (t),
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4.2 Estimation of the slope operator and its kernel and prediction

Once the whole database has been reconstructed, we estimate the bivariate functional coeffi-

cient 0 with R
no £ Y (s)

k

ik,rec” "
Z . d)k:,rec(t)? (42)
k=1 )‘

k,rec

G (t, 5) — izn]
=1

for all (¢,s) € 7 x., where Y** = E(SZ[Y] +Yi,imp(1—5i[ ]) foralli =1,...,n. The estimation

of the operator © is similarly given by

A~ ~ ~ —1
* ok * *k * *
e = Hkn,recAn rec (Hkn,recrn rechn,rec> )

where A**

We use this estimation to predict a new value of the response Y when a new explanatory

e 18 the empirical counterpart of the cross-covariance operator AJZ...

curve Xpey is given by

new J Xnew 0** t, S)d(t)
which can also be written

v T *k ’\* Ax T *
Ynew = Hk;m A ( k r Hkn,rec) X

rec—n,rec n,rec kn,rec new-*

4.3 Asymptotic results

The proof of these results follows the same lines as the proof of Theorem (3.1) and Theorem
(3.3) in Crambes et al. (2023).

Theorem 4.1. Under assumptions (A.1)-(A.4), if we take ky, ~ p'/(%0+2) and p ~ n™ with
m < 1/2, we obtain

a 2
i (H (6-x;-0-x;) 2) _ ﬁ(nm(aol)/@(ao+2)) N TMO;;) ,
n—mpy

Y]

for L € Dy, where Dy, is the set of missing responses of size my,

Theorem 4.2. Under assumptions (A.1)-(A.4), and k, ~ p(@0*2) and p ~ n™ with
m < 1/2, the prediction error is

. (’ <é** Xoew =0 X;ew>‘2> = ﬁ(n’h(aol)/@(aoﬂ)) n 7”/71/(‘10;2])> .

n—ms,

Remark 4.3. Comparing parameters as n/(@0+2)=1=G(bo-1)/(bo+2) < %, we find
that the prediction error with reconstruction (obtained in Section 3) is asymptotzcally at least

the same than the prediction error with imputation.

12



Remark 4.4. Theoretical results are generally obtained under assumptions concerning the
rate of convergence of the integer k,. In practice, this integer is selected by minimizing
a certain empirical criterion such as Generalized Cross Validation (GCYV) criterion, Cross
Validation (CV) criterion, or K-fold Cross Validation (K-fold CV) criterion. We chose in
the following simulation section the GCV procedure, known to be computationally fast. The

GCV criteria is given as follows for imputation
n

n—mn Z H(@ X -0 X*)
=1

(1= k) =)

‘2 501

[

GCV(ky,) =
and analogously for prediction.

5 Simulations

5.1 Methodology

In this section, we conduct Monte Carlo experiments to illustrate the finite-sample perfor-
mance of the proposed methods presented in section 3 and section 4. We set .¥ = .7 = [0, 1].
Each response and predictor curve is observed at ¢ = 90 and p = 100 equally spaced points
in their domains, respectively. For computational simplicity we consider equidistant points
sj=7/(gq—1),7=0,...,¢g—1,and t; = k/(p—1), k =0,...,p — 1. Two simulated data

mechanisms are generated. Each model is defined by

J X0 (1)) (¢, 5)dt + ) (s), (5.1)

for t € 7 and s € ., where w = 1,2. We approximate the integral in (5.1) using a Riemann

sum over the grid ¢. The analytical expressions of the kernels and processes are given below.

SCENARIO 1 The kernel is given by

50 50

= ) Ok gbr()e5(s),

k=1j=1

where ¢ (t) = V2cos(kmt), ¥j(s) = v/2cos(jms) and Oy ; = 4(—1)¥7k=25j=3. The
input is the random function XM (t) = 3% k~1¢,¢x(t), where the &’s are indepen-
dently sampled from the uniform distribution on [—+/3,+/3]. Finally, the noise is given

by ) = Z ﬁ’ 1;(s) and the 5/ ’s are independent mean-zero Gaussian random vari-

—11

ables with variances equal to j . Then, the covariance function Cy ) of X @ ig given

by

L3

Cx(t1,t2) Z — cos(kmty) cos(kmty), wherety, ty € .

13



SCENARIO 2 The kernel is defined by () (¢, s) = s3 +sin(27t)? and the noise €(®) is generated
according to a standard Brownian motion divided by 20. In addition, the functional

covariate X @ is generated through its covariance function, defined, for all t1,t € 7,
by

2 o
opexp (— [t1 — t2
Cxe(ti,t2) = L ( c ),

with 01 = 1, @ = 2 and ¢ = 0.2. In this setting, even if a polynomial decrease of the
eigenvalues of the covariance operator of X () is required in our theoretical results (see
assumption (A.4)), we want to see how the method works in practice if this assumption

is no more satisfied, namely here in the case of an exponential decay.

)

Figure 1 shows 10 discretized predictor functions XZ-(1 , the error functions egl) and the

(1)

response functions Y;"’. Figure 2 shows 10 discretized predictor functions Xl-(Q), the error

functions 652) and the response functions Y;(Q).
Figure 3 shows the covariance functions of the covariate for SCENARIO 1 and 2. Figure 4

shows kernel functions for SCENARIO 1 and 2.

Functional data:Y“)(S) Functional data:X(‘)(t) Functional data:em(s)

o T T T T 1 LI B LI B B N B B LI B LI B LI B N B L
0 o1 0.3 0.5 0.7 09 1 0 o1 0.3 0.5 0.7 09 1 o o1 0.3 0.5 0.7 09 1

Figure 1: Examples of simulated functions with SCENARIO 1.

To deal with partially observed curves for the covariate and response, we adopted the
missing data simulation scenario from Kneip and Liebl (2020) and Crambes et al. (2023) such
that

14



Functional data:Y(z)(s) Functional data:X(2)(t) Functional data:t(z)(s)

Figure 2: Examples of simulated functions with SCENARIO 2.

e 70% (respectively 55%) of the curves are fully observed on [0, 1],

e for the 30% (respectively 45%) of partially observed curves, the curves X; and Y; are
fully observed on [4;, B;] < [0, 1] with A; drawn with uniform law on the interval [0, A]
and B; = A; + B, with either A = 1/50 and B = 49/50 or A = 3/50 and B = 47/50 for
SCENARIO 1. We take either A = 1/50 and B = 49/50 or A = 5/50 and B = 45/50 for
SCENARIO 2.

We simulate the number of missing data on the response Y and the indicator §[¥'1 by the
logistic functional regression. The variable ¢ follows the Bernoulli law with parameter p(X)
such that

1/2

log (%) _ US <L/_ |s—t]X(t)dt>2ds] +ot,

where ct is a constant allowing to take different levels of missing data. For exemple, ¢t = 2
gives around 9.727% of missing data and ct = 0.2 gives around 38.801% of missing data.

Let us notice that we use a spline smoothed version of the different estimators (2.2), (3.3), (4.1)
and (4.2), according to the so-called Smooth Principal Components Regression (SPCR) from
Cardot et al. (2003). Let us remark that, with appropriate conditions on the spline param-

eters, all the theoretical results obtained in our work will also apply when using the SPCR

15
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Figure 3: The covariance functions for SCENARIO 1 and 2.
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Figure 4: The kernel functions for SCENARIO 1 and 2.
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estimation. We use a regression spline basis with 20 knots, a degree 3 and the order of deriva-
tion 2. The choice of these parameters is not crucial in our study, especially in comparison
with the choice of the number of principal components. The choice of this optimal tuning
parameter is made on a growing sequence of dimension k, = 2,...,22.

The dataset of size N is randomly splitted into a training set of size n = %N and a test
set of size n1 = %N . We consider sample sizes N = 500, 1300. For each scenario, we use
200 Monte Carlo runs for the model assessment. In all numerical experiments, the proposed

estimators have been carried out with the free software R.

5.2 Criteria

We use the following criteria to evaluate the performance of the methods.

e Criterion 1: MSPFE = ﬁ ZJSLT MSPE(j) is the average mean square prediction error.

This criterion tends to zero when the sample size tends to infinity, where MSPE(j) =

A~ . . 2
n% S H (@ ‘X -0- X7 )H is the mean square prediction error computed on

the 7 simulated sample, j € {1,..., Sim}.

e Criterion 2: RT = < ng" RT(j) is the average ratio respect to truth. This criterion

Sim _ -
_ Siahl(exg) -y

ntny | g2
DI H € ”
is the ratio between the mean square prediction error and the mean square prediction

tends to one when the sample size tends to infinity, where RT'(j)

error when the true parameters are known, computed on the #* simulated sample.

We consider another criterion which is the determination coefficient R2. In this context of
functional regression setting, several definitions exist. Given the fitted values ffi(s), we used
the definition as in Harezlak et al. (2007) given by

A~ 2
S (i) - i)
7 g ), o= g | |1- léz‘_lms)z Do

5.3 Simulation results

We denote the methods presented in this paper by :

e Reconst_ X_Y : X and Y are partially observed , the missing parts of X and Y are

reconstructed.

e Reconst_ X, Imp_Y : X and Y are partially observed, the missing parts of X are

reconstructed and Y imputed.

Moreover, we compare to other methods :

17



e Full X_Y : X and Y are fully observed, this corresponds to the complete reference

dataset.

e Reconst_X, Remov_Y : X and Y are partially observed, the missing parts of X are

reconstructed and the missing part of Y are removed from the sample.

e Reconst_X, Remov_Y : X and Y are partially observed, the individuals presenting

partially observed curves are removed from the sample.

Figure 5: The estimated coefficient functions for SCENARIO 1.

Even if our main goal is prediction, Figure 5 show estimates of the kernel function in
SCENARIO 1 (with a sample size N = 400) for the dimension k;; chosen by the GCV criterion,
respectively with full data ((:)), reconstruction of the missing parts of X and Y ((:)*) and
reconstruction of the missing parts of X and imputation of Y ((:)**). The missing part is
12% for both curves X and Y, the observed part being [3/50,47/50]. Moreover, 39.375% of
curves Y (with ct = 0.1) are affected by missing data and 42.250% of curves X are affected by
missing data. We remark that the estimators look graphically quite close, ©* seems to be a
little closer to © than ©**. A similar plot is obtained for SCENARIO 2 (Figure 6) with 37.812%
of curves Y (with ¢t = 0.1) affected by missing data and 46.750% of curves X affected by

missing data. In this situation, ©* seems much closer to © than ©**.
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Figure 6: The estimated coefficient functions for SCENARIO 2.

We give in Table 7 the values of the determination coefficient R? and the value & chosen by
the GCV criterion both scenarios 1 and 2. In scenario 1, we get a worse R? coefficient, maybe

due to the fact that the curves X are not so smooth and do not seem easy to reconstruct.

Table 2: R? and k; for scenarios 1 and 2.

Methods SCENARIO 1 SCENARIO 2
Full_ X_Y R?>  68.996 % 98.652 %
kx 2 6
Reconst_X_Y R?>  68.859 % 98.641 %
kx 2 6
Reconst X, Imp_.Y R? 68.853 % 98.630 %
kx 2 5

Tables 3, 4, 5 and 6 give the values of the criteria M SPE and RT for scenarios 1 and 2
with different values of sample size, and different levels of missing data. The first conclusion
is the fact that the errors decrease as the sample size increases. Secondly, these errors increase

with the percentage of missing data on X or on Y. The rate of missing data on Y seems to

19



have a more important impact on the errors, whatever the scenario we consider. In all cases,
the method Reconst_X_Y reconstructing both curves X and Y has a better behaviour than
the method Reconst_X, Imp_Y reconstructing X and imputing Y, which is quite in accor-
dance to our theoretical results. The part of the observed curve is an important parameter
in the curve reconstruction: as it can be expected, the results are better when the curve
reconstruction is easier (for example when the observed part is [1/50,49/50], corresponding
to 4% of missing information on the curves). Results tend to deteriorate when the curve
reconstruction is harder (for example when the observed part is [3/50,47/50], corresponding
to 12% of missing information on the curves). Finally, these two methods behave better than
the other more naive methods (Reconst_X, Remov_Y and Reconst_X, Remov_Y) that

partially or completely ignore missing individuals affected by missing data.
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6 Real dataset study: Hawaii Ocean data

The Hawaii ocean time-series program has been making repeated observations of various
hydrographic, chemical and biological properties of the water column at a station north of
Oahu, Hawaii since October, 1988. In the CTD dataset! of this program, various variables
were measured every two meters between 0 and 200 meters below the sea surface. These
variables are viewed as functions of depth. The layer between 0 and 200 meters below the
sea surface is called the epipelagic zone (or sunlight zone), where enough light is available
for photosynthesis. Therefore, in this zone, the primary production in the ocean occurs, and
plants and animals are largely concentrated. The measurements were repeated at different
dates, which we consider as different sample curves. We use three functional variables: Tem-
perature, Salinity and Ozygen. Each curve being observed at 101 equally spaced points in [0,
200], we use the Oxygen as the response curve, expressed as a function of temperature, and
we use the Salinity as the explanatory variable, also expressed as a function of temperature.
We study the relationship between Salinity and Oxygen with the following model, written in

the operatorial point of view:

Oxygen;(Temperature) = (@-Salinityi> (Temperature)+e;(Temperature), t = 1,...,n, withn = 191.

The graphical display of the initial sample of 191 pairs curves {Oxygeni,Salinityi}ill
(raw curves and smooth curves) can be observed in Figure 7. We can see that, on these data,
all the curves are partially observed, which is a different situation compared to the simulations
realized in the previous section, where only a percentage of curves were partially observed.
In particular, the imputation method presented in Section 4 cannot be directly applied. We
want to explore in this situation a possibility of a hybrid use of both reconstruction and
imputation of the response curves.

We consider two scenarios for the response curves and for each scenario we use two samples:
a training sample of size {1 = 153 equal to 4/5 of the initial sample from which the estimates
are computed and a testing sample of size o = 38 equal to 1/5 of the initial sample on which
the prediction errors are calculated. First, we reconstruct the missing part of all covariates
using the observed parts. Then, as all the response curves are partially observed, we cannot
directly use the regression imputation method from Section 4. As a consequence, we choose

to reconstruct only a certain percentage of the response curves.

e ’Scenario 1’: we reconstruct more response curves (87.958% of initial response curves
which is equivalent to 168 response curves) using the observed parts while leaving curves

with a low percentage of missing part.

e ’Scenario 2’: we reconstruct less response curves (47.644% of initial response curves
which is equivalent to 91 response curves) using the observed parts while leaving curves

with a high percentage of missing part.

"https://hahana.soest.hawaii.edu/hot /hot-dogs/cextraction.html
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Figure 7: Partially Observed Functions: Raw curves of the oxygen variable (top left) and
the salinity variable (bottom left). Smooth curves of the oxygen variable (top right) and the
salinity variable (bottom right).

For ’Scenario 1’, the training sample contains 23 partially observed response curves and
130 observed response curves and for 'Scenario 2’ the training sample contains 100 partially
observed response curves and 53 observed response curves. Moreover, for ’Scenario 17, 12.042%
of response curves are affected by missing data. For ’Scenario 2’, 52.356% of response curves
are affected by missing data.

The graphical display of the training (resp. testing) samples of 153 (resp. 38) pairs of

curves {Ozygen;, Salinity; }ii(%)

can be observed in Figures 8 and 9.

We consider the MSPE criterion as in Section 5 to evaluate the quality of prediction error.
We also consider a MSPA (Mean Square Prediction Absolute error) criterion, defined in the
same way, replacing the 2-norm with the 1-norm in the definition of MSPE. Table 7 gives
MSPE and MSPA criteria for both ’Scenario 1’ and ’Scenario 2. We can observe that the
prediction errors are much better in ’Scenario 1’. In other words, in such situations where all
the response curves are partially observed, it seems better to reconstruct a more important

part of them, and then use the imputation method on the remaining part.
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Table 7: Real dataset: prediction errors over one hazard sample. MSPE, MSPA and k;; for

’Scenario 1’ and ’Scenario 2’.

Methods 'SCENARIO 1’ ’SCENARIO 2’
Rate of partially observed response curves (%) 12.042 52.356
Rate of missing data in response curve (%) Less than 27  More than 45
Reconst_X_Y MSPE 23.566 46.351
MSPA 3.855 5.144
k* 13 8
Reconst_X, Imp_Y MSPE 24.338 54.199
MSPA 3.893 5.839
K 9 12

7 Proofs

7.1 Proof of Theorem 3.1

Starting with the reconstruction cross covariance operator,

NG 1< * *
An,rec :E Z Y7 ®X;
i=1

=;Zn]1 (Vi+ 07 - 7)) @ X7,

R R
“vexi Lo owex:,

i=1 =1

~ 1 ¢ 1«
:G)Fn,rec+gz@@X;"i'gZ(Y;*_m)@X:‘

i=1 i=1

Next, we obtain
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Applying several times the identity (a + b)? < 2a% + 2b? for any a,b € R, we get

)
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)

Results of terms in the above decomposition are in Crambes et al. (2023), exceptionally the

last term, let be noted by
1 ~ -1, .
Py = n Z<X@ ’ (Hknﬂ”@cl—‘n Technﬂ““) Xnew>(Y; - Y;)
i=1

. Hence, using the Cauchy-Schwarz inequality, we have

E(|P ) (\EM%MMHWmmJ MM> (¥ = Yil|).
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The result comes from Lemma 5.2 in Crambes and Henchiri (2019) and the result (3.4) that

gives us

k
2 Rn —C1(bo—1)/(bo+2)
B(P ) = o(22) + o )

_ ﬁ(nm/(ao+2)*1*Cl(b0*1)/(bo+2)> ‘

Summarizing, we get

B <)@* Xt — O Xt ‘2> _ ﬁ(n*m(GO*l)/(Q(ao+2)) n nm/(aoJr?)*l*Cl(bO*l)/(boJr?)) ,
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