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July 11, 2023

Abstract

In this work, we are interested in a function-on-function linear model in which the

response and the covariate are partially observed curves. First, we reconstruct the missing

part of the covariate using the observed parts. Then, we consider two strategies for dealing

with the missing part of the response. The first one consists in a reconstruction in the same

way as for the covariate. The second one uses regression imputation. Once the dataset is

reconstructed, we estimate the slope function and give the mean square prediction error

for a new observation of the covariate. Both methods are compared from a theoretical

and a practical point of view.

Keywords. Functional linear model, Missing parts, Imputation, Partially observed functional data,

Functional Principal Components, Reconstruction operator.

1 Introduction

Functional data analysis (FDA) is becoming progressively more and more important in Statis-

tic (Bosq, 2000; Ramsay and Silverman, 2005; Ferraty and Vieu, 2006; Hsing and Eubank,

2015; Kokoszka and Reimherr, 2018). The functional linear model is specially a very popular

model in both theoretical and applied research such as climatology, meteorology, economy,

image analysis and many other fields. There is a large amount of work done on the functional

linear model. In the case where the response is a real variable, the model has been widely

studied (e.g. Cardot et al., 2003; Cai and Hall, 2006; Li and Hsing, 2007; Hall and Horowitz,

2007; Crambes et al., 2009; Comte and Johannes, 2012; Cai and Yuan, 2012; Brunel et al.,
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2016). In contrast, fewer researchers have tackled the problem of function-on-function linear

models where the covariate and the response are both functional (e.g. Ramsay and Silverman,

2005; Yao et al., 2005; Prchal and Sarda., 2007; Aguilera et al., 2008; Lian, 2011; Ferraty et al.,

2012; Crambes and Mas, 2013; Crambes et al., 2016; Luo and Qi, 2017; Benatia et al., 2017;

Imaizumi and Kato, 2018; Sun et al., 2018).

In recent years, applications producing partially observed functional data have emerged.

Sometimes each individual trajectory is collected only over individual specific subintervals,

densely or sparsely, within the whole domain of interest. Several recent works have begun

addressing the estimation of covariance functions for short functional segments observed at

sparse and irregular grid points, called functional snippets (Lin and Wang, 2022; Lin et al.,

2021) or for fragmented functional data observed on small subintervals (Delaigle et al., 2020).

For densely observed partial data, existing studies have focused on estimating the unobserved

part of curves (Kneip and Liebl, 2020; Kraus and Stefanucci, 2020), prediction (Goldberg

et al., 2014), classification (Kraus and Stefanucci, 2018; Park and Simpson, 2019), functional

regression (Gellar et al., 2014), and inferences (Kraus, 2019; Park et al., 2022).

To our knowledge, few articles investigate the theoretical properties of the slope operator

or kernel estimators in the framework of partially observed data. In the framework of a real

response, we can notice the works from Crambes and Henchiri (2019) and Crambes et al.

(2023). The objective of this paper is to study the prediction problem when the covariate

and the response are partially observed in the function-on-function linear regression setting,

for which we propose two methods. The paper is organized as follows. We present the model

with fully observed functional data in section 2. In section 3, we study the case of partially

observed covariate and response. We reconstruct the missing parts of the functional explana-

tory variable and the functional response using the work Kneip and Liebl (2020), and we

get theoretical results for the prediction error rate. In section 4, we propose an alternative

method which consists in imputing the functional response after having reconstructed the

missing parts of the functional covariate as in the previous section. We also obtain a conver-

gence rate for the mean square prediction error. In section 5, we conduct a numerical study

over simulated data in order to compare the methods in practice. Section 6 is devoted to a

real dataset application. Finally, all the proofs are postponed to section 7.

2 The centered function-on-function linear model

2.1 Functional principal components regression

Let f : T Ñ R and g : T ˆS Ñ R be two square integrable functions defined in the Hilbert

space L2pT q
`

resp.L2pT ˆS q
˘

i.e. the space of square integrable functions on the interval

T Ď R
`

resp. S Ď R
˘

. For all t P T
`

resp. s P S
˘

, we set }f} “
´

ş

T f2ptqdt
¯1{2

and

}g} “
´

ş

S

ş

T g2pt, sqdtds
¯1{2

.
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We use the following notation for the tensor product, defining u b v : L2pT q Ñ L2pT q,

by u b v “ xu, .yv, for any functions u, v P L2pT q. We define the Hilbert-Schmidt integral

operator G : L2pT ˆ S q Ñ L2pT q by pG ¨ uqpsq “
ş

T uptqgpt, sqdt for all g belonging to

L2pS ˆ T q and
ş

S

ş

T |gpt, sq|
2dtds ă 8. The function g is the Hilbert-Schmidt kernel

corresponding to the operator G. Moreover, the operator G is continuous (i.e bounded) and

compact.

We assume here that X takes values in the space L2pT q and Y in L2pS q, X fi tX ptq |

t P T u is the predictor variable and Y fi tY psq | s P S u the response variable. We

observe a sample tpXi,Yiqu
n
i“1, of identically distributed and independent copies pX ,Y q,

with Ep}X }2q ă 8 and Ep}Y }2q ă 8. In practice, functional responses Yipsq and functional

covariates Xiptq are observed on grid points si “ psi1, . . . , siqiq and ti “ pti1, . . . , tipiq. For

the sake of simplicity, we assume those to be identical vectors s, t with lengths q and p,

respectively, for each observation i.

We consider a centered function-on-function linear regression model (FFLRM) character-

izing a linear relationship between the functional response and the functional predictor

“

Y ´ E
“

Y
‰‰

psq “

ż

T

“

X ´ E
“

X
‰‰

ptqθpt, sqdt` εpsq,

where the bivariate functional coefficient pt, sq ÞÑ θpt, sq is assumed to be in L2pT ˆS q, that

is,
ş

S

ş

T |θpt, sq|
2dtds ă 8. Natural estimators of E

“

X
‰

and E
“

Y
‰

are the empirical means,

X fi 1{n
řn
i“1 Xi and Y fi 1{n

řn
i“1 Yi. The centered random error function ε is assumed

to be independent of X , and E}ε}2 ă 8.

We define the elements of the centered model as follows, X fi X ´E
“

X
‰

and Y fi Y ´E
“

Y
‰

,

and the centered FFLRM writes

Y psq “

ż

T
Xptqθpt, sqdt` εpsq. (2.1)

Denote

CXpt1, t2q “ E
´

Xpt1qXpt2q
¯

, t1, t2 P T ,

and

CY ps1, s2q “ E
´

Y ps1qY ps2q

¯

, s1, s2 P S ,

as the covariance functions of X and Y , respectively. As CX P L2pT 2q and CY P L2pS 2q are a

positive self-adjoint operators, then, according to Mercer’s theorem (Hsing and Eubank, 2015,

Theorem 4.6.5), CX and CY admit spectral expansions in L2pT 2q and L2pS 2q respectively

CXpt1, t2q “
`8
ÿ

k“1

λkφkpt1qφkpt2q and CY ps1, s2q “

`8
ÿ

j“1

µjψjps1qψjps2q,
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where λ1 ą λ2 ą . . . ą 0 and µ1 ą µ2 ą . . . ą 0 are the eigenvalue sequences of the covari-

ance functions CX and CY , respectively, while
 

φk
(

kě1
and

 

ψj
(

jě1
are the corresponding

orthonormal bases of eigenfunctions in L2pT q and L2pS q.

The Karhunen–Loève (KL) expansions of the curves X and Y (Hsing and Eubank, 2015,

Theorem 7.3.5) in L2pT q and L2pS q are respectively

Xptq “
`8
ÿ

k“1

ξkφkptq and Y psq “
`8
ÿ

j“1

βjψjpsq,

for all t P T and s P S , where ξk “
ş

T Xptqφkptqdt and βj “
ş

S Y psqψjpsqds are uncorrelated

random variables with zero mean and variances Epξ2
kq “ λk and Epβ2

j q “ µj for all k, j ě 1.

These coefficients ξk and βj are called functional principal components scores. By Parseval’s

identity and Fubini’s theorem, we have

`8
ÿ

k“1

Epξ2
kq ă 8 and

`8
ÿ

j“1

Epβ2
j q ă 8.

Ramsay and Silverman (2005, Chapter 16, Section 1.1), Park and Qian (2012), Crambes

and Mas (2013) and Imaizumi and Kato (2018) suggest that θpt, sq can be expressed in terms

of a double basis expansion

θpt, sq “
`8
ÿ

k“1

`8
ÿ

j“1

θk,jφkptqψjpsq,

where θk,j “
ş

S

ş

T φkptqθpt, sqψjpsqdtds.

Noticing that

ż

T
θpt, sqXptqdt “

`8
ÿ

k“1

`8
ÿ

j“1

θk,jξkψjpsq,

and

E
´

ξkY psq
¯

“ λk

`8
ÿ

j“1

θk,jψjpsq,

we obtain the following characterization of the bivariate functional coefficient θpt, sq as

θpt, sq “
`8
ÿ

k“1

E
´

ξkY psq
¯

λk
φkptq.

This characterization leads to a method for estimating θpt, sq. For example, Park and Qian

(2012) and Crambes and Mas (2013) use the following truncation estimator with kn Ñ8 as

nÑ8,

pθpt, sq “
1

n

n
ÿ

i“1

kn
ÿ

k“1

pξikYipsq

pλk

pφkptq, (2.2)
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where pλk and pφk are the estimators of the eigenvalues λk and the eigenfunctions φk and the

estimates of the FPC scores are pξik “
ş

T Xiptqpφkptqdt. We will use this characterization in

this paper.

Benatia et al. (2017) propose an estimator similar to p2.2q. The sum over k is not trun-

cated, but regularized with the term pλk ` κ

pθ;pt, sq “
1

n

n
ÿ

i“1

n
ÿ

k“1

pξikYipsq

pλk ` κ
pφkptq.

Ramsay and Silverman (2005) obtain the following characterization of the bivariate func-

tional coefficient, for some small or large numbers ι1 and ι2, as

θ:pt, sq “
ι1
ÿ

k“1

ι2
ÿ

j“1

θk,jφkptqψjpsq, where θk,j “
E
`

ξkβj
˘

λk
.

Therefore Imaizumi and Kato (2018) obtain the following characterization

θ::pt, sq “
`8
ÿ

k“1

E
`

ξkβj
˘

λk
φkptqψjpsq.

Notice that θ:pt, sq and θ::pt, sq based on truncating the double series, namely, the double

truncation, which will not be discussed here.

2.2 Operatorial point of view

We notice in this subsection that the model (2.1) can be seen from an operatorial point of

view. Indeed, we can write the model

Y psq “
´

Θ ¨X
¯

psq ` εpsq,

where the slope operator Θ : L2pT ˆS q Ñ L2pS q is an integral continuous operator defined

for all u P L2pT q by pΘ ¨ uqpsq “
ş

T uptqθpt, sqdt which kernel is θ P L2pT ˆS q.

To close this section, we introduce the operators that will be used through the following

theorems in which we describe prediction convergence rates. The covariance operator of X,

denoted Γ, is defined by

Γpuq “ E
`

X bXpuq
˘

, for all u P L2pT q.

Note that the covariance operator is a natural extension of the covariance matrix, in the

infinite dimensional framework. We also introduce the cross-covariance operator ∆ of pX,Y q

given by

∆puq “ E
`

Y bXpuq
˘

, for all u P L2pT q.

For any integer k, we define Πk the orthogonal projection operator on the subspace Spanpφ1, . . . , φkq,

given by

Πk “

k
ÿ

j“1

φj b φj .
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Empirical counterparts of Γ, ∆ and Πk, respectively, are denoted pΓn, p∆n and pΠkn . These

operators are naturally defined by pΓn “
1
n

řn
i“1Xi b Xi, p∆n “

1
n

řn
i“1 Yi b Xi and pΠkn “

řkn
j“1

pφj b pφj . The functional principal component regression estimator pΘ of Θ is defined by

pΘ “ pΠkn
p∆nppΠkn

pΓnpΠknq
´1.

3 The centered Function-on-function linear model with par-

tially observed covariate and response: Reconstructing X

and Y

In this section, we are interested in the most general case of missing data in the centered

function-on-function linear regression: when both the functional covariate and the functional

response are partially observed. We follow the methodology studied in Kneip and Liebl (2020)

for reconstructing the missing parts of the curves. Next, once the initial sample is completed,

we will present the estimation of the slope operator Θ or its kernel θ and predict new values

for the response.

In the following, we denote ”OrY s”, ”M rY s”, ”OrXs” and ”M rXs” a given production of

O
rYis
i , M

rYis
i , O

rXis
i and M

rXis
i , respectively corresponding to the observed domain and the

missing domain of Yi included in S and the observed domain and the missing domain of Xi

included in T . In addition, the corresponding parts of the curve Xi are denoted XOrXs
i and

XM rXs

i . Similarly, the corresponding parts of Yi are denoted Y OrY s
i and YM rY s

i .

3.1 Curve reconstruction of the covariate and the response

The Karhunen–Loève expansions of the observed sample curves XOrXs
i in L2pOrXsq and Y OrY s

i

in L2pOrY sq are written

XOrXs

i ptq “
`8
ÿ

k“1

ξO
rXs

ik φO
rXs

k ptq and Y OrY s

i psq “
`8
ÿ

j“1

βO
rY s

ij ψO
rY s

j psq,

where ξO
rXs

ik “
ş

T XOrXs
i ptqφO

rXs

k ptqdt and βO
rY s

ij “
ş

S Y OrXs
i psqψO

rXs

j psqds are uncorrelated

random variables with zero mean and variances E
´

ξO
rXs

k

¯2
“ λO

rXs

k and E
´

βO
rY s

j

¯2
“ µO

rY s

j

for all k, j ě 1.

We consider a reconstruction problem relating the missing part of the curves to the ob-

served part, writing

XM rXs

i pt2q “ LrXspXOrXs

i pt1qq `Z
rXs
i pt2q, for all t1 P O

rXs and t2 PM
rXs,

and

YM rY s

i ps2q “ LrY spY OrY s

i ps1qq `Z
rY s
i ps2q, for all s1 P O

rY s and s2 PM
rY s,
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where LrXs : L2pO
rXsq Ñ L2pM

rXsq and LrY s : L2pO
rY sq Ñ L2pM

rY sq are linear reconstruction

operators and Z
rXs
i P L2pM

rXsq and Z
rY s
i P L2pM

rY sq are reconstruction errors. We need

to minimize the mean square error between the curves with fragmentary data and the linear

reconstruction operators LrXs and LrY s as follows

E
´

›

›XM rXs

i ´ LrXspXOrXs

i q
›

›

2
¯

and E
´

›

›YM rY s

i ´ LrY spY OrY s

i q
›

›

2
¯

. (3.1)

Thes operator LrXs
`

or LrY s
˘

has been studied by Kraus (2015) and Kneip and Liebl

(2020). Kraus (2015) proposed to use the ridge regularization method. The estimator is

introduced by L pαq “ RMOR
pαq´1
OO where R is the covariance operator defined on L2pT q

and R
pαq´1
OO “ ROO ` αJO where α is a positive parameter and JO is the identity operator

on L2pOrXsq. Besides, Kraus and Stefanucci (2020) prove that the reconstruction operator

(considered in Kraus (2015)) can be seen as Hilbert-Schmidt integral operator from L2pOrXsq

to L2pOrXsq writing

LpXOrXs

i q “

ż

OrXs
aip., tqX

OrXs

i ptqdt,

for all i “ 1, . . . , n, where a is a square integrable function on M rXs ˆOrXs.

The optimal reconstruction operators minimizing (3.1) are denoted L pXOrXs
i q and J pY OrY s

i q

and defined by

L pXOrXs

i qpt2q “
`8
ÿ

k“1

ξO
rXs

ik

xφO
rXs

k , γt2y

λO
rXs

k

and J pY OrY s

i qps2q “
`8
ÿ

j“1

βOrY s

ij

xψOrY s

j , γs2y

µOrY s

j

, (3.2)

where γt2pt1q “ E
´

XM rXs

i pt2qX
OrXs
i pt1q

¯

, for all t1 P O
rXs and t2 P M

rXs, and γs2ps1q “

E
´

YM rY s

i ps2qY
OrY s
i ps1q

¯

, for all s1 P O
rY s and s2 PM

rY s.

The operators in relation (3.2) are estimated as in Kneip and Liebl (2020, Section 2) and

Crambes et al. (2023, Subsection 2.1 and Subsection 2.2) by xLknpX
OrXs
i q and xJjnpY

OrY s
i q,

where the truncation parameters kn and jn are positive integers that can be fixed automat-

ically with a grid search. The solution of (3.2) uses local linear smoothers for unknown

quantities in (3.2), considering the following notations. Let κ1 and κ11 be kernels and hX and

hY be bandwidths of the local linear smoothers of the curves XOrXs
i and Y OrY s

i , respectively.

Moreover, let κ2 and κ12 be bivariate kernels and hγt2 and hγs2 be bandwidths of the local

linear smoothers of the covariance functions γt2 and γs2 , respectively.

In the following, we consider the whole sample Dn fi tpX‹1 , Y
‹

1 q, . . . , pX
‹
n, Y

‹
n qu, with pos-

sibly reconstructed curves on the missing parts, that is

X‹i ptq “

$

&

%

XOrXs
i ptq if t P OrXs,

xLknpX
OrXs
i ptqq if t PM rXs

and Y ‹i psq “

$

&

%

Y OrY s
i psq if s P OrY s,

xJjnpY
OrY s
i qpsq if s PM rY s.
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3.2 Estimation of slope operator and its kernel and prediction

We estimate the kernel function θ with

pθ‹pt, sq “
1

n

n
ÿ

i“1

kn
ÿ

k“1

pξ‹ik,recY
‹
i psq

pλ‹k,rec

pφ‹k,recptq, (3.3)

where pφ‹1,rec, . . . ,
pφ‹kn,rec and pλ‹1,rec, . . . ,

pλ‹kn,rec represent respectively the kn first eigenfunctions

and eigenvalues of the covariance operator pΓ‹n,rec and pξ‹ik,rec “
ş

T X‹i ptq
pφ‹k,recptqdt are the

estimates of the FPC scores.

From an operatorial point of view, the covariance operator Γ‹rec of X‹ and the cross-

covariance operator ∆‹
rec of pX‹, Y ‹q are given by Γ‹rec “ ErX‹bX‹s and ∆‹

rec “ ErY ‹bX‹s,
for all u P L2pT q. The orthogonal projection operator Π‹k,rec on the subspace Spanpφ‹1,rec, . . . , φ

‹
k,recq

is given by Π‹k “
řk
j“1 φ

‹
j,rec b φ‹j,rec. The empirical counterparts of Γ‹rec, ∆‹

rec and Π‹k,rec,

are denoted respectively pΓ‹n,rec,
p∆‹
n,rec and pΠ‹kn,rec. The estimator of the slope operator Θ is

given by

pΘ‹ “ xpθ‹p¨, sq, ¨y “ pΠ‹kn,rec
p∆‹
n,rec

´

pΠ‹kn,rec
pΓ‹n,rec

pΠ‹kn,rec

¯´1
.

Finally, we obtain the prediction of the response when a new explanatory curve Xnew is

given, by

Y ‹newpsq “

ż

T
X‹newptq

pθ‹pt, sqdt “
1

n

n
ÿ

i“1

kn
ÿ

k“1

pξ‹ik,rec
pξ‹new;k,recY

‹
i psq

pλ‹k,rec
,

for all s P S , where pξ‹new;k,rec “
ş

T X‹newptq
pφ‹k,recptqdt. Alternatively, it is also given with the

operatorial quantities

Y ‹new “
pΠ‹kn,rec

p∆‹
n,rec

´

pΠ‹kn,rec
pΓ‹n,rec

pΠ‹kn,rec

¯´1
X‹new.

3.3 Assumptions

To achieve our theoretical results, we need first to adopt some classical assumptions which

have been similarly used in Kneip and Liebl (2020) and Crambes et al. (2023) to control the

curve reconstruction for the covariate and the response.

(A.1) X and Y have finite fourth moment order.

(A.2) Let npÑ8 when nÑ8, where p “ ppnq is the number of observation points of the

covariate. Similarly, nq Ñ8 when nÑ8, where q “ qpnq is the number of observation

points of the response. We assume in the following that p “ nη1 with 0 ă η1 ă 8 and

q “ nζ1 with 0 ă ζ1 ă 8.

(A.3) ‚ The bandwidth hX satisfies hX Ñ 0 and pphXq Ñ 8 as p Ñ 8. For instance, we

assume that hX “ 1
nη2 with 0 ă η2 ă η1. The bandwidth hγt2 satisfies hγt2 Ñ 0 and

pnpp2 ´ pqhγt2 q Ñ 8 as npp2 ´ pq Ñ 8. For example, we can take hγt2 “
1
nη3 with

8



0 ă η3 ă 2η1 ` 1.

‚ Let κ1 and κ2 be nonnegative, second order univariate and bivariate kernel functions

with support r´1, 1s. For example, we can use univariate and bivariate Epanechnikov

kernel functions with compact support r´1, 1s, namely κ1pxq “
3
4p1´ x

2q1r´1,1spxq and

κ2px, yq “
9
16p1´ x

2qp1´ y2q1r´1,1spxq1r´1,1spyq.

(A.4) ‚ For any subinterval OrXs Ď T , we assume that the eigenvalues λ1 ą λ2 ą . . . ą 0

have multiplicity one. Moreover, we assume that there exist aO ą 1 and 0 ă cO ă 8

such that (i) λO
rXs

k ´ λO
rXs

k`1 ě cOk
´aO´1, (ii) λO

rXs

k “ Opk´aOq, (iii) 1{λO
rXs

k “

OpkaOq as k Ñ8.

‚ E
`

ξ4
k

˘

“ O
`

λ2
k

˘

.

‚ For any subinterval OrXs Ď T , we assume that there exists 0 ă AO ă 8 such that the

eigenfunctions satisfy suptPT supkě1

ˇ

ˇ

ˇ

rφO
rXs

k ptq
ˇ

ˇ

ˇ
ď AO, where rφO

rXs

k pt2q “ xφ
OrXs

k , γt2y{λ
OrXs

k .

(A.5) ‚ The bandwidth hY satisfies hY Ñ 0 and pqhY q Ñ 8 as q Ñ 8. Moreover, we

assume that hY “
1
nζ2

with 0 ă ζ2 ă ζ1. The bandwidth hγs2 satisfies hγs2 Ñ 0 and

pnpq2 ´ qqhγs2 Ñ 8 as npq2 ´ qq Ñ 8. For example, we can take hγs2 “
1
nζ3

with

0 ă ζ3 ă 2ζ1 ` 1.

‚ Let κ
1

1 and κ
1

2 be nonnegative, second order univariate and bivariate kernel functions

with support r´1, 1s.

(A.6) ‚ For any subinterval OrY s Ď S , we assume that µ1 ą µ2 ą . . . ą 0 have multiplicity

one and we assume that there exist bO ą 1 and 0 ă dO ă 8 such that (j) µO
rY s

j ´µO
rY s

j`1 ě

dOj
´bO´1, (jj) µO

rY s

j “ O
`

j´bO
˘

, (jjj) 1{µO
rY s

j “ O
`

jbO
˘

as j Ñ8.

‚ E
`

β4
k

˘

“ O
`

µ2
k

˘

.

‚ For any subinterval OrY s Ď S , we assume that there exists 0 ă BO ă 8 such that

supsPS supjě1

ˇ

ˇ

ˇ

rψO
rY s

j psq
ˇ

ˇ

ˇ
ď BO, where rψO

rY s

j ps2q “ xψ
OrY s
j , γs2y{λ

OrY s
j .

Assumption (A.1) holds for many processes X and Y (Gaussian processes, bounded

processes). Assumption (A.2) is mild and can be satisfied even if the number of observation

points p and q do not go fast to infinity. (A.3) and (A.5) are classic assumptions in the

context of local polynomials smoothers. Assumptions (A.4) and (A.6) are similar to the

ones in Kneip and Liebl (2020).

3.4 Asymptotic results

Under assumptions (A.1)-(A.6), it is proved in Kneip and Liebl (2020) that, in the case

where p „ nη1 and q „ nζ1 with η1, ζ1 ď 1{2 we have for any t P T and s P S

|X‹i ptq ´Xiptq| “ Op

´

n´η1paO´1q{p2paO`2qq
¯

and |Y ‹i psq ´ Yipsq| “ Op

´

n´ζ1pbO´1q{p2pbO`2qq
¯

.

The previous result allows to obtain some bounds between quantities related to functional

principal components analysis between the reconstructed curves and with the original curves.

9



We finish this subsection with the main result giving a bound for the prediction error of

Ynew with a new value of the covariate Xnew.

Theorem 3.1. Under assumptions (A.1)-(A.6), taking kn „ p1{paO`2q, p „ nη1, jn „

q1{pbO`2q and q „ nζ1, with η1, ζ1 ď 1{2, we get

E
ˆ

›

›

›

´

pΘ‹ ¨X‹new ´Θ ¨X‹new

¯
›

›

›

2
˙

“ O
´

n´η1paO´1q{p2paO`2qq ` nη1{paO`2q´1´ζ1pbO´1q{pbO`2q
¯

.

Corollary 3.2. We make a comparison between the parameters to find the best convergence

error. We summarize the error rates in Table 1.

Table 1: Convergence error rates depending on the observation points and the regularity of

the curves X and Y .

piq η1 “ ζ1
aO ď bO O

`

n´η1paO´1q{p2paO`2qq
˘

aO ą bO O
`

nη1{paO`2q´1´η1pbO´1q{pbO`2q
˘

piiq η1 ă ζ1 O
`

nη1{paO`2q´1´ζ1pbO´1q{pbO`2q
˘

piiiq η1 ą ζ1 O
`

n´η1paO´1q{p2paO`2qq
˘

Comparing the parameters, we remark all the convergence rates depend in particular on

the parameter aO ą 1, which is directly linked to the smoothness of the stochastic process

X. The larger aO is, the smoother X is. In the case piq when the number of observation

points of the covariate is equivalent to that of the response for aO ą bO and in the case piiq,

the convergence rates depend of the parameter aO and also of the parameter bO ą 1, which

is directly linked to the smoothness of the stochastic process Y . In these cases, the final rate

of convergence will be linked to the parameter aO or bO corresponding to the less smooth

process (either X or Y ).

4 The centered function-on-function with partially observed

covariate and response: Reconstructing X and imputing Y

We have seen in the previous section the methodology for reconstructing the missing parts

of the explanatory curves. In this section, we try another strategy to deal with missing data

on the response. After reconstructing the missing parts of the covariate X, we apply the

regression imputation methodology as presented in Crambes et al. (2023) for a real response.

Next, we will present the estimation of the kernel function θ and predict the new response

once all sample is completed.
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4.1 Regression imputation on the functional response

We consider the following missing data mechanism for the response, through a variable δrY s

leading to the sample pδ
rY s
i qi“1,...,n such that,

δ
rY s
i “

#

0 if M
rY s
i ‰ H,

1 if O
rY s
i “ S .

We assume that the response is missing at random (MAR), which means that the fact

that Y contains missing parts does not depend on the response of the model, but can possibly

depend on the reconstructed covariate,

PpδrY s “ 1 | X‹, Y q “ PpδrY s “ 1 | X‹q.

We denote the number of curves partially observed by

mrY sn “

n
ÿ

i“1

1
tδ
rY s
i “0u

.

Using the exponent notation ”obs” to make reference to the units for which the response is

completely observed, we define the covariance operator Γobsrec and the cross-covariance operator

∆obs
rec with the reconstructed curves by Γobsrec “ E

`

δrY sX‹ bX‹
˘

and ∆obs
rec “ E

`

δrY sY bX‹
˘

.

The empirical counterparts of Γobsrec and ∆obs
rec are denoted respectively pΓobsn,rec and p∆obs

n,rec.

Let Y` be a response curve such that δ
rY s
` “ 0, we define the imputed response Y`,imp by

Y`,imppsq “

ż

T
X‹` ptq

rθpt, sqdt,

with

rθpt, sq “
1

n´m
rY s
n

n
ÿ

i“1

kn
ÿ

k“1

pξobsik,recδ
rY s
i psqY ‹i psq

pλobsk,rec

pφobsk,recptq, (4.1)

for all pt, sq P T ˆS , where pξobsik,rec “
ş

T X‹i ptq
pφobsk,recptqdt and pφobs1,rec, . . . ,

pφobskn,rec and pλobs1,rec . . . ,
pλobskn,rec

represent respectively the kn first eigenfunctions and eigenvalues of the covariance operator
pΓobsn,rec.

Alternatively, if we denote pΠobs
kn,rec

the projection on the space spanned by the kn first

eigenfunctions of pΓobsn,rec, the estimation of the slope operator Θ is given by

rΘ “ pΠobs
kn,rec

p∆obs
n,rec

´

pΠobs
kn,rec

pΓobskn,rec
pΠobs
kn,rec

¯´1
.

and the imputation Y`,imp can also be written

Y`,imppsq “ pΠobs
kn,rec

p∆obs
n,rec

´

pΠobs
kn,rec

pΓobskn,rec
pΠobs
kn,rec

¯´1
X‹` ptq,

11



4.2 Estimation of the slope operator and its kernel and prediction

Once the whole database has been reconstructed, we estimate the bivariate functional coeffi-

cient θ with

pθ‹‹pt, sq “
1

n

n
ÿ

i“1

kn
ÿ

k“1

pξ‹ik,recY
‹‹
i psq

pλ‹k,rec

pφ‹k,recptq, (4.2)

for all pt, sq P T ˆS , where Y ‹‹i “ Yiδ
rY s
i `Yi,impp1´δ

rY s
i q for all i “ 1, . . . , n. The estimation

of the operator Θ is similarly given by

pΘ‹‹ “ pΠ‹kn,rec
p∆‹‹
n,rec

´

pΠ‹kn,rec
pΓ‹n,rec

pΠ‹kn,rec

¯´1
,

where p∆‹‹
n,rec is the empirical counterpart of the cross-covariance operator ∆‹‹

rec.

We use this estimation to predict a new value of the response Y when a new explanatory

curve Xnew is given by

pYnewpsq “

ż

T
X‹newptq

pθ‹‹pt, sqdptq,

which can also be written

pYnew “ pΠ‹kn,rec
p∆‹‹
n,rec

´

pΠ‹kn,rec
pΓ‹kn,rec

pΠ‹kn,rec

¯´1
X‹new.

4.3 Asymptotic results

The proof of these results follows the same lines as the proof of Theorem (3.1) and Theorem

(3.3) in Crambes et al. (2023).

Theorem 4.1. Under assumptions (A.1)-(A.4), if we take kn „ p1{paO`2q and p „ nη1 with

η1 ď 1{2, we obtain

E
ˆ

›

›

›

´

rΘ ¨X‹` ´Θ ¨X‹`

¯›

›

›

2
˙

“ O

˜

n´η1paO´1q{p2paO`2qq `
nη1{paO`2q

n´m
rY s
n

¸

,

for ` P rDm, where rDm is the set of missing responses of size m
rY s
n .

Theorem 4.2. Under assumptions (A.1)-(A.4), and kn „ p1{paO`2q and p „ nη1 with

η1 ď 1{2, the prediction error is

E
ˆ

›

›

›

´

pΘ‹‹ ¨X‹new ´Θ ¨X‹new

¯›

›

›

2
˙

“ O

˜

n´η1paO´1q{p2paO`2qq `
nη1{paO`2q

n´m
rY s
n

¸

.

Remark 4.3. Comparing parameters as nη1{paO`2q´1´ζ1pbO´1q{pbO`2q À nη1{paO`2q

n´m
rY s
n

, we find

that the prediction error with reconstruction (obtained in Section 3) is asymptotically at least

the same than the prediction error with imputation.
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Remark 4.4. Theoretical results are generally obtained under assumptions concerning the

rate of convergence of the integer kn. In practice, this integer is selected by minimizing

a certain empirical criterion such as Generalized Cross Validation (GCV) criterion, Cross

Validation (CV) criterion, or K-fold Cross Validation (K-fold CV) criterion. We chose in

the following simulation section the GCV procedure, known to be computationally fast. The

GCV criteria is given as follows for imputation

GCVpknq “

pn´m
rY s
n q

n
ÿ

i“1

›

›

›

´

rΘ ¨X‹i ´Θ ¨X‹i

¯›

›

›

2
δ
rY s
i

´

pn´m
rY s
n q ´ kn

¯2 ,

and analogously for prediction.

5 Simulations

5.1 Methodology

In this section, we conduct Monte Carlo experiments to illustrate the finite-sample perfor-

mance of the proposed methods presented in section 3 and section 4. We set S “ T “ r0, 1s.

Each response and predictor curve is observed at q “ 90 and p “ 100 equally spaced points

in their domains, respectively. For computational simplicity we consider equidistant points

sj “ j{pq ´ 1q, j “ 0, . . . , q ´ 1, and tk “ k{pp ´ 1q, k “ 0, . . . , p ´ 1. Two simulated data

mechanisms are generated. Each model is defined by

Y pwqpsq “

ż 1

0
Xpwqptqθpwqpt, sqdt` εpwqpsq, (5.1)

for t P T and s P S , where w “ 1, 2. We approximate the integral in (5.1) using a Riemann

sum over the grid t. The analytical expressions of the kernels and processes are given below.

Scenario 1 The kernel is given by

θp1qpt, sq “
50
ÿ

k“1

50
ÿ

j“1

θk,jφkptqψjpsq,

where φkptq “
?

2 cospkπtq, ψjpsq “
?

2 cospjπsq and θk,j “ 4p´1qk`jk´2.5j´3. The

input is the random function Xp1qptq “
ř50
k“1 k

´1ξkφkptq, where the ξk’s are indepen-

dently sampled from the uniform distribution on r´
?

3,
?

3s. Finally, the noise is given

by εp1q “
ř50
j“1 β

1
jψjpsq and the β1j ’s are independent mean-zero Gaussian random vari-

ables with variances equal to j´1.1. Then, the covariance function CXp1q of Xp1q is given

by

CXp1qpt1, t2q “
ι3
ÿ

k“1

2

k2
cospkπt1q cospkπt2q, where t1, t2 P T .
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Scenario 2 The kernel is defined by θp2qpt, sq “ s3`sinp2πtq3 and the noise εp2q is generated

according to a standard Brownian motion divided by 20. In addition, the functional

covariate Xp2q is generated through its covariance function, defined, for all t1, t2 P T ,

by

CXp2qpt1, t2q “
σ2

1 exp
`

´ |t1 ´ t2|
α
˘

ς
,

with σ1 “ 1, α “ 2 and ς “ 0.2. In this setting, even if a polynomial decrease of the

eigenvalues of the covariance operator of Xp2q is required in our theoretical results (see

assumption (A.4)), we want to see how the method works in practice if this assumption

is no more satisfied, namely here in the case of an exponential decay.

Figure 1 shows 10 discretized predictor functions X
p1q
i , the error functions ε

p1q
i and the

response functions Y
p1q
i . Figure 2 shows 10 discretized predictor functions X

p2q
i , the error

functions ε
p2q
i and the response functions Y

p2q
i .

Figure 3 shows the covariance functions of the covariate for Scenario 1 and 2. Figure 4

shows kernel functions for Scenario 1 and 2.
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Figure 1: Examples of simulated functions with Scenario 1.

To deal with partially observed curves for the covariate and response, we adopted the

missing data simulation scenario from Kneip and Liebl (2020) and Crambes et al. (2023) such

that
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Figure 2: Examples of simulated functions with Scenario 2.

‚ 70% (respectively 55%) of the curves are fully observed on r0, 1s,

‚ for the 30% (respectively 45%) of partially observed curves, the curves Xi and Yi are

fully observed on rAi, Bis Ă r0, 1s with Ai drawn with uniform law on the interval r0, As

and Bi “ Ai `B, with either A “ 1{50 and B “ 49{50 or A “ 3{50 and B “ 47{50 for

Scenario 1. We take either A “ 1{50 and B “ 49{50 or A “ 5{50 and B “ 45{50 for

Scenario 2.

We simulate the number of missing data on the response Y and the indicator δrY s by the

logistic functional regression. The variable δ follows the Bernoulli law with parameter ppXq

such that

log

ˆ

ppXq

1´ ppXq

˙

“

«

ż

S

ˆ
ż

T
|s´ t|Xptqdt

˙2

ds

ff1{2

` ct,

where ct is a constant allowing to take different levels of missing data. For exemple, ct “ 2

gives around 9.727% of missing data and ct “ 0.2 gives around 38.801% of missing data.

Let us notice that we use a spline smoothed version of the different estimators (2.2), (3.3), (4.1)

and (4.2), according to the so-called Smooth Principal Components Regression (SPCR) from

Cardot et al. (2003). Let us remark that, with appropriate conditions on the spline param-

eters, all the theoretical results obtained in our work will also apply when using the SPCR
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Figure 3: The covariance functions for Scenario 1 and 2.
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Figure 4: The kernel functions for Scenario 1 and 2.
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estimation. We use a regression spline basis with 20 knots, a degree 3 and the order of deriva-

tion 2. The choice of these parameters is not crucial in our study, especially in comparison

with the choice of the number of principal components. The choice of this optimal tuning

parameter is made on a growing sequence of dimension kn “ 2, . . . , 22.

The dataset of size N is randomly splitted into a training set of size n “ 4
5N and a test

set of size n1 “
1
5N . We consider sample sizes N = 500, 1300. For each scenario, we use

200 Monte Carlo runs for the model assessment. In all numerical experiments, the proposed

estimators have been carried out with the free software R.

5.2 Criteria

We use the following criteria to evaluate the performance of the methods.

‚ Criterion 1: MSPE “ 1
Sim

řSim
j“1 MSPEpjq is the average mean square prediction error.

This criterion tends to zero when the sample size tends to infinity, where MSPEpjq “

1
n1

řn`n1
`“n`1

›

›

›

´

pΘ ¨X‹,j` ´Θ ¨X‹,j`

¯›

›

›

2
is the mean square prediction error computed on

the jth simulated sample, j P t1, . . . ,Simu.

‚ Criterion 2: RT “ 1
Sim

řSim
j“1 RT pjq is the average ratio respect to truth. This criterion

tends to one when the sample size tends to infinity, where RT pjq “
řn`n1
`“n`1}p

pΘ¨X‹,j` q´Y
j
` }

2

řn`n1
`“n`1}ε

j
`}

2

is the ratio between the mean square prediction error and the mean square prediction

error when the true parameters are known, computed on the jth simulated sample.

We consider another criterion which is the determination coefficient R2. In this context of

functional regression setting, several definitions exist. Given the fitted values pYipsq, we used

the definition as in Harezlak et al. (2007) given by

R2 “
1

|S |

ż

S
R2psqds “

1

|S |

ż

S

¨

˚

˝

1´

řn
i“1

´

Yipsq ´ pYipsq
¯2

řn
i“1 Yipsq

2

˛

‹

‚

ds.

5.3 Simulation results

We denote the methods presented in this paper by :

‚ Reconst X Y : X and Y are partially observed , the missing parts of X and Y are

reconstructed.

‚ Reconst X, Imp Y : X and Y are partially observed, the missing parts of X are

reconstructed and Y imputed.

Moreover, we compare to other methods :
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‚ Full X Y : X and Y are fully observed, this corresponds to the complete reference

dataset.

‚ Reconst X, Remov Y : X and Y are partially observed, the missing parts of X are

reconstructed and the missing part of Y are removed from the sample.

‚ Reconst X, Remov Y : X and Y are partially observed, the individuals presenting

partially observed curves are removed from the sample.
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Figure 5: The estimated coefficient functions for Scenario 1.

Even if our main goal is prediction, Figure 5 show estimates of the kernel function in

Scenario 1 (with a sample size N = 400) for the dimension k‹n chosen by the GCV criterion,

respectively with full data (pΘ), reconstruction of the missing parts of X and Y (pΘ‹) and

reconstruction of the missing parts of X and imputation of Y (pΘ‹‹). The missing part is

12% for both curves X and Y , the observed part being [3/50,47/50]. Moreover, 39.375% of

curves Y (with ct = 0.1) are affected by missing data and 42.250% of curves X are affected by

missing data. We remark that the estimators look graphically quite close, pΘ‹ seems to be a

little closer to pΘ than pΘ‹‹. A similar plot is obtained for Scenario 2 (Figure 6) with 37.812%

of curves Y (with ct = 0.1) affected by missing data and 46.750% of curves X affected by

missing data. In this situation, pΘ‹ seems much closer to pΘ than pΘ‹‹.
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Figure 6: The estimated coefficient functions for Scenario 2.

We give in Table 7 the values of the determination coefficient R2 and the value k‹n chosen by

the GCV criterion both scenarios 1 and 2. In scenario 1, we get a worse R2 coefficient, maybe

due to the fact that the curves X are not so smooth and do not seem easy to reconstruct.

Table 2: R2 and k‹n for scenarios 1 and 2.

Methods Scenario 1 Scenario 2

Full X Y R2 68.996 % 98.652 %

k‹n 2 6

Reconst X Y R2 68.859 % 98.641 %

k‹n 2 6

Reconst X, Imp Y R2 68.853 % 98.630 %

k‹n 2 5

Tables 3, 4, 5 and 6 give the values of the criteria MSPE and RT for scenarios 1 and 2

with different values of sample size, and different levels of missing data. The first conclusion

is the fact that the errors decrease as the sample size increases. Secondly, these errors increase

with the percentage of missing data on X or on Y . The rate of missing data on Y seems to
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have a more important impact on the errors, whatever the scenario we consider. In all cases,

the method Reconst X Y reconstructing both curves X and Y has a better behaviour than

the method Reconst X, Imp Y reconstructing X and imputing Y , which is quite in accor-

dance to our theoretical results. The part of the observed curve is an important parameter

in the curve reconstruction: as it can be expected, the results are better when the curve

reconstruction is easier (for example when the observed part is r1{50, 49{50s, corresponding

to 4% of missing information on the curves). Results tend to deteriorate when the curve

reconstruction is harder (for example when the observed part is r3{50, 47{50s, corresponding

to 12% of missing information on the curves). Finally, these two methods behave better than

the other more naive methods (Reconst X, Remov Y and Reconst X, Remov Y) that

partially or completely ignore missing individuals affected by missing data.
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6 Real dataset study: Hawaii Ocean data

The Hawaii ocean time-series program has been making repeated observations of various

hydrographic, chemical and biological properties of the water column at a station north of

Oahu, Hawaii since October, 1988. In the CTD dataset1 of this program, various variables

were measured every two meters between 0 and 200 meters below the sea surface. These

variables are viewed as functions of depth. The layer between 0 and 200 meters below the

sea surface is called the epipelagic zone (or sunlight zone), where enough light is available

for photosynthesis. Therefore, in this zone, the primary production in the ocean occurs, and

plants and animals are largely concentrated. The measurements were repeated at different

dates, which we consider as different sample curves. We use three functional variables: Tem-

perature, Salinity and Oxygen. Each curve being observed at 101 equally spaced points in [0,

200], we use the Oxygen as the response curve, expressed as a function of temperature, and

we use the Salinity as the explanatory variable, also expressed as a function of temperature.

We study the relationship between Salinity and Oxygen with the following model, written in

the operatorial point of view:

OxygenipTemperatureq “
´

Θ¨Salinityi

¯

pTemperatureq`εipTemperatureq, i “ 1, . . . , n, with n “ 191.

The graphical display of the initial sample of 191 pairs curves
 

Oxygeni, Salinityi
(191

i“1

(raw curves and smooth curves) can be observed in Figure 7. We can see that, on these data,

all the curves are partially observed, which is a different situation compared to the simulations

realized in the previous section, where only a percentage of curves were partially observed.

In particular, the imputation method presented in Section 4 cannot be directly applied. We

want to explore in this situation a possibility of a hybrid use of both reconstruction and

imputation of the response curves.

We consider two scenarios for the response curves and for each scenario we use two samples:

a training sample of size `1 “ 153 equal to 4/5 of the initial sample from which the estimates

are computed and a testing sample of size `2 “ 38 equal to 1/5 of the initial sample on which

the prediction errors are calculated. First, we reconstruct the missing part of all covariates

using the observed parts. Then, as all the response curves are partially observed, we cannot

directly use the regression imputation method from Section 4. As a consequence, we choose

to reconstruct only a certain percentage of the response curves.

• ’Scenario 1’: we reconstruct more response curves (87.958% of initial response curves

which is equivalent to 168 response curves) using the observed parts while leaving curves

with a low percentage of missing part.

• ’Scenario 2’: we reconstruct less response curves (47.644% of initial response curves

which is equivalent to 91 response curves) using the observed parts while leaving curves

with a high percentage of missing part.

1https://hahana.soest.hawaii.edu/hot/hot-dogs/cextraction.html
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Figure 7: Partially Observed Functions: Raw curves of the oxygen variable (top left) and

the salinity variable (bottom left). Smooth curves of the oxygen variable (top right) and the

salinity variable (bottom right).

For ’Scenario 1’, the training sample contains 23 partially observed response curves and

130 observed response curves and for ’Scenario 2’ the training sample contains 100 partially

observed response curves and 53 observed response curves. Moreover, for ’Scenario 1’, 12.042%

of response curves are affected by missing data. For ’Scenario 2’, 52.356% of response curves

are affected by missing data.

The graphical display of the training (resp. testing) samples of 153 (resp. 38) pairs of

curves
 

Oxygeni, Salinityi
(153p38q

i“1
can be observed in Figures 8 and 9.

We consider the MSPE criterion as in Section 5 to evaluate the quality of prediction error.

We also consider a MSPA (Mean Square Prediction Absolute error) criterion, defined in the

same way, replacing the 2-norm with the 1-norm in the definition of MSPE. Table 7 gives

MSPE and MSPA criteria for both ’Scenario 1’ and ’Scenario 2’. We can observe that the

prediction errors are much better in ’Scenario 1’. In other words, in such situations where all

the response curves are partially observed, it seems better to reconstruct a more important

part of them, and then use the imputation method on the remaining part.
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Figure 8: Training (resp. testing) samples of 153 (resp. 38) pairs of curves
 

Oxygeni, Salinityi
(153p38q

i“1
in ’Scenario 1’.
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Figure 9: Training (resp. testing) samples of 153 (resp. 38) pairs of curves
 

Oxygeni, Salinityi
(153p38q

i“1
in ’Scenario 2’.
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Table 7: Real dataset: prediction errors over one hazard sample. MSPE, MSPA and k‹n for

’Scenario 1’ and ’Scenario 2’.

Methods ’Scenario 1’ ’Scenario 2’

Rate of partially observed response curves (%) 12.042 52.356

Rate of missing data in response curve (%) Less than 27 More than 45

Reconst X Y MSPE 23.566 46.351

MSPA 3.855 5.144

k‹n 13 8

Reconst X, Imp Y MSPE 24.338 54.199

MSPA 3.893 5.839

k‹n 9 12

7 Proofs

7.1 Proof of Theorem 3.1

Starting with the reconstruction cross covariance operator,

p∆‹
n,rec “

1

n

n
ÿ

i“1

Y ‹i bX
‹
i

“
1

n

n
ÿ

i“1

´

Yi ` pY
‹
i ´ Yiq

¯

bX‹i ,

“
1

n

n
ÿ

i“1

Yi bX
‹
i `

1

n

n
ÿ

i“1

pY ‹i ´ Yiq bX
‹
i ,

“ΘpΓn,rec `
1

n

n
ÿ

i“1

εi bX
‹
i `

1

n

n
ÿ

i“1

pY ‹i ´ Yiq bX
‹
i .

Next, we obtain
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Applying several times the identity pa` bq2 ď 2a2 ` 2b2 for any a, b P R, we get
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1

n

n
ÿ

i“1

xX‹i ,
´

pΠkn,rec
pΓn,recpΠkn,rec

¯´1
X‹newyεi

›

›

›

2
¸

` 2E

˜

›

›

›

1

n

n
ÿ

i“1

xX‹i ,
´

pΠkn,rec
pΓn,recpΠkn,rec

¯´1
X‹newypY

‹
i ´ Yiq

›

›

›

2
¸

.

Results of terms in the above decomposition are in Crambes et al. (2023), exceptionally the

last term, let be noted by

Pn “
1

n

n
ÿ

i“1

xX‹i ,
´

pΠkn,rec
pΓn,recpΠkn,rec

¯´1
X‹newypY

‹
i ´ Yiq

. Hence, using the Cauchy-Schwarz inequality, we have

Ep}Pn}2q ď

g

f

f

eE

˜

›

›

›

1

n

n
ÿ

i“1

xX‹i ,
´

pΠkn,rec
pΓn,recpΠkn,rec

¯´1
X‹newy

›

›

›

4
¸

E p}Y ‹i ´ Yi}4q.
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The result comes from Lemma 5.2 in Crambes and Henchiri (2019) and the result (3.4) that

gives us

Ep}Pn}2q “ O

ˆ

kn
n

˙

` O
´

n´ζ1pbO´1q{pbO`2q
¯

“ O
´

nη1{paO`2q´1´ζ1pbO´1q{pbO`2q
¯

.

Summarizing, we get

E
ˆ

›

›

›

pΘ‹ ¨X‹new ´ Θ ¨X‹new

›

›

›

2
˙

“ O
´

n´η1paO´1q{p2paO`2qq ` nη1{paO`2q´1´ζ1pbO´1q{pbO`2q
¯

.
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