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Abstract  

Variation of volume with temperature is a significant engineering consideration for numerous 

applications. In addition, the molar volume is a central property along with the bulk modulus 

in the scope of developing high pressure Gibbs energy multi-component databases. In this 

work, a semi-empirical model is proposed to describe the bulk modulus, thermal expansion 

coefficient and molar volume at atmospheric pressure. It is built based on a multi-frequency 

Einstein-Grüneisen model. The present methodology has several advantages over the use of 

polynomial functions. First of all, a self-consistent description of the molar volume and 

related properties together with heat capacity is achieved. This is an interesting feature in the 

scope of performing consistent assessments of diverse data in joint optimizations. Second, this 

description is directly compatible with the 3rd generation CALPHAD framework, as some 

parameters are shared in common. Therefore, it can be used to develop multi-component 

molar volume databases. Third, the model is built on physical considerations, enabling to 

perform reliable extrapolations outside the range of available data. Finally, the proposed 

description is valid down to 0K, allowing a direct integration of ab initio calculations. The 

above mentioned features are highlighted in the assessment of α-Sn and β-Sn, for which a 

critical review of the literature data is provided, as well as of solid CaO. The obtained results 

suggest that the proposed model can be applied successfully to a large variety of elements and 

compounds, as it can notably account for unusual features such as a negative thermal 

expansion coefficient at low temperature.  
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1. Introduction 

Variation of the molar volume of materials with temperature is a significant engineering 

consideration for multi-material assemblies and composites. Indeed, thermal expansion 

mismatch may cause detrimental interfacial stress in those structures. This problematic is 

encountered in numerous engineering applications, such as in biomaterials [1], cement-based 

composites [2], thermal coatings [3], automotive assemblies [4], electronic packaging [5], and 

many others. It should be emphasized that contractions under cryogenic temperatures are also 

a source of concern for high-end applications, such as in aerospace with cryogenic space 

telescopes [6]. Furthermore, volume changes during solidification, or during phase 

transformations in general, is an important consideration as it may cause various defects [7]. 

To answer those problematics, a precise knowledge of the thermal expansion coefficient of a 

wide variety of materials at atmospheric pressure is requested. This information can be 

implemented in CALPHAD databases, which are considered a cornerstone of the Integrated 

Computational Materials Engineering (ICME) approach and of the Materials Genome 

Initiative (MGI) [8–10]. Besides, to include a description of molar volume in thermodynamic 

databases would allow the calculations of volume fractions versus temperature. 

In addition, in a theoretical point of view, thermal expansion is an important property as it is 

directly linked to lattice vibrations in crystals, the anharmonicity of the interatomic potential, 

and thermal defects [11,12]. As such, thermal expansion is closely related to other 

thermodynamic and thermophysical properties such as heat capacity and elastic constants. 
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Therefore, when those intrinsic relationships are captured in a model, the overall consistency 

of the diverse available data can be assessed in joint optimizations. 

Finally, the modeling of molar volume and its related properties is the key to build high 

pressure Gibbs energy thermodynamic databases. Indeed, by definition, molar volume is the 

pressure derivative of the Gibbs energy. Therefore, the following expression can be obtained: 

∆𝐺𝑚(𝑇, 𝑃) = ∆𝐺(𝑇, 𝑃0) + ∫𝑉𝑚(𝑇, 𝑃′)𝑑𝑃′

P

𝑃0

                                                                                      (1) 

with ∆𝐺𝑚 the molar Gibbs energy of a phase relative to a given reference state, 𝑃0 the 

atmospheric pressure, and 𝑉𝑚 the molar volume. Current Gibbs energy CALPHAD databases 

were designed for applications at atmospheric pressure, and a description of the molar volume 

of the phases is therefore rarely included. Yet, motivated by applications in geophysics or in 

high pressure processing of metal and alloys, the extension of those databases towards high 

pressure using Eq. (1) attracted attention from several research groups in recent years [13–25]. 

To achieve this purpose, the most common practice is to describe the molar volume in two 

distinctive steps. First of all, the molar volume and its related properties are modeled as a 

function of temperature at atmospheric pressure. Then, in a second step, the obtained 

descriptions are injected into a selected isothermal equation of state that account for the effect 

of pressure. This approach is somewhat consistent with the fact that the description of the 

Gibbs energy is separated according to Eq. (1) into an atmospheric pressure part, and a high 

pressure part. In this study, only the first step will be then covered. Nevertheless, it has to be 
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pointed out here that so far, the extension of Gibbs energy databases towards high pressure 

has been considered unsuccessful, because it has been leading to unphysical extrapolations in 

the high pressure range [26]. A solution to this problem is to build Helmholtz energy 

databases instead. Indeed, the underlying models have an explicit physical meaning, and 

satisfying extrapolations can be obtained in the T-P space. However, it is then challenging to 

account for the effect of composition in thermodynamic functions [27]. Therefore, to the best 

of our knowledge, Helmholtz energy approaches are currently mostly limited to describing 

unaries or isoplethal sections of higher-order systems, and cannot benefit from the major 

strength of the CALPHAD method which lies in the treatment of complex multi-component 

systems. Besides, in Helmholtz energy databases, molar volume is a characteristic variable 

instead of pressure, and is therefore not explicitly described, but can only be obtained 

numerically by derivation. For those reasons, the assessment of molar volume in Helmholtz 

energy databases is then not considered in the present study, and reviews [26,28] on the 

matter can be found elsewhere. 

In conclusion, there is a significant interest in implementing descriptions of the molar volume 

at atmospheric pressure and its related properties in Gibbs energy CALPHAD databases. 

Those thermophysical properties are intrinsically related to the heat capacity, and this 

relationship is captured by the Grüneisen parameter, which can be expressed as [29]: 

𝛾 =
𝛼𝐾𝑇𝑉𝑚
𝐶𝑉

                                                                                                                                               (2) 
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with 𝛾 the Grüneisen parameter, 𝛼 the volumetric thermal expansion coefficient (CTE), 𝐾𝑇 

the isothermal bulk modulus, and 𝐶𝑉 the isochoric heat capacity. So far, the thermal 

expansion coefficient and the bulk modulus at atmospheric pressure were assessed separately 

using polynomial functions of temperature. Such models are not based on any physical 

considerations, and are typically not valid below room temperature. This framework is 

consistent with the 2nd generation of CALPHAD databases, in which heat capacity is also 

described in a similar fashion [30]. In this work, a semi-empirical model is proposed to 

achieve a self-consistent description of the molar volume and its related properties at 

atmospheric pressure together with heat capacity. Its parameters have an explicit physical 

meaning, enabling to extend the validity of descriptions down to 0K and to make reasonable 

extrapolations outside of the range of available data. The proposed description is directly 

compatible with 3rd generation CALPHAD databases [31–36] in both form and content, as it 

shares the same aim and some parameters in common. 

Hereafter, the theoretical framework of the proposed descriptions will first be presented. In a 

second place, the proposed model will be put to the test in the modeling of α-Sn and β-Sn, for 

which a critical review of the available data will be provided, and of solid CaO. In this 

process, several benefits of the model will be demonstrated, a summary of which will be 

given in the conclusion. 
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2. Theoretical framework 

The most common expressions that are currently used to describe the coefficient of thermal 

expansion at atmospheric pressure are polynomial functions of temperature [12–14,16–

18,20,25,28,30,37,38]. They adopt the following general form: 

𝛼(𝑇) =∑𝛼𝑖𝑇
𝑝𝑖

𝑖

                                                                                                                                    (3) 

with 𝛼𝑖 the fitting parameters, and 𝑝𝑖 an integer. It is reminded that 𝛼 is the volumetric, and 

not linear, thermal expansion coefficient. 

Descriptions of the thermal expansion coefficient obtained using Eq. (3) usually require using 

3 to 4 fitting parameters, and are typically not valid below room temperature. Besides, as the 

parameters do not have an explicit physical meaning, extrapolations outside the range of the 

available data are uncertain. It is emphasized that the mathematical formalism to describe the 

isobaric heat capacity in 2nd generation CALPHAD databases is the same as Eq. (3). This 

similarity stems from the fact that heat capacity and thermal expansion are intrinsically 

related. Therefore, as suggested by Hallstedt at al. [30], similar models and approximations 

can be made to describe either of those properties. Finally, it is noted that a few other 

phenomenological models were used in the literature as an alternative to Eq. (3) [15,22]. They 

share the same empirical nature, but are designed so that the thermal expansion would tend to 

a limited value at very high temperature. 
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In contrast with empirical models such as Eq. (3), some attempts to describe thermal 

expansion using theoretical models were made in the literature, as reviewed by Wang and 

Reeber [11]. However, a precise representation of experimental data is hardly obtained with 

those approaches. 

Finally, semi-empirical models provide expressions in which parameters have an explicit 

physical significance and can be determined by least-square fitting of experimental data [11]. 

Such models are often built based on formulations of the Grüneisen parameter [11,39] by 

making different hypothesis, assumptions, and choices of expressions. In the present work, 

this approach will be followed, aiming at finding a model offering a compromise between its 

physical soundness, its capacity to achieve a precise representation of experimental data, and 

its ease of implementation in thermodynamic databases. An explicit expression for thermal 

expansion will be determined as a by-product from the description of the other properties 

linked through the Grüneisen parameter. Eq. (2) is therefore re-arranged as follows: 

𝛼 =
𝛾

𝑉𝑚

𝐶𝑉
𝐾𝑇
                                                                                                                                                (4) 

First of all, let us focus on the ratio of the Grüneisen parameter over the volume. An 

approximation commonly used for solids is that this ratio is temperature independent above 

the Debye temperature [29,40]. A justification of this approximation can be obtained 

considering the variation with temperature of the other parameters involved in Eq. (4). Indeed, 

above the Debye temperature, the isochoric heat capacity tends towards 3nR in the quasi-

harmonic approximation, and there is experimental evidences that the product 𝛼𝐾𝑇 tends to 
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become temperature independent as well [29,40]. Then in this work, the hypothesis that the 

ratio of the Grüneisen parameter over the volume is temperature independent is considered to 

hold at any temperature, leading to: 

𝛾

𝑉𝑚
=
𝛾0
𝑉𝑚0

                                                                                                                                                  (5) 

with 𝛾0 and 𝑉𝑚0 the Grüneisen parameter and the molar volume at a given reference 

temperature, respectively. The fact that this approximation is extended below the Debye 

temperature in this work might result in an inaccurate description in this domain. It will be 

highlighted later on that it does not seem to be the case as satisfying results were obtained in 

the low temperature range for the materials investigated in this study. 

Then, let us focus on the description of the isochoric heat capacity. In this work, the general 

framework provided at the 1995 Ringberg meeting [41], and later implemented in the so-

called 3rd generation CALPHAD databases [31–36], is adopted. The isochoric heat capacity 

will therefore be modeled as the sum of its various physical contributions. 

Regarding the harmonic contributions, it was recommended at the 1995 Ringberg meeting to 

either use a Debye or an Einstein model [41]. In practice, the Einstein model was adopted in 

3rd generation CALPHAD databases [31–36] due to its ease of implementation, although it is 

not expected to provide the most accurate descriptions at very low temperatures [41]. To 

obtain a more satisfying fit, multi-frequency Einstein models were used in some later studies 

[32,33,35]. In short, instead of considering that all atoms oscillate with a unique averaged 
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frequency, the phase is modeled using a few distinct atom populations each vibrating at their 

own frequency. It was notably highlighted by Deffrennes et al. [35] that in the case of CaO, 

the approximate fit obtained at low temperature using a single Einstein function was 

detrimental to the fit at higher temperature, and affected the modeling of the non-harmonic 

contributions as well. Then, the following multi-frequency Einstein expression is therefore 

adopted in this work: 

𝐶𝑉
ℎ𝑎(𝑇) =  3𝑅∑𝑎𝑖 (

𝜃𝑖
𝑇
)
2

𝑖

exp (
𝜃𝑖
𝑇)

(exp (
𝜃𝑖
𝑇) − 1)

2                                                                                     (6) 

with 𝐶𝑉
ℎ𝑎 the harmonic contributions to the isochoric heat capacity, 𝑅 the gas constant, 𝜃𝑖 the 

Einstein temperature for the ith mode of vibration, and 𝑎𝑖 the corresponding pre-factor 

constrained so that the sum all 𝑎𝑖 is equal to the phase stoichiometry. It is important to stress 

out that in CALPHAD databases, Eq. (6) is applied to the modeling of the isobaric, and not 

isochoric, heat capacity. Nonetheless, both of those thermodynamic properties are equivalent 

at low temperatures, which is actually the domain where the fitting of the thermodynamic 

parameters is made. Therefore, the parameters of Eq. (6) can either be taken directly from 3rd 

generation thermodynamic databases, or be adjusted in a joint optimization of the isobaric 

heat capacity data and of the thermophysical properties considered in this work. This is a 

central feature of the proposed description, as it enables to perform consistent modeling of 

diverse data, to ensure a direct compatibility with 3rd generation CALPHAD databases, and to 

use a reduced number of parameters overall. It will be highlighted later on that a direct usage 
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of the Einstein functions already modeled in the thermodynamic databases can lead to very 

satisfying results for the properties investigated in this work. 

Then, regarding anharmonic contributions to the isochoric heat capacity, they can be most 

simply expressed as a linear function of the temperature [29,42]. In addition, it was suggested 

by Chase et al. [41] that a "bT2" term might also be needed to describe higher-order 

anharmonic effects. Besides, the electronic contributions are generally expressed in the 

framework of the Helmholtz free energy databases as a linear function of temperature 

[27,29,43,44]. At very high temperatures, ab initio calculations highlight that the rise of the 

electronic heat capacity with temperature becomes steeper [45,46], and it was suggested by 

Chase et al. [41] to use a quadratic term to account for this deviation. Therefore, in this work, 

anharmonic and electronic contributions to the isochoric heat capacity are both accounted for 

without distinction using the following expression: 

𝐶𝑉
𝑎𝑛ℎ−𝑒𝑙(𝑇) =  𝐴𝑇 + 𝐵𝑇2                                                                                                                      (7) 

It is important to note that the A and B parameters from Eq. (7) are not the same as the 

thermodynamic parameters that share the same form and meaning used in 3rd generation 

CALPHAD databases to model the isobaric heat capacity. 

Finally, the last expression needed to achieve a description of the thermal expansion 

coefficient using Eq. (4) is the one of the isothermal bulk modulus. In previous work 

[13,14,17,18,25], the compressibility was most commonly expressed as follows: 
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𝜒𝑇(𝑇) =∑𝜒𝑖𝑇
𝑝𝑖

𝑖

                                                                                                                                  (8) 

with 𝜒𝑇 the isothermal compressibility, 𝜒𝑖 the fitting parameters, and 𝑝𝑖 a positive integer for 

the corresponding powers of T. To obtain the expression for the bulk modulus from Eq. (8) is 

straightforward, as it is the inverse of compressibility: 

𝐾𝑇 =
1

𝜒𝑇
                                                                                                                                                    (9) 

An interesting equation to describe the temperature dependency of elastic constants was 

provided by Varshni [47]. The author proposed an expression based on physical 

considerations and on the Einstein model. Following Ledbetter [48], we write the expression 

from Varshni [47] as follows: 

𝐾𝑇(𝑇) = 𝐾𝑇0 −
𝑠

exp (
𝜃
𝑇) − 1

                                                                                                            (10) 

with 𝐾𝑇0 the bulk modulus at the reference temperature, 𝑠 a positive material-dependent 

parameter, and 𝜃 the characteristic Einstein temperature. However, it can be argued that Eq. 

(10) present two downsides. First, at very high temperature, the bulk modulus might become 

negative. Second, as discussed by Varshni [47], this expression is not expected to give very 

precise results at low temperatures due to the limitations inherent to the Einstein model. To 

address both theses downsides, the following expression is adopted in this work: 
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𝜒𝑇(𝑇) = 𝜒𝑇0 + 𝐶∑
𝑎𝑖

exp (
𝜃𝑖
𝑇) − 1𝑖

                                                                                                 (11) 

with 𝜒𝑇0 the compressibility at the reference temperature, C a material-dependent parameter, 

and 𝜃𝑖 and 𝑎𝑖 the very same Einstein temperature for the ith mode of vibration and 

corresponding pre-factor as in Eq. (6). The bulk modulus can be obtained from Eq. (11) by its 

definition given in Eq. (9). The relation proposed by Varshni [47] and given in Eq. (10) was 

inverted so that the bulk modulus cannot reach negative values anymore at very high 

temperatures. It can be shown that very similar fit can be obtained for the bulk modulus 

nonetheless using either Eq. (10) or (11). Indeed, differences will only appear at very high 

temperatures, as Eq. (11) will smoothly tend to 0. Besides, it can also be shown that Eq. (11) 

can give almost identical results as Eq. (8) that is currently being used in 2nd generation 

databases, except in the low temperature range that is not taken into account in the latter 

model. Finally, a multi-frequency Einstein model was used in Eq. (11) to be consistent with 

the description adopted for the heat capacity in Eq. (6), and with recent work on the 3rd 

generation CALPHAD databases [32,33,35]. This is expected to improve the precision of the 

fit at low temperature. 

At last, injecting the descriptions proposed in Eq. (5), (6), (7) and (11) into the formulation of 

the Grüneisen parameter presented Eq. (4), an expression for thermal expansion can be 

obtained as follows: 
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𝛼(𝑇) =
3𝑅

𝑉𝑚0
∑𝛾𝑖0𝑎𝑖
𝑖

(

 
 
(
𝜃𝑖
𝑇
)
2 𝑒

𝜃𝑖
𝑇

(𝑒
𝜃𝑖
𝑇 − 1)

2 + 𝐴𝑇 + 𝐵𝑇
2

)

 
 
(𝜒𝑇0 +

𝐶

𝑒
𝜃𝑖
𝑇 − 1

)                          (12) 

with 𝛾𝑖0 the Grüneisen parameter at the reference temperature associated with the ith Einstein 

mode of vibration. 

Eq. (12) leaves us with an important issue that needs to be addressed. The molar volume at 

atmospheric pressure can be obtained from the thermal expansion coefficient according to: 

𝑉𝑚(𝑇) = 𝑉𝑚0 exp(∫𝛼(𝑇)𝑑𝑇

𝑇

𝑇0

)                                                                                                      (13) 

Yet, there is no explicit expression for the primitive of the ratio of anharmonic and electronic 

contributions to the isochoric heat capacity with the bulk modulus, that is: 

𝐶𝑉
𝑎𝑛ℎ−𝑒𝑙

𝐾𝑇
(𝑇) = (𝐴𝑇 + 𝐵𝑇2)∑𝑎𝑖

𝑖

(𝜒𝑇0 +
𝐶

𝑒
𝜃𝑖
𝑇 − 1

)                                                                   (14) 

In this work, to obtain an explicit expression for the molar volume was considered to be an 

important feature so that this central property can be calculated straightforwardly. However, it 

is actually a significant constraint, as it requires that the expressions for all properties linked 

through the Grüneisen parameter are compatible with each other, in the sense that an explicit 

primitive of the thermal expansion coefficient can be obtained from their combination. To 

achieve this purpose, the temperature dependent part of the compressibility from which the 
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issue arise in Eq. (14) is approximated by its first-order Laurent series expansion at infinite 

temperature, which gives: 

1

𝑒
𝜃
𝑇 − 1

~
𝑇

𝜃
−
1

2
                                                                                                                                     (15) 

The original expression in Eq. (15) and its first-order Laurent expansion are compared in Fig. 

1(a). Obviously, below the material's Einstein temperature, this approximation gives poor 

results. However, it is important to underline the error will only apply to the temperature 

dependent part of the compressibility, which is very small in this temperature range. In 

addition, in this relatively low temperature range, the anharmonic and electronic contributions 

for the isochoric heat capacity can be reasonably considered to be negligible compared to 

their harmonic counterpart, and the error will be then reduced even further. In order to 

illustrate those considerations, the error induced by the proposed approximation on the overall 

thermal expansion coefficient of β-Sn, which modeling will be discussed at a later stage, is 

presented in Fig. 1(b). Although the relative error when the ratio of the temperature over the 

averaged Einstein temperature is lower than 0.1 seems impactful, the numbers are somewhat 

misleading, as in this temperature range the thermal expansion coefficient is not significantly 

different from 0. For instance, when the ratio of the temperature over the averaged Einstein 

temperature equals 0.01, a maximal relative error of 2.6% is obtained, yet the corresponding 

absolute error of 4.14 10-10 K-1 represents only 2 10-9 % of the thermal expansion coefficient 

at room temperature. At higher temperature, the relative error decreases rapidly and is no 

more that 0.04 % at the averaged Einstein temperature. All things considered, the 
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approximation made in Eq. (15) has a negligible impact on the calculated thermal expansion 

of β-Sn, and it is reasonable to consider that the result will be the same regardless of the 

material. Therefore, Eq. (15) is considered to be a reasonable approximation, and the 

following final expression is obtained for the thermal expansion coefficient: 

𝛼(𝑇) =
3𝑅

𝑉𝑚0
∑𝛾𝑖0𝑎𝑖
𝑖

(

 
 
(
𝜃𝑖
𝑇
)
2 𝑒

𝜃𝑖
𝑇

(𝑒
𝜃𝑖
𝑇 − 1)

2 (𝜒𝑇0 +
𝐶

𝑒
𝜃𝑖
𝑇 − 1

)

+ ((𝐴𝑇 + 𝐵𝑇2) (𝜒𝑇0 + 𝐶 (
𝑇

𝜃𝑖
−
1

2
)))

)

 
 
                                                           (16) 

In Eq. (16), the first part in the summation is the ratio of the harmonic contributions to the 

heat capacity with the original expression of the bulk modulus, and the second part is the one 

including the ratio of the anharmonic and electronic contributions to the heat capacity with the 

approximated expression for the bulk modulus. 
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Fig. 1. (a) Comparison between the original expression that is included in the description of 

the bulk modulus and its first-order Laurent series expansion at infinite temperature and (b) 

illustration taking the case of β-Sn that the resulting error on the thermal expansion coefficient 

is negligible 

The integration of Eq. (16), that is needed to obtain the molar volume according to Eq. (13), 

gives the following explicit expression: 

∫𝛼(𝑇) =
3𝑅

𝑉𝑚0
∑𝛾𝑖0𝑎𝑖
𝑖

(

  
 
𝜃𝑖

(

 
 𝜒𝑇0

𝑒
𝜃𝑖
𝑇 − 1

+
𝐶

2 (𝑒
𝜃𝑖
𝑇 − 1)

2

)

 
 

+ (
𝐴𝑇2

2
(𝜒𝑇0 −

𝐶

2
) +

𝑇3

3
(
𝐴𝐶

𝜃𝑖
+ 𝐵𝜒𝑇0 −

𝐵𝐶

2
) +

𝐵𝐶𝑇4

4𝜃𝑖
)

)

  
 
                            (17) 

It is important to stress out that, despite appearances, Eq. (17) can be viewed as a 

simplification compared to the polynomial expression that were commonly used presented in 

Eq. (3). Indeed, the only parameters that are directly related to the description of the thermal 

expansion coefficient are the Grüneisen parameters 𝛾𝑖0 associated with each Einstein mode of 

vibration, and when appropriate the A and B parameters to account for anharmonic and 

electronic contributions. Regarding the other parameters, the Einstein contributions can be 

either taken directly from the description of the isobaric heat capacity in 3rd generation 

CALPHAD databases, or adjusted in a joint optimization with the isothermal bulk modulus 



18 

 

 

 

 

and the isochoric or isobaric heat capacity. Then, the only parameters left, that are 𝑉0 and 𝐶, 

are respectively obtained from molar volume and isothermal bulk modulus data. In the case 

where only scarce or debated thermal expansion data are available, a single Grüneisen 

parameter common for all Einstein mode of vibrations may be taken. For instance, a 

description of the thermal expansion of β-Sn valid down to 0 K will be provided later on 

using only 2 parameters directly related to the modeling of this property. 

The proposed model shares some similarities with the expressions proposed by Wang and 

Reeber [11], and more recently by Zhang et al. [39]. Indeed, semi-empirical models were 

proposed in both studies based on the definition of the Grüneisen parameter. Regarding the 

work of Wang and Reeber [11], a multi-frequency Einstein model was used by the authors in 

the description of the heat capacity, similarly as in this work. Differences from the present 

model mainly stems from the treatment of non-harmonic contributions and of the bulk 

modulus, as well as the hypothesis made in the formulation of the Grüneisen parameter. The 

ratio 𝛾𝑖𝑎𝑖/𝐾𝑇𝑉𝑚 was notably treated by Wang and Reeber [11] as an overall parameter that 

was optimized for each of the ith Einstein frequencies, whereas each term was treated 

independently in this work. As a result, it can be argued that in the present work it is more 

straightforward to identify the meaning of each parameters and whether reasonable values 

were obtained or not. Plus, the treatment of the temperature dependence of the bulk modulus 

can be directly included in the analysis. Regarding the work of Zhang et al. [39], the authors 

used a Debye model to describe the heat capacity. Therefore, it is argued that the description 

proposed in this work benefit from a greater ease of implementation in thermodynamic 
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databases, and a direct compatibility with the 3rd generation CALPHAD framework. Besides, 

an explicit description of the isothermal bulk modulus and of the molar volume was obtained 

in this work. 

As final notes of this section, it is first highlighted that the molar volume obtained using Eq. 

(13) and Eq. (17) does not include any magnetic contribution. It is suggested that for magnetic 

materials, this contribution may be treated in a separate term [12,37] as based on the work of 

Guillermet [13,49]. Besides, the proposed descriptions do not account for the pressure 

dependence of the considered thermophysical properties, and is excepted to be valid up to 

roughly 1 GPa [30]. Last but not least, the present study focuses on the modeling of 

stoichiometric end-members, which are the building blocks for modeling solution phases. The 

composition dependence of the molar volume and bulk modulus can be accounted for in a 

typical CALPHAD fashion, by a rule of mixtures between end-members, plus an excess 

contribution described by a Redlich-Kister polynomial that includes interaction parameters. 

This general approach is for instance presented in [50]. In practice however, there have been a 

limited number of attempts to model the molar volume of solution phases. This is due to a 

lack of data on volumes of mixing [30], and to the fact that the molar volume has not been 

considered so far as an essential part of thermodynamic databases [38]. A method to 

determine the molar volume of metastable or non-stable end-members was discussed by 

Hallstedt [38], and new insights on this matter within the framework of the 3rd generation of 

CALPHAD thermodynamic databases were recently provided by He et al. [36]. The molar 

volume of various solid solutions were assessed by Hallstedt [38] and Xiong et al. [50] along 
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the room temperature isotherm. Both the molar volume and the isothermal compressibility of 

several binary solution phases in the Al-Cu-Mg system were modeled by Huang et al. [51] 

using temperature independent interaction parameters. The experimental study from Schmitz 

et al. [52] suggests that the excess volume of the Al-Li liquid phase is temperature dependent. 

To account for this temperature dependence may not be straightforward within the model 

proposed in this work, as 3rd generation CALPHAD models to describe solution phases are 

still under development [34,36]. In the 2nd generation of CALPHAD thermodynamic 

databases, interaction parameters are described as linear functions of T to account for the 

temperature dependence of the excess Gibbs energy. However, as discussed by Dinsdale et al. 

[34], this approach lead to a non-configurational entropy that is different from 0 at 0 K, and 

therefore to a loss of physical realism. In the present case, it will similarly lead to a non-zero 

thermal expansion coefficient at 0 K. To be consistent with the aspirations of 3rd generation 

databases, it was suggested by Dinsdale et al. [34] to account for the temperature dependence 

of the excess properties using parameters expressing the variation of the Einstein temperature 

with respect to composition. To apply this approach to the present model is an interesting 

perspective, although it is noted that to do so, the treatment proposed by Dinsdale et al. [34] 

has to be extended to the case where multiple Einstein frequencies are used. It is concluded 

that the extension of the proposed framework to the modeling of solution phases is an open 

question that is closely linked to the development of the 3rd generation of CALPHAD 

thermodynamic databases.  
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3. Results and discussion 

3.1 Modeling procedure 

In the present study, the thermal expansion coefficient is described in a self-consistent way 

with the heat capacity through the Grüneisen parameter. As discussed in the previous section, 

a multi-frequency Einstein model was selected as the basis to describe the thermal expansion 

coefficient and the bulk modulus. This notably ensures a direct compatibility of the present 

model with the ones used in 3rd generation CALPHAD databases to describe the isobaric heat 

capacity. To further highlight both features, the parameters of the Einstein functions that will 

be used for each phase considered in this work will be directly taken from recent CALPHAD 

assessments of their heat capacity. 

In the following section, assessments of α-Sn, β-Sn, and solid CaO are proposed. For each of 

these phases, the modeling procedure was the following. First, for each Einstein mode of 

vibration, the Einstein temperature and its corresponding pre-factor were taken from recent 

thermodynamic CALPHAD assessments after their robustness was carefully checked. Then, 

the bulk modulus of the considered phase was modeled using Eq. (11) and (9). Finally, the 

thermal expansion coefficient and the molar volume were assessed based on Eq. (16), and Eq. 

(13) and (17) respectively. The parameters accounting for the anharmonic and electronic 

contributions as defined by Eq. (7) were only used if a satisfying fit could not be obtained 

without them. 
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The parameters optimization and the calculations presented in this work were performed 

using the Thermo-Calc software package [53]. Based on the model implemented in the 

software by Lu et al. [18], the compressibility, integrated thermal expansion coefficient, and 

molar volume at the reference temperature can be entered using the parameters "VK", "VA" 

and "V0" respectively. A demonstration macro file that can be used to set-up the present 

model in Thermo-Calc is given in a Mendeley Data repository [54]. Indeed, due to Fortran 

programming restrictions, only "simple-terms" can be used when entering functions in the 

software [55]. Therefore, the model has to be entered piece by piece, which may be 

cumbersome without having a starting example. 

A tabulation of all the data reviewed and calculated in this section can be found along with the 

thermodynamic database files in an open access Mendeley Data repository [54]. 

3.2 Assessment of α-Sn 

The α-Sn phase is stable up to 286.35 K at atmospheric pressure [33], and is commonly 

referred to as grey tin. α-Sn crystallizes in a diamond-like face-centered structure (space 

group 𝐹𝑑3𝑚, Pearson symbol cF8). 

The isobaric heat capacity of α-Sn was recently assessed by Khvan et al. [33] using a multi-

Einstein model including two modes of vibration. A comparison of the authors' results with 

literature data is provided in the Mendeley Data repository [54] associated with this work. 

Only the relatively low temperature range that is relevant to assess the parameters of the 

multi-Einstein model was considered in the analysis. A more detailed review of each 
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experimental dataset was given by Khvan et al. [33]. The description proposed by the authors 

was found to be robust up to 100 K, and more uncertain above this temperature due to the lack 

of reliable experimental data, but still satisfying. Therefore, the parameters relative to the 

Einstein contributions proposed by Khvan et al. [33] are accepted in the present modeling. 

The experimental data relative to the molar volume [56–59], thermal expansion coefficient 

[60], and bulk modulus [61–64] of α-Sn are reviewed in Table 1. In the treatment of the data 

from Price et al. [64], the adiabatic bulk modulus was calculated from the elastic constants 

reported by the authors using the Voigt-Reuss-Hill approximation [65]. This method of 

calculation was notably discussed by Chung [66], and the corresponding equations are 

presented in the appendix. The adiabatic bulk modulus data given directly or indirectly in the 

various studies reviewed in Table 1 [61–64] were transformed into isothermal bulk modulus 

data according to the following expression [67]: 

𝐾𝑇 =
𝐾𝑆

1 +
𝑉𝑚𝛼2𝐾𝑆𝑇
𝐶𝑃

                                                                                                                             (18) 

with 𝐾𝑆 the adiabatic bulk modulus and T the absolute temperature. To obtain some of the 

data required for the conversion, a preliminary fit of the molar volume and thermal expansion 

coefficient was performed. Besides, the isobaric heat capacity data were taken from the 

description proposed by Khvan et al. [33]. 
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Table 1 - Experimental data relative to the molar volume, thermal expansion coefficient, and 

bulk modulus of α-Sn at atmospheric pressure 

Ref Data Method T-range (K) 
Relative 

uncertainty 

[56] Bij19 

Molar volume X-ray diffraction 

291.15 N/A 

[57] Bro50 298.15 0.02% 

[58] The54 143 - 295 N/A 

[59] Oeh15 298.15 N/A 

[60] Nov60 Thermal expansion Quartz dilatometer 24 - 217 N/A 

[61] Red60 

Adiabatic bulk modulus 

Piezo-electric 

oscillator method 
273.15 N/A 

[62-63] 

Pri69&Buc71 

Neutron inelastic 

scattering 
90 2% 

[63] Buc71 Raman scattering 77 N/A 

[64] Pri71 
Adiabatic elastic 

constants 

Spectrometric 

method 
300 N/A 

 

First of all, the data relative to the bulk modulus [61–64] of α-Sn and the description obtained 

using Eq. (11) and (9) are presented in Fig. 2. The measurement from Reddy et al. [61] is a 

clear outliner, as further suggested by ab initio studies [68,69], and was therefore not taken 

into account in the modeling. A very satisfying representation of all the other available 

experimental data [62–64] was obtained. 
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Fig. 2. Experimental and assessed isothermal bulk modulus of α-Sn 

α-Sn exhibits a negative thermal expansion coefficient at very low temperature [60], and it is 

therefore an interesting material to test the proposed model with. This behavior is common for 

phases crystallizing in diamond-type structures [60], and was notably recently discussed by 

Ishida [70]. Results from the modeling are presented along with the measurements from 

Novikova [60] in Fig. 3. The model closely reproduces experimental data, including below 50 

K where the thermal expansion coefficient is reported to be negative. A practical explanation 

of this unusual behavior is that negative Grüneisen parameters are obtained for high-

frequency vibrational modes [70], a feature that can be captured by the present model. It is 

noted that this close agreement obtained using the modes of vibration of the multi-Einstein 

model proposed by Khvan et al. [33] further support the validity of both descriptions. 
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Fig. 3. Experimental and assessed thermal expansion of α-Sn 

Finally, the assessment of the molar volume of α-Sn is presented along with the available 

literature data [56–59] in Fig. 4. A maximal deviation of roughly 1.5% is observed among the 

available experimental data. In the present modeling, only the dataset from Thewlis [58] was 

considered in the fit. There are two reasons behind this choice. First, it is the only dataset that 

also provides information on the thermal expansion coefficient. Second, it is in an acceptable 

agreement with the data from Brownlee [57] that is the accepted value in the Wyckoff 

compilation [71]. A satisfying agreement between the thermal expansion coefficient reported 

by Novikova [60] and the one measured by Thewlis [58] is observed. 
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Fig. 4. Experimental and assessed molar volume of α-Sn 

3.3 Assessment of β-Sn 

The β-Sn phase is stable from 286.35 K to its melting point of 505.078 K [33] at atmospheric 

pressure. It is commonly referred to as white tin. β-Sn crystallizes in a body-centered 

tetragonal structure (space group 𝐼41/𝑎𝑚𝑑 , Pearson symbol tI4). 

The isobaric heat capacity of β-Sn was recently assessed by Khvan et al. [33]. As for the α-Sn 

phase, two Einstein frequencies were considered by the authors, and their description is 

compared with the available data on a supplementary file [54]. It is noted that below the 

critical temperature of 3.71 K from which β-Sn is a superconductor, the present review does 

not corroborate the conclusions made by Khvan et al. [33]. A discussion on the matter is 

provided in the supplementary file mentioned above. Nonetheless, as this discrepancy was 

only obtained in the extremely low temperature range, its impact on the overall quality of the 

fit proposed by the authors is largely negligible. At higher temperatures and over the range 
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relevant to determine the parameters of interest for this work, the description provided by 

Khvan et al. [33] is very robust, and is therefore accepted in the present study. 

The experimental data relative to the molar volume [59,72–82], thermal expansion coefficient 

[79,83–92], and bulk modulus [93,75,84,94–99] of β-Sn are reviewed in Table 2. Several 

clarifications are given as follows regarding the treatment of those data. First, regarding the 

dataset from Balzer et al. [79], measurements along the a-axis and the c-axis were not 

performed at the same temperatures. Therefore, the data had to be fitted using quadratic 

polynomials in order to obtain the volumetric thermal expansion coefficient and the molar 

volume. Second, the thermal expansion coefficient data tabulated by Deshpande et al. [76,77] 

were obtained by a graphical fit from their x-ray diffraction measurements, as detailed in 

another work [100]. Some significantly different parameters were obtained when performing 

a numerical fit of the authors’ data. In the present study, only their original molar volume 

measurements will be considered. Third, the data from Childs and Weintroub [88] were re-

calculated including the new measurements from Vernon and Weintroub [89] according to the 

authors' method. Besides, the data points from Bridgman [94] were extrapolated from higher 

pressure measurements. Next, the bulk modulus was calculated from the available elastic 

constants data [93,75,95–99] using the Voigt-Reuss-Hill approximation as detailed in the 

appendix. Finally, the adiabatic bulk modulus data were converted into isothermal data 

according to Eq. (18) using the isobaric heat capacity function modeled by Khvan et al. [33] 

and the results from a preliminary fit of the molar volume and thermal expansion coefficient. 
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Table 2 - Experimental data relative to the molar volume, thermal expansion coefficient and 

bulk modulus of β-Sn at atmospheric pressure 

Ref Data Method 
T-range 

(K) 

Relative 

uncertainty 

[72] Jet33 

Molar 

volume 

X-ray diffraction (powder) 298.15 1.6% 

[73] Str49 X-ray diffraction (N/A) 298.15 0.3% 

[74] Lee54 X-ray diffraction (filings) 282 - 455 0.3% 

[75] Ray60 X-ray diffraction (single crystal) 4 - 300 N/A 

[76] Des61 X-ray diffraction (filings) 308 - 424 0.5% 

[77] Des62 X-ray diffraction (filings) 306 - 485 0.4% 

[78] Hel64 X-ray diffraction (powder) 298.15 N/A 

[79] Bal79 X-ray diffraction (single crystal) 300 - 496 0.01% 

[80] Oli84 X-ray diffraction (powder) 300 N/A 

[81] Liu86 X-ray diffraction (powder) 298.15 0.2% 

[59] Oeh15 X-ray diffraction (nanoparticles) 298.15 N/A 

[82] All16 Neutron powder diffraction 298 N/A 

[83] Dor07 

Thermal 

expansion 

Interferometric dilatometer (cast) 103 - 283 0.1% 

[84] Bri25 Dilatometry (single crystal) 298.15 N/A 

[85] Shi33 X-ray diffraction (powder) 387 N/A 

[86] Gru34 Dilatometry 303 - 473 N/A 

[87] Erf39 
Interferometric dilatometer 

(single crystal) 
68 - 283 

N/A 

[88-89] 

Chi50&Ver53 

Interferometric dilatometer 

(single crystal) 
303 - 493 

1 – 5 % 

[90] Whi64 Sensitive capacitance technique 4 - 283 N/A 

[91] Bal71 Dilatometry ∼348 N/A 

[92] Cur74 X-ray diffraction (single crystal)   

[79] Bal79 
Interferometric dilatometer 

(single crystal) 
300 - 490 

N/A 

[94] Bri23 
Isothermal 

bulk 

modulus 

Lever apparatus (Cast & extruded 

rod) 
303 - 348 

N/A 

[84] Bri25 Lever apparatus (single crystal) 298.15 30% 
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[95] Pra55 

Isothermal 

elastic 

constants 

Diffuse x-ray reflection method 

(single crystal) 
298.15 

7% 

[96] Mas56 

Adiabatic 

elastic 

constants 

Ultrasonic method (single crystal) 298.15 N/A 

[97] Hou60 Vibratory method 93 - 468 2 – 4.4% 

[75] Ray60 Ultrasonic method (single crystal) 4 - 300 N/A 

[98] Car63 Ultrasonic method (single crystal) 298.15 1% 

[93] Kra72 Ultrasonic method (single crystal) 301 - 505 1 – 3% 

[99] Du17 

Ultrasonic method combined with 

Electron backscatter 

diffraction (EBSD) (polycrystal) 

298.15 

N/A 

 

The modeled bulk modulus of β-Sn is presented along with experimental data in Fig. 5. Only 

the datasets from Rayne et al. [75], Cardinal [98], Kramer et al. [93] and Du et al. [99] were 

considered in the modeling. Justifications for this choice are provided as follows. To begin 

with, regarding the data extrapolated from high pressure measurements from Bridgman [94], a 

significant variation was obtained depending on the method of elaboration of the samples, 

leading to a dispersion of roughly 7% in the results. The obtained values largely include the 

selected datasets [75,93,98,99]. Then, regarding the latter study from Bridgman [84], the 

author pointed out that his results were somewhat uncertain and assigned to his data an 

uncertainty of about ±30%. This measurement was therefore not taken into account, although 

it is noted an excellent agreement was obtained with the selected datasets [75,93,98,99]. 

Besides, Prasad and Wooster [95] also attributed a rather high uncertainty to their result, and 

the calculated bulk modulus was not used in the modeling. Next, regarding the data from 

Mason et al. [96], Rayne et al. [75] noted that the value for the elastic constants C66, C12 and 

C13 obtained by the authors differed significantly from the their own results. No reason could 
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be advanced by Rayne et al. [75] to explain this discrepancy. This observation can also be 

extended for other datasets, and the results from Mason et al. [96] were therefore not taken 

into account in the modeling. Finally, regarding the measurements from House et al. [97], a 

sudden change in the obtained trend is noted from roughly 200 K, as highlighted in Fig. 5. 

The fact the bulk modulus measured by the authors [97] increases with increasing temperature 

is abnormal, and this dataset was therefore not taken into account in the modeling. A 

satisfying agreement was obtained between the fit and the selected datasets [75,93,98,99]. 

 

Fig. 5. Experimental and assessed isothermal bulk modulus of β-Sn. The solid symbols 

represent the data selected in the modeling. 

Next, the molar volume and coefficient of thermal expansion of β-Sn were assessed together 

in a joint optimization based on Eq. (17) and (13). The results are presented along with 

experimental data in Fig. 6. Regarding the thermal expansion coefficient, the older dataset 

from Dorsey [83] and the value obtained from the treatment of X-ray diffraction data by 

Shinoda [85] are clear outliners and were not included in the modeling. Regarding the molar 
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volume data, a scatter of roughly 0.7% is observed on the measurements made at room 

temperature. The measurements from Olijnyx et al. [80] and Oehl [59] are consistent and 

represent the upper limit, whereas the data from Jette [72], Straumanis [73], Lee et al. [74] 

and Balzer et al. [79] are also consistent and represent the lower limit. In this work, the 

dataset in the middle containing the consistent measurements of 6 different authors [75–

78,81,82] was selected. To select one of the three global trend was preferred, as it is argued 

that using a mean value for all measurements was more arbitrary. Nevertheless, the 

temperature dependence of the molar volume as measured by Lee et al. [74] and Balzer et al. 

[79] was taken into account by shifting the original data to the selected value at 298 K. It is 

underlined that although two Einstein modes of vibration are considered in the description, 

only a single global Grüneisen parameter was used, as it was sufficient to obtain a satisfying 

fit of the data in view of their scattering. 
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Fig. 6. Experimental and assessed (a) thermal expansion coefficient and (b) molar volume of 

β-Sn. The solid symbols represent the data selected in the modeling. In (b), the dashed lines 

are quadratic polynomial fits of the molar volume data from Deshpande et al. [76,77] and Lee 

et al. [74] plotted to guide the eye. 

As the present description is valid down to 0 K, a direct comparison with ab initio 

calculations is possible. Results from Density Functional Theory (DFT) calculations from 

various studies [101–105] are compared with the present assessment in Table 3. It can be seen 

that a good agreement was obtained in term of molar volume with the data from Aguado 

[103] and Yu et al. [104]. However, in term of bulk modulus, both those calculations lead to 

significantly lower values compared to the present assessment, and a much better agreement 

is obtained with the data from Cheong and Chang [101]. 
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Table 3 - Comparison between the molar volume and bulk modulus at 0 K obtained in the 

present description and in the literature by DFT calculations 

Ref Method Vm (10-6 m3.mol-1) KT (GPa) 

This work Modeling 16.07 59.20 

[104] Yu06 DFT – GGA 15.99 (-0.5%) 52.2 (-11.8%) 

[103] Agu03 DFT – LDA 15.89 (-1.1%) 55.3 (-6.6%) 

[101] Che91 DFT – LDA 15.20 (-5.4%) 60.5 (+2.2%) 

[105] Cui08 DFT – GGA 15.03 (-6.5%) 66.4 (+12.2%) 

[102] Cor91 DFT – LDA 14.93 (-7.1%) 63.7 (+7.6%) 

 

3.4 Assessment of solid CaO 

Solid CaO is stable up to 3222 K at atmospheric pressure [35], and crystallizes in an NaCl-

like face-centered structure (space group 𝐹𝑚3𝑚, Pearson symbol cF8). It is specified here 

that the aim of the present sub-section is more to put to the test the proposed model and 

highlight some of its features than to provide a thorough assessment of the thermophysical 

properties of CaO. 

The isobaric heat capacity of solid CaO was recently assessed by Deffrennes et al. [35] using 

a 3 frequency multi-Einstein model. The authors' description is reviewed along with literature 

data on a supplementary file attached with the present article [54]. A discussion on the data 

selection was provided by Deffrennes et al. [35]. The authors' description is supported by both 

experimental and ab initio heat capacity and heat content data, and is accepted in the present 
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study. The characteristic Einstein temperatures and their corresponding pre-factor will 

therefore be taken from their work. 

The data relative to the molar volume and the thermal expansion coefficient of CaO were 

reviewed by Bodryakov [106], and the fit proposed by the author is accepted in the present 

study. Regarding the bulk modulus of solid CaO, it was noted by Song et al. [107] that only 

scarce data are available, and the authors suggested that the most precise dataset available was 

the one proposed by Anderson [29]. The data tabulated up to 1200 K by Anderson [29] will 

therefore be used in the modeling. 

The modeled bulk modulus of solid CaO is presented along with the dataset from Anderson 

[29] in Fig. 7. The agreement between the fit and the data is satisfying. 

 

Fig. 7. Experimental and assessed isothermal bulk modulus of CaO 

Regarding the thermal expansion coefficient of solid CaO, two different descriptions are 

provided and compared with the data assessed by Bodryakov [106] in Fig. 8. For both 
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descriptions, it is noted that the parameter 𝑉𝑚0 was optimized so that the value of the molar 

volume at room temperature of 16.80 10-6 m3.mol-1 (8.40 10-6 m3.mol of atoms-1) proposed by 

Bodryakov [106] was perfectly reproduced. 

 

Fig. 8. Experimental thermal expansion coefficient of CaO, and results of two different 

descriptions. The solid blue line corresponds to the modeling where thermal expansion data 

were considered up to 2500 K, and where a Grüneisen parameter was optimized for each 

mode of vibration of the multi-Einstein model. The dashed red line corresponds to the 

modeling where thermal expansion data were only considered from 1000K to 1500K, and for 

which a single global Grüneisen parameter was used. 

Regarding the first description plotted as a solid blue line in Fig. 8, the aim was to see 

whether a close fit of the low temperature thermal expansion of a material with a rather high 

Debye temperature of 673K [29] could be obtained. Indeed, the present model was built based 

on the hypothesis that the ratio of the Grüneisen parameter over the volume was temperature-

independent whatever the temperature, although this approximation is considered to hold only 
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above the Debye temperature. In this attempt, the tabulated thermal expansion data from 

Bodryakov [106] were used up to 2500 K to optimize all 3 Grüneisen parameters 

corresponding to each Einstein vibrational frequency modeled by Deffrennes et al. [35]. A 

satisfying fit is obtained up to 2500 K, and notably below 600 K where a maximal absolute 

discrepancy of 0.4 10-6 K-1 was obtained. The corresponding deviation relative to the thermal 

expansion coefficient at room temperature is of 1.2%. Above 2500 K, it is noted that the 

sudden increase in the thermal expansion coefficient considered by Bodryakov [106] could 

not be closely reproduced, even when using both parameters proposed in Eq. (7) to account 

for high temperature anharmonic and electronic contributions. To some extent, a consistent 

trend was proposed for the isobaric heat capacity by Deffrennes et al. [35], and similar 

difficulties were experienced by the authors as this increase occurs at a very high temperature. 

Nonetheless, it is important to highlight that the underlying datasets that were used by 

Bodryakov [106] are highly debated above 1500 K. Besides, none of the original experimental 

measurements reviewed by the author [106] indicate that the thermal expansion coefficient 

should increase steeply. Indeed, the reported trends are rather linear and monotonous. In fact, 

it is noted by Bodryakov [106] that his fit is purely mathematical, and not based on any model 

or physical consideration. Therefore, it is concluded that the sudden increase above 2500K in 

the thermal expansion coefficient proposed by the author [106] is too uncertain to assess 

whether the fact it could not be reproduced here is a limitation of the proposed formalism. 

In the proposed model, a self-consistent description of the heat capacity, bulk modulus, 

thermal expansion coefficient and molar volume is provided using parameters carrying 
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explicit physical meaning. Therefore, it is expected that reasonable extrapolations can be 

obtained from it. To investigate on this feature was the aim of the second description 

proposed here, which is plotted as a dashed red line in Fig. 8. In this second attempt, the fit 

from Bodryakov [106] was solely used from 1000K to 1500K, and only a single Grüneisen 

parameter common for all 3 modes of vibrations was considered. Therefore, as the bulk 

modulus, heat capacity, and molar volume at room temperature are known, there was in 

practice only three degrees of freedom in the optimization of the parameters (𝛾𝑖0, 𝐴 and 𝐵). 

Ultimately, a satisfying fit of the considered restricted dataset was obtained using only two of 

those parameters, that are 𝛾𝑖0 and 𝐴. Following this procedure, a reliable extrapolation of the 

lower temperature thermal expansion was obtained, as it can be seen in Fig. 8. Indeed, a 

maximal absolute discrepancy of 1.6 10-6 K-1 was obtained, corresponding to a deviation 

relative to the thermal expansion at room temperature of 4.8%. This is an interesting result, 

and a promising insight that the present model can lead to reliable extrapolations with scarce 

data once some of the properties intrinsically linked in the description are known. 
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3.5 Model parameters 

The bulk modulus, thermal expansion coefficient and molar volume that were determined for 

α-Sn, β-Sn and solid CaO in sections 3.2, 3.3 and 3.4 respectively are presented in Table 4. 

Table 4 - Bulk modulus, thermal expansion coefficient and molar volume as determined in 

this work in the modeling of α-Sn, β-Sn and solid CaO. The reference temperature is taken at 

0 K. The properties derived from the given parameters are obtained in the International 

System of Units (SI). 

Description of the parameters used in the multi-Einstein model for each ith mode of 

vibration 

Phase 𝑎1 𝑎2 𝑎3 𝜃1 𝜃2 𝜃3 Ref 

α-Sn 0.67374 0.32626 - 218.4858 61.9652 - Khv 

β-Sn 0.64684 0.35316 - 159.07493 61.12222 - Khv 

CaO 1.142993 0.62542 0.218718 369.447 601.229 188.291 Def 

Description of the bulk modulus according to Eq. (11) and (9) 

Phase 𝜒𝑇0 𝐶 

α-Sn 1.769308E-11 2.896475E-12 

β-Sn 1.689306E-11 8.915001E-13 

CaO 8.704446E-12 3.863062E-13 

Description of the thermal expansion coefficient according to Eq. (16) 

Phase 𝑉𝑚0 𝛾𝑖1 𝛾𝑖2 𝛾𝑖3 𝐴 𝐵 

α-Sn 2.050652E-05 1.620406 -0.7053840 - - - 

β-Sn 1.606773E-05 1.839411 - 7.649397E-4 - 

CaO 

(assessment) 
1.671192E-05 1.257133 2.023413 1.265581 2.764858E-5 - 

CaO 

(demonstrative 

example) 

1.670617E-05 1.517934 1.282848E-5 - 

Obtainment of the molar volume using the above parameters according to Eq. (17) and (13) 
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Conclusions 

In the present study, a semi-empirical model to describe the temperature dependence of the 

bulk modulus, thermal expansion coefficient, and molar volume was proposed. It is built 

based on two main cornerstones. The first one is the Grüneisen parameter, which enables to 

achieve a self-consistent description of all the above properties together with heat capacity. 

The second one is the multi-frequency Einstein model, which notably enables to achieve 

direct compatibility with 3rd generation CALPHAD databases. The model parameters carry 

explicit physical meaning, and the obtained descriptions are valid down to 0K. Plus, 

compared to isolated descriptions of the heat capacity, bulk modulus, and thermal expansion 

coefficient using polynomials, it is noted that less parameters may be needed overall. 

The proposed model was used in the assessment of α-Sn and β-Sn, for which a critical review 

of the literature data was provided, and of solid CaO. In this process, several key features of 

the model were highlighted. First of all, satisfying descriptions of the considered 

thermophysical properties were obtained while the parameters for the multi-Einstein model 

were taken directly from 3rd generation CALPHAD assessment of heat capacity data. This is a 

demonstration of the self-consistency of the model, and of its compatibility with CALPHAD 

databases. Plus, the present description was proven to be flexible in the sense that the unusual 

negative thermal expansion coefficient of α-Sn at very low temperature was satisfyingly 

accounted for. Second, compared to phenomenological polynomial fits used so far, the 

proposed model enables a direct integration of ab initio calculations performed at 0K in the 

analysis, as it was highlighted in the case of β-Sn. Besides, to build the model, the hypothesis 



41 

 

 

 

 

that the ratio of the Grüneisen parameter over the volume was temperature-independent 

whatever the temperature was made. It may be a limitation of the model below the Debye 

temperature. Nonetheless, it was highlighted for all materials considered in this study, and 

notably in the case of CaO which have a relatively high Debye temperature, that a satisfying 

description could be obtained in this temperature range. Finally, the present description has 

the potential to lead to reliable extrapolations when performing a joint analysis of heat 

capacity, bulk modulus, thermal expansion coefficient and molar volume data. This benefit 

was highlighted in the CaO case study. 

A key strength of the CALPHAD method is that the description of a system is provided based 

on a consistent assessment of both thermodynamic and phase equilibria data. By this process, 

the obtained modeling is more reliable. The present model may provide a tool to extend this 

consistency to the molar volume and related properties. Indeed, thermal expansion data may 

for instance be used to critically assess debated heat capacity measurements, or to provide 

reliable extrapolations out of scarce data. Besides, the present work may be interesting in the 

perspective of building Gibbs energy databases valid up to high pressures. Indeed, it was 

suggested by Lu and Chen [27] that inconsistent results were obtained so far due to the fact 

that the heat capacity, thermal expansion and bulk modulus at atmospheric pressure were 

assessed separately using polynomials which do not hold any physical meaning, causing their 

intrinsic relations to be lost. In this study, an attempt to capture this intrinsic relationship is 

provided. It may therefore be a step towards the establishment of high pressure Gibbs energy 

databases. Finally, as the proposed model is compatible with the CALPHAD framework, it 
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can be used to develop multi-component molar volume databases as a part of the ICME 

approach. With this aim in mind, to further investigate the composition dependence of the 

molar volume and related properties as well as the 3rd generation CALPHAD modeling of 

solution phases are important perspectives for the future. 

Acknowledgements and data statement 

This research did not receive any specific grant from funding agencies in the public, 

commercial, or not-for-profit sectors. Fruitful exchange within the French consortium in high 

temperature thermodynamics GDR CNRS n°3584 (TherMatHT) are acknowledged.  

All the data reviewed in this work and the result of the present modeling, including the 

databases files, are associated in an open access Mendeley Data repository [54]. 

  



43 

 

 

 

 

Appendix - Computation of the bulk modulus from the elastic constants in 

the Voigt-Reuss-Hill approximation 

The bulk modulus is calculated from the stiffness tensor by the Voigt approximation, 

according to: 

𝐾𝑉 =
𝑐11 + 𝑐22 + 𝑐33 + 2(𝑐12 + 𝑐23 + 𝑐13)

9
                                                                                (A. 1) 

with 𝑐𝑖𝑗 the elastic constants. Using the Reuss approximation, the bulk modulus is obtained 

from the compliance tensor such as: 

1

𝐾𝑅
= 𝑠11 + 𝑠22 + 𝑠33 + 2(𝑠12 + 𝑠23 + 𝑠13)                                                                                 (A. 2) 

Using Voigt and Reuss approximation, an upper and lower bond for the bulk modulus are 

respectively obtained. In the Voigt-Reuss-Hill approximation, the bulk modulus is finally 

calculated as: 

𝐾𝑉𝑅𝐻 =
𝐾𝑉 + 𝐾𝑅
2

                                                                                                                                (A. 3) 
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