
HAL Id: hal-04145832
https://hal.science/hal-04145832

Submitted on 30 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compact visualization of DNN classification
performances for interpretation and improvement

Adrien Halnaut, Romain Giot, Romain Bourqui, David Auber

To cite this version:
Adrien Halnaut, Romain Giot, Romain Bourqui, David Auber. Compact visualization of DNN clas-
sification performances for interpretation and improvement. Explainable Deep Learning AI, Elsevier,
pp.35-54, 2023, �10.1016/B978-0-32-396098-4.00009-0�. �hal-04145832�

https://hal.science/hal-04145832
https://hal.archives-ouvertes.fr

i
i

“output” — 2021/11/19 — 8:22 — page 19 — #33 i
i

i
i

i
i

CHAPTER 3

Compact Visualization of DNN
Classification Performances for
Interpretation and Improvement
Chapter Subtitle

Adrien Halnaut,∗, Romain Giot∗, Romain Bourqui∗ and David Auber∗
∗ Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France

Contents

A. Introduction 20
B. Previous Works 21

B.1. Visualization for the Interpretation of Deep Neural Networks 21

B.2. Hilbert Curve in Information Visualization 22

C. Proposed Method 22

C.1. Domain Level 23

C.2. Abstraction Level 23

C.3. Technique Level 25

C.4. Algorithms Level 26

D. Experimental Protocol 27

D.1. Couples of Network and Dataset 28

D.2. Implementation and Execution Infrastructure 28

E. Results and discussion 29
E.1. Results 29

E.2. Simplification Improvement 30

E.3. Discussion 32

E.4. Future Work 33

F. Conclusion 34
Reference 37

Abstract
In the research field of automatic classification tasks, deep neural networks (or DNN) are
frequently used for their efficiency and adaptive nature. State-of-the-art architectures and
pre-trained networks exist and can be converted and fine tuned to handle other classifi-
cation tasks. However, because of their training phase requiring many computations and
adjustments on the many parameters of the models, they suffer from a black-box effect that

c© Elsevier Ltd.
All rights reserved. 19

i
i

“output” — 2021/11/19 — 8:22 — page 20 — #34 i
i

i
i

i
i

20 Explainable Deep Learning–Methods and applications

makes difficult to interpret their inner workings. As a result, the understanding of their suc-
cesses and failures is as much as difficult. In this chapter, we make use of information
visualization and present a method to help in the interpretability of these trained networks.
By depicting both their architecture and way to process the different classes of a testing input
data, it is possible to visually detect where the DNN starts to discriminate the classes at the
layer level. Similarly, it is also possible to detect degradation in the classification process,
mainly because of the usage of an over-sized network for a simplier classification task. We
implemented and validated the method using several well-known datasets and networks.
Results show a progressive classification process and is extended to an improvement on an
over-sized network to solve a simpler task.

A. Introduction

Deep-learning [LBH15] based approaches are used in various contexts and dominate
most historical methods, especially for classification problems. Even when training
datasets are not large enough to train Deep Neural Networks (DNN), it is possible
to use transfer learning with a pre-trained DNN by fine-tuning [GYA17] it, or by ex-
tracting features and feeding them to a conventional classifier [Tan13]. DNN can be
represented by graph linking computational blocks between each other: each block
processes the output of one or several previous one. Theses blocks are applying sim-
ple function defined during the model construction and its parameters are defined using
weights. Such weights are data-dependent and computed during the training phase of
the model.

The black-box feeling is one of the largest issues. Indeed, even if each block is indi-
vidually well understood mathematically, its behavior depends mainly on the training
data (i.e., their impact on the learned weights). As a consequence, one can hardly know
what processing these blocks are doing and why. However, it is well admitted that the
model’s first layers extract low-level features, while the latest ones extract high-level
features specific to the application problem [EBCV09]. Two non-exclusive strategies
can help to open this black box. (i) Explainable deep-learning where the architecture
of the DNN emphasizes its explainability [ZNWZ18], even if it could negatively im-
pact its performance, and (ii) Interpretable deep-learning where additional processes
extract information by computing a more explainable model [ZYMW19], computing
some saliency information [BML+16, AFMB+20] or using information visualization
techniques [HKPC18]. Understanding, even partially, the classification process of a
trained network helps in both understanding which data classes are easier to classify
than other and where the network can be further improved for its task, in a different
way than what layer pruning techniques do [HZS17].

This chapter is an extension of the paper [HGBA21], presenting a new method for

i
i

“output” — 2021/11/19 — 8:22 — page 21 — #35 i
i

i
i

i
i

Compact Visualization of DNN Classification Performances for Interpretation and Improvement 21

interpretable deep-learning based on information visualization techniques. The task
to solve corresponds to the analysis of the data classification over layers. It aims at
analyzing how all input samples of a dataset are globally treated by any part of the
network. In opposite to most papers of the literature on attribution-based methods,
the focus is not for a specific sample but for a full testing dataset. The method allows
focusing on successive layers that better (or worst) discriminate the samples. It also
displays the complete network and the data behavior for each of its computational
blocks.

It originality relies on the fact it focuses on both all samples and full architecture
and has the advantages of (i) using less screen space than existing methods despite the
amount of information to display; (ii) fitting to any network that can be represented as
a directed acyclic graph; (iii) using the same encoding for input data, inner blocks and
final result.

The remaining of the paper is organized as follows. Section B presents related
works in visualization for DNN, space filling curves. Section C describes the pro-
posed method. Section D provides the details of the experimental protocol. Section E
discusses the results and provide directions for future work. We finally draw conclu-
sions in Section F.

B. Previous Works

Our proposed method aims at visually interpreting how DNN behave using a space-
efficient method. For this reason, this section firstly presents previous works on deep
neural networks visualization then focus on dense, pixel oriented visualization meth-
ods.

B.1. Visualization for the Interpretation of Deep Neural Networks
Some works focus on single views that can be reused in other works or embedded in
more complex applications. GradCam [SCD+17] aims at generating a heatmap for a
single input to highlight the spatial location that greatly supports the final decision.
It is computed thanks to the gradients from the logit of a target class up to the latest
convolutional layer. When the input feature is an image, the heatmap can be straight-
forwardly visualized and understood on it. Other methods rely on different concepts
to achieve the same objective such as LRP [BML+16] on the concept of relevance,
or other work [AFMB+20] that only uses information collected during the forward
pass. Instead of focusing on a single input sample, it is also possible to focus on the
complete dataset. Some use Sankey-diagram analogy [HGBA20] to highlight the pro-
cessing flows. Others project activations obtained at a specific layer in a 2d space to
verify how the network sees the data at this specific point [RFFT17]. Such an ap-
proach is also common in the literature using T-SNE projection [MH08]; however,

i
i

“output” — 2021/11/19 — 8:22 — page 22 — #36 i
i

i
i

i
i

22 Explainable Deep Learning–Methods and applications

an important drawback remains: the representation is not space efficient and there is
no guarantee that overlap does not occur. Our proposed method solves these two is-
sues. Other works create applications for educational purpose to visually explain how
some specific deep systems perform. For example, Tensorflow playground [SCS+17]
focuses on simple DNN, CNN 101 [WTS+20] focuses on CNN, Ganlab [KTC+18a]
focuses on Gan system and Adversarial Playground [NQ17] illustrates the concept of
adversarial examples. Even if they are visually appealing, these systems can hardly be
used for industrial scenarios.

In opposite, several complete tools treat industrial problems. Some of them are
generalist enough to be used in almost any scenario, such as Activis [KAKC18] (that
focuses on the visualization and comparison of activation of a single selected layer),
while some others are restricted to some specific networks or evaluation scenarios.
CNNVIS [LSL+17] is tailored for CNN and uses a visualization that relies on aggre-
gation of layers (not all layers are depicted), filters (filters that behave similarly are
grouped) and data (a subset of the samples are depicted). DQNVIZ [WGSY19] has
been designed for Deep Q-Network explanation in the specific context of Atari play.

B.2. Hilbert Curve in Information Visualization
Dense pixel-oriented methods aim at improving both the data-ink ratio ?? and the vi-
sualization size by displaying a unit of information on a single pixel while avoiding
unused pixels. Keim reviewed various pixel-oriented visualizations [Kei00] and as-
serts that space-filling curves, such as the Hilbert one [Hil35], are among the bests to
project ordered elements in a screen space while preserving the distance of the one-
dimensional ordering in the two-dimensional arrangement. Blanchard et al. [BHL05]
have shown that to display images, reduced to a one pixel representation, on an Hilbert
curve produces coherent and identifiable clusters. Auber et al. [ANM07] have also
shown the interest of such visualization, when complemented by tailored interaction
techniques, to explore datacubes of several dozen of millions of elements. Since these
previous successes, we have selected the Hilbert curve to project our data in a square;
a curve of order n contains 4n elements [ANM07].

C. Proposed Method

Figure 3.1 describes the proposal with the “Nested blocks and guidelines model”[MSQM15]
among various description levels: domain (who is concerned by which problem), ab-
straction (which data is used or generated to solve which task), technique (which meth-
ods are used) and algorithms (how these methods are implemented).

Additionally, Figure 3.2 lists the successive steps involved in the method. The
requirements of the proposed method are: to be space efficient (R1) while displaying
information from all samples (R2) in all layers (R3) of the network to solve the task

i
i

“output” — 2021/11/19 — 8:22 — page 23 — #37 i
i

i
i

i
i

Compact Visualization of DNN Classification Performances for Interpretation and Improvement 23

Task: Classification
quality over layers

Preprocessing

LRP, zscore, ...Tailored
fractal quality

metric

VATSample
filteringSugiyama

Data: Tensors
Network

Input
Network
Output

Inner layers activations

Data: Trained network

Architecture

Interpretable Deep Learning

Developers
& Builders

Model
users

Non
experts

Hilbert curve

Absolute
coloring

Relative
coloring

Visualization aspects

Architecture display

Network simplification

DAG drawing

Database over layers display

Fractal curve drawing

Sample ordering

Class highlight
Visual quality

Domain

Abstraction

Technique

Algorithm

Figure 3.1: Nested blocks and guidelines [MSQM15] representation of the proposed
method. Dotted italic blocks corresponds to existing ones; plain straight blocks are
defined in the work.

“classification quality analysis over layers” (R4).

C.1. Domain Level
The proposed method fits the needs of networks designers and trainers that want to
verify how the data is grouped by the various layers of their classification network.
From the analysis of these groupings, they could infer hypotheses that aim at being
verified with other techniques. Such hypotheses are related to input sample properties
and network errors. Non experts would better understand how DNN work by looking
at the representation of simple networks and datasets.

C.2. Abstraction Level
The proposed method considers an already trained DNN N with a compatible test
dataset Dtest. N is a network (i.e., graph) of operations (i.e., nodes) N = (O, E). Its
sources s• ∈ O are the identity function on data input (i.e., samples) and its sinks
t• ∈ O are its outputs (i.e., classes probability). N has multiple sources for a multi-
modal system, but always a single sink as we are restricted the use case of standard
classification. The other nodes o• ∈ O \ {s• ∪ t•} correspond to any operations (e.g.,

i
i

“output” — 2021/11/19 — 8:22 — page 24 — #38 i
i

i
i

i
i

24 Explainable Deep Learning–Methods and applications

Single class filtering

Sorted samples

Computational Graph

Standard representation

1. Application of
on (propagation)

one activation map per
sample and layer

2. (optional) Activations
to preprocessing to

improve comparisons

3. Maximum Linear
Arrangement (VAT)

For each layer, order
the sample according

to their activation

4. Rendering
Draw samples along a fractal curve,

colorized according to their class

5. Interactions

(e.g. Mouse over a
class in the legend)

Figure 3.2: Summary of the proposed method. Dataset D is fed to the network N. All
activations are collected, eventually preprocessed, and finally ordered at each layer.
The ordered samples are drawn along a fractal curve at each operation of the network
that is placed on the screen using a graph drawing method.

convolution, pooling, etc) that compose N; operations related to optimization (e.g.,
dropout) are not included. The edges E = O × O model the flow of data over the op-
erations of the network (i.e., they link successive layers).

Each sample di ∈ Dtest is fed into the network and the output (i.e., activations)
of each operation o j is stored in a j

i ; we assume operations are ordered depending
on the execution flow. These activations consist of tensors whose order depends on
the underlying operation and whose dimensions size depends on the input data of
the network. Each operation o j consumes at least one result ak

i |k < j computed by a
previous operation except for the sources where a•i corresponds to the raw data (of the
targeted modality in a multimodal scenario). Thus, a sample di is represented by a set
of activations Ai = ∪ j{a

j
i } and the complete dataset Dtest is represented by an ensemble

of sets of activations Dactivations = ∪i{Ai}.
The activations can be optionally preprocessed to fall within compatible domains

as their domain is not controlled: Dpreprocess =
⋃

i
⋃

j

{
Preprocessed

(
a j

i

)}
. This pre-

processing method is a parameter of the workflow.

i
i

“output” — 2021/11/19 — 8:22 — page 25 — #39 i
i

i
i

i
i

Compact Visualization of DNN Classification Performances for Interpretation and Improvement 25

C.3. Technique Level
As the method aims to display (a) the dataset and its groundtruth (R2), (b) the archi-
tecture of the network (R3) and (c) its impact on the complete dataset (R4), we propose
an encoding relying on both Dpreprocess and N.

Groundtruth encoding. The groundtruth of the dataset is depicted with a legend
where each class is represented by a colored rectangle (sample encoding) followed by
a black text (classe name).

Network Encoding. It is straightforward to layout N operations with a graph-
drawing algorithm tailored for Directed Acyclic Graphs (networks are always DAG).
Such technique is common in the literature [KAKC18, WSW+17] and aims at com-
puting the coordinates of each node (operation) in a plane while emphasizing the order
of operations in the computing flow. Each node is depicted by a glyph that represents
the whole dataset as viewed by the network at this specific operation. Thus, a specific
encoding is used to map the activations

⋃
i{Preprocessed(a j

i)} of each node o j in the
screen space.

Similarly to Ganlab [KTC+18b], a dotted line is drawn between nodes that repre-
sents consecutive operations; the flow of data is revealed by the dots moving in flow
direction. Some networks can be very deep with successive layers that do not bring
additional information because they consist of data reordering. We allow the user to
request the visualization of a simplified network where the corresponding nodes are
removed (thus, their successors are linked to their predecessors), as such information
brings noise to the representation. No special encoding is used to represent this infor-
mation shrinking.

Samples encoding. As mentioned, we have chosen a pixel-oriented technique
that relies on fractal curves (R1). For a given node o j, a maximal linear arrangement
method is used to order the representation a j

i of each sample di in such a way that
samples are positioned closely in the ordering according to a distance function. We
assume close samples in the output space of o j corresponds to samples treated sim-
ilarly by the network (i.e., considered to be similar). Once the samples are ordered,
they are projected into a discrete pixel grid using a fractal curve that respects prox-
imity relations. This way, screen space usage can be maximized (1 pixel per sample)
and we are assured that close samples are drawn closely on the screen (however close
pixels on the screen are not necessarily close in data space). Two visual encodings
can represent this curve. The first one, absolute coloring, explicitly draws samples of
each class with the same color. The second one, relative coloring, uses a gray-scale to
emphasize label difference between adjacent nodes and identify zones where different
labels are present. It can be used de facto when the number of classes is too high to
be efficiently discernable by a human using regular class colorization. When using
the absolute coloring scheme, the user can choose to only visualize a specific class

i
i

“output” — 2021/11/19 — 8:22 — page 26 — #40 i
i

i
i

i
i

26 Explainable Deep Learning–Methods and applications

to observe the spread of its samples over the layer. The name of the layer is written
above its fractal representation, and a quality metric (presented later in this chapter) is
written below it.

C.4. Algorithms Level
The model topology is drawn using the well-known Sugiyama [STT81] algorithm and
each node is depicted with a specific fractal-based glyph that represents the ordered
samples. The Euclidean distance is used to compare the activations generated for all
the samples on the same operation. It reflects the dissimilarity between samples in
the Euclidean space; we consider that each neuron activation has the same impact
as others in the full network processing. These distances are then compiled into a
n × n sized distance-matrix, n being the number of compared samples. In real use
case, neurons have different impact on the final prediction than others. Some pre- or
post-processing methods, such as the LRP [BML+16] method as done in [HGBA20],
can be applied to the activation maps in order to reflect that behavior. However, we
decided not to apply those methods because of the unsure interpretation on model
topologies using branches, such as our chimeric DoubleLeNet5 (section ??) or the
widely used ResNet [HZRS16] which use residual connections. Using ordering meth-
ods [BBHR+16], data can be ordered in a queue with similar elements placed next
to each other using their dissimilarity matrix. By using the VAT algorithm [dSW18]
on the dissimilarity matrices, we found a progressive definition of similarly processed
samples, resulting in clusters (or “black squares” as defined in the original paper [dSW18])
reflecting the progressive recognition by the model over the layers we attempt to show.
The order computed by this algorithm can then be applied on a 1d-space to display
similar data indexes next to each other. Using a fractal curve, we transformed this
1d-space into a 2d-space which is more suitable for data visualization. The fractal
curve chosen to map each sample into a pixel-grid is the Hilbert curve [Hil35] be-
cause of its ability to place points in a discrete space (this is not the case of Gosper
curve [Gar76]) and the absence of “jumps” in the curve (this is not the case of the
Z-order curve [Mor66]) which ensures that two consecutive samples are adjacent. The
order in which each sample is positioned is following the same order computed by
VAT on the previous step. When the number of test samples is lower than the number
of pixels available in the curve, we skip half of the missing positions in the beginning
of the curve (and thus half of the missing positions at the end of the curve); making a
“hole” in the curve but keep the sample centered in the glyph.

In the absolute coloring, each pixel sample is being colored according to its ground-
truth class, which is different for each class. In the relative coloring, the colors depend
on the number of similar labels for the pixel of interest in its sample ordering. That
gives three possible values (0 for an outlier with no neighbors of the same class, 1 for

i
i

“output” — 2021/11/19 — 8:22 — page 27 — #41 i
i

i
i

i
i

Compact Visualization of DNN Classification Performances for Interpretation and Improvement 27

Table 3.1: Number of layers, parameters and activations per sample for each network.

Network Layers Parameters Memory Usage
LeNet5 10 1 182 006 447.16 ± 19.7 MB
DoubleLeNet5 18 1 646 370 54 570
VGG16 18 33 638 218 308 244

a previous or next label different, and 2 when the three successive samples are of the
same class). The absolute colors come from a palette of diverging colors while the
relative colors or black (0), gray (1) and white (2). Computing in the ordering space
instead of the picture allows to no highlight the visual border inherent to the fractal
curve. Placing the cursor on a class in the legend selects this specific class and draws
only its samples with the appropriate absolute color.

The machine learning community provides various evaluation metrics (e.g., accu-
racy or cross-entropy) to evaluate the quality of the network by comparing its output
to a ground-truth. By definition, they cannot be applied at each layer, but we still
need to provide hints to the user of their efficiency. We have defined a quality metric,
based on the local homogeneity of the layer’s visual representations, which counts the
number of neighbors of a given pixel that are of the same color (i.e., the number of
samples that belong to the same class). We normalized it between 0 and 1 to ease its
comparison (however, as the normalization does not consider the mandatory borders,
1 is an unreachable value). We assume that to quantify the quality of the visualization
is strongly related to the ability of the layer to separate data.

D. Experimental Protocol

Several scenarios, that rely on a test dataset and a trained network, illustrate the effi-
ciency of the proposed method. In this section, we present datasets and networks that
we used in our evaluation.

Datasets. MNIST [LeC98] is a standard dataset used in handwritten recognition
from 28 × 28 grayscale images. Even simple networks are able to perform almost
perfectly on this 10-classes dataset. We use it to illustrate classification on easy data.
Fashion-MNIST [XRV17] shares a similar distribution as MNIST but is composed of
images of clothes instead of digits. Classification performance is usually lower than
with MNIST. We use it to illustrate classification on averagely difficulty dataset, closer
to actual classification problems.

Both datasets are composed of 60 000 samples to train the model and 10 000 sam-
ples to evaluate the model.

Networks. In our evaluation, we make use of three networks summarized in Ta-
ble 3.1:

i
i

“output” — 2021/11/19 — 8:22 — page 28 — #42 i
i

i
i

i
i

28 Explainable Deep Learning–Methods and applications

• LeNet5 [LBBH98] is a simple and historical CNN that provides good accuracy
results on MNIST. Its topology is simple enough to get a grasp on how data is being
transformed across the model. It is also easy to train with its low parameter count,
but that simplicity comes at the cost of lower accuracy results in more complex
recognition tasks.

• DoubleLeNet5 is a chimeric network we have created to illustrate the ability of
the system to handle networks with several branches. It consists of two LeNet5
minus the prediction layer that process in parallel the same input data, but one of
the branches input has an image rotation step applied before being processed by
the convolutional layers. The two branches are then concatenated before being fed
to the prediction layer. The image rotation step is not represented in the DAGs has
it has not be implemented in the same way as other layers during the evaluation.
Performance wise, this model targets the same kinds of data as LeNet5, with a
minor performance gain.

• VGG16 [SZ14] is a deep CNN usually used on complex datasets composed of large
color images, with a thousand recognizable classes, such as ImageNet [RDS+15].
Its robustness allows it to reach fairly good accuracy results on target tasks, but
comes with a heavy computation cost and cannot be trained in a reasonable amount
of time on standard computers. In this paper, the convolutional blocks of the
VGG16 model are already pre-trained with the ImageNet dataset, and are not re-
trained when training the prediction layers.

D.1. Couples of Network and Dataset
We have selected meaningful combinations of network and dataset.
• Easy scenario: LeNet5 uses MNIST which illustrates a well performing system.
• Generalization scenario: LeNet5 uses Fashion-MNIST which illustrates a system

with more classification errors.
• Branch scenario: DoubleLeNet5 predicts Fashion-MNIST which illustrates a usage

case with non-linear network architecture.
• Simplification scenario: VGG16 is processing MNIST. It illustrates the use of a

complex network to solve a simple task. By applying the visualization pipeline
and observing resulting glyph, we propose a straightforward improvement for the
model in both accuracy and complexity for the model.

D.2. Implementation and Execution Infrastructure
The TensorFlow framework [AAB+15] is solicited along with Keras. [C+15] to train
the studied models with said datasets. Each layer output, processed as potentially very
large high-dimensional data, are saved into machine cluster handling the dissimilarity
matrix computation, which makes use of a large pool of memory (around 2 Terabytes

i
i

“output” — 2021/11/19 — 8:22 — page 29 — #43 i
i

i
i

i
i

Compact Visualization of DNN Classification Performances for Interpretation and Improvement 29

in our infrastructure). The resulting matrices are small enough (for our experiments) to
fit and be processed on a recent laptop. The matrix manipulations of the original VAT
algorithm [dSW18] are implemented using the ArrayFire library [YAM+15] for their
efficient matrix computation abilities. This part of the process only produces the data
for the visualization tool and thus can be seen as a backend infrastructure. Fractal im-
ages (i.e., glyphs) are then generated by relying on the Rusthilbert library [Ski04]. The
visual and interactive part corresponds to an HTML application written in Typescript
relying on D3.js for the visualization, D3-dag for the Sugiyama implementation and
webpack for the build system.

E. Results and discussion

The complete results are accessible at the following address: https://pivert.
labri.fr/frac/index.html. We strongly recommend to view the results online
as the images here are severely undersized on the paper where 1 pixel represents sev-
eral samples) Fig 3.3 depicts still resized representations of the proposed method for
several scenarios, while their confusion matrices are presented in 3.4.

E.1. Results
The accuracy for the system of the easy scenario is 98.96%. This is clearly reflected
by the heterogeneous organization of the 09-prediction glyph in the visualiza-
tion. Looking at the successive operations that correspond to activation functions
(01-relu0, 03-relu1, 06-relu2, 09-prediction), we observe an improvement
in the quality of the representation, and thus better discriminability ability over layers.
Classes 1 and 0 seem to be discriminated early in the the network and can be consid-
ered as “easy” classes for the model. Several elements of the 6, 7 and 8 classes are also
recognized early. The first dense layer 05-dense0 brings a dramatic improvement of
the discriminability in the classification.

The accuracy in the generalization scenario is 73.44%. Compared to the prediction
layer’s glyph from the easy scenario, this one is saltier. The previous layers overall
are also less organized, which reflect the overall lower performances of the model
on this dataset. The T-shirt and Trouser classes are differentiated early in the
classification process while Ankle boots or Sandal are discriminated only at the
end of the network.

The simplification scenario has the accuracy of 97% (lower than LeNet5 despite
the more complex architecture). During the progressive classification, we can notice
a succession of improvement and decrease in sample organization in the glyph. We
assume this less efficient classification come from several reasons: they are pre-trained
and not specialized for the task, and/or the model is too deep and layers are redundant.
In the next subsection, we propose an improvement of the network architecture based

i
i

“output” — 2021/11/19 — 8:22 — page 30 — #44 i
i

i
i

i
i

30 Explainable Deep Learning–Methods and applications

(a) Easy scenario: LeNet5, MNIST (accuracy=98.96%)

(b) Generalization scenario: LeNet5 + Fashion-MNIST (accuracy=73.45%)

(c) Simplification scenario: VGG16 + MNIST (accuracy=97%)

(d) Branch scenario: DoubleLeNet5 + Fashion-MNIST (accuracy=73.75%)

Figure 3.3: Illustration of results on some scenarios. The simplified version of the
network is drawn. The confusion matrices are presented in 3.4 for comparison with a
standard visual evaluation method. Larger images are available on the website https:
//pivert.labri.fr/frac/.

on this observation.
The realistic scenario illustrates the ability to draw networks with branches. The

73.75% accuracy of the model is very close to its linear counterpart in the generaliza-
tion scenario. We observe the same tendencies in both branches as well as a similar
sample organization than in the generalization scenario. They are also confident on
the same classes.

E.2. Simplification Improvement
The glyph representing the fifth convolutional block of VGG16 17-block5-pool
shows a large degradation of the classification process, with fewer subsets of data be-
ing similarly processed than at the end of fourth convolutional block 13-block4-pool.

i
i

“output” — 2021/11/19 — 8:22 — page 31 — #45 i
i

i
i

i
i

Compact Visualization of DNN Classification Performances for Interpretation and Improvement 31

0 1 2 3 4 5 6 7 8 9
Predicted label

0

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l
Accuracy: 98.96%

0.0

0.2

0.4

0.6

0.8

Ts
hir

t/t
op

Tr
ou

se
r

Pu
llo

ve
r

Dre
ss
Co

at

Sa
nd

al
Sh

irt

Sn
ea

ke
r
Bag

Ank
le

bo
ot

Predicted label

Tshirt/top
Trouser
Pullover

Dress
Coat

Sandal
Shirt

Sneaker
Bag

Ankle boot

Tr
ue

 la
be

l

Accuracy: 73.44%

0.0

0.2

0.4

0.6

0.8

Easy scenario (LeNet5 + MNIST) Generalization scenario (LeNet5 + Fashion-MNIST)

0 1 2 3 4 5 6 7 8 9
Predicted label

0

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l

Accuracy: 97.00%

0.0

0.2

0.4

0.6

0.8

Ts
hir

t/t
op

Tr
ou

se
r

Pu
llo

ve
r

Dre
ss
Co

at

Sa
nd

al
Sh

irt

Sn
ea

ke
r
Bag

Ank
le

bo
ot

Predicted label

Tshirt/top
Trouser
Pullover

Dress
Coat

Sandal
Shirt

Sneaker
Bag

Ankle boot

Tr
ue

 la
be

l

Accuracy: 73.75%

0.0

0.2

0.4

0.6

0.8

Simplification scenario (VGG16 + MNIST) Branch scenario (DoubleLeNet5 + MNIST)

Figure 3.4: Confusion matrices of the systems presented in Figure 3.3.

We imply that data is being over-processed by convolution operations which degrades
the model performances. We propose two ways to improve the model architecture
based on this assumption :
• VGG16-B4: Remove the fifth convolutional block altogether and directly connect

the fourth block to the top of the model. (i.e., dense layers)
• VGG16-B4+: Remove the fifth convolutional block but keep the Pooling layer be-

fore connecting the model’s top. This ensure that the number of weight parameters
for each neuron of the next layer is not increased after the modification.

In both cases, the model’s top is being re-trained from scratch (with only results from
ImageNet processing for the convolutional blocks) to ensure that any noticeable im-
provement is due to the architecture modification instead of possible transfer learning
from previous iteration.

The results of VGG16’s simplification is shown in Table 3.2. Removing the fifth
convolutional block of VGG16 improved the classification performances of the model
while reducing its complexity. Which improvement is better for the use case is up to
the user’s decision. However, even without knowing the parameters of each VGG16’s
layers nor the nature of the processed data, the user can notice the classification degra-

i
i

“output” — 2021/11/19 — 8:22 — page 32 — #46 i
i

i
i

i
i

32 Explainable Deep Learning–Methods and applications

Architecture Accuracy Parameters Memory Usage
VGG16 97.00% 33 638 218 447.16 ± 19.7 MB
VGG16-B4 98.65% 32 850 250 325.96 ± 3.95 MB
VGG16-B4+ 98.35% 26 558 794 347.83 ± 7.9 MB

Table 3.2: Performances of different VGG16 architectures following modification
based on observations of progressive classification. VGG16-B4 architecture has 1.67%
more accuracy than the original model while having 2.34% less parameters and hav-
ing 27.1% smaller footprint in RAM. VGG16-B4+ has 1.37% more accuracy than the
original but with 21% less parameters. However, its RAM footprint is only 22.2%
smaller than the original model.

dation behavior of the network, and engage in network simplification manually.

E.3. Discussion
Compared to widely used t-SNE projection [RFFT17], the method presented in this
chapter has a fairly more efficient use of the screen space. Furthermore, all of the
layer activations can be displayed on the same screen space without overploting data.
Focus on pixel-scale usage is emphasized, but not all points of the curves are used;
black pixels correspond to unused pixels because test datasets are smaller than what
is technically possible with such display size. Indeed, in the case of Hilbert’s curve,
only datasets of size 4n can entirely fit into the curve. In our experiment, 47 − 10000
pixels are lost, which is roughly 39% of the picture for each layer. It is thus possible
to evaluate larger datasets without using more space on the screen, resulting in better
data-ink usage. Another observation is the effectiveness of samples projection over
the fractal curve to depict the classification performance over layers. Usually, repre-
sentation of sample ordering is getting better over layers which means the network is
progressively better at separating classes of samples. Dataset and subsets of dataset
classification difficulty are also represented: Fashion-MNIST, which is a problem more
difficult than MNIST, is thus less well organized.

By construction, the very first node corresponds to the projection of the raw dataset;
the noisier it is, the more complex it is to distinguish its samples without extracting
additional features. The representation clearly depicts this point and its quality met-
ric is worst for Fashion-MNIST than MNIST. The very last node corresponds to the
projection of the softmax values; the noisier it is, the worst the network’s accuracy is.
The final representation is complementary of a confusion matrix (see Figure 3.4) as it
provides more information about classification efficiency of the models.

A labeled dataset is currently needed to color the pixels. It limits the use of the
method to a test dataset and not a real world unlabeld dataset. However, it is still

i
i

“output” — 2021/11/19 — 8:22 — page 33 — #47 i
i

i
i

i
i

Compact Visualization of DNN Classification Performances for Interpretation and Improvement 33

(a) Good system,
absolute coloring

(b) Good system,
relative coloring

(c) Bad system,
absolute coloring

(d) Bad system, rel-
ative coloring

Figure 3.5: Comparison of the absolute and relative color schemes. No data is depicted
in black for absolute and light blue for relative color schemes.

Figure 3.6: Analysis of the spread of samples of class 2 over layers. Such represen-
tation could indicated an oversizing of the network by looking at the separation effect
around layer 17-block5-pool.

possible to use the predicted labels instead of the groundtruth ones to obtain a view of
how the network interprets the data.

Fig 3.5 compares the absolute and relative color schemes for one operation able to
differentiate the samples and another one yet not able to differentiate them. Thanks
to the color, absolute colorization allows to clearly see which classes is subject to
more noise than the others, while the relative colorization rule allows to better see the
relative quantity of errors, and is also able by construction to handle many classes.

Focusing on a specific class helps to track the evolution of the sample processing
for that chosen class over layers. Figure 3.6 illustrates a the oversizing of the VGG16
network on MNIST by observing that samples of selected class tend to be processed
similarly at the 09-block3-pool layer, whereas it is not the case anymore around
layer 17-block5-pool.

E.4. Future Work
The method is resource consuming, mainly due to the need of storing dissimilarity
matrices in memory, which is of size N2, with N being the size of the tested dataset.
As a future work, it would be interesting to study whether one could use smaller part,
or estimation, of the dissimilarities to approach a similar visualization. Additionally,
the ordering of the samples highly depend on the Euclidean distance that is known to
not be efficient in high dimensional spaces; other metrics need to be compared. The
approach is satisfactory using interaction, but is not yet self-sufficient. Indeed, it pro-
vides a good overview of how the classification is handled but lacks of interactions
to track the progression of a single sample or group of samples (in opposite to our

i
i

“output” — 2021/11/19 — 8:22 — page 34 — #48 i
i

i
i

i
i

34 Explainable Deep Learning–Methods and applications

previous work that specifically focus on this point [HGBA20]) in the network. Such
investigations have to be held; for example, some sort of consistency in the sample
position between two successive glyph would help in tracking elements. Furthermore,
being able to focus a single sample instead of the whole class would help in determin-
ing the cause of miss-classification by the network (e.g. the model made confusion
between a 6 and a 8 at the first convolutional layer, which led in miss-classification for
the rest of the processing).

The Hilbert curve is very efficient to place the samples in its reserved space. How-
ever, there is a high probability that the number of elements in the dataset to visualize is
lower than what is possible with the curve. It would be interesting to implement addi-
tional interactions that use this additional space; or use grid-based projection methods
instead of fractal ones. To subsample or sample with replacement the dataset with
a number of samples equals to the curve length, and that follows data distribution,
could also be interesting. The standard Sugiyama algorithm does not consider the
screen space size; a modified method should be used in order to project the graph on
the screen in a way that does not necessitate to horizontally scroll the screen to see it
[LLS+18].

F. Conclusion

Deep learning classifiers are progressively replacing handcrafted and understood stan-
dard classifiers for various fields. This significant gain in performance and accuracy is
counterbalanced by a steep difficulty in understanding how and why they perform so
well. Information visualization is one solution to this fill this lack of interpretability.
We have presented a pipeline consuming a trained network and a dataset which pro-
duces an interactive representation depicting both the network’s architecture and the
behaviors of each layer when they process the test samples. Such system allows to
visually analyze the classification quality over layers of a dataset and could be used to
visually detect patterns in the data. This analysis would lead to a hypothesis about the
performance of the network. However, such hypothesis would need then to be verified
by other means.

This approach has been validated on various scenarios and shows its interest and
limits that could be overcome in the future. Extensions with various specific interac-
tion methods to also focus on individual data, efficient data subsampling and dense
pixel-based glyph construction with better screen-space usage and/or less restrictions
would imrpove the method for more complex and precise network analysis.

ACKNOWLEDGMENTS
his work has been carried out with financial support from the French State. Experiments presented in this
paper were carried out using the Labo’s in the Sky with Data(LSD), the LaBRI data platform partially
funded by Region Nouvelle Aquitaine.

i
i

“output” — 2021/11/19 — 8:22 — page 35 — #49 i
i

i
i

i
i

REFERENCES 35

References
AAB+15. Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, and et al. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensorflow.org.

AFMB+20. Kazi Ahmed Asif Fuad, Romain Martin, Pierre-Etienne andGiot, Romain Bourqui, Jenny
Benois-Pineau, and Akka Zemmari. Features understanding in 3d cnns for actions recogni-
tion in video. In The tenth International Conference on Image Processing Theory, Tools and
Applications (IPTA 2020), page 6, 2020.

ANM07. David Auber, Noël Novelli, and Guy Melançon. Visually mining the datacube using a pixel-
oriented technique. In 2007 11th International Conference Information Visualization (IV’07),
pages 3–10. IEEE, 2007.

BBHR+16. Michael Behrisch, Benjamin Bach, Nathalie Henry Riche, Tobias Schreck, and Jean-Daniel
Fekete. Matrix reordering methods for table and network visualization. Computer Graphics
Forum, 35(3):693–716, 2016.

BHL05. Frédéric Blanchard, Michel Herbin, and Laurent Lucas. A new pixel-oriented visualization
technique through color image. Information Visualization, 4(4):257–265, 2005.

BML+16. Alexander Binder, Grégoire Montavon, Sebastian Lapuschkin, Klaus-Robert Müller, and
Wojciech Samek. Layer-wise relevance propagation for neural networks with local renormal-
ization layers. volume 9887 of Lecture Notes in Computer Science, pages 63–71. Springer
Berlin / Heidelberg, 2016.

C+15. François Chollet et al. Keras, 2015.
dSW18. L. E. B. d. Silva and D. C. Wunsch. A study on exploiting vat to mitigate ordering effects in

fuzzy art. In 2018 International Joint Conference on Neural Networks (IJCNN), pages 1–8,
2018.

EBCV09. Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent. Visualizing higher-
layer features of a deep network. Technical report, University of Montreal, 2009.

Gar76. Martin Gardner. Mathematical games–in which “monster” curves force redefinition of the
word “curve”. Scientific American, 235(6):124–133, 1976.

GYA17. Mostafa Mehdipour Ghazi, Berrin Yanikoglu, and Erchan Aptoula. Plant identification using
deep neural networks via optimization of transfer learning parameters. Neurocomputing,
235:228–235, 2017.

HGBA20. Adrien Halnaut, Romain Giot, Romain Bourqui, and David Auber. Deep dive into deep
neural networks with flows. In 15th International Joint Conference on Computer Vision,
Imaging and Computer Graphics Theory and Applications, pages 231–239, 2020.

HGBA21. Adrien Halnaut, Romain Giot, Romain Bourqui, and David Auber. Samples classification
analysis across dnn layers with fractal curves. In ICPR 2020’s Workshop Explainable Deep
Learning for AI, 2021.

Hil35. David Hilbert. Über die stetige abbildung einer linie auf ein flächenstück. In Dritter Band:
Analysis· Grundlagen der Mathematik· Physik Verschiedenes, pages 1–2. Springer, 1935.

HKPC18. Fred Hohman, Minsuk Kahng, Robert Pienta, and Duen Horng Chau. Visual analytics in deep
learning: An interrogative survey for the next frontiers. IEEE transactions on visualization
and computer graphics, 25(8):2674–2693, 2018.

HZRS16. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for im-
age recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

HZS17. Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural
networks. In Proceedings of the IEEE international conference on computer vision, pages
1389–1397, 2017.

KAKC18. M. Kahng, P. Y. Andrews, A. Kalro, and D. H. Chau. Activis: Visual exploration of industry-
scale deep neural network models. IEEE Transactions on Visualization and Computer Graph-
ics, 24(1):88–97, 2018.

i
i

“output” — 2021/11/19 — 8:22 — page 36 — #50 i
i

i
i

i
i

36 REFERENCES

Kei00. Daniel A Keim. Designing pixel-oriented visualization techniques: Theory and applications.
IEEE Transactions on visualization and computer graphics, 6(1):59–78, 2000.

KTC+18a. Minsuk Kahng, Nikhil Thorat, Duen Horng Polo Chau, Fernanda B Viégas, and Martin Wat-
tenberg. Gan lab: Understanding complex deep generative models using interactive visual
experimentation. IEEE transactions on visualization and computer graphics, 25(1):1–11,
2018.

KTC+18b. Minsuk Kahng, Nikhil Thorat, Duen Horng Polo Chau, Fernanda B Viégas, and Martin Wat-
tenberg. Gan lab: Understanding complex deep generative models using interactive visual
experimentation. IEEE transactions on visualization and computer graphics, 25(1):1–11,
2018.

LBBH98. Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

LBH15. Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–
444, 2015.

LeC98. Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/,
1998.

LLS+18. Mengchen Liu, Shixia Liu, Hang Su, Kelei Cao, and Jun Zhu. Analyzing the noise robust-
ness of deep neural networks. In 2018 IEEE Conference on Visual Analytics Science and
Technology (VAST), pages 60–71. IEEE, 2018.

LSL+17. Mengchen Liu, Jiaxin Shi, Zhen Li, Chongxuan Li, Jun Zhu, and Shixia Liu. Towards better
analysis of deep convolutional neural networks. IEEE transactions on visualization and
computer graphics, 23(1):91–100, 2017.

MH08. Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of
machine learning research, 9:2579–2605, 2008.

Mor66. Guy M Morton. A computer oriented geodetic data base and a new technique in file sequenc-
ing. Technical report, International Business Machines Company New York, 1966.

MSQM15. Miriah Meyer, Michael Sedlmair, P Samuel Quinan, and Tamara Munzner. The nested blocks
and guidelines model. Information Visualization, 14(3):234–249, 2015.

NQ17. Andrew P Norton and Yanjun Qi. Adversarial-playground: A visualization suite showing
how adversarial examples fool deep learning. In Visualization for Cyber Security (VizSec),
2017 IEEE Symposium on, pages 1–4. IEEE, 2017.

RDS+15. Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale vi-
sual recognition challenge. International journal of computer vision, 115(3):211–252, 2015.

RFFT17. Paulo E Rauber, Samuel G Fadel, Alexandre X Falcao, and Alexandru C Telea. Visualizing
the hidden activity of artificial neural networks. IEEE transactions on visualization and
computer graphics, 23(1):101–110, 2017.

SCD+17. R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Grad-cam:
Visual explanations from deep networks via gradient-based localization. In 2017 IEEE In-
ternational Conference on Computer Vision (ICCV), page 618–626, 2017.

SCS+17. Daniel Smilkov, Shan Carter, D Sculley, Fernanda B Viégas, and Martin Wattenberg. Direct-
manipulation visualization of deep networks. arXiv preprint arXiv:1708.03788, 2017.

Ski04. John Skilling. Programming the hilbert curve. In AIP Conference Proceedings, volume 707,
pages 381–387. American Institute of Physics, 2004.

STT81. Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for visual understanding
of hierarchical system structures. IEEE Transactions on Systems, Man, and Cybernetics,
11:109–125, 1981.

SZ14. Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. preprint arXiv:1409.1556, 2014.

Tan13. Yichuan Tang. Deep learning using linear support vector machines. In In ICML, 2013.
WGSY19. Junpeng Wang, Liang Gou, Han-Wei Shen, and Hao Yang. Dqnviz: A visual analytics ap-

proach to understand deep q-networks. IEEE transactions on visualization and computer
graphics, 25(1):288–298, 2019.

i
i

“output” — 2021/11/19 — 8:22 — page 37 — #51 i
i

i
i

i
i

REFERENCES 37

WSW+17. Kanit Wongsuphasawat, Daniel Smilkov, James Wexler, Jimbo Wilson, Dandelion Mane,
Doug Fritz, Dilip Krishnan, Fernanda B Viégas, and Martin Wattenberg. Visualizing dataflow
graphs of deep learning models in tensorflow. IEEE transactions on visualization and com-
puter graphics, 24(1):1–12, 2017.

WTS+20. Zijie J Wang, Robert Turko, Omar Shaikh, Haekyu Park, Nilaksh Das, Fred Hohman, Min-
suk Kahng, and Duen Horng Chau. Cnn 101: Interactive visual learning for convolutional
neural networks. In Extended Abstracts of the 2020 CHI Conference on Human Factors in
Computing Systems, pages 1–7, 2020.

XRV17. Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

YAM+15. Pavan Yalamanchili, Umar Arshad, Zakiuddin Mohammed, Pradeep Garigipati, Peter
Entschev, Brian Kloppenborg, James Malcolm, and John Melonakos. ArrayFire - A high
performance software library for parallel computing with an easy-to-use API, 2015.

ZNWZ18. Quanshi Zhang, Ying Nian Wu, and Song-Chun Zhu. Interpretable convolutional neural net-
works. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 8827–8836, 2018.

ZYMW19. Quanshi Zhang, Yu Yang, Haotian Ma, and Ying Nian Wu. Interpreting cnns via decision
trees. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 6261–6270, 2019.

