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Abstract

The paper analyzes the discontinuous Galerkin approximation of Maxwell’s equations writ-
ten in first-order form and with non-homogeneous magnetic permeability and electric permit-
tivity. Although the Sobolev smoothness index of the solution may be smaller than 1

2
, it is

shown that the approximation is spectrally correct. The convergence proof is based on a du-
ality argument. One essential idea is that the smoothness index of the dual solution is always
larger than 1

2
irrespective of the regularity of the material properties. Discrete involutions also

play a key role in the analysis.

Keywords. Curl-curl problem, duality argument, involution, spectral approximation, finite ele-
ments, Maxwell’s equations
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1 Introduction
Our objective is to approximate the Maxwell eigenvalue problem written in first-order form and
posed on a bounded domain D ⊂ R3 (open, connected, Lipschitz subset of Rd). The approximation
is done with the discontinuous Galerkin (dG) method. For simplicity, we assume that D is a
Lipschitz polyhedron, so that it can be covered exactly by a sequence of affine simplicial meshes.
We address the case of a material with discontinuous properties. More precisely, we assume that
the magnetic permeability, µ, and the electric permittivity, ε, are piecewise smooth on a polyhedral
partition of D. We also assume that the meshes are conforming with the above partition. We do
not make any specific assumption on the topology of D, i.e., D may be multiply connected and its
boundary, ∂D, may have more than one connected component.

This work is the second part of a research program started in [24] where it is shown that
the dG approximation of the Maxwell eigenvalue problem written in first-order form and with
constant properties is spectrally correct. The two key ingredients of the proof therein are that
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the dG approximation is shown to preserve weak forms of the involutions associated with Gauss’s
laws of electricity and magnetism, and that the solution to the boundary-value problem has a
Sobolev smoothness index larger than 1

2 when the right-hand side is square integrable. But the
analysis done in [24] does not hold when the magnetic permeability and the electric permittivity
are discontinuous as the Sobolev smoothness index of the solution of the boundary-value problem
is lower than 1

2 in this case. It is the objective of the paper to address this difficulty.
The case of discontinuous properties for Maxwell’s equations written in second-order form has

been investigated in Buffa and Perugia [9], and the dG approximation has been shown therein to
be spectrally correct. The method has been numerically tested in Buffa et al. [10]. A stabilized
continuous finite element method has been studied in Bonito et al. [7] and has been shown to
be spectrally correct when the Sobolev smoothness index is smaller than 1

2 . Conforming methods
using edge elements have been investigated in Ciarlet [17] and in [22] for solving the boundary-value
problem with low regularity. Very few papers have addressed the dG approximation of Maxwell’s
equations in first-order form. Numerical experiments performed in Hesthaven and Warburton [26,
§5] and [27, p. 513-514] have revealed that the dG approximation performs well in the time domain
and the approximation of the eigenvalue problem seems to be spurious free when the magnetic
permeability and the electric permittivity are discontinuous. Similar observations are made in
Alvarez et al. [1, §V] and Cohen and Duruflé [18, §5]. We provide here a mathematical proof of
these observations.

In the paper, we extend the results from [24] and prove that the dG approximation of Maxwell’s
equations is spectrally correct for every positive Sobolev regularity index. The analysis significantly
differs from that done in [24] as the analysis therein strongly exploits the existence of a Sobolev
smoothness index for the solution that is larger than 1

2 . Here again, the involution properties
identified in [24] play an important role, but convergence is proved by a duality argument instead
of invoking a generic inf-sup condition. The first key idea is that, irrespective of the smoothness of
the magnetic permeability and the electric permittivity, the solution to the dual problem always
lives in a Sobolev space with a smoothness regularity index larger than 1

2 . Indeed, the smoothness
index of the dual solution is only controlled by the smoothness of the domain D and is therefore
larger than 1

2 in a Lipschitz polyhedron (see Lemma 4.3). The second key idea is that although
the discrete solution does not preserve the continuous involutions, the defect is small enough to be
controlled by the available regularity, no mater how small (see Lemma 4.10).

The paper is organized as follows. We introduce the problem and recall useful theoretical results
in §2. The discrete setting is described in §3. The important preliminary results established in this
section are the commutator estimates in Lemma 3.3 and the discrete Poincaré–Steklov inequalities
in Lemma 3.4. The error analysis is performed in §4. An priori estimate on the discrete solution is
proved in Lemma 4.1 as a consequence of a key deflated inf-sup condition established in Lemma 4.2.
In this condition, the discrete trial space is a proper subspace of the discrete test space, and this
allows us to control a stronger norm on the discrete trial space. The duality argument is introduced
in §4.3 and the main convergence result of the paper is stated in Theorem 4.9. Some standard
results on Helmholtz decompositions are collected in Appendix A. We point out that the above
analysis can be extended to establish the spectral correctness of the dG approximation of the
grad-div problem written in first-order form; details are omitted for brevity.

2 Continuous setting
In this section, we present the functional setting to formulate the exact eigenvalue problem and
the associated boundary-value problem.



Spectrally correct dG approximation with discontinuous coefficients 3

2.1 Domain and model parameters
We consider a material with magnetic permeability, µ, and electric permittivity, ε, occupying the
domain D ⊂ Rd, d = 3, which is assumed to be an open, bounded, connected polyhedron with
Lipschitz boundary. The boundary of D is denoted ∂D and its unit outward normal nD. The
domain D can have a general topology; in particular, D can be multiply connected and ∂D can
have several connected components. The material properties µ and ε can be heterogeneous, and in
particular, they can take discontinuous values. To fix the ideas, we assume that there is a partition
of D into a finite number of disjoint Lipschitz polyhedra such that µ and ε are piecewise smooth
on this partition.

The magnetic permeability and electric permittivity of vacuum are denoted µ0, ε0, respectively.
To simplify the presentation, we assume throughout the paper that the ratios µ−1

0 µ and ε−1
0 ε are of

order unity, so that these ratios can be hidden in the generic constants used in the error analysis.
To be dimensionally consistent, we introduce a length scale, `D, associated with D; it can be for
instance the diameter of D. Recalling that c := (µ0ε0)−

1
2 is the speed of light, we introduce the

quantity ω := c`−1
D which scales as the reciprocal of a time scale.

2.2 Functional spaces
We use standard notation for Lebesgue and Sobolev spaces. We use boldface fonts for Rd-valued
fields and functional spaces composed of such fields. The space L2(D) is composed of Lebesgue
integrable fields that are square integrable, and its canonical inner product is denoted (·, ·)L2(D).
We define the Hilbert space

H(curl;D) := {h ∈ L2(D) | ∇×h ∈ L2(D)}, (1)

equipped with the natural graph norm ‖h‖2H(curl;D) := ‖h‖2L2(D) + `2D‖∇×h‖2L2(D). We also con-
sider the closed subspace

H0(curl;D) := {h ∈H(curl;D) | γc
∂D(h) = 0}, (2)

where γc
∂D : H(curl;D) → H−

1
2 (∂D) is the extension by density of the tangent trace operator

such that γc
∂D(h) = h|∂D×nD for every smooth field h ∈ Hr(D), r > 1

2 , with nD the unit
outward normal to D. We consider the operators ∇× : H(curl;D) 3 e 7−→ ∇×e ∈ L2(D) and
∇0× : H0(curl;D) 3 h 7−→ ∇×h ∈ L2(D). These operators are adjoint to each other since we
have

(∇0×h, e)L2(D) = (h,∇×e)L2(D), ∀(h, e) ∈H0(curl;D)×H(curl;D). (3)

We are going to make use of the following closed subspaces:

H(curl = 0;D) := {e ∈H(curl;D) | ∇×e = 0}, (4a)
H0(curl = 0;D) := {h ∈H0(curl;D) | ∇0×h = 0}, (4b)

together with the corresponding L2-orthogonal projections

Πc : L2(D)→H(curl = 0;D), (5a)

Πc
0 : L2(D)→H0(curl = 0;D). (5b)
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This leads to the following closed subspaces:

Xc
0 := H0(curl;D) ∩H0(curl = 0;D)

⊥
, (6a)

Xc := H(curl;D) ∩H(curl = 0;D)
⊥
, (6b)

Xc
µ,0 := {h ∈H0(curl;D) | µh ∈H0(curl = 0;D)

⊥}, (6c)

Xc
ε := {e ∈H(curl;D) | εe ∈H(curl = 0;D)

⊥}, (6d)

where the symbol ⊥ denotes the orthogonality in L2(D). Using the above L2-orthogonal projec-
tions, we can write

Xc
0 := {η ∈H0(curl;D) | Πc

0(η) = 0}, (7a)
Xc := {ε ∈H(curl;D) | Πc(ε) = 0}, (7b)
Xc
µ,0 := {h ∈H0(curl;D) | Πc

0(µh) = 0}, (7c)

Xc
ε := {e ∈H(curl;D) | Πc(εe) = 0}. (7d)

Lemma 2.1 (Isomorphisms). The following operators are isomorphisms:

∇× : Xc →H0(curl = 0;D)
⊥
, ∇0× : Xc

0 →H(curl = 0;D)
⊥
, (8a)

∇× : Xc
ε →H0(curl = 0;D)

⊥
, ∇0× : Xc

µ,0 →H(curl = 0;D)
⊥
. (8b)

Proof. See Appendix.

Remark 2.2 (Topology of D). Let H(div;D) := {v ∈ L2(D) | ∇·v ∈ L2(D)} and H0(div;D) :=

{v ∈H(div;D) | γd
∂D(v) = 0}, where γd

∂D : H(div;D)→ H−
1
2 (∂D) is the extension by density of

the normal trace operator such that γd
∂D(v) = v|∂D·nD for every smooth field v ∈Hr(D), r > 1

2 .
Consider the subspaces

H(div = 0;D) := {v ∈H(div;D) | ∇·v = 0},
H0(div = 0;D) := {v ∈H0(div;D) | ∇0·v = 0}.

Then, the identities (61) show that H0(curl = 0;D)
⊥

= H(div = 0;D) if ∂D is connected, and
H(curl = 0;D)

⊥
= H0(div = 0;D) if D is simply connected.

2.3 Preliminary results
The ∇× and ∇0× operators can be extended by density to ∇× : L2(D) → (Xc

0)′ and ∇0× :
L2(D)→ (Xc)′. The following result is a straightforward consequence of Lemma 2.1.

Corollary 2.3 (Weak Poincaré–Steklov (in)equalities). The following holds:

‖e‖L2(D) = `D‖∇×e‖(Xc
0)′ , ∀e ∈H(curl = 0;D)

⊥
, (9a)

‖h‖L2(D) = `D‖∇0×h‖(Xc)′ , ∀h ∈H0(curl = 0;D)
⊥
, (9b)

with ‖∇×e‖(Xc
0)′ :=supη∈Xc

0

|(e,∇0×η)L2(D)|
`D‖∇0×η‖L2(D)

, ‖∇0×h‖(Xc)′ :=supε∈Xc

|(h,∇×ε)L2(D)|
`D‖∇×ε‖L2(D)

.

The following result is a consequence of the elliptic regularity theory and is proved in Bonito
et al. [6], Jochmann [29]. It generalizes a result due to Costabel [19, Thm. 2] (see also Birman and
Solomyak [4, Thm. 3.1]) for either constant or smooth properties, and in this case the smoothness
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index is s = 1
2 in a Lipschitz domain. One has s ∈ ( 1

2 , 1] if D is a Lipschitz polyhedron (see
Amrouche et al. [2, Prop. 3.7]) and s = 1 if D is convex (see [2, Thm. 2.17]). The reader is also
referred to Ciarlet [16, Thm. 16] for particular situations with heterogeneous properties for which
smoothness is established with s > 1

2 . In what follows, the symbol CD denotes a generic positive
constant whose value can change at each occurrence as long as it only depends on D and, whenever
relevant, the material properties.

Lemma 2.4 (Regularity shift). The following holds:
(i) Constant properties: There is s′ ∈ ( 1

2 , 1] such that, for all (η, ε) ∈Xc
0×Xc,

|η|Hs′ (D) ≤ CD `
1−s′
D ‖∇0×η‖L2(D), |ε|Hs′ (D) ≤ CD `

1−s′
D ‖∇×ε‖L2(D). (10)

(ii) Heterogeneous properties: There is s ∈ (0, 1
2 ] such that, for all (h, e) ∈Xc

µ,0×Xc
ε ,

|h|Hs(D) ≤ CD `1−sD ‖∇0×h‖L2(D), |e|Hs(D) ≤ CD `1−sD ‖∇×e‖L2(D). (11)

2.4 Boundary-value and eigenvalue problems
We define the space Lc := L2(D)×L2(D) which we equip with the norm

‖(f , g)‖Lc :=
{
‖µ 1

2f‖2L2(D) + ‖ε 1
2 g‖2L2(D)

} 1
2 , ∀(f , g) ∈ Lc. (12)

We define the operator T : Lc → Lc such that, for all (f , g) ∈ Lc, the pair (H,E) := T (f , g) ∈
H0(curl;D)×H(curl;D) solves the following boundary-value problem:

ωΠc
0(µH)−∇×E = ω(I −Πc

0)(µf) =: f ′, (13a)
ωΠc(εE) +∇0×H = ω(I −Πc)(εg) =: g′. (13b)

We notice that Πc
0(f ′) = Πc(g′) = 0. Moreover, (3) readily shows that

Πc
0(∇×E) = Πc(∇0×H) = 0, ∀(H,E) ∈H0(curl;D)×H(curl;D). (14)

Hence, the problem (13) can be equivalently rewritten as follows: Find (H,E) ∈H0(curl;D)×H(curl;D)
so that

−∇×E = f ′, Πc(εE) = 0, (15a)
∇0×H = g′, Πc

0(µH) = 0. (15b)

The following result confirms that the definition of the operator T makes sense.

Lemma 2.5 (Well-posedness and stability). (i) The boundary-value problem (13) has a unique
solution and its solution sits in Xc

µ,0×Xc
ε . (ii) The solution (H,E) satisfies the a priori estimate

`D
(
µ

1
2
0 ‖∇0×H‖L2(D) + ε

1
2
0 ‖∇×E‖L2(D)

)
≤ ‖(f , g)‖Lc , (16a)

and there is s ∈ (0, 1
2 ] such that

|H|Hs(D) ≤ CD `1−sD ‖∇0×H‖L2(D), |E|Hs(D) ≤ CD `1−sD ‖∇×E‖L2(D). (16b)

(iii) The operator T : Lc → Lc is compact.
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Proof. (i) The existence and uniqueness of a solution to (15) is a direct consequence of (8b). This
proves the first assertion because the problems (13) and (15) are equivalent.

(ii) As ‖∇×E‖L2(D) ≤ ωµ
1
2
0 ‖µ

1
2f‖L2(D) and ‖∇0×H‖L2(D) ≤ ωε

1
2
0 ‖ε

1
2 g‖L2(D), the estimate

(16a) is obtained by observing that ωµ
1
2
0 ε

1
2
0 = `−1

D . Moreover, the estimates (16b) come from (11).
(iii) This is a direct consequence of Lemma 2.4(ii) and the Rellich–Kondrachov embedding

theorem.

We say that λ ∈ C and (H,E) ∈ Lc form an eigenpair of T if T (H,E) = λ(H,E) (notice
that the eigenvalue λ is nondimensional). Whenever λ 6= 0, we obtain (H,E) ∈Xc

µ,0×Xc
ε and

−∇×E =
ω

λ
µH, ∇0×H =

ω

λ
εE. (17)

The goal of the paper is to construct a discontinuous Galerkin approximation of T that is spec-
trally correct. This is done by proving that the discontinuous Galerkin approximation is strongly
convergent in the operator norm induced by the norm (12).

Remark 2.6 (Involutions). We refer to the orthogonality properties Πc(εE) = 0 and Πc
0(µH) = 0

as involutions since these properties are involutive for the time-dependent Maxwell equations. These
conditions imply Gauss’s laws, i.e., ∇·(εE) = 0 (in the absence of free charges) and ∇·(µH) = 0,
but they are not equivalent to Gauss’s laws when the topology of D is nontrivial (see Remark 2.2).
We emphasize that the above involutions are essential to prove Lemma 2.1 (see, e.g., Hiptmair [28,
Cor. 4.4] for a related statement formulated as a Poincaré–Steklov inequality).

3 Discrete setting
In this section, we introduce the discrete setting.

3.1 Mesh, polynomial spaces, and orthogonal projections
Let (Th)h∈H be a shape-regular family of affine simplicial meshes such that each mesh covers D
exactly and is compatible with the partition of D associated with the discontinuities of the material
properties. For simplicity, we assume in the paper that the meshes are quasi-uniform. A generic
mesh cell is denoted K, its diameter hK and its outward unit normal nK . We define h̃ as the
piecewise constant function on Th such that h̃|K = hK for all K ∈ Th; we set h := ‖h̃‖L∞(D). The
set of mesh faces, Fh, is split into the subset of mesh interfaces, say F◦h , and the subset of mesh
boundary faces, say F∂h . Each interface is shared by two distinct mesh cells which we denote Kl,
Kr. Each boundary face is shared by one mesh cell, Kl, and the boundary, ∂D. For every mesh
face F ∈ Fh, hF denotes the diameter of F . Every mesh interface F ∈ F◦h is oriented by the unit
normal, nF , pointing from Kl to Kr. Every boundary face F ∈ F∂h is oriented by the unit normal
nF := nD.

In what follows, for positive real numbers A,B, we abbreviate as A . B the inequality A ≤ CB
where C is a generic constant whose value can change at each occurrence as long as it is independent
of h ∈ H, the parameters µ0, ε0, `D and any fields involved in the inequality. For simplicity, C can
depend on the ratios ess inf µ

µ0
, ess sup µ

µ0
, ess inf ε

ε0
, and ess sup ε

ε0
.

Let k ≥ 0 be the polynomial degree. Let Pk,d be the space composed of d-variate polynomials
of total degree at most k and set PPPk,d := [Pk,d]d. Consider the vector-valued broken polynomial
spaces

P b
k (Th) := {wh ∈ L∞(D) | wh|K ∈ PPPk,d, ∀K ∈ Th}. (18)
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We shall also consider theH(curl;D)-conforming finite element space, P c
k (Th), composed of piece-

wise Nédélec polynomials of order k ≥ 0, and its subspace, P c
k0(Th), composed of discrete fields in

P c
k (Th) whose tangential trace vanishes on ∂D. We set

P c
k (curl = 0; Th) := {eh ∈ P c

k (Th) | ∇×eh = 0}, (19a)
P c
k0(curl = 0; Th) := {hh ∈ P c

k0(Th) | ∇0×hh = 0}. (19b)

Notice that P c
k (Th) is not a subspace of P b

k (Th) (actually P c
k (Th) ( P b

k+1(Th)), but we are going
to make use of the following well-known result (see, e.g., [23, Chap. 15&18]).

Lemma 3.1 (Curl-free subspaces). The following identities hold:

P b
k (Th) ∩H(curl = 0;D) = P c

k (curl = 0; Th), (20a)

P b
k (Th) ∩H0(curl = 0;D) = P c

k0(curl = 0; Th). (20b)

We define the L2-orthogonal projection onto the broken polynomial space P b
k (Th),

Πb
h : L2(D)→ P b

k (Th), (21)

and the L2-orthogonal projections onto the curl-free subspaces defined in (19),

Πc
h : L2(D)→ P c

k (curl = 0; Th), (22a)

Πc
h0 : L2(D)→ P c

k0(curl = 0; Th). (22b)

The above discrete projection operators play a key role to establish that the involutions satisfied by
the dG approximation are strong enough to guarantee the strong convergence of the approximation
in the operator norm induced by that of Lc.

Lemma 3.2 (Discrete projections). We have

Πc
h0 ◦Πc

0 = Πc
h0, Πc

h ◦Πc = Πc
h. (23)

The above lemma, whose proof is omitted for brevity, allows us to assert that if Πc(e) = 0,
then Πc

h(e) = 0; similarly, if Πc
0(h) = 0, then Πc

h0(h) = 0.

3.2 Jumps, averages, and discrete curl operators
For all K ∈ Th, all F ∈ Fh with F ⊂ ∂K, and all wh ∈ P b

k (Th), we define the local trace operators
such that γg

K,F (wh)(x) := wh|K(x), γc
K,F (wh)(x) := wh|K(x)×nF for a.e. x ∈ F . Then, for all

F ∈ F◦h and x ∈ {g, c}, we define the jump and average operators such that

[[wh]]xF := γx
Kl,F

(wh)− γx
Kr,F (wh), {{wh}}xF :=

1

2

(
γx
Kl,F

(wh) + γx
Kr,F (wh)

)
. (24a)

To allow for more compact expressions, we also set [[wh]]xF := {{wh}}xF := γx
Kl,F

(wh) for all F ∈ F∂h .
Notice that [[hh]]cF = 0 for all hh ∈ P c

k0(Th) and all F ∈ Fh, whereas [[eh]]cF = 0 for all eh ∈ P c
k (Th)

and all F ∈ F◦h . We define the jump sesquilinear forms such that for all Hh,hh,Eh, eh ∈ P b
k (Th),

sc
h(Hh,hh) :=

∑
F∈Fh

([[Hh]]cF , [[hh]]cF )L2(F ), sc,◦
h (Eh, eh) :=

∑
F∈F◦h

([[Eh]]cF , [[eh]]cF )L2(F ).
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These sesquilinear forms induce the following seminorms which we henceforth call jump seminorms:

|hh|cJ := sc
h(hh,hh)

1
2 , |eh|c,◦J := sc,◦

h (eh, eh)
1
2 . (25)

The discrete curl operators

Ch0 : P b
k (Th)→ P b

k (Th), Ch : P b
k (Th)→ P b

k (Th) (26)

are defined as follows: For all (hh, eh) ∈ P b
k (Th)×P b

k (Th), Ch0(hh) and Ch(eh) are the unique
members of P b

k (Th) such that the following identities hold true for all e′h,h
′
h ∈ P b

k (Th):

(Ch0(hh), e′h)L2(D) := (∇h×hh, e′h)L2(D) +
∑
F∈Fh

([[hh]]cF , {{e′h}}
g
F )L2(F ), (27a)

(Ch(eh),h′h)L2(D) := (∇h×eh,h′h)L2(D) +
∑
F∈F◦h

([[eh]]cF , {{h′h}}
g
F )L2(F ), (27b)

where ∇h× denotes the broken curl operator (evaluated cellwise). The following integration by
parts formula holds (compare with (3)):

(Ch0(hh), eh)L2(D) = (hh,Ch(eh))L2(D), ∀(hh, eh) ∈ P b
k (Th)×P b

k (Th). (28a)

Since P b
k (Th) is not a subset of H(curl;D), it is useful to define the spaces

V h
] := H0(curl;D) + P b

k (Th), V e
] := H(curl;D) + P b

k (Th). (29)

If the pair (H,E) ∈H0(curl;D)×H(curl;D) solves the continuous problem (13) and if the pair
(Hh,Eh) ∈ P b

k (Th)×P b
k (Th) solves the discrete problem resulting from the dG approximation (to

be defined more precisely in Section 4), the errors satisfy

H −Hh ∈ V h
] , E −Eh ∈ V e

] . (30)

It is then convenient to extend the jump sesquilinear forms and the discrete curl operators defined
above to the spaces V h

] and V e
] . To this purpose, we notice that although the sums in (29)

are not direct, every field hh in H0(curl;D) ∩ P b
k (Th) satisfies [[hh]]cF = 0 for all F ∈ Fh, and

Ch0(hh) = ∇0×hh because ∇0×
(
H0(curl;D) ∩ P b

k (Th)
)
) ⊂ P b

k (Th). Similarly, every field eh in
H(curl;D) ∩ P b

k (Th) satisfies [[eh]]cF = 0 for all F ∈ F◦h , and Ch(eh) = ∇×eh. It is therefore
legitimate to set, for all h = h̃ + hh ∈ V h

] with h̃ ∈ H0(curl;D) and hh ∈ P b
k (Th), and for all

e = ẽ+ eh ∈ V e
] with ẽ ∈H(curl;D) and eh ∈ P b

k (Th),

Ch0(h) := ∇0×h̃+Ch0(hh), [[h]]cF := [[hh]]cF , ∀F ∈ Fh, (31a)
Ch(e) := ∇×ẽ+Ch(eh), [[e]]cF := [[eh]]cF , ∀F ∈ F◦h . (31b)

For simplicity, we use the same symbols for the extended operators; in particular, we now have
Ch0 : V h

] → L2(D) and Ch : V e
] → L2(D). The following commutators are useful to estimate the

defects introduced by the above extensions:

δh(hh, e) := (hh,∇×e)L2(D) − (Ch0(hh), e)L2(D), (32a)
δ◦h(eh,h) := (eh,∇0×h)L2(D) − (Ch(eh),h)L2(D), (32b)

for all hh, eh ∈ P b
k (Th), all e ∈H(curl;D), and all h ∈H0(curl;D). The following result gives a

control on the defects whenever the continuous fields are smooth enough, for instance, when they
are in Xc

0×Xc.



Spectrally correct dG approximation with discontinuous coefficients 9

Lemma 3.3 (Bound on commutators). The following inequalities hold for all (hh, eh) ∈ P b
k (Th)×P b

k (Th)
and all (η, ε) ∈Xc

0×Xc,

|δh(hh, ε)| . (h/`D)s
′− 1

2 `
1
2

D|hh|
c
J‖∇×ε‖L2(D), (33a)

|δ◦h(eh,η)| . (h/`D)s
′− 1

2 `
1
2

D|eh|
c,◦
J ‖∇0×η‖L2(D), (33b)

where s′ ∈ ( 1
2 , 1] is the regularity pickup introduced in (10).

Proof. We only prove (33a) since the proof of the other estimate is similar. Let hh ∈ P b
k (Th) and

ε ∈Xc. Using the definition of the commutator (32a) and integrating by parts, we obtain

δh(hh, ε) = (hh,∇×ε)L2(D) − (Ch0(hh), ε)L2(D)

= (∇h×hh, ε)L2(D) +
∑
F∈Fh

([[hh]]cF , {{ε}}
g
F )L2(F ) − (Ch0(hh), ε)L2(D).

Notice that the summation over the mesh faces is meaningful since the regularity estimate (10) im-
plies that ε ∈Hs′(D) with s′ > 1

2 . Moreover, we have (Ch0(hh), ε)L2(D) = (Ch0(hh),Πb
h(ε))L2(D).

Thus, using the definition (27a) of the operator Ch0, we infer that

δh(hh, ε) = (∇h×hh, ε)L2(D) +
∑
F∈Fh

([[hh]]cF , {{ε}}
g
F )L2(F ) − (Ch0(hh),Πb

h(ε))L2(D)

= (∇h×hh, ε−Πb
h(ε))L2(D) +

∑
F∈Fh

([[hh]]cF , {{ε−Πb
h(ε)}}gF )L2(F )

=
∑
F∈Fh

([[hh]]cF , {{ε−Πb
h(ε)}}gF )L2(F ).

Hence, |δh(hh, ε)| . hs
′− 1

2 |hh|cJ|ε|Hs′ (D). The assertion follows by invoking the regularity esti-
mate (10).

3.3 Quasi-interpolation operators
In the paper, we invoke two types of quasi-interpolation operators. The first type of operators, con-
sidered in the proof of Lemma 3.4 and Lemma 4.10, are the averaging operators Ic,av

h0 : P b
k (Th)→

P c
k0(Th) and Ic,av

h : P b
k (Th) → P c

k (Th) analyzed in [21, §6]. The key approximation property of
these operators is that, for all vh ∈ P b

k (Th),

‖vh − Ic,av
h0 (vh)‖L2(D) . h

1
2 |vh|cJ, ‖vh − Ic,av

h (vh)‖L2(D) . h
1
2 |vh|c,◦J . (34)

The second type of operators, invoked in the proof of Lemma 3.4, Lemma 4.2, and Lemma 4.10, are
the commuting approximation operators J c

h0 : L2(D) → P c
k0(Th) J c

h : L2(D) → P c
k (Th) devised

in [23, §23.3] following the seminal ideas in Arnold et al. [3], Christiansen [14], Christiansen and
Winther [15], Schöberl [31]. The required properties of these operators are the following: (i) they
are projections; (ii) they map curl-free fields to curl-free fields; (iii) they are stable in L2 and
enjoy optimal approximation properties in the L2-norm for fields in Hr(D), r ∈ (0, 1]. As these
operators are not locally defined, their approximation properties involve the global mesh-size. This
is not an issue here since we have assumed the meshes to be quasi-uniform. We notice that an
interesting extension of our work is to lift this restriction by considering the operators devised in
Chaumont-Frelet and Vohralík [13].
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3.4 Discrete Poincaré–Steklov inequalities
We prove in this section discrete versions of the Poincaré–Steklov (in)equalities stated in Corol-
lary 2.3. We consider the following discrete subspaces:

Xc
µ,h0 := {hh ∈ P b

k (Th) | µhh ∈ P c
k0(curl = 0; Th)⊥}, (35a)

Xc
ε,h := {eh ∈ P b

k (Th) | εhh ∈ P c
k (curl = 0; Th)⊥}. (35b)

Lemma 3.4 (Discrete Poincaré–Steklov inequalities). The following holds:

‖hh‖L2(D) . `D‖∇0×hh‖(Xc)′ + h
1
2 |hh|cJ, ∀hh ∈Xc

µ,h0, (36a)

‖eh‖L2(D) . `D‖∇×eh‖(Xc
0)′ + h

1
2 |eh|c,◦J , ∀eh ∈Xc

ε,h. (36b)

Proof. We only prove (36a) since the proof of (36b) is similar. We revisit the proof of Lemma 3.2
in [24] to account for the presence of discontinuous material properties. Let hh ∈Xc

µ,h0. We define

hc
h := Ic,av

h0 (hh), ξ := hc
h −Πc

0(hc
h).

As ξ ∈H0(curl = 0;D)
⊥, the weak Poincaré–Steklov (in)equality (9b) gives

‖ξ‖L2(D) = `D‖∇0×ξ‖(Xc)′ = `D‖∇0×hc
h‖(Xc)′ . (37)

Since hc
h ∈ P c

k0(Th), we have J c
h0(hc

h) = hc
h, whence

hc
h − J c

h0(ξ) = J c
h0(hc

h − ξ) = J c
h0(Πc

0(hc
h)).

The commuting property of J c
h0 implies that

∇0×(hc
h − J c

h0(ξ)) = ∇0×(J c
h0(Πc

0(hc
h))) = J d

h0(∇0×(Πc
0(hc

h))) = J d
h0(0) = 0.

Hence, hc
h − J c

h0(ξ) ∈ P c
k0(Th) ∩H0(curl = 0;D) = P c

k0(curl = 0; Th). As hh ∈ Xc
µ,h0, we have

µhh ∈ P c
k0(curl = 0; Th)⊥, so that

‖µ 1
2hh‖2L2(D) = (µhh,hh − hc

h)L2(D)+(µhh,h
c
h − J c

h0(ξ))L2(D)+(µhh,J c
h0(ξ))L2(D)

= (µhh,hh − hc
h)L2(D) + (µhh,J c

h0(ξ))L2(D).

Invoking the Cauchy–Schwarz inequality, the L2-stability of J c
h0, and (37), we obtain

µ
− 1

2
0 ‖µ

1
2hh‖L2(D) . ‖hh − hc

h‖L2(D) + ‖ξ‖L2(D)

. ‖hh − hc
h‖L2(D) + `D‖∇0×hc

h‖(Xc)′ .

Using the triangle inequality, the inequality `D‖∇0×φ‖(Xc)′ ≤ ‖φ‖L2(D) which holds for all φ ∈
L2(D), and the approximation properties of Ic,av

h0 , we infer that

µ
− 1

2
0 ‖µ

1
2hh‖L2(D) . ‖hh − hc

h‖L2(D) + `D‖∇0×hh‖(Xc)′

. h
1
2 |hh|cJ + `D‖∇0×hh‖(Xc)′ .

This proves (36a).
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4 Discontinuous Galerkin approximation
This section deals with the analysis of the dG approximation of the eigenvalue problem associated
with the operator T : Lc → Lc defined in (13). Recall that Lc := L2(D)×L2(D) is equipped with
the norm defined in (12), i.e., ‖(f , g)‖2Lc := ‖µ 1

2f‖2L2(D) + ‖ε 1
2 g‖2L2(D).

4.1 Definitions
We define the discrete space Lc

h := P b
k (Th)×P b

k (Th). The dG sesquilinear form ah : Lc
h×Lc

h → C
is defined as follows:

ah
(
(Hh,Eh), (hh, eh)

)
:= ω(Πc

h0(µHh),hh)L2(D) + ω(Πc
h(εEh), eh)L2(D)

− (Ch(Eh),hh)L2(D) + (Ch0(Hh), eh)L2(D) (38)
+ κhs

c
h(Hh,hh) + κes

c,◦
h (Eh, eh),

with κh := µ0ω`D = (µ0/ε0)
1
2 and κe := ε0ω`D = (ε0/µ0)

1
2 ; notice that κhκe = 1.

We now define Th : Lc → Lc
h ⊂ Lc, the discrete counterpart of the operator T . For all

(f , g) ∈ Lc, Th(f , g) := (Hh,Eh) ∈ Lc
h is the unique pair in Lc

h so that the following equality
holds for all (hh, eh) ∈ Lc

h,

ah
(
(Hh,Eh), (hh, eh)

)
= ω

(
(I −Πc

h0)(µf),hh
)
L2(D)

+ ω
(
(I −Πc

h)(εg), eh
)
L2(D)

. (39)

The definition of Th makes sense owing to Lemma 4.1.
The goal of this section is to prove that limh∈H→0 ‖T − Th‖L(Lc;Lc) = 0. To this purpose,

we are going to derive an a priori estimate on the discrete solution (Hh,Eh) by establishing a
deflated inf-sup condition restricted to the involution-preserving space Xc

µ,h0×Xc
ε,h (see (35) for

the definition of these spaces). Then we prove convergence by using a duality argument à la Aubin–
Nitsche. Invoking a duality argument to establish convergence in a low-regularity context is rather
natural. The idea has been employed to analyze the convergence of the dG approximation to
the Helmholtz problem in Chaumont-Frelet [11] and that of Maxwell’s equations in the frequency
domain in Chaumont-Frelet and Ern [12].

4.2 Discrete involutions, deflated inf-sup condition and a priori estimate
We equip the space Lc

h with the norm ‖·‖Lc (induced by Lc). We also introduce the mesh-dependent
norm

‖(hh, eh)‖[,h := ω
1
2 ‖(hh, eh)‖Lc

+ κ
1
2
h
{
‖h̃ 1

2Ch0(hh)‖L2(D) + |hh|cJ
}

+ κ
1
2
e
{
‖h̃ 1

2Ch(eh)‖L2(D) + |eh|c,◦J

}
. (40)

Lemma 4.1 (Discrete involutions and a priori estimate). The discrete boundary-value problem (39)
is well-posed, its solution (Hh,Eh) sits in Xc

µ,h0×Xc
ε,h and satisfies the a priori estimate

‖(Hh,Eh)‖[,h . ω
1
2 ‖(f , g)‖Lc . (41)

Proof. Notice that

(Ch(Eh),Πc
h0(µHh))L2(D) = (Eh,∇0×Πc

h0(µHh))L2(D) = 0.
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Similarly, (Ch0(Hh),Πc
h(εEh))L2(D) = 0. Moreover, since Πc

h0(µHh) has zero tangential jumps
and zero tangential traces, and since Πc

h(εEh) has zero tangential jumps, we have sc
h(·,Πc

h0(µHh)) =
sc,◦
h (·,Πc

h(εEh)) = 0. Hence, testing (39) with (hh, eh) := (Πc
h0(µHh),Πc

h(εEh)) gives

Πc
h(µHh) = 0, Πc

h(εEh) = 0. (42)

This proves that every solution to (39) satisfies (Hh,Eh) ∈ Xc
µ,h0×Xc

ε,h. The deflated inf-sup
condition established in Lemma 4.2 then implies the uniqueness of the solution to (39). Since
(39) amounts to a square linear system, this also proves the existence of the solution. Finally,
the a priori estimate (41) follows from the Cauchy–Schwarz inequality and the deflated inf-sup
inequality (43).

Lemma 4.2 (Deflated Inf-sup condition). The following holds for every discrete pair (Hh,Eh) in
Xc
µ,h0×Xc

ε,h:

ω
1
2 ‖(Hh,Eh)‖[,h . sup

(hh,eh)∈Lc
h

|ah
(
(Hh,Eh), (hh, eh)

)
|

‖(hh, eh)‖Lc

. (43)

Proof. Let S denote the supremum on the right-hand side of (43).
(1) Testing (39) with (hh, eh) := (Hh,Eh), using that Πc

h(µHh) = Πc
h(εEh) = 0 (by assump-

tion) and the integration by parts property (28a) gives

κh(|Hh|cJ)2 + κe(|Eh|c,◦J )2 = ah
(
(Hh,Eh), (Hh,Eh)

)
≤ S‖(Hh,Eh)‖Lc . (44)

(2) Testing (39) with (hh, eh) := (−κeh̃Ch(Eh),0) and using that κhκe = 1 gives

κe‖h̃
1
2Ch(Eh)‖2L2(D) = ah((Hh,Eh), (hh, eh))− κhs

c
h(Hh,hh)

= S‖µ 1
2hh‖L2(D) + sc

h(Hh, h̃Ch(Eh)).

On the one hand, we have

‖µ 1
2hh‖L2(D) . (µ0`Dκe)

1
2κ

1
2
e ‖h̃

1
2Ch(Eh)‖L2(D) = ω−

1
2κ

1
2
e ‖h̃

1
2Ch(Eh)‖L2(D),

where we used that h ≤ `D and `Dµ0κe = ω−1. On the other hand, invoking a discrete trace
inequality shows that |h̃Ch(Eh)|cJ . ‖h̃ 1

2Ch(Eh)‖L2(D). Using the Cauchy–Schwarz inequality
and using again that κhκe = 1, this gives

κe‖h̃
1
2Ch(Eh)‖2L2(D) .

(
ω−

1
2 S + κ

1
2
h |Hh|cJ

)
κ

1
2
e ‖h̃

1
2Ch(Eh)‖L2(D).

Therefore, we conclude that

κ
1
2
e ‖h̃

1
2Ch(Eh)‖L2(D) . ω−

1
2 S + κ

1
2
h |Hh|cJ.

Similarly, testing (39) with (hh, eh) := (0, κhh̃Ch0(Hh)) gives

κ
1
2
h ‖h̃

1
2Ch0(Hh)‖L2(D) . ω−

1
2 S + κ

1
2
e |Eh|c,◦J .

Gathering the above two bounds and invoking (44) gives

κ
1
2
h ‖h̃

1
2Ch0(Hh)‖L2(D) + κ

1
2
e ‖h̃

1
2Ch(Eh)‖L2(D) . ω−

1
2 S + S

1
2 ‖(Hh,Eh)‖

1
2

Lc . (45)
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(3) We now estimate ‖∇0×Hh‖(Xc)′ and ‖∇×Eh‖(Xc
0)′ . Let ε ∈ Xc. Recalling the definition

of the commutator δh in (32a) and setting εh := J c
h (ε), we have

(Hh,∇×ε)L2(D) = (Ch0(Hh), ε)L2(D) + δh(Hh, ε)

= (Ch0(Hh), εh)L2(D) + (Ch0(Hh), ε− εh)L2(D) + δh(Hh, ε)

= ah((Hh,Eh), (0, εh)) + (Ch0(Hh), ε− εh)L2(D) + δh(Hh, ε),

where the last equality follows from the fact that εh has zero tangential jumps. Using the ap-
proximation properties of J c

h , the commutator estimate (33a), and the estimate ‖εh‖L2(D) .

‖ε‖L2(D) + hs
′ |ε|Hs′ (D) . `D‖∇×ε‖L2(D) (which follows from the Poincaré–Steklov inequality

‖ε‖L2(D) . `D‖∇×ε‖L2(D) and the regularity property (10) since ε ∈Xc), we obtain

|(Hh,∇×ε)L2(D)| . . Sε
1
2
0 ‖εh‖L2(D) + hs

′− 1
2 ‖h̃ 1

2Ch0(Hh)‖L2(D)|ε|Hs′ (D)

+ (h/`D)s
′− 1

2 `
1
2

D|Hh|cJ‖∇×ε‖L2(D)

.
{
ε

1
2
0 S + (h/`D)s

′− 1
2 `
− 1

2

D (‖h̃ 1
2Ch0(Hh)‖L2(D) + |Hh|cJ)

}
× `D‖∇×ε‖L2(D).

Hence, recalling the definition of ‖∇0×Hh‖(Xc)′ introduced in Corollary 2.3, we have

‖∇0×Hh‖(Xc)′ . ε
1
2
0 S + (h/`D)s

′− 1
2 `
− 1

2

D (‖h̃ 1
2Ch0(Hh)‖L2(D) + |Hh|cJ).

We proceed similarly to establish the estimate

‖∇×Eh‖(Xc
0)′ . µ

1
2
0 S + (h/`D)s

′− 1
2 `
− 1

2

D (‖h̃ 1
2Ch(Eh)‖L2(D) + |Eh|c,◦J ).

(4) SinceHh ∈Xc
µ,h0, we use the discrete Poincaré–Steklov inequality (36a) in Lemma 3.4 and

the above estimate on ‖∇0×Hh‖(Xc)′ to infer that

‖µ 1
2Hh‖L2(D) . µ

1
2
0 ‖Hh‖L2(D)

. µ
1
2
0 (`D‖∇0×Hh‖(Xc)′ + h

1
2 |Hh|cJ)

≤ µ
1
2
0 (`D‖∇0×Hh‖(Xc)′ + (h/`D)s

′− 1
2 `

1
2

D|Hh|cJ)

. ω−1
{
S + (h/`D)s

′− 1
2ω

1
2κ

1
2
h (‖h̃ 1

2Ch0(Hh)‖L2(D) + |Hh|cJ)
}
,

where we used that h
1
2 ≤ (h/`D)s

′− 1
2 `

1
2

D on the third line, and `D(µ0ε0)
1
2 = ω−1 and µ0`Dκ

−1
h =

ω−1 on the fourth line. We proceed similarly to establish that

‖ε 1
2Eh‖L2(D) . ω−1

{
S + (h/`D)s

′− 1
2ω

1
2κ

1
2
e (‖h̃ 1

2Ch(Eh)‖L2(D) + |Eh|c,◦J )
}
.

Gathering the above two bounds, invoking (44) and (45), and using h ≤ `D gives

‖(Hh,Eh)‖Lc . ω−1S + ω−
1
2 S

1
2 ‖(Hh,Eh)‖

1
2

Lc .

Invoking Young’s inequality, we conclude that ‖(Hh,Eh)‖Lc . ω−1S. Substituting this bound
into (44) and (45) and putting everything together proves (43).
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4.3 Duality argument
The main result of the paper is established in this section, namely in Theorem 4.9 where we prove
that limh∈H→0 ‖T − Th‖L(Lc;Lc) = 0. This is done by invoking a duality argument. Recall that
the space Lc is equipped with the norm ‖(f , g)‖Lc := {‖µ 1

2f‖2L2(D) + ‖ε 1
2 g‖2L2(D)}

1
2 .

Let (H,E) be the solution to the continuous problem (13) and let (Hh,Eh) be the solution to
the discrete problem (40). We define the errors

δh := H −Hh, δe := E −Eh. (46)

We consider the following dual problem: Find (η, ε) in H0(curl;D)×H(curl;D) such that

ωµΠc
0(η) +∇×ε = ω(I −Πc

0)(µδh), (47a)
ωεΠc(ε)−∇0×η = ω(I −Πc)(εδe). (47b)

The following regularity estimate on the dual solution plays a key role in the analysis.

Lemma 4.3 (Well-posedness and stability). (i) The dual problem (47) has a unique solution (η, ε),
and this solution sits in Xc

0×Xc. (ii) The solution (η, ε) satisfies the following a priori estimates
with s′ ∈ ( 1

2 , 1]:

`D
(
µ

1
2
0 ‖∇0×η‖L2(D) + ε

1
2
0 ‖∇×ε‖L2(D)

)
. ‖(δh, δe)‖Lc , (48a)

|η|Hs′ (D) . `1−s
′

D ‖∇0×η‖L2(D), |ε|Hs′ (D) . `1−s
′

D ‖∇×ε‖L2(D). (48b)

Proof. (i) Testing (47a) with Πc
0(η) and testing (47b) with Πc(ε) readily shows that ‖µ 1

2 Πc
0(η)‖L2(D) =

‖ε 1
2 Πc(ε)‖L2(D) = 0. This proves that

Πc
0(η) = Πc(ε) = 0. (49)

The existence and uniqueness of a solution to (47) is then a direct consequence of (8a) in Lemma 2.1.
Moreover, (49) means that (η, ε) ∈Xc

0×Xc.
(ii) The a priori estimate (48a) follows from (47), (49), and `Dω(µ0ε0)

1
2 = 1. The a priori

estimate (48b) is a consequence of the regularity estimate (10).

Lemma 4.4 (L2-error representation). The following holds:

ω‖(δh, δe)‖2Lc = θapp + θgal + θcrl + θdiv, (50)

with the approximation error, the Galerkin orthogonality error, the curl commuting error, and the
divergence conformity error defined as follows:

θapp := ah((δh, δe), (η − ηh, ε− εh)), (51a)
θgal := ah((δh, δe), (ηh, εh)), (51b)
θcrl := δh(δh, ε)− δ◦h(δe,η), (51c)

θdiv := ω
{

(δh,Πc
0(µδh))L2(D) + (δe,Πc(εδe))L2(D)

}
, (51d)

with ηh := Πb
h(η), εh := Πb

h(ε), Πb
h defined in (21), and the commutators δh and δ◦h defined

in (32).
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Proof. Since Πc
h0(µHh) = 0 and Πc

h0(µH) = Πc
h0(Πc

0(µH)) = 0 (see (23)), we infer that
Πc
h0(µδh) = 0. Similarly, we have Πc

h(εδe) = 0. We also have sc
h(·,η) = sc,◦

h (·, ε) = 0. Re-
calling the definition of the sesquilinear form ah (see (38)), the definition of the commutators
(see (32)), and using that ∇×ε = ω(I −Πc

0)(µδh) and −∇0×η = ω(I −Πc)(εδe), we infer that

ah((δh, δe),(η, ε)) = −(Ch(δe),η)L2(D) + (Ch0(δh), ε)L2(D)

= −(δe,∇0×η)L2(D) + δ◦h(δe,η) + (δh,∇×ε)L2(D) − δh(δh, ε)

= ω
{

(δh, (I −Πc
0)(µδh))L2(D) + (δe, (I −Πc)(εδe))L2(D)

}
− θcrl

= ω
{
‖µ 1

2 δh‖2L2(D) + ‖ε 1
2 δe‖2L2(D)

}
− θdiv − θcrl

= ω‖(δh, δe)‖2Lc − θdiv − θcrl.

Since ah((δh, δe), (η, ε)) = θapp + θgal, re-organizing the terms proves (50).

We shall use the following a priori estimates which follow from Lemma 2.5 and Lemma 4.1,
respectively:

`D
(
µ

1
2
0 ‖∇0×H‖L2(D) + ε

1
2
0 ‖∇×E‖L2(D)

)
≤ ‖(f , g)‖Lc , (52a)

‖(Hh,Eh)‖[,h . ω
1
2 ‖(f , g)‖Lc . (52b)

To alleviate the notation, we also set

crot(η, ε) := `D
(
µ

1
2
0 ‖∇0×η‖L2(D) + ε

1
2
0 ‖∇×ε‖L2(D)

)
, (53a)

and observe that crot(η, ε) . ‖(δh, δe)‖Lc owing to (48a).

Lemma 4.5 (Bound on approximation error). The following holds:

|θapp| . (h/`D)s
′− 1

2ω‖(f , g)‖Lccrot(η, ε). (54)

Proof. Recalling that Πc
h0(µδh) = Πc

h(εδe) = 0, we have

θapp = − (Ch(δe),η − ηh)L2(D) + (Ch0(δh), ε− εh)L2(D)

+ κhs
c
h(δh,η − ηh) + κes

c,◦
h (δe, ε− εh)

= − (∇×E,η − ηh)L2(D) + (∇0×H, ε− εh)L2(D)

− κhs
c
h(Hh,η − ηh)− κes

c,◦
h (Eh, ε− εh),

since (Ch(Eh),η − ηh)L2(D) = (Ch0(Hh), ε − εh)L2(D) = 0 by definition of the L2-orthogonal
projection Πb

h and since sc
h(H, ·) = sc,◦

h (E, ·) = 0. Invoking the Cauchy–Schwarz inequality and
the approximation properties of Πb

h, we obtain∣∣− (∇×E,η − ηh)L2(D) + (∇0×H, ε− εh)L2(D)

∣∣
. ‖∇×E‖L2(D)h

s′ |η|Hs′ (D) + ‖∇0×H‖L2(D)h
s′ |ε|Hs′ (D).

Invoking the a priori estimate (52a) on (H,E) and the regularity estimate (48b) on (η, ε) gives∣∣− (∇×E,η − ηh)L2(D) + (∇0×H, ε− εh)L2(D)

∣∣ . (h/`D)s
′
ω‖(f , g)‖Lccrot(η, ε).
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Moreover, since |η − ηh|cJ . hs
′− 1

2 |η|Hs′ (D) . (h/`D)s
′− 1

2 `
1
2

D‖∇0×η‖L2(D) and since |ε− εh|c,◦J .

(h/`D)s
′− 1

2 `
1
2

D‖∇×ε‖L2(D), we infer from the a priori estimate (52b) that∣∣κhs
c
h(Hh,η − ηh) + κes

c,◦
h (Eh, ε− εh)

∣∣
. κ

1
2
h |Hh|cJκ

1
2
h |η − ηh|cJ + κ

1
2
e |Eh|c,◦J κ

1
2
e |ε− εh|c,◦J

. ω
1
2 ‖(f , g)‖Lc(h/`D)s

′− 1
2

(
κ

1
2
h `

1
2

D‖∇0×η‖L2(D) + κ
1
2
e `

1
2

D‖∇×ε‖L2(D)

)
= (h/`D)s

′− 1
2ω‖(f , g)‖Lccrot(η, ε),

since κ
1
2
h `

1
2

D = ω
1
2 `Dµ

1
2
0 and κ

1
2
e `

1
2

D = ω
1
2 `Dε

1
2
0 . Combining the above two estimates and using h ≤ `D

proves the assertion.

Lemma 4.6 (Bound on Galerkin orthogonality error). The following holds:

|θgal| . (h/`D)s
′
ω‖(f , g)‖Lccrot(η, ε). (55)

Proof. We observe that

θgal = ah((H,E), (ηh, εh))− ah((Hh,Eh), (ηh, εh)).

Since Πc
h0(µH) = Πc

h(εE) = 0, sc
h(H, ·) = sc,◦

h (E, ·) = 0, and Ch0(H) = ∇0×H, Ch(E) = ∇×E,
we have

ah((H,E), (ηh, εh)) = −(∇×E,ηh)L2(D) + (∇0×H, εh)L2(D)

= ω
{

((I −Πc
0)(µf),ηh)L2(D) + ((I −Πc)(εg), εh)L2(D)

}
.

Moreover, by definition of the discrete solution (Hh,Eh), we have

ah((Hh,Eh), (ηh, εh)) = ω
{

((I −Πc
h0)(µf),ηh)L2(D) + ((I −Πc

h)(εg), εh)L2(D)

}
.

Hence, we have

θgal = ω
{

((Πc
h0 −Πc

h0)(µf),ηh)L2(D) + ((Πc
h −Πc

h)(εg), εh)L2(D)

}
.

Since Πc
0(η) = 0 and Πc

h0(η) = 0, invoking the Cauchy–Schwarz inequality and the approximation
properties of Πb

h, we infer that

ω|((Πc
h0 −Πc

0)(µf),ηh)L2(D)| = ω|((Πc
h0 −Πc

0)(µf),ηh − η)L2(D)|

. ωµ
1
2
0 ‖µ

1
2f‖L2(D)h

s′ |η|Hs′ (D)

. ωµ
1
2
0 ‖µ

1
2f‖L2(D)(h/`D)s

′
`D‖∇0×η‖L2(D)

. (h/`D)s
′
ω‖(f , g)‖Lccrot(η, ε).

A similar bound holds for ω|((Πc
h −Πc)(εg), εh)L2(D)|.

Lemma 4.7 (Bound on curl commuting error). The following holds:

|θcrl| . (h/`D)s
′− 1

2ω‖(f , g)‖Lccrot(η, ε). (56)
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Proof. We observe that
θcrl = −δh(Hh, ε) + δ◦h(Eh,η),

since δh(H, ε) = δ◦h(E,η) = 0. Invoking Lemma 3.3 then gives

|θcrl| . (h/`D)s
′− 1

2 `
1
2

D

{
|Hh|cJ‖∇×ε‖L2(D) + |Eh|c,◦J ‖∇0×η‖L2(D)

}
.

Using that `Dκhε0 = ω−1, we obtain

`
1
2

D|Hh|cJ‖∇×ε‖L2(D) = κ
1
2
h |Hh|cJ(`Dκhε0)−

1
2 `Dε

1
2
0 ‖∇×ε‖L2(D)

. ω
1
2 ‖(f , g)‖Lcω

1
2 crot(η, ε)

= ω‖(f , g)‖Lccrot(η, ε).

A similar bound holds true for `
1
2

D|Eh|
c,◦
J ‖∇0×η‖L2(D). This completes the proof.

Lemma 4.8 (Bound on divergence conformity error). The following estimate holds with σ :=
min(s, s′ − 1

2 ) > 0:

|θdiv| . (h/`D)σω‖(f , g)‖Lc‖(δh, δe)‖Lc . (57)

Proof. The proof crucially relies on Lemma 4.10 below. Since Πc
h0(µδh) = 0, we can apply the

estimate (58a) with B := µδh, which gives∣∣(δh,Πc
0(µδh))L2(D)

∣∣ . {(h/`D)s`sD|H|Hs(D) + (h/`D)s
′
`D‖∇0×H‖L2(D)

+(h/`D)s
′− 1

2 `
1
2

D(‖h̃ 1
2Ch0(Hh)‖L2(D) + |Hh|cJ)

}
‖Πc

0(µδh)‖L2(D).

Since `sD|H|Hs(D) . `D‖∇0×H‖L2(D) ≤ µ
− 1

2
0 ‖(f , g)‖Lc owing to the continuous a priori esti-

mate (52a) and also invoking the discrete a priori estimate (52b), we obtain since h ≤ `D and
s ≤ s′, ∣∣(δh,Πc

0(µδh))L2(D)

∣∣ . (h/`D)σ‖(f , g)‖Lcµ
− 1

2
0 ‖Πc

0(µδh)‖L2(D)

. (h/`D)σ‖(f , g)‖Lc‖µ 1
2 δh‖L2(D).

Proceeding similarly, one proves that∣∣(δe,Πc(εδe))L2(D)

∣∣ . (h/`D)σ‖(f , g)‖Lc‖ε 1
2 δe‖L2(D).

Putting the above two bounds together proves the claim.

We are now ready to state the main result of the paper which, owing to standard spectral
approximation results (see, e.g., Bramble and Osborn [8, Lem. 2.2], Osborn [30, Thm. 3&4], Boffi
[5, Prop. 7.4]), proves the spectral correctness of the dG approximation. Recall that σ := min(s, s′−
1
2 ) > 0.

theorem 4.9 (Convergence). We have ‖T − Th‖L(Lc;Lc) . (h/`D)σ.

Proof. Combining the L2-error representation formula (50) together with the bounds from Lem-
mas 4.5–4.8 and since crot(η, ε) . ‖(δh, δe‖Lc owing to (48a), we infer that

ω‖(δh, δe)‖2Lc . (h/`D)σω‖(f , g)‖Lc‖(δh, δe)‖Lc ,

where we used that σ ≤ s′− 1
2 < s′ and h ≤ `D. This implies that ‖(δh, δe)‖Lc . (h/`D)σ‖(f , g)‖Lc ,

whence the claim.
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4.4 Technical lemma
In this section, we establish a result that plays a central role in the analysis to estimate the
divergence conformity error.

Lemma 4.10 (Divergence conformity). Let s ∈ (0, 1
2 ]. For all H ∈ H0(curl;D) ∩Hs(D), all

Hh ∈ P b
k (Th), and all B ∈ L2(D) satisfying Πc

h0(B) = 0, we have∣∣(H −Hh,Π
c
0(B))L2(D)

∣∣ . {(h/`D)s`sD|H|Hs(D) + (h/`D)s
′
`D‖∇0×H‖L2(D)

+(h/`D)s
′− 1

2 `
1
2

D(‖h̃ 1
2Ch0(Hh)‖L2(D) + |Hh|cJ)

}
‖Πc

0(B)‖L2(D), (58a)

and for all E ∈H(curl;D)∩Hs(D), all Eh ∈ P b
k (Th), and all D ∈ L2(D) satisfying Πc

h(D) = 0,
we have ∣∣(E −Eh,Πc(D))L2(D)

∣∣ . {(h/`D)s`sD|E|Hs(D) + (h/`D)s
′
`D‖∇×E‖L2(D)

+(h/`D)s
′− 1

2 `
1
2

D(‖h̃ 1
2Ch(Eh)‖L2(D) + |Eh|c,◦J )

}
‖Πc(D)‖L2(D), (58b)

where s′ ∈ ( 1
2 , 1] results from the regularity estimate (10).

Proof. We only prove the estimate (58a), since the proof of (58b) is similar.
(1) Using the commuting property of J c

h0, we obtain ∇×J c
h0(Πc

0(H −Hh)) = 0. This implies
that J c

h0(Πc
0(H −Hh)) is a member of P c

k0(curl = 0; Th). Moreover, invoking Lemma 3.2, we
have Πc

h0(Πc
0(B)) = Πc

h0(B) = 0 by assumption. Hence, Πc
0(B) ∈ P c

k0(curl = 0; Th)⊥. This, in
turn, implies the following identity:

(H −Hh,Π
c
0(B))L2(D) = (H −Hh − J c

h0(Πc
0(H −Hh)),Πc

0(B))L2(D).

Using the L2-orthogonality of Πc
0 followed by the Cauchy–Schwarz inequality gives∣∣(H −Hh,Π

c
0(B))L2(D)

∣∣ ≤ ‖(I − J c
h0)(Πc

0(H −Hh))‖L2(D)‖Πc
0(B)‖L2(D).

It remains to bound ‖(I − J c
h0)(Πc

0(H −Hh))‖L2(D).
(2) Let us set Hc

h := Ic,av
h0 (Hh) and w := H −Hc

h −Πc
0(H −Hc

h). Then w ∈ H0(curl;D)
with ∇0×w = ∇0×(H −Hc

h), and Πc
0(w) = 0. Hence, w is a member of Xc

0 . The regularity
estimate (10) followed by the triangle inequality give

|w|Hs′ . `1−s
′

D ‖∇0×(H −Hc
h)‖L2(D) ≤ `1−s

′

D (‖∇0×H‖L2(D) + ‖∇0×Hc
h‖L2(D)).

Invoking the triangle inequality, the approximation properties of J c
h0, and the fact that (I −

J c
h0)(Hc

h) = 0 (since Hc
h ∈ P c

k0(Th)), this implies that

‖(I − J c
h0)(Πc

0(H −Hc
h))‖L2(D)

. ‖(I − J c
h0)(w)‖L2(D) + ‖(I − J c

h0)(H −Hc
h)‖L2(D)

. hs
′
|w|Hs′ (D) + ‖(I − J c

h0)(H)‖L2(D)

. (h/`D)s
′
`D(‖∇0×H‖L2(D) + ‖∇0×Hc

h‖L2(D)) + (h/`D)s`sD|H|Hs(D).

Moreover, invoking the triangle inequality, an inverse inequality, and the approximation properties
of Ic,av

h0 , we infer that

‖∇0×Hc
h‖L2(D) . ‖Ch0(Hc

h −Hh)‖L2(D) + ‖Ch0(Hh)‖L2(D)

. h−
1
2 (‖h̃ 1

2Ch0(Hh)‖L2(D) + |Hh|cJ).
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We conclude that

‖(I − J c
h0)(Πc

0(H −Hc
h))‖L2(D) . (h/`D)s

′
`D‖∇0×H‖L2(D) + (h/`D)s`sD|H|Hs(D)

+ (h/`D)s
′− 1

2 `
1
2

D(‖h̃ 1
2Ch0(Hh)‖L2(D) + |Hh|cJ).

Finally, using the triangle inequality, the L2-stability of J c
h0 and that of Πc

0, and the approximation
properties of Ic,av

h0 , we obtain

‖(I − J c
h0)(Πc

0(H −Hh))‖L2(D) . ‖(I − J c
h0)(Πc

0(H −Hc
h))‖L2(D)

+ ‖(I − J c
h0)(Πc

0(Hc
h −Hh))‖L2(D)

. ‖(I − J c
h0)(Πc

0(H −Hc
h))‖L2(D) + h

1
2 |Hh|cJ.

The assertion follows readily.

A Helmholtz decompositions
In this appendix, we recall some useful results on Helmholtz decompositions; these results are
mostly drawn from Amrouche et al. [2], Dautray and Lions [20], and Girault and Raviart [25]. We
also give a short proof of Lemma 2.1.

A.1 Topology of D
Recall that D is an open, bounded, Lipschitz polyhedron of R3. We denote Γ0 the boundary of the
only unbounded connected component of Rd\D. If ∂D is not connected, i.e., ∂D 6= Γ0, we denote
{Γi}i∈{1:I} the connected components of ∂D that are different from Γ0 (see, e.g., [25, p. 37], [2,
p. 835], [20, p. 217]). If D is not simply connected, we assume that there exist J cuts ((d − 1)-
dimensional smooth manifolds) {Σj}j∈{1:J} that make the open set DΣ := D\

⋃
j∈{1:J}Σj simply

connected. Additional regularity assumptions on these cuts as stated in [2, Hyp. 3.3, p. 836] are
assumed to hold true.

A.2 Helmholtz decompositions
We consider the subspaces

HΓ(div = 0;D) := {v ∈H(div = 0;D) |
∫

Γi
v·nds = 0,∀i ∈ {1:I}}, (59a)

HΣ
0 (div = 0;D) := {v ∈H0(div = 0;D) |

∫
Σj
v·n ds = 0,∀j ∈ {1:J}}. (59b)

The following L2-orthogonal decompositions hold true:

L2(D) = H0(curl = 0;D)
⊥
⊕HΓ(div = 0;D), (60a)

L2(D) = H(curl = 0;D)
⊥
⊕HΣ

0 (div = 0;D). (60b)

In other words, we have

H0(curl = 0;D)
⊥

= HΓ(div = 0;D), (61a)

H(curl = 0;D)
⊥

= HΣ
0 (div = 0;D). (61b)
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For all q ∈ L2(D) such that q|DΣ ∈ H1(DΣ), we denote by ∇Σq the broken gradient of q such
that (∇Σq)(x) = (∇q|DΣ)(x) for a.e. x ∈ D. For all i ∈ N, let ci denote any real number. We
define

H1
Γ(D) := {q ∈ H1(D) | q|Γ0

= 0, q|Γi
= ci,∀i ∈ {1:I}}, (62a)

H1
Σ(D) := {q ∈ L2(D) | q|DΣ ∈ H1(DΣ), [[q]]|Σj = cj ,∀j ∈ {1:J}}. (62b)

Then, the following L2-orthogonal decompositions also hold true:

L2(D) = ∇H1
Γ(D)

⊥
⊕∇×H(curl;D), (63a)

L2(D) = ∇ΣH
1
Σ(D)

⊥
⊕∇0×H0(curl;D). (63b)

A.3 Proof of Lemma 2.1
We only prove that the operators∇× : Xc

ε →H0(curl = 0;D)
⊥ and∇0× : Xc

µ,0 →H(curl = 0;D)
⊥

are isomorphisms, since the other proof is similar. (Recall that the spacesXc
ε andXc

µ,0 are defined
in (6).)

(1) Integration by parts readily shows that ∇×e ∈ H0(curl = 0;D)
⊥ for all e ∈ Xc

ε and
∇0×h ∈H(curl = 0;D)

⊥ for all h ∈Xc
µ,0.

(2) Injectivity. Let e ∈ Xc
ε be such that ∇×e = 0. Then, e ∈ H(curl = 0;D), and by

definition of Xc
ε , we infer that (εe, e)L2(D) = 0. This proves that e = 0. Hence, the operator ∇× :

Xc
ε →H0(curl = 0;D)

⊥ is injective. The proof that the operator∇0× : Xc
µ,0 →H(curl = 0;D)

⊥

is injective is similar.
(3) Surjectivity. Let θ ∈H0(curl = 0;D)

⊥. Since every q ∈ H1
Γ(D) satisfies∇q ∈H0(curl = 0;D),

we have θ ∈ (∇H1
Γ(D))⊥. Owing to (63a), we infer that there is e′ ∈ H(curl;D) such that

∇×e′ = θ. Let p ∈ H1
Σ(D) be the unique function solving (ε∇Σp,∇Σq)L2(D) = (εe′,∇Σq)L2(D)

for all q ∈ H1
Σ(D). Set e := e′ − ∇Σp. We have ∇×e = ∇×e′ = θ, and εe ∈ (∇ΣH

1
Σ(D))⊥.

Owing to (63b), we infer that εe is in the range of the ∇0× operator. Integration by parts readily
implies that εe ∈H(curl = 0;D)

⊥. In summary, we have shown that e ∈Xc
ε and that ∇×e = θ.

This proves the surjectivity of the operator ∇× : Xc
ε → H0(curl = 0;D)

⊥. The proof that the
operator ∇0× : Xc

µ,0 →H(curl = 0;D)
⊥ is surjective is similar.
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