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Abstract: In this paper, we define several quantitative measures that are useful when using ontologies to
describe biological data. More precisely, we define the precision of a term inside an ontology, and use this
concept to quantify the similarity between terms inside an ontology, or, by extension, between biological
entities annotated to terms of the ontology. This similarity measure is used to build a hierarchical tree
between biological objects annotated to a particular ontology. The graphical representation of this tree
allows to easily interpret the relationships between objects of a set based on this ontology, and to identify
relevant annotations. We have implemented this principle in ClusterInspector, a tool that allows to browse
the resulting tree at various levels of the ontology.
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1 Introduction

While the pace of high-throughput experiments in biology is holding on, we need powerful tools to take ad-
vantage of the ever increasing amount of data, hence turning data into knowledge. Often, the result of high-
throughput methods are clusters of biological objects (e.g. genes or proteins), which are likely to share partic-
ular features. This is for example the case when dealing with micro-array expression data, where hierarchical
clustering techniques lead to groups of genes with similar expression behavior [1]. On the proteome side,
numerous groups have proposed strategies to use interaction data to identify proteins that appear to tightly
interact with each other [2,3,4,5]. Such integrative approaches can be used to better understand the interplay
between biological processes, or to infer possible functions for yet unannotated gene products. In either case,
the assumption is that these clusters are consistent, in the sense that they tend to associate genes which share
particular features, such as functions or localization. Hence, the validation of these techniques often requires
to check, first, whether this assumption is indeed satisfied. Features of genes or gene products are increas-
ingly described via ontologies [6,8,9], which represent structured vocabularies mathematically designed as a
directed acyclic graph (DAG). There are a vast number of such biological ontologies, and a standard, the Open
Biomedical Ontologies (OBO) [7] has been worked out to unify their schemes.

In this paper, we propose a method and a tool, ClusterInspector, which allows to visualize the relationships
between elements of a cluster, based on their annotation to a given ontology. It allows to identify possible



sub-groups which are more tightly related, or outliers, i.e., elements that have been mistakenly included. For
example, using functional ontologies such as Gene Ontology (GO) one can spot genes that participate simul-
taneously in two complementary processes inside the same cluster. It also helps in characterizing the most
relevant feature(s) of a set of elements, for example the most relevant functions. We believe that this tool will
prove valuable whenever one is confronted with the biological interpretation of a set of genes or gene products.

The paper is organized as follows: in section 2, we will introduce the notion of precision and similarity
inside an ontology, on which the clustering procedure is based. Section 3 will be devoted to the hierarchical
clustering procedure, with details about the scoring scheme of the internal nodes and a presentation of the
graphical interface. In Section 4, we give a simple example of a possible application of our method, and Section
5 will compare our work with other approaches.

2 Quantitative characteristics of an ontology

The core of ClusterInspector is a hierarchical clustering procedure, which is based on a measure of similarity
between two elements with respect to the given ontology structure. The similarity measure itself relies on the
notion of precision of a term inside an ontology. We will start by describing these rwo notions.

2.1 Precision

Since an ontology is a structured vocabulary, it implies a hierarchy between its terms. Hence, some terms are
more general, while others are more specific. Intuitively, the deeper the term inside the DAG, the more precise
it is. One might therefore use the depth, defined as the length of the shortest path from the root to a term, as
a measure of its precision. The drawback of this definition is that it does not take into account the fact that
some branches of the ontology are longer than others, and that the precision should therefore be weighted.
For example, for the “biological process” ontology of GO, the terms GO:0046726 “positive regulation of viral
protein levels” and GO:0000122 “negative regulation of transcription from Pol II promoter” both represent
leaves of the DAG, but the first is at depth 3 while the latter is at depth 8. The definition of precision we
propose here is an attempt to answer the following question: “Given the current annotation of a biological
entity in an ontology, how much ambiguity is there in this annotation?”. In other words, if we believe that
an annotation reflects the incompleteness4 of our current knowledge, and that it might evolve in the future by
becoming annotated to more precise terms, how many more precise terms are possible? Therefore, the precision
of a term t, denoted p(t), will be related to the number of sub-terms which are below t, i.e., all terms (including
the term itself) which can be reached starting from t, compared to the total number of terms N . Hence, the
precision depends on the ratio nt/N .

In order for the leaves of the DAG to have maximum precision 1, and the root minimum precision 0, we
define:

p(t) =
ln(nt/N)
ln(1/N)

. (1)

The fact that all leaves have equal precision might seem a strong assumption, as some leaves in the ontology
have not been equally explicited. But this maximum precision should rather be interpreted as the fact that a
biological entity, annotated to a leaf of an ontology, cannot receive a more precise annotation in the current
state of the ontology. Of course, not only do annotations evolve, but also the structure of the ontology changes
with time, and therefore the precision of a given term might evolve. In Table 1, we give a list of the first 10 less

4 We do not consider the possibility of mis-annotation, but only of incomplete annotation.



precise terms in the GO “biological process” ontology. This example shows that, while globally correlated to
the depth of a term inside the ontology, the ranking by precision is not equivalent5.

Term precision depth
biological process 0 0
physiological process 0.024 1
cellular process 0.028 1
cellular physiological process 0.041 2
metabolism 0.076 2
cellular metabolism 0.079 3
primary metabolism 0.107 3
development 0.171 1
macromolecule metabolism 0.186 3
regulation of biological process 0.190 1

Table 1. The first 10 term of the GO “biological process” ontology, ranked by increasing precision

2.2 Similarity

Once we have defined the precision of a term in the ontology, we can use this notion to quantify the similarity
between terms. First, we define a term t to be an ancestor of a term t′ if there exists a path upwards in the
ontology DAG which leads from t′ to t. Hence, by definition, the root of the ontology is a common ancestor
to all other terms. With this definition of ancestors, we define the similarity between two terms t1, t2 as the
precision of their most precise common ancestor.

s(t1, t2) = max
tk∈Scommon

p(tk) , (2)

where Scommon represents the set of common ancestors of t1, t2
6.

We can extend the notion of similarity to any pair of biological entities annotated to an ontology:

s(o, o′) = max
t∈A(o),t′∈A(o′)

s(t, t′), (3)

where A(o) represents all the annotations t of object o to the ontology.

The similarity we have defined is not a distance in the strict sense; while it is symmetric, it does not respect
the triangular inequality, nor does the similarity of a term to itself be maximal. Our similarity represents the
worst case scenario: let us imagine that two genes are both annotated directly to a very general term in the
“biological process” ontology of GO, like “physiological process”, and to nothing else. These two genes
would have very low similarity (s = 0.024), which represents the lower bound of their future similarity based
on more precise annotations. This worst case scenario is realized if, for example, the first gene gets annotated
to a term in the “metabolism” branch, while the other gets annotated to a term in the distinct “localization”
branch. If, on the contrary, both genes turn out to be involved in, say, catabolism, then their similarity will be

5 Given the structure of the DAG, the depth of a term is not always unambiguously defined. We choose to define it as the
length of the shortest path from the root to the term.

6 These definition can easily be extended to a set of more than two terms.



Figure 1. A small portion of the “biological process” ontology of GO illustrating the example of section 2.2.

greater than 0.024 (see Fig. 1). Hence, any value of a similarity at time θ represents the lower bound for the
similarity at time θ′ > θ when the annotations will have become more precise7.

3 ClusterInspector: a tool for cluster inspection

In the following section, we present the basic idea of ClusterInspector and the hierarchical clustering algorithm
which is based on the previously defined similarity. Moreover, we explain how we score internal nodes of the
tree obtained in order to select specific sub-clusters that appear particularly relevant. Finally, we explain how
the graphical interface is implemented.

3.1 General principle

Based on the previously defined similarity, we developed a method and a tool, named ClusterInspector, which
allows to graphically display the relationship between objects of a given set (e.g. genes or proteins) based on
a given ontology. The method will iteratively group together similar objects, and display the whole set as a
hierarchical tree. This visualization will enable to identify sub-groups which form a particularly homogeneous
subset: proteins which share very similar functions in the case of a functional ontology, or genes expressed in
similar body part in the case of an anatomical ontology. Our method is meant as a way to interpret clusters
which come as an output of any kind of clustering procedure: hierarchical clustering of gene expression data,
clustering based on protein-interaction data, experimentally purified protein complexes, etc...

Basically, the objects we consider are biological entities annotated to an ontology. However, since objects
often carry multiple annotations inside a given ontology, we consider object|annotation pairs as elementary
entities, rather that objects themselves. Therefore, the tree will generally have more leaves that the number of
objects in the set. This is particularly interesting since it allows to identify for example pleiotropic genes which
participate in several complementary processes inside a group of genes, or ubiquitously expressed genes.

The leaves of the tree will consist of all object|annotation pairs. The deepest nodes (i.e., those located
immediately above the leaves) are annotated to the most precise common ancestor of the underlying leaves.
Each node of the tree carries an annotation, which represents the most precise ancestor of the sub-nodes located
immediately below. Finally, the root of the tree will represent the whole set of object|annotation pairs. The

7 Again, this does not take into account the possibility of a mis-annotation.



length of a branch (T, T ′) is proportional to the increase in precision between the annotation t of node T and
the annotation t′ of its child node T ′. More precisely:

L(T, T ′) = m× | p(t)− p(t′) |+ 1 , (4)

where m is an arbitrary multiplicative factor which can be tuned to optimally stretch the tree, and the +1 is an
offset meant to avoid zero length branches. This allows in particular to detect possible outliers, i.e., sub-trees
or leaves that get merged at a very late stage.

3.2 The algorithm

The hierarchical tree is constructed from a set of n object|annotation pairs and a given ontology. Each node of
the tree represents a term of the ontology. Our algorithm is a greedy iterative clustering procedure. Schemati-
cally, at each step i of the algorithm, there are ni sub-trees; let T i = {T i

j | j ∈ [1..ni]} be the set of sub-trees
at a step i. The root node of a tree T i

j carries an annotation tij . We compute all pairwise similarities between
the tij’s. Then, we merge together the closest sub-trees to form a new node. This procedure is repeated until a
single tree is formed. More formally, we give below the pseudo-code of the algorithm. A(tik1

, tik2
) denotes the

most precise common ancestor of tik1
and tik2

.

Start with i = 0 and repeat:

1. Compute all pairwise similarities between the tij for all j ∈ [1..ni];

2. Select the T i
k, k ∈ I ⊂ [1..ni], such that ∀k1, k2 ∈ I, k1 6= k2:

s(tik1
, tik2

) = min
l1,l2∈[1..ni]

s(til1 , t
i
l2) and A(tik1

, tik2
) = t

and agglomerate them in a sub-tree τ whose root is labelled by t;

3. Affectations i← i + 1,
T i+1 ← T i − {T i

k | k ∈ I}+ {τ } and
ni+1 ← ni − |I|+ 1;

until ni+1 = 1.

Initially, n0 = n and T 0 represents the n leaves, i.e. the n object|annotation pairs. Note that, when comput-
ing the similarity between two leaves of the tree, we use eq. (2) and not eq. (3), since the annotation of a leaf is
unique.

Assuming that the computation of the similarity between two terms can be done in constant time, the
time complexity of the naive procedure presented above is O(n3). However, we can improve this complexity to
O(n2 log n) by using a Kruskal-like algorithm. The Kruskal algorithm [16] keeps in memory all the similarities
computed at the first step, ordered increasingly, so at each next step it computes only the similarities between
the new merged element and all others. This avoids to re-compute all values at each step.

Unfortunately, the assumption that the computation of the similarity between two terms could be done in
constant time is not realistic. Fast computation of similarities requires precomputations on the ontology. Prior



to running ClusterInspector, we need to generate a file containing the genealogy of each term in the ontology
(i.e., the full list of its ancestors up to the root), and a file containing the precision of every single term. Both
files are generated by appropriate scripts (OntoGenealogy, OntoPrecision). All scripts are written in Perl and
apply to any ontology in the OBO format. They are available by request from the authors, together with the
graphical interface described below.

3.3 Scoring the internal nodes: the Sub-Tree Relevance Index

Each internal node of the tree represents a sub-cluster carrying an annotation. We would like to decide which
of these possible sub-clusters are the most relevant ones from the point of view of the ontology considered.
We propose a scoring method, which uses the precision presented previously: we define a Sub-Tree Relevance
Index (SRI) in the following way:

SRI(T ) = p(t)×N(T ) (5)

where T represents a node of the tree, p(t) the precision of its annotation, and N(T ) the number of leaves
in the sub-tree. Note that N(T ) counts each object only once in the sub-tree, even if the same object appears
several times associated to different annotations. When one moves from the root of the tree to the leaves,
two competing effects take place: the precision of the node-annotations increases, but the size of the sub-trees
decreases. Hence, a high value of the SRI means that we have a large sub-cluster annotated to a precise term,
which makes this sub-tree relevant. One could also imagine other definitions for the SRI, for example a formula
which emphasizes more the precision of the terms, in order to identify smaller, but more precisely annotated
sub-clusters. We plan to implement other weighting schemes in the future.

Since the SRI is meant to help defining relevant subsets of objects, we need to define a threshold above
which a sub-tree is considered as such. This threshold will depend on the ontology considered, but might also
be influenced by the nature of the objects (e.g. proteins from different organisms). In order to evaluate the
threshold, we generate a large number of random sets of objects, build the tree for each set using ClusterIn-
spector and the ontology we are interested in, and collect the values of the SRIs at the nodes in order to build
the distribution. Given the distribution, we can determine the value representing a particular percentile. As an
example, we generated 500 random sets of 15 drosophila proteins8, built the hierarchical tree for each set using
ClusterInspector for the “biological process” ontology of GO and the fly anatomy ontology. The cumulative
distribution of the SRI is shown in Fig. 2, and shows that less than 0.4% of sub-nodes obtained from random
sets have a SRI≥ 3 for any of these two ontologies. Hence, if we are interested in exploring sets of drosophila
proteins from the point of view of these particular ontologies, any sub-tree with a SRI above 3 potentially
represents an interesting set.

3.4 Graphical interface

This graphical software is a hierarchical clustering display tool. Its main objective is to lead to a fast and
unambiguous visualization of the similarity between genes or proteins according to a given ontology. This tool
allows loading a hierarchical clustered tree of genes (or gene products) stored in the Newick file format. The
tree gets an automatic layout, following the rectangular clad tree layout algorithm (complexity in O(n)).

Each node of the tree is labeled by the ontology identifier. Depending on the type of the node, several other
labels are added:

– The leaves are as well labeled by the name of the gene,
8 The size of the initial set has only marginal impact on the random SRI distribution.



Figure 2. Cumulative distribution of the SRI for all internal nodes of hierarchical clustering tree built from random sets of
15 Drosophila proteins for the “biological process” GO ontology and the fly anatomy ontology.

– The internal nodes are labeled by the SRI and the description of the ontological term.

The branch length follows eq. (4).

In order to display only interesting informations, the sub-trees are collapsible. It is hence possible to con-
tract/expand a whole sub-tree by clicking on its root. Moreover, an automatic pruning mechanism is imple-
mented, based on the SRI value: sub-Trees with SRI lower than a given value are hidden, except if they contain
sub-trees with SRI greater than this value. The annotation of the nodes are displayed in pop-up boxes which
appear when the mouse pointer is placed over the node. A zooming mechanism has as well been implemented.

Search functions have as well been included in this software, which enable to

– emphasize the sub-trees with the highest SRI,
– display all the genes (or gene products) of a sub-tree or the genes shared by several sub-trees.

The program is written in pure Java 1.5 and an ANTLR parser is used to parse the data from the Newick
file format.

In future versions, several enhancements will be implemented in order to ease the navigation in the tree and
the visualization of biological relevant informations.

4 Application

As an illustration of our method, we chose to analyze the genes which form the Toll signaling pathway in
drosophila. This pathway is known to be involved both in innate response to microbial infection and to estab-
lishment of dorsal ventral polarity in Drosophila embryo through the establishment of a Dorsal gradient. The



eight genes involved are cactus (CG5848), capicua (cic), dorsal (dl), Myd88, pelle (pll), toll (Tl), tube (tub) and
spätzle (spz). Building the hierarchical tree using ClusterInspector for the “biological process” ontology, we
identify 5 sub-trees with a SRI ≥ 5 (see Fig. 3):

– GO:0006966 “anti-fungal humoral response sensu Protostomia” (SRI=6.0)
– GO:0008063 “Toll signaling pathway” (SRI=5.9)
– GO:0009620 “response to fungi” (SRI=5.5)
– GO:0009953 “dorsal/ventral pattern formation” (SRI=5.2)

Other sub-trees with SRI above the threshold determined earlier (i.e., 3) are either parents or children of the
five mentioned sub-trees. The two main processes in which this pathway is involved clearly appear as the
top ranking sub-trees. Moreover, it clearly appears that all genes but capicua and dorsal are involved in both
processes, while dorsal only appears in the pattern formation sub-tree. Capicua does not appear in any of these
sub-trees, but rather in a much smaller sub-tree “embryonic development sensu Metazoan” (SRI=0.9), which
outlines the fact that this gene does not belong to the core components of the pathway.

5 Related work

Different projects have already addressed the question of integrating information from various sources to help
interpret sets of biological entities. One such method, named THEA [10] (Tools for High-Throughput Exper-
iment Analysis) was developed to help interpret clusters of genes from gene expression data. The software
integrates various information sources, such as ontologies, in order to annotate groups of genes. This software
takes as input a hierarchical clustering of genes based on expression profiles, and uses ontologies to annotate
the nodes of this hierarchical tree. This is an important difference with our approach, where the hierarchical
clustering results from the similarity measure between annotations of genes. Moreover, THEA annotates a clus-
ter to a term if all members of the cluster are annotated (directly of through its descendents) to that term. Again,
this is a difference with our approach, which is able to identify several annotations that might be relevant for a
single set of genes.

Another tool, called GOToolBox [11], was developed to help analyzing Gene Ontology annotations for
groups of genes. One module of GOToolBox, GO-Stats, allows to extract the most relevant GO terms associ-
ated with a set of genes. The relevance of a GO term for a given set of genes is computed using a statistical
technique based on the hyper-geometrical distribution. The P-value can be corrected for multiple testing using
various methods. This tool does not provide a way to display the relationship between the genes based on the
ontology. In order to compare the output of GOToolBox with ClusterInspector, we investigated whether the GO
terms which are ranked highest by GO-Stats correspond to the nodes with the highest SRI in ClusterInspector.
Table 2 presents the list of the 30 first GO terms of the biological process ontology and lists the SRI/P-value
computed by ClusterInspector/GO-Stats (see caption for details). The comparison highlights the differences
between both approaches: (1) GO-Stats lists all GO terms that appear as ancestors of the terms to which the
genes are annotated; hence, more than 200 terms are displayed in the GoToolBox output for this particular
example. ClusterInspector selects only the terms which appear at a certain stage of the clustering procedure
as the most precise ancestor of a set of sub-nodes, e.g. around 50 for this particular example. For example,
the GO term rank third by GO-Stats (GO:0019732, anti-fungal humoral response) does not appear as a node
annotation in our tree; (2) comparing the figures for the terms “response to bacteria” (GO:0042742, SRI=1.9,
P-value=1.8E-4) and “immune response” (GO:0006955, SRI=1.9, P-value=8.9E-13) shows that both are rated
similarly by ClusterInspector, but very differently by GO-Stats. This is because GO-Stats identifies statistically
over/under-represented terms while ClusterInspector points at annotations which are represented in several in-
stances, but not necessarily over-represented with respect to the genome background. If we have 5 out of 10



proteins which are involved in “transcription”, this does not represent a statistical bias but still represents an
interesting information for characterizing the set.

Many other projects have been developed to help interpreting high-throughput data, mainly using GO:
GOTreeMachine [12], GOSurfer [18], Onto-Express [13],... All these tools allow a statistical analysis of
over/under-represented terms, and some display a sub-DAG of GO which covers the relevant terms. How-
ever, to our knowledge, our method is unique in that it uses a similarity measure based on the topology of the
ontology. The tree we build is not a sub-DAG of the original ontology, since only a limited number of relevant
terms appear.

As for the similarity measure of terms inside an ontology, other groups have addressed this question. The
first one, [15], proposes a semantic similarity measure as a counterpart to sequence similarity measure. They
first define a measure between GO terms, which takes into account the ”Information Content” of term by
assuming a term is more informative than another if it occurs less often in annotation databases. To count the
occurrences of a term, they use SWISS-PROT-Human proteins and the assumption that a term occurs if itself, or
any of its children, occurs. Thus a probability of occurrence is affected to each term. This leads to the following
formula: sim(t1, t2) = − lnPma(t1, t2), where Pma(t1, t2) is the probability of the common ancestor of t1
and t2 with minimum probability. The similarity between two genes is defined as the mean of the pairwise
similarity of their annotations.

Analogously, Couto et al. [17] aim to define a functional similarity between gene-products. They first define
a ”Semantic Similarity Measure” (SSM) on terms, using an idea similar to Lord et al., i.e., the Information
Content (IC) of a term depends on its probability of occurrence in the GOA database [14]. This formula is
enhanced by the integration of depth and density of the term in the GO DAG, the whole being normalized
to be in [0..1]. Hence, they define the functional similarity between two genes (FuSSiMeG) as the maximum
similarity between their assigned terms, balanced by the IC of those terms:

FuSSiMeG(g1, g2) = max
t1∈A(g1),t2∈A(g2)

{SSM(t1, t2)× IC(t1)× IC(t2)} (6)

where A(g) is the set of annotations of g. This very sophisticated formula suffers from the difficulty to adjust
its parameters for depth and density.

These two approaches exclusively apply to GO, and rely more heavily on the quality of annotations, which
enters the definition of similarity. On the contrary, our method can be used on any ontology and the quality
of its result only depends on that of the chosen ontology. Moreover, our method, unlike these two approaches,
allows to visualize the similarities between a set of genes.

6 Conclusion

In this paper, we have presented a new method to graphically interpret sets of data using ontologies. The
main novelty of our approach is the fact that the relationship between objects with respect to a given ontology
is determined using a similarity measure between terms of the ontology, and by extension between objects
annotated to the ontology. It applies (1) to any ontology for which annotation data is available, and (2) to any
kind of sets of biological entities. Its main advantages over existing methods is its simplicity, the fact that no
parameters are to be specified by the user, and the quality of the graphical interface, which allows exploration
of clusters at different precision levels of the ontology. We believe that it will prove useful for numerous
applications in bioinformatics.
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GO id precision SRI P-value Rank description
GO:0006966 1.000 6.0 6.2E-18 1 antifungal humoral response (sensu Protostomia)
GO:0008063 0.848 5.9 2.2E-17 2 Toll signaling pathway
GO:0006960 0.848 5.9 5.9E-13 8 antimicrobial humoral response (sensu Protosto-

mia)
GO:0009620 0.689 5.5 2.8E-15 5 response to fungi
GO:0009953 0.646 5.2 3.3E-14 6 dorsal/ventral pattern formation
GO:0007389 0.456 5.0 3.8E-10 15 pattern specification
GO:0009950 0.682 4.8 3.6E-12 12 dorsal/ventral axis specification
GO:0043207 0.411 4.1 1.9E-12 11 response to external biotic stimulus
GO:0000578 0.702 3.5 9.7E-10 16 embryonic axis specification
GO:0007166 0.445 3.1 1.1E-7 27 cell surface receptor linked signal transduction
GO:0009880 0.603 3.0 3.0E-8 21 embryonic pattern specification
GO:0009613 0.427 3.0 2.7E-13 7 response to pest, pathogen or parasite
GO:0009607 0.296 3.0 4.1E-8 23 response to biotic stimulus
GO:0007352 1.000 3.0 1.3E-8 19 zygotic determination of dorsal/ventral axis
GO:0006967 1.000 3.0 2.2E-8 20 antifungal polypeptide induction
GO:0007165 0.361 2.9 8.9E-6 32 signal transduction
GO:0007154 0.308 2.8 4.8E-5 36 cell communication
GO:0006952 0.310 2.8 3.3E-8 22 defense response
GO:0035172 0.848 2.5 7.7E-8 24 hemocyte proliferation (sensu Arthropoda)
GO:0050832 0.786 2.4 1.4E-15 4 defense response to fungi
GO:0030097 0.463 2.3 1.1E-7 26 hemopoiesis
GO:0007275 0.171 2.2 6.6E-6 31 development
GO:0042742 0.710 2.1 1.7E-3 57 defense response to bacteria
GO:0009887 0.270 1.9 8.6E-4 49 organogenesis
GO:0009617 0.634 1.9 2.1E-3 68 response to bacteria
GO:0006955 0.324 1.9 8.9E-13 9 immune response
GO:0006606 0.626 1.9 4.2E-4 41 protein-nucleus import
GO:0050830 0.924 1.8 5.6E-5 37 defense response to Gram-positive bacteria
GO:0006963 0.879 1.8 1.1E-4 38 antibacterial polypeptide induction
GO:0045449 0.497 1.5 1.9E-2 102 regulation of transcription

Table 2. List of the 30 first GO “biological process” terms relevant for the 8 genes of the Toll pathway. Column 2 indicates
the precision of the term, column 3 the SRI, column 4 the P-value as computed by GO-Stats, column 5 the rank according
to this P-value, and column 6 the description of the term



Figure 3. Screenshot of the ClusterInspector graphical interface showing the tree obtained for the Toll pathway genes with
the biological process ontology. Sub-Trees with SRIs lower than 4.5 are hidden (except if they contain sub-trees with SRI
greater than 4.5). Red stars indicates collapsed sub-trees and the number of underlying leaves is indicated. These sub-trees
can be displayed by clicking on the node. Yellow stars indicate that a sub-tree is fully shown. Pop-up boxes display the
annotation of a sub-tree, here “response to fungi”.


