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ABOUT THE LARGEST SUBTREE COMMON TO SEVERAL X-TREES

Alain GUENOCHE1

Henri GARRETA2

Laurent TICHIT3

résumé – Etant donnés plusieurs X-arbres, ou arbres phylogénétiques, sur le même en-
semble X, nous cherchons à construire un plus grand sous-ensemble Y ⊂ X tel que les arbres
partiels induits sur Y soient identiques d’un point de vue topologique, c’est-à-dire indépendemment
des longueurs des arêtes. Ce problème, connu sous le nom de MAST (Maximum Agreement Sub-
Tree), est NP-Difficile, dans le cas général, dès que le nombre de X-arbres est supérieur à 2. Nous
présentons un algorithme approché qui construit un arbre partiel commun maximal. Il est facile-
ment programmable et suffisamment efficace sur une centaine de X-arbres connectant une centaine
d’éléments pour évaluer la taille moyenne d’un sous-arbre commun à des X-arbres indépendants.
La distribution observée permet d’estimer la taille critique d’un sous-arbre commun et de mesurer
la congruence de plusieurs arbres évolutifs.

mots clés – X-arbres, Arbres phylogénétiques, Sous-arbre commun, MAST, MCT

summary – Given several X-trees or unrooted phylogenetic trees on the same set of taxa X,
we look for a largest subset Y ⊂ X such that all the partial trees reduced by Y are topologically
identical. This common subtree is called a MAST for Maximum Agreement SubTree. The problem
has polynomial complexity when there are only two trees but generally it is NP-hard for more
than two. We introduce a polynomial approximation algorithm for the multiple case, which is easy
to implement, very efficient and which produces a maximal common subtree. It begins with the
computation of an upper bound for its size and designates elements in X that cannot belong to a
common subtree of a given size. Simulations on random and real data have shown that this heuristic
often provides an optimal solution as soon as the number of trees is larger than 5. Then, we develop
a statistical study to evaluate the average size of a MAST corresponding to independent trees. The
computed distribution allows to estimate the critical size of a MAST to reveal some congruence
between trees.
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1. INTRODUCTION

Let us recall that an X-tree is a partially labeled tree such that (i) X is the set of
labeled leaves, (ii) all the unlabeled nodes have degree at least 3 and (iii) the edges
have positive or null length. X-trees are unrooted, and when a root is placed on one
edge, they become phylogenetic trees, adapted to represent the evolution of a set X

of several species or taxa. When all the nodes have degree 3, X-trees are denoted as
binary trees. Given several X-trees on the same set of taxa X, the problem tackled
in this paper is to look for a largest subset Y ⊂ X, such that all the partial trees
reduced by Y are topologically identical, that is without considering edge length.
This common subtree is called a MAST for Maximum Agreement SubTree. This
problem appears when comparing several X-trees connecting the same set of taxa
X.

In phylogenetic studies, these X-trees are computed from n = |X| aligned se-
quences with a bootstrap strategy or when comparing the trees obtained from se-
veral genes. In the latter case, the comparison of the orthologous gene sequences
in each taxon, determined with any reconstruction method (maximum likelihood,
parsimony, distance method, etc.), gives an X-tree or a phylogenetic tree. Generally,
different genes lead to different trees because of biological reasons such as the nu-
cleotide composition, the evolution speed along the branches or the horizontal gene
transfers. When considering p genes, one gets a set T = {T1, T2, . . . Tp} of X-trees.
In other domains, such as Cognitive Sciences for category definition (Dubois, 2000)
or for comparison of tree reconstruction methods (Guénoche and Garreta, 2001),
the congruence of several X-trees can be measured. In any case, the question is to
study the compatibility of these Ti trees.

Aside the Robinson-Foulds metric (1981), counting the number of common in-
ternal edges between two trees, one edge corresponding to a bipartition or split,
this compatibility can be measured by the size of a largest subset Y ⊂ X for which
the trees agree ; this means that the edge lists become identical, independently of
their lengths. When trees depend on genes, this identity reveals the same evolutive
history.

The mathematical and computational study of X-trees has been established all
along the last forty years, beginning with the seminal article of Buneman (1971),
working on a completely different application domain, the manuscript filiation. Over
numerous articles, one can refer to the books of Barthélemy & Guénoche (1991) &
Semple and Steel (2003). In the latter, the question considered here is tackled in
Chapter 6 as the Maximum Agreement SubTree (MAST) problem, initially formu-
lated by Finden & Gordon (1985). When there are only two rooted trees, Steel &
Warnow (1993) defined a dynamic programming scheme (hence a polynomial algo-
rithm) which can be extended to the unrooted case. But when p > 2 the problem
becomes NP-hard, except if the degree of nodes is bounded in at least one of the
trees. Since that time, Cole et al. (1996) and Amir & Keselman (1997) proposed
O(nlog n) algorithms for two rooted binary trees and Berry & Nicolas (2004) give
a O(3kpnlog n) algorithm for p binary rooted trees, parameter k being the number
of elements to eliminate from the input trees to make a MAST. Some recent results
have been obtained by Bryant (2007), Guillemot (2008) and Berry et al. (2009).

In this article, we describe a heuristic method to establish a common subtree
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as large as possible, which can be applied to more than two binary or not binary
unrooted trees, which is easy to program and very efficient on real problems up to
n = p = 100. Simulations on random and real data have shown that this heuristic
always provides an optimal solution as soon as the number of trees is at least 5
and the number of taxa is lower than 100. Then, we develop a statistical study to
determine the critical size of a MAST corresponding to independent X-trees, to
be significant. This permits to evaluate the minimum size of a common subtree to
reveal some congruence of the trees.

2. METHODOLOGY

Here, we are only interested in the X-tree shape, defined by the edge list, which
is pompously called its topology, whatever the length of the edges are. In that case,
these lengths can all be set to 1, and the path length metric in the tree, becomes
the unitary distance, receiving integer values. It is a tree distance D, satisfying the
Four Point Condition :

∀{x, y, z, t}, D(x, y) + D(z, t) ≤ max{D(x, z) + D(y, t), D(x, t) + D(y, z)}.

The distance values indicate any quartet topology ; if, for {x, y, z, t} D(x, y)+D(z, t)
is the smallest of the three sums and is unique, this quartet is said to be resolved
and has topology xy|zt. In the support tree of D, at least one edge separates these
two pairs. If the three sums are equal, the topology is said to be non resolved and
there is no separating edge between any two pairs.

To decide if two X-trees A and B have the same topology, it is sufficient to com-
pare (i) their distances DA and DB, or (ii) the splits (or bipartitions) corresponding
to the edges in A and B, or (iii) the quartet topologies. The distances, the split
sets or the quartet sets must be identical. For these three cases, the corresponding
procedures have polynomial time complexity.

2.1. Score function, upper bound and elimination procedure

A quartet is said to be compatible with an X-tree set T , if all its topologies in
the different X-trees are either non resolved or identical. Consequently, a quartet
is incompatible if it possesses at least two different resolved topologies. Clearly,
compatible quartets can be assembled in a common tree structure. This is not exactly
the MAST problem, since subtrees are not identical, and it is referred as the MCT
(for Maximum Compatible Tree) problem. When all the trees are resolved, as for
our simulations, these are the same.

Let the score function Sc : X −→ N be defined as the number of quartets
containing x that are compatible with T , and ScMax be its maximum value over
the X set of n elements :

Sc(x) ≤ ScMax(n) =

(

n − 1

3

)

= ScMax(n − 1) ×
n − 1

n − 4
.

The first ScMax values are given in the following table :
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n 5 6 7 8 9 10 11 12 13 14 15 16 17 18

ScMax(n) 4 15 20 35 56 84 120 165 220 286 364 455 560 680

This allows to calculate an upper bound for the maximum number of elements
admitting a common topology.

proposition 1. The MAST size is lower than or equal to the highest value m such
that

∣

∣{x such that Sc(x) ≥ ScMax(m)}
∣

∣ ≥ m.

Proof : There cannot exist a partial common tree with at least m leaves if there are
less than m elements in X with a score larger than or equal to ScMax(m).

The elimination of the elements having a score lower than ScMax(m) is not
a safe strategy even if they cannot belong to a common subtree with m leaves. If
finally the largest common tree has m′ < m leaves, some elements x having a score
ScMax(m′) ≤ Sc(x) < ScMax(m) would have been eliminated. However, they can
belong to a common subtree with m′ + 1 leaves or more. Nevertheless, we eliminate
them for the moment, and we only deal with elements having a score larger than or
equal to ScMax(m). We denote X ′ the remaining elements, and set n′ = |X ′|.

2.2. One by one elimination

For each x ∈ X ′, let Nq(x) be the number of incompatible quartets in X ′ contai-
ning x and NbQ the total number of incompatible quartets on X ′.

∑

x∈X′

Nq(x) =
∑

x∈X′

(

ScMax(n′) − Sc(x)
)

If NbQ > 0, at least one element must be deleted. This is a classical problem that
is to cover a set with a minimum number of given subsets (see Figure 1). The whole
set contains all the incompatible quartets, and the n′ subsets correspond to the
incompatible quartets containing one given element. Erasing one of them eliminates
the corresponding quartets, reduces the total number of incompatible quartets and
sets n′ to n′ − 1.

This covering problem is well known to be NP-difficult. The proposed method
consists in first deleting at each step one element covering the largest number of
incompatible quartets, that is the one having the largest Nq value. Clearly it is a
greedy algorithm, very close to the Chvatal heuristic (1979), since it never comes
back on previous eliminations. When only compatible elements remain, a supplemen-
tary procedure is performed. It tries to reintroduce one after another the eliminated
elements, in case their incompatibility was due to elements that have been erased
later. Doing so, the selected set of taxa Y is maximal, since it cannot be extended.
This strategy has also been used by Berry et al. (2009).

3. ALGORITHM

The X-trees are given in the standard newick 4 format, although it is poorly
adapted to computation because it imposes an artificial root and, for a non resolved

4http ://evolution.genetics.washington.edu/phylip/newicktree.html
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figure 1. Three X-trees (left) and their largest common subtree (right) ; the Nq values
are respectively equal to (3, 3, 4, 3, 3), leading to the elimination of element 3.

tree, it could contain arbitrary edges with null length. The initial procedure consists
in transforming each tree into two data structures : an unitary distance array and
a table of all the splits corresponding to the edges with positive length. Notice that
it is out of question to memorize the covering relation, since the usual values of n

(≈ 100) makes such a task unrealistic.

3.1. The LAST (large agreement sub-tree) algorithm

/* Input */

A set T of p X-trees

/* Score computing */

For all quartets (x<y<z<t)

if all quartet topologies on T are compatible

Sc[x]++, Sc[y]++, Sc[z]++, Sc[t]++

End of For All

Determine the maximum number m of compatible elements.

Eliminate from X the elements x such that Sc[x]<ScMax[m]

/* Recursive elimination */

While (NbQuad>0)

NbQuad:=0

For each quartet (x<y<z<t) of remaining elements

If all the topologies are not compatible among T

NbQuad++

Nq[x]++, Nq[y]++, Nq[z]++, Nq[t]++

End For all

Eliminate one element with maximum Nq ;

End of While

Let Y be the remaining set

/* Insertion of eliminated elements */

For any eliminated element x in X\Y

For all triples (y<z<t) of elements in Y

If all the {x,y,z,t} topologies are compatible

Y <- x

End of For all
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End of For all

Let Y be the final subset of X given by the LAST algorithm. It is clear that all
the quartets in Y are compatible and that Y is maximal in X. Generally, Y is not
unique and nothing proves that Y has the MAST property. This could be partially
tested by temporarily erasing an element in Y and looking for other compatible
subsets as in the insertion procedure. If this truncated Y can be extended with
another element, an equivalent solution will be found and, if it can be extended
again, a better solution could be detected.

3.2. Establishing the most resolved common tree

When comparing bacterial strains, giving unresolved gene trees because genes
are identical, it is often necessary to build the common tree for which any node
which is resolved at least once is resolved. In that case, all the X-trees restricted
to Y are not identical, but they are compatible. Starting from a single initial X-
tree involves too much edge processing. The simplest way is to add all the unitary
distances restricted to Y , using a well known property of tree distances :

proposition 2. Let A and B be two X-trees and DA and DB their associated tree
distances (unitary or path length metrics). The sum DA + DB is a tree distance if
and only if their topologies are compatible.

Thus, if a quartet is resolved in one way, even in a single tree, it will necessarily
be compatible and the most resolved common tree will appear. To get it from the
sum of distances, any consistent algorithm can be applied ; the optimal ones are in
O(n2log n) for a tree distance, which is the case here. Several methods can be used
as Hein (1989) or Guénoche & Leclerc (2001).

3.3. Complexity

The initial step establishing p unitary tree distances is in O(pn3) and it is run
just once. The score computation, including the elimination step of elements having
a minimal score is in O(pn4) at each iteration. Their number being bounded by n,
this heuristic is in O(pn5). The reintegration of the at most n elements is in O(pn4).

Nevertheless the program in C is fast, since it takes for instance, less than 10
seconds for two trees having 100 leaves, and 100 seconds for 100 trees with 30 leaves,
on a ordinary desktop computer. It uses a limited memory space, pn2 integer values
for distances, and a few arrays with n or 2n positions 5.

4. VALIDATIONS

The LAST method does not guarantee anything about the maximality of the
common tree size. To tackle this question we performed simulations. We generate
problems, that are sets of trees having a common subtree and we apply the LAST
procedure to recover it, or a common part. We expect that it is not smaller than

5This software is freely available at http ://www.bioinformatics.lif.univ-mrs.fr
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p 2 3 4 5 10 20 50

k = 10 18.50 14.52 13.06 12.80 11.60 11.16 10.88
k = 20 27.18 23.96 22.79 22.41 21.22 20.81 20.58
k = 30 35.85 33.34 32.48 32.05 31.12 30.65 30.37

Tab. 1. Average number of m returned by the LAST algorithm. These elements have the same
topology in p X-trees with n = 50 taxa, k of them beeing fixed and the others randomly permutated.

the common subtree. All the generated X-trees have positive edge length, so the
compatibility of topologies, which is the only thing tested, is an identity.

Let Y be the selected set of taxa, m = |Y | and m∗ ≥ m be the cardinality of
a maximum agreement subtree. Even if the scores are bounded (using a branch-
and-bound strategy), it is not possible to enumerate subsets with m + 1 elements.
However, it is possible to build problems for which the value m∗, or a value close to
it, is known.

It suffices to take an X-tree as input (randomly generated or coming from a
real data set) and to generate as many trees as desired by permuting some of the
labels but not all of them. Let k be the number of unchanged labels (labels that
stay at the same place in each tree). Considering only these unchanged vertices, the
generated X-trees are topologically identical, and one can assert that m∗ ≥ k. One
can have m∗ > k when permuted labels go to the same location, which certainly
occurs when p is small. As soon as the number p of X-trees is large enough, the
variability of permutations implies that no quartet on the n− k other elements will
have the same position in the X-trees and, if the algorithm is efficient, we tend to
have m = m∗ = k. On the contrary, if m < k, then the algorithm failed, finding less
than the k compatible elements.

We tested our procedure with n = 50. For each tested value of p (varying between
2 and 50), and each value of k (successively, 10, 20 and 30 elements), we generated
100 sets of p trees. Then, we computed the average number of elements selected by
the LAST algorithm. These values are reported in Table 1.

When a subset with k elements is conserved, we observe that the average values
of m monotonously decrease to k when p increases. We have also observed something
more remarkable : none of the 2100 problems treated in these simulations produces
a solution with less than k elements ! This does not prove that our algorithm is
optimal, but that it nonetheless never failed.

Another simulation process has been tested using the Yule-Harding model (Har-
ding, 1971). Starting with a tree with two leaves (a simple edge), the other elements
are inserted one by one by selecting uniformly at random a leaf v and grafting the
new leaf on the external edge leading to v, simulating a bifurcation. At each step
a new node and two edges are placed in the tree. To get a set of trees having a
common subtree with at least k elements, we generate first a common tree with k

leaves, and we continue adding n − k elements applying the previous procedure for
each generated tree ; these n − k elements are not (rarely) placed the same way.

For n = 50 and p ≥ 5, the LAST algorithm returns systematically the k first
elements as a common part, whatever is the k value. But when p = 2, 3 or 4 some of
them may be missing, replaced by others forming a common subtree with less than
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p 2 3 4 5 10 20

n = 10 5.42 4.32 3.99 (99) 3.35 (83) 3.06 3.
8 6 5 5 4 4

n = 20 7.63 5.31 4.38 4.11 3.19 (19) 3.
10 7 6 6 5 4

n = 30 9.12 5.97 4.70 4.23 3.58 (64) 3.
12 8 7 6 5 4

n = 50 11.58 6.90 5.21 4.42 3.95 (95) 3.
15 9 7 6 5 4

n = 75 13.85 7.68 5.64 4.67 3.92 (91) 3.
17 10 8 7 5 4

Tab. 2. Average number of elements having the same topology in p random X-trees with n leaves.
The values between parenthesis indicate the percentage of problems with a single conserved quar-
tet ; the other problems have none. The critical values are shown in the second line.

k leaves. This occurs mainly for k = 10.

5. SIGNIFICANCE OF THE COMMON TREE SIZE

There have been many investigations about the average size of a MAST common
to binary trees, and Bryant et al. (2003) obtain analytical bounds for two trees
generated according to random models. Our purpose is much more simple : When,
for an (n, p) problem, a largest common subtree size m is obtained, we would like to
know how far it is from the expected value under the null hypothesis, claiming that
these p trees are independent. Does this value occur frequently or is it large enough
to suggest that the taxa share a common part of evolutive history ?

The same question has been posed by Lapointe & Rissler (2005) for a phylo-
geographic study. They compared trees having different sets of leaves, dividing the
MAST size by the number of common leaves. Two trees are declared congruent
when this normalized MAST score is greater than the value expected by chance. We
extend their test in the same way for sets of more than two X-trees.

We generated, for each (n, p) values, 500 random sets of p X-trees. Then, we
computed the average of the m values and the critical value at 5%, denoted µ, so
that the proportion of trees giving a value m ≥ µ is not larger than 5%. These figures
are printed in Table 2. Thus, each time the computed value m(n, p) is greater than
or equal to µ(n, p) we can reject the null hypothesis of independence to conclude
that these trees are not independent and have some congruence.

Let’s comment the row of Table 2 corresponding to n = 50. For p = 2, both
trees have on the average 11.58 compatible elements. This value results from the
distribution detailed in Table 3 (rescaled in percentage). It thus appears that the
critical value at 5% is equal to 15, since it is necessary to include the 6 cases giving
m = 14 to reach 95%. The other critical values are obtained in the same way. For
n = 50 and p ≥ 10, there are less than 4 compatible elements. The value 3.95
corresponds to 95 trees that share a single compatible quartet, and 5 trees having
none ; in this case, there are always at least 3 compatible elements, since no topology
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m 9 10 11 12 13 14 15
% of problems 5 16 28 28 15 6 2

Tab. 3. Percentage of problems for 2 X-trees (n = 50) sharing a set of m compatible taxa.

is required. For p ≥ 20, an average value equal to 3 means that there’s no preserved
quartet (4 vertices with a score equal to 1) and thus 4 is the critical value.

One can conclude that these critical values are very low, as soon as p ≥ 5, and the
independence hypothesis is easy to reject. For instance, a single compatible quartet
is sufficient to ensure that more than 20 phylogenetic trees share a common evolutive
history part, whatever the number of taxa is.
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