
HAL Id: hal-04145694
https://hal.science/hal-04145694v1

Submitted on 29 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Ecological and Biotechnological Aspects of Pigmented
Microbes: A Way Forward in Development of Food and

Pharmaceutical Grade Pigments
Ramesh Chatragadda, Laurent Dufossé

To cite this version:
Ramesh Chatragadda, Laurent Dufossé. Ecological and Biotechnological Aspects of Pigmented Mi-
crobes: A Way Forward in Development of Food and Pharmaceutical Grade Pigments. Microorgan-
isms, 2021, 9 (3), pp.637. �10.3390/microorganisms9030637�. �hal-04145694�

https://hal.science/hal-04145694v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


microorganisms

Review

Ecological and Biotechnological Aspects of Pigmented
Microbes: A Way Forward in Development of Food and
Pharmaceutical Grade Pigments

Ramesh Chatragadda 1,* and Laurent Dufossé 2,*

����������
�������

Citation: Chatragadda, R.; Dufossé,

L. Ecological and Biotechnological

Aspects of Pigmented Microbes: A

Way Forward in Development of

Food and Pharmaceutical Grade

Pigments. Microorganisms 2021, 9,

637. https://doi.org/10.3390/

microorganisms9030637

Academic Editor: Stefan Junne

Received: 1 February 2021

Accepted: 15 March 2021

Published: 18 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Biological Oceanography Division (BOD), Council of Scientific and Industrial Research-National Institute of
Oceanography (CSIR-NIO), Dona Paula 403004, Goa, India

2 Chemistry and Biotechnology of Natural Products (CHEMBIOPRO Lab), Ecole Supérieure d’Ingénieurs
Réunion Océan Indien (ESIROI), Département Agroalimentaire, Université de La Réunion,
F-97744 Saint-Denis, France

* Correspondence: chramesh@nio.org (R.C.); laurent.dufosse@univ-reunion.fr (L.D.)

Abstract: Microbial pigments play multiple roles in the ecosystem construction, survival, and fitness
of all kinds of organisms. Considerably, microbial (bacteria, fungi, yeast, and microalgae) pigments
offer a wide array of food, drug, colorants, dyes, and imaging applications. In contrast to the natural
pigments from microbes, synthetic colorants are widely used due to high production, high intensity,
and low cost. Nevertheless, natural pigments are gaining more demand over synthetic pigments as
synthetic pigments have demonstrated side effects on human health. Therefore, research on microbial
pigments needs to be extended, explored, and exploited to find potential industrial applications.
In this review, the evolutionary aspects, the spatial significance of important pigments, biomedical
applications, research gaps, and future perspectives are detailed briefly. The pathogenic nature of
some pigmented bacteria is also detailed for awareness and safe handling. In addition, pigments
from macro-organisms are also discussed in some sections for comparison with microbes.

Keywords: pigments evolution; biological properties; horizontal gene transfer; fluorescent pigments

1. Introduction

The survival of life forms on earth is dependent on various pigments, including light-
harvesting pigments like chlorophylls, phycoerythrin, and phycobiliproteins [1,2]; harmful
light-filtering pigments like proteorhodopsins [3,4], melanin’s, pyomelanin, pyocyanin, flu-
orescent proteins; predator defending pigments like aplysioviolin [5], cephalopods ink [6,7],
Dendrobatidae frog toxins [8], microbial pigments and so on [9]. The quantity, quality, and
attractiveness of pigments from various sources such as microbes, algae, invertebrates,
and macro-organisms may comprise either beneficial or toxic chemical constituents. Not
all colors appealing to our eyes are beneficial to humans. Therefore, investigations on
the chemistry of pigment molecules are gaining more interest in the current research. In
1666, Sir Isaac Newton had initiated the beginning of research on colors by developing
the first circular diagram of colors, and later various researchers like Harris (1776) and
Goethe (1810). Sir Humphry Davy demonstrated the causes of various colors of organic
molecules [10]. Later in 1820, Friedrich Accum revealed the many side effects of synthetic
colorants in various foods [11]. Sir William Henry Perkin was the first man to develop
the first synthetic textile color compound “mauvine” in 1856. With this brief historical
background, the visible spectral pigments and invisible nonspectral pigments gain more
attention due to numerous applications in ecology, evolution, biomedical, and industrial
perspectives. The international color symbolism chart indicates that each color has a spe-
cific meaning in different countries and cultures. Despite numerous known applications,
evidence shows that visual pigments (color and light) can directly influence the brain [12],
psychology [13], taste and flavor of humans [14–16], and science communication [17]. The
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lack of dietary pigments like carotenoids in our daily food intake may lead to various
diseases and in rare case death [18]. Visual and food colorants are playing a significant
role in decision making in our life to choose different foods and many other things [19],
through vision, flavor, olfaction, gustation, and oral somatosensation ways [16].

Humans cannot see nonspectral colors due to a lack of trichromatic or tetrachromatic
color vision-related cone types in their eyes. A recent study demonstrated humming birds’
ability to perceive nonspectral colors via the tetrachromacy phenomenon [20]; another
example of categorical color perception was observed in Estrildid finches [21]. Numerous
studies have been exploring the spectral pigments from microbes and higher organisms for
various applications. Nevertheless, nonspectral pigments and their ecological importance
in nature and biotechnological applications are not well studied. Thus, studies on nonspec-
tral pigments remain a research gap in the current global science development scenario.
Indeed, the planet earth is structured with visible and invisible micro and macromolecules
produced by prokaryotes and eukaryotes, regulating various physical, chemical, biological,
and geological processes. After going through a vast literature on microbial pigments, it is
now understood that microbes and macro-organisms produce varied pigment molecules
with a specific purpose in the respective milieus.

The resource of pigments, production rate, transport, price, sustainability, palatability,
durability, effectiveness, legislative and regulatory approval, and demand by consumers
are the primary requisites for various biotechnological applications in commercial indus-
tries. In this context, microbial pigments are attracting great demand to develop food
grade, textile grade, and drug grade natural pigments. The reasons for high demand
for microbial pigments are their promising unlimited resources, high production of re-
quired quantity of pigments, least cost-effective, easy cultivation and can be harvested
throughout the year, adaptability to various environments, optimization, stability, genetic
engineering, no side effects, eco-friendly, biodegradable, and indispensable applications
in multidisciplinary aspects such as ecological, evolutionary, biomedical, agriculture, and
industrial studies [9,22–24]. Many microbes are known to produce a wide variety of
pigment molecules with innumerable biological properties and other industrial applica-
tions [9,25,26]. Especially, natural pigments of microbial origin have many advantages over
synthetic pigments. Although artificial colors are more attractive and have been widely
used around the world market (42%) [19,27–30], they are found to have many side effects
(e.g., teratogenic, cancer, etc.) [29–31], and some are not biodegradable (e.g., textile dyes),
causing health disorders to aquatic organisms and humans [32–34]. Hence, researchers are
trying to find alternative physical, chemical, and biological methods to degrade synthetic
colors [35–37] to avoid the side effects posed to the public and environmental health. There-
fore, instead of developing synthetic colors and finding new methods for their degradation,
exploring natural pigments from microbes would bring about innumerable advantages for
the public and the environment.

Lack of knowledge on pigmented microbial isolation sources and their bioprospecting
methods would make researchers face trials in microbial pigment research. Thanks must
be extended to all the past researchers who explored the pigmented microbes from various
environments and demonstrated numerous applications through various methods. Based
on the published review of the literature [9,23,25,38–45], current researchers are looking for
novel strains, new extraction techniques, and new applications of pigments. In this context,
this review is intended to provide the current knowledge on various aspects of microbial
pigments such as classification, evolution, horizontal gene transfer, market demand, spatial
distribution, pigment therapy, and future perspectives.

2. Classification of Pigments

Microbes display all kinds of color hues such as black, blue, bronze, brown, cream,
grey, green, orange, purple, indigo, pink, red, yellow, metallic green, red, yellow, and
rainbow. These pigments can be classified into various categories based on their visual,
chemical, and spectral properties and source of origin (based on mobile genes) [9]. Based
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on visual appearance, prokaryotes and eukaryotes display monochromatic to polychro-
matic pigment combinations within the Munsell color system. Some higher organisms
like dragonfish [46,47] and hummingbirds [20] exceptionally display or see colors beyond
our visible spectrum and near-infrared spectrum. These incidents suggest that humans
lack nonspectral cones to perceive colors existing beyond the visible spectrum. Visually,
pigments represent the following phenomena on earth: (1) Natural pigments, (2) Biolu-
minescence, (3) Fluorescence, and (4) Iridescence (structural colors), and (5) Non-spectral
colors. Humans can perceive all the color phenomena except non-spectral colors.

Functionally, five different types of pigments are found in nature: (1) Biological
pigments, (2) Fossil and sedimentary pigments, (3) Mineral pigments, (4) Synthetic &
identical natural pigments, and (5) Caramel pigments (Figure 1). Biological pigments
are derived from live microbes, plants, and animals. In contrast, fossil pigments are
indeed biologically originated but preserved in fossils for millions of years, acting as
evolutionary evidence [48–53]. In rare cases, fossil pigments can be of synthetic origin [54].
Mineral pigments are inorganic insoluble pigments used in artistic, cosmetic, archeological,
and evolutionary studies [55–60]. In contrast, synthetic colorants are synthesized in the
laboratory for food colorants and dyeing applications [61]. Dozens of synthetic colorants
are being used in food and beverages [61,62]. Caramel pigments are natural sugar-based
colorants used in a variety of food and beverage products. These caramel colors are
classified into Caramel I, II, III, and IV classes to fulfill the requirement of food systems [63].
Solvatochromicity of these pigments varies according to the extraction solvent.

Figure 1. A wide array of pigmented microbes seen in nature. The abundance of the type of pigmented bacteria is depicted
in bars based on the available literature. Rainbow bacteria are iridescent. Classification of pigments based on various aspects
of biochromes. Chlorophyll pigments are not included in the data as they are ubiquitous. HGT: Horizontal gene transfer.

Based on chemical groups, microbial pigments are broadly differentiated into an-
thraquinones, carotenoids, indoles, phycobiliproteins, prodigiosin, rhodopsins, melanins,
and violacein [9,64]. For understanding the evolutionary aspects, rhodopsins, melanins,
and iridescent (structural) pigments are briefly discussed herein. Microbial rhodopsins are
light-harvesting photoproteins that bind to retinal and respond to light, which has evolu-
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tionary importance. These rhodopsin are found in Archaea, bacteria, fungi, viruses [65],
and some eukaryotes [66]. Based on the known functions, rhodopsins are classified as
light sensors (rhodopsins, opsins), energy-conserving transmembrane proton pumps (bac-
teriorhodopsins, proteorhodopsins, and xanthorhodopsins), and transmembrane chloride
pumps (halorhodopsins) [4]. In Haloarchaea, a single cell can possess multiple rhodopsins
with varied functions [4]. Melanins are biosynthetically, functionally, and structurally di-
verse pigments, including five known groups of allomelanin, eumelanin, and neuromelanin
pheomelanin, and pyomelanin [67]. It is often easy to isolate monochromatic pigment-
producing microorganisms from different environments, but isolation of polychromatic
pigments producing bacteria such as Pseudomonas aeruginosa (blue and green pigments),
Streptomyces sp. (yellow, orange and brown) [25] and iridescent or shimmering bacteria
(VIBGYOR) [68] (https://www.hoekmine.com; accessed on 10 January 2021; Hoekmine BV,
2020) are rarely isolated. Structural colors are also recorded in fossil feathers, suggesting
the importance of evolutionary aspects [69].

In general, microbes possess innate pigment traits, but some non-pigmented microbes
acquire pigment traits from pigmented microbes (see the Section below: Horizontal Gene
Transfer). For this reason, microbial pigments are classified as innate pigments and acquired
pigments. Often, pigmented microbes release diffusible and non-diffusible pigments in
culture media. However, rarely, some pigments are water-insoluble, for instance, blue
pigment indigoidine [70], red pigment [71], and violacein [72]. Some pigments even do not
dissolve in solvents; in such incidents, resin extraction can be employed to extract pigments.

3. Functions of Microbial Pigments

Microbial pigments are known to play a variety of ecological functions in their mi-
lieus. (Figure 2). Antioxidant properties of different microbial pigments are detailed in
the supplementary file provided in the previous review published in 2019 (see supple-
mentary file) [9]. Prodigiosin pigment produced by some strains of Vibrio sp. function
as photoprotectants against UV light [73]. Violacein pigment of Janthinobacterium lividum
and Chromobacterium violaceum demonstrated antipredator activity against bacterivorous
nanoflagellates, indicating its defensive function [74]. J. lividum associated with the skins of
some frogs and salamanders, secretes violacein pigment to protect them from pathogenic
fungi, Batrachochytrium dendrobatidis [75–77]. Phenazine compounds produced by bacteria
play multiple functions, including chemical signaling, biofilm formation, survival, and
virulence [78]. Pyoverdine, a fluorescent yellow-green pigment, regulates iron transport
and virulence functions in Pseudomonas fluorescens [79]. Tambjamine, a yellow pigment
produced by Pseudoalteromonas tunicata [80], is suggested to help its host prevent other
predatory fouling organisms [81]. Likewise, indigoidine, a blue pigment produced by
Phaeobacter strains, is suggested to inhibit competing bacteria in the environment [82].
Bacterial melanin pigments act as photoprotectants [83–87]. For instance, Vibrio cholerae
melanins serve as survival fitness factors when physico-chemical factors become unfavor-
able [88]. Some endophytic fungi releases anthraquinones, to protect the host plant from
damage due to insects and microbes [89]; while, fungal melanins demonstrate multiple
functions [90].

https://www.hoekmine.com
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Figure 2. Ecological functions and other applications of important microbial pigments.

Bacteriochlorophylls are photosensitizers (light harvesters) in photosynthetic bacteria
but absent in non-photosynthetic bacteria [91]. Non-photosynthetic bacteria may utilize a
self-photosensitization mechanism [92]. In photosynthetic and non-photosynthetic bacteria,
carotenoids, the accessory photosynthetic pigments act as photoprotectants and antioxi-
dants, thus protecting cells from damage due to UV and sunlight illumination [91,93,94].
Bacterial communities in the air-water interface did produce more pigmentation to tolerate
sunlight and are relatively drug-resistant compared to non-pigmented bacteria [95]. The
extremophilic bacteria isolated from salt lakes [96] and cold environments like Antarc-
tica [97,98] adopt environmental stress with carotenoids and other pigments. The yellow
pigment of Thermus was proposed as a photoprotectant [99]. Carotenoids of archaea [100],
yeasts [101,102], cyanobacteria, and algae [103] also function as photoprotectants. Maren-
nine, a blue pigment produced by diatom Haslea is involved in greening on oysters [104],
and displayed a prophylactic effect [105,106]. Food colorants, drug, dye, and other biotech-
nological applications of microbial pigments are detailed in the section below.

4. Pathogenicity of Pigmented Microbes

Despite the numerous known pigments’ applications, the literature suggests that
some pigmented bacteria are emerging as pathogens in aquaculture farms and even in
humans. Violacein-producing bacterium Chromobacterium violaceum has been reported to
cause infections in children and adults [107]. Janthinobacterium lividum, another violacein-
producing bacterium, resulted in mass mortality of rainbow trout Oncorhynchus mykiss in
the hatchery from Korea [108]. Prodigiosin producing Serratia marcescens also infects insects,
other invertebrates, and vertebrates, including humans [109,110]. Strains of S. marcescens
and C. violaceum are reported to be opportunistic pathogens to humans [111,112]. In all
these cases, there is no evidences about the role of violacein and prodigiosin pigments in
virulence function. A recent study demonstrated that prodigiosin pigment did not play a
virulence function in entomopathogenic S. marcescens [113].

However, few pigments such as bacterial melanins [114] and pyoverdines [115] regu-
late virulence function. The red pigment producing fungi such as Fusarium and Monascus
produce mycotoxins (e.g., citrinin and 4,15-diacetoxyscirpenol) linked to pathogenic-
ity [116]. Thus, researchers are searching for fungal species that do not produce any
toxins [117]. We suggest that determining an isolated pigmented microbe’s pathogenicity
(hemolytic activity) would help to avoid infections and mortality.

5. Horizontal Gene Transfer (HGT) of Pigment Genes

In the last two decades, studies observed rare incidences of acquisition or transfer
of pigment genes between related and non-related microbial communities. The transfer
or acquisition of pigment genes between various micro-organisms is a sign of environ-
mental function. The acquired pigment trait acts as a defensive mechanism against other
microorganisms, acting as sunscreen (photoprotection) against UV rays and harvests light
for enhanced photosynthesis. This is an exciting area of research to study the ecological
importance of pigment gene transfer among microbes.
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Genes coding for light-harvesting pigment proteins such as proteorhodopsins were
reportedly transferred between planktonic bacteria and archaeal communities dispersed
only in the photic zone [4]. These proteorhodopsins encoding genes reportedly acquired
by eukaryotes, dinoflagellate protists from bacteria [66], and protists’ viruses [65]. Bacteria
like Collimonas CT were suggested to produce blue pigment (violacein) via pigment gene
acquisition, probably acquired from J. lividum and/or Duganella sp. [118] (Figure 3). LuxA
genes responsible for light emission in the luminescent bacteria were also reportedly ac-
quired by non-luminous vibrios through HGT and become luminescent [119]. Similarly,
pathogenicity-related genes were also shared among many bacteria via HGT [120]. Study-
ing the HGT mechanisms in these microbes will help us to understand the role of HGT
in evolution.

Figure 3. Acquisition of pigment encoding genes by Archaea, bacteria, and viruses.

6. Cosmopolitan Distribution of Pigmented Microbes

The distribution patterns of well-known pigmented microbes have not been detailed
in the literature to understand their evolutionary spread in different geographical envi-



Microorganisms 2021, 9, 637 7 of 26

ronments. The current literature published so far reveals that pigments are environment-
specific, depth-specific, host-specific, and functionally distinct [9,121]. Chlorophyll pig-
ments are ubiquitous, whereas other pigment molecules are not widespread but restricted
to specific groups of bacteria, indicating the evolutionary importance of pigments. To link
the evolutionary concept with microbial pigment distribution, the well-known prodigiosin,
violacein, and iridescent bacteria are mapped in this review (Figure 4). The map shows the
cosmopolitan distribution of these bacteria in tropical, subtropical, and temperate environ-
ments. This spread pattern will help us to understand the hydrothermal vent-based origin
of life theory by testing presence and absence, abundance, and low levels of microbial pig-
ments in coastal and deep-sea environments of different geographical areas. Thus, further
in-depth studies are required to link their distribution patterns to evolutionary studies.

Figure 4. Cosmopolitan distribution of well-known pigmented microbes in different geographical areas.

7. Evolution of Pigments

From the evolutionary perspective, the origin of microbial pigments remains very
little known. It is well understood that all the chemical molecules have originated from the
origin of elements process [122]. Pigments of prokaryotes and eukaryotes display specific
ecological and bioactive functions [9,123,124]. Pigments are also identified in non-living
matters like fossils, sediments, and inorganic minerals [49,125]. Fossil pigments [49,126]
and sedimentary pigments [125,127] are gaining in ecological and evolutionary impor-
tance to study environmental and population dynamics and chemical constituents of the
past. Microbial pigments are ubiquitous in different environments at various depths and
evolved for a specific function in respective milieus [9]. In contrast to microbial pigments,
mineral pigments are intensely colored inorganic molecules with potential applications
in artistic, cosmetic, forensic, archaeological, and evolutionary perspectives [55]. In the
evolutionary perspective and according to the clay-mineral theory on the chemical origin
of life [128] and recent evidences [129], we may be able to interlink the origin of molecules,
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including pigments in protocell, which helped protocells to survive in extreme conditions
and supported the formation of multicellular organisms.

Since protocells’ origin, natural pigments have transformed into various phenomena
such as pigments, fluorescence, and bioluminescence, found in prokaryotes and eukary-
otes. Currently, researchers believe that life had originated 4.5 billion years ago from the
extreme environment like hydrothermal vents in the ocean [130] or warm water pools in
the volcanic land or geothermal (hot spring) areas [129,131,132], based on the evidences
of hypothetic protocell structures, i.e., vesicles formed by simple fatty acids [130] and
proteins [133], RNA [131] and DNA molecules [129]. The abundant external red pigments
seen in deep-sea tubeworms at hydrothermal vents are indeed hemoglobins that act as
binding sites to oxygen and hydrogen sulfide and transport these molecules to internal
bacterial symbionts [134]. In contrast, the evidence of opsins and pigment molecules in
thermal vents is not as abundant as in the photic zone or terrestrial environments. Deep-sea
microbial pigments is underexplored due to difficulties in the culture and maintenance
of samples under in situ conditions. Opsins are phylogenetically well-diversified and
structurally different light sensors observed in prokaryotes [135,136], invertebrates, and
vertebrates [137,138]. Opsins sense light and respond to physiological, chemical, and
behavioral functions, and develop evolutionary adaptations. Phycobiliproteins are light-
harvesting chromophores present in cyanobacteria and some algae, whose evolutionary
origin is related to globin proteins and GC contents [139]. Efforts to understand the evo-
lution of phycobiliproteins in cyanobacteria [140,141] and algae [139,142] using specific
genes and targeted molecules is underway. Light-harvesting pigments, phycobiliproteins,
and chlorophylls might have arisen independently several times in different lineages [143].
A piece of evidence exists on the origin and biosynthesis of bacteriochlorophyll a by a
bacterial enzyme “3-vinyl-bacteriochlorophyll hydratase [144], suggesting the origin of
enzymes first, followed by notions of coexistence of RNA and DNA [145] or homogenous
RNA world [131,146,147] or DNA world [148], or still debating prebiotic DNA world [149].
The origin of other microbial pigments (e.g., prodigiosin, violacein, etc.) also needs to be
evaluated for in-depth understanding and to interlink the evidence.

The chemistry and mechanisms involved in forming pigments in protocells and their
divergence into different lineages are yet to be unveiled. The lack of enough evidence of
protocells in the environment makes it difficult for researchers to understand protocells’
exact origin. The exact environmental conditions that favored protocells to develop various
pigments are unknown. These pigments might have evolved to tolerate the intense illumi-
nation during the early earth formation generated from the chromosphere, photosphere,
and atmosphere. This research angle remains untouched concerning the evolution of
chromophores. Further detailed investigations on spatial and temporal patterns of various
pigmented microbes from different environments and their complete genomics, proteomics,
and chemicalomics may reveal some clues on the origin, evolution, and inheritance of
pigments from protocell to eukaryotes. A recent conceptual study provides a new idea to
understand the synthesis and development of prebiotic molecules in primitive cells [150].
Robotics based chemical synthesis studies have been arising in recent times [150,151],
which may help us to understand the possible ways of origin of primitive molecules. How-
ever, this concept is still to be validated in real time, based on field evidences rather than
empirical evidences. In the coming two to three decades, life’s true origin is expected to be
in complete light with integrated evidence.

8. Pigment Gene Cassettes

Microbes producing high pigment yield are the primary research targets for com-
mercial purposes. Many natural microbes have failed to produce the expected yield of
pigments for food, drug, cosmetics, and textile applications. Therefore, exploring the entire
pigment gene cassette of an interested microbial species is found to be the best approach to
achieve high pigment yield through recombinant DNA technology. Some researchers might
not be aware of the genes responsible for pigments; thus, this section has garnered informa-
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tion on different microbes’ gene clusters. Pig gene cluster for prodigiosin biosynthesis in
Serratia marcescens [152,153], and red gene cluster for undecylprodigiosin biosynthesis in Str.
coelicolor A3(2) were identified [154]. Prodigiosin synthesizing genes in Hahella chejuensis
KCTC 2396, and Pseudoalteromonas species were identified as hap gene cluster [155]. Indigoi-
dine biosynthesizing gene cluster in Phaeobacter sp. strain Y4I encoded as igi operon [82].
Violacein biosynthetic gene cluster “vio” was identified in Chromobacterium violaceum [156]
and Pseudoalteromonas species [157]. Tambjamine, a yellow pigment of Pseudoalteromonas tu-
nicata is synthesized by tam gene cluster [158]. Pyomelanin synthesizing genes were named
as hatABCDE operon [159]. Bikaverin, a reddish pigment produced by Fusarium fujikuroi,
carries bikaverin synthesizing bik gene cluster [160]. Monascus red pigments biosynthesiz-
ing genes in Monascus ruber and M. pilosus, are designated as MrPig, and mok gene clusters,
correspondingly [161,162]. Other strains of M. pilosus possess MpPKS5 and mpp genes [163],
whereas M. purpurea bears MpPKS9 and mok gene cluster [164]. The crt genes are involved
in the biosynthesis of carotenoids in Brevundimonas sp. [165], Hematococcus pluvialis [166],
Deinococcus wulumuqiensis [167], Xanthophyllomyces dendrorhous (Phaffia rhodozyma) [168],
Antarctic bacteria [169], and other bacteria [170]. Dunaliella sp. carotenoids are mainly
triggered by two essential genes CGP and LCYB [171]. In Rhodotorula mucilaginosa, CAR
gene cluster synthesizes carotenoids [172].

9. Substrates, Mutagen Agents, and Adsorbents

The use of natural agro-industrial wastes has been a recent trend and strategy in the
biotechnological process to increase pigment yield. The natural and genetically engineered
microbes are subjected to fermentation studies to identify the optimal culture conditions
for maximum pigment yield with various substrates (Table 1). A variety of cost-effective
substrates such as copra seed, peanut seed, sesame seed, coconut oil, peanut oil, sesame
oil [173], sunflower oil [174], peanut powder [175], corn steep liquor, cassava waste [176],
squid pen powder [175], brown sugar [177], tannery fleshing [178], ram horn peptone [179],
kitchen waste [180], wheat bran [181], casein, sweet potato powder [182], bagasse [183],
saw dust, palm oil fiber and rice husk [184] had been utilized to enhance and improve
the prodigiosin pigment production from S. marcescens. Violacein production rate was
increased using brown sugar, molasses, sugarcane bagasse, and pineapple waste [185,186].
The enhanced production of pyocyanin from Pseudomonas aeruginosa was successful with
cottonseed meal [187].

Monascus pigment production was enhanced by utilizing tapioca starch [188], cas-
sava powder, coconut oil cake, groundnut oil cake, jackfruit seed powder, rice bran,
palm kernel cake, sesame oil cake, spent brewing grain, tamarind seed powder, wheat
bran [189,190], cheese whey, grape waste, rice hulls, soybean bran [191], coconut residue,
cornmeal, peanut meal, soybean meal [192], corn cob [193], jackfruit seed [194], a vari-
ety of rice [195–197], durian seed [198], sugarcane bagasse [199], sweet potato [200], and
brewery’s spent grain [201].

Carotenoids production in yeasts was improved by supplementing peat extracts [202],
grape juice [203], beet molasses, glucose syrup, grape must, maize flour extract, soybean
flour extract [204], cane molasses [205–207], sugar cane juice [208], corn syrup [207,209],
coconut milk [210], brewer malt waste [211], corn meal [212], mustard waste [213], raw
malt extract [207], tomato waste [214], chicken feather peptone [215], whey filtrate, coconut
water [216], date palm waste, maize waste, mango peels, onion waste, peanut leaf and fruit
wastes, potato peels, rice straw, sugarcane waste, wheat straw [217], and powders of onion
peel, mung bean, pea pods and potato skin [218].
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Table 1. Substrates promoting high pigment yield from various microbes are alone detailed herein for further biotechnologi-
cal applications.

Organism Substrate Pigment Maximum Pigment Yield Reference

Bacteria
S. marcescens Peanut seed broth Prodigiosin 38.75 mg/mL [173]
S. marcescens Cassava waste Prodigiosin 49.50 mg/mL [176]
S. marcescens Tannery fleshing Prodigiosin 33 mg/mL [178]
S. marcescens Ram horn peptone Prodigiosin 27.77 mg/mL [179]
S. marcescens Kitchen waste Prodigiosin 22.3 mg/mL [180]
S. marcescens Bagasse Prodigiosin 40.86 g kg−1 [183]
S. marcescens Sunflower oil Undecylprodigiosin 7.90 mg/mL [174]

Chromobacterium violaceum Liquid pineapple waste Violacein 57.90 mg/mL [185,186]
Pseudomonas aeruginosa Cotton seed meal Pyocyanin 9.2 µg/mL [187]

Fungi
M. purpureus Jackfruit seed Monascus 10.2 OD/g [189]
M. purpureus Grape waste Monascus 20–22.5 g/L [191]
M. purpureus Corn meal Monascus 129.63 U/g [192]
M. purpureus Corn cob Monascus 25.42 OD/g [193]
M. purpureus Brewery’s spent grain Monascus 16.75 UA500 [201]

Yeast
Rhodotorula rubra Peat extract β-Carotene 1256 µg g−1 [202]

Rhodotorula glutinis Grape must Carotenoid 915.4 µg g−1 [204]
Rh. glutinis Molasses Carotenoid 185 mg L−1 [206]

Rh. glutinis Chicken feather
peptone Carotenoid 92 mg L−1 [215]

Xanthophyllomyces
dendrorhous Grape juice Astaxanthin 9.8 µg mL−1 [203]

X. dendrorhous Mustard waste Astaxanthin 25.8 mg L−1 [213]
X. dendrorhous Molasses Carotenoid 40 mg L−1 [205]
X. dendrorhous Coconut milk Astaxanthin 850 µg g−1 [210]

UA: Absorbance units; OD: Optical density.

Mutagenic agents such as various chemical reagents, UV illumination, and gamma
radiation have been used to enhance pigment production from natural and recombinant
microbial strains [219,220]. Carotenoid content of Rhodopseudomonas palustris was stimu-
lated with blue, yellow, white, green, incandescent lamp, red, halogen, and fluorescence
lamp [221]. The enhanced prodigiosin production was successful with gamma radia-
tion [219]. Stimulated pigment production in filamentous fungi was evident with blue
(for carotenoids) [222], green, red, and UV-light (red pigment bikaverin) [223]. Mutations
in the genes caused Fusarium fujikuroi to produce different hues of pigments [160]. For
yeasts, low energy ion beam implantation [224], gamma radiation [225], light-emitting
diodes [226,227], and UV light [228] were used as an effective approach for carotenoids
enhancement. High production of phycobiliproteins was achieved from cyanobacteria,
Pseudanabaena mucicola cultures grown under white light [229]. The increase of phycocyanin
production from Spirulina platensis [230] and Pseudanabaena sp. [231] was evident under
red light. Maximum production of phycoerythrin and carotenoids from Pseudanabaena
sp. was observed in green light [231]. In unicellular microalgae, carotenoids production
is enhanced through UV radiation [232–235], blue and red light [236,237], light-emitting
diodes [238,239], and various toxic chemicals [233,240].

The use of various adsorbents in microbial fermentation appears to be the most
effective strategy to enhance pigment production and maximum pigment recovery. Studies
have utilized different internal adsorbents for maximum pigment recovery. Treating culture
flasks with Sigmacote to reduce attachment of pigment cells to a glass surface [241]; use
of resins like X-5, HZ806, and HZ802 in cultures for pigment adsorption [242]; adding
rice husks [243] or alginate beads to cultures for adsorbing more pigment cells [244];
addition of Diaion HP-20 resin [245–247] and polyurethane foam cubes [248] to cell culture
are the additional strategies in prodigiosin pigment recovery. Monascin pigments are
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recovered by adding rice, called “red mold rice” [161]. High monascus pigment yield was
achieved with stirred drum bioreactor [249]. Various extraction techniques such as ionic
liquid–assisted extraction, microwave-assisted extraction, ultrasound-assisted extraction,
pressurized liquid extraction, pulsed electric field assisted extraction, and supercritical
CO2 extraction are employed to recover pigments from fungi [220]. Finding the new
adsorbents and extraction techniques to recover pigments are important requisites in
microbial pigment research.

10. Biomedical and Industrial Applications

This section provides various applications of microbial pigments that were not covered
in the previous review [9]. Dozens of synthetic and natural pigments have been used
in beverages, foods, dyeing, and textiles (Figures 5 and 6). A red-pigmented (related
to carotenoid) Arthrobacter sp. offer the antitumor activity against esophageal cancer
cells [71]. Prodigiosin produced by Pseudomonas rubra displayed antimicrobial activity
against pathogenic bacteria and yeast [250]. Prodigiosin extracted from S. marcescens
displayed potential insecticidal activity against Drosophila melanogaster larvae [175], ants,
cockroaches, and termites [251]. Prodigiosin and glycolipid biosurfactant’s synergistic
effect demonstrated antimicrobial activity against pathogenic bacteria [252]. Prodigiosin
extracted from Zooshikella sp. and Streptomyces sp. and other pigments from marine bacteria
displayed potential application in staining and food colorants [253]. Currently, in our lab,
calcium oxalate and uric acid stones dissolving pigments from marine bacteria are being
isolated. Prodigiosin from S. marcescens [254] and violacein from C. violaceum [255] promise
to treat the chagas disease. Violacein pigment is employed in cotton fabrics dyeing [256],
and lead detecting whole-cell lead biosensor [257]. Violacein produced by Microbulbifer
sp. demonstrated antinematode activity against Caenorhabditis elegans [258]; a strain of
violacein producing Chromobacterium isolated from the Himalaya region, produced by
bioplastic polyhydroxyalkanoates [259].

Indigo pigment isolated from Pseudomonas sp. displayed antioxidant property [260].
Glaukothalin, a blue pigment produced by Rheinheimera sp., showed antibacterial activity
against few marine bacteria [261]. Pyocyanin from Pseudomonas aeruginosa demonstrated
textile dyeing properties, antifungal activity against blast fungus, Magnaporthe grisea, and
antibacterial properties against blight of rice, Xanthomonas oryzae [262]. Micrococcus sp.’s
yellow pigment showed excellent wound healing and anti-inflammatory property in albino
rats [263]. Bacterioruberin carotenoids of halophilic bacteria have significant antioxidant
and antibacterial activities [264]. Microbial pigments (Actinorhodin, carotenoids, flexiru-
bin, melanin, phycocyanin, phycoerythrin, blue pigment) are also used to synthesize
various nanoparticles with biological properties like antioxidant, antimicrobial, anticancer
activities [265].

Fungal pigments were reviewed to have a wide range of applications in food col-
orants [266,267], bioactive properties, and textile dyeing [40,268–270]. In contrast, bacterial
pigments like prodigiosin and violacein are used to color papers, candles, soaps, ink,
clothes [271], and textile dyeing [272]. Monascus pigment or anthocyanin pigment are
employed as noninvasive dye indicators in safe cell viability assay for Paramecium [273], Eu-
glena [274], and breast cancer cells [275]. Microbes isolated from cryosphere environments
also produced various pigments with multifaceted applications [269,276,277], including
anticancer activities [278].

Carotenoids of archaea [100] and Thraustochytrids [279,280] have potential nutraceu-
tical applications. However, pigments from marine archaea and protists remain the least
studied groups. Red algae extracts are used to make L’Oreal Paris Pure Clay Mask for
skin glow and smoothening. Similarly, other commercial cosmetic products have been
developed from cyanobacteria and microalgae [281]. Phycobiliproteins from cyanobacteria
and algae demonstrated cosmetic, dye, nutraceutical, and bioactive applications [282–284].
Marennine, a blue pigment produced by diatoms, Haslea species, promises antimicrobial,
antiviral, anticancer, and antioxidant activities [285].
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Figure 5. Chemicals structures of synthetic pigments.
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Figure 6. Chemical structures of important microbial pigments.
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11. Photo-Pigment Therapy

The combinations of light and pigments were found to be an effective strategy in
antimicrobial assays. A study found that the bactericidal effect of blue light irradiated
intracellular black pigment (protoporphyrin IX) on Porphyromonas gingivalis [286]. Likewise,
flavin mononucleotide activated by blue light resulted in inhibition of Staphylococcus aureus
biofilm [287]. Such strategies may be adopted and employed to increase the bioactive
effectivity of microbial pigments against various pathogens.

12. Market Demand for Microbial Pigments

In recent times, people around the world have come to know the harmful effects of
synthetic colorants in foods (Figure 7). Thus, demand on natural pigments is increasing
over artificial colorants. In 1971, the United States spent around 1 billion US dollars to
increase the supply of natural colorants from various natural resources [288]. There are
inadequate or scarce data on the global market value of food-grade microbial pigments.
Very few pigments such as β-carotene, astaxanthin, and monascus are available in the
market. Lack of surveys and literature on microbial pigments’ cost and demand are
becoming hurdles to estimate the actual global market demand on microbial pigments.

Figure 7. An illustration explaining the requirement of natural colorants over synthetic colorants.

Monascus pigments are traditional food colorants widely used in southeast Asian
countries, which had an estimated market value of $12.0 million dollars during 1992 [289].
Monascus pigments are prohibited in the United States and Europe due to the presence of
mycotoxins [290]. The global commercial market value for carotenoids reached $1.2 billion
in 2010, $1.5 billion in 2014, and is expected to reach $2.0 billion by 2022 [228,291,292], with
an annual growth rate of 5.7% for the period 2017–2022 [293]. Prodigiosin and violacein
(chemical standards) are fetching about $5000 × 105 per kg in the market [271]. Natural
carotenoids (24%) are gaining a high market value of $350 to 7500 kg−1 than synthetic
carotenoids (76%) with a value of $250–2000 kg−1 [294]. Astaxanthin and β-carotene
are the highly demanded pigments globally with an expected market value of $225 and
$309 million dollars by 2018, respectively [295]. Lutein is a xanthophyll pigment expected
to gain a $308 million market value by 2018 [296]. The global market value of carotenoids is
projected to reach up to 2.0 billion by 2026 [297]. According to the global phycobiliproteins
market research report, market demand for phycobiliproteins is expected to rise by 2026.



Microorganisms 2021, 9, 637 15 of 26

Currently, the phycobiliproteins (10 mg) price in Merck ranges from $200 to $270. A recent
report has estimated the expected global dyes and pigments market value of $33.2 to
49.1 billion dollars by 2027 [298]. Indeed, 80 to 90% of the carotenoids supply in the market
is fulfilled via chemical synthesis [299]. However, due to synthetic colorants’ side effects
and the expensive pigment source of plants, microbial pigments have been gaining high
demand in recent times. Therefore, finding potential promising microbes became a research
interest in food and drug industries. For instance, yeast carotenoids’ market value has
declined due to low dry weight production (0.40%) compared to algae, Haematococcus sp.
(3.0%) [295]. In the current global population rise scenario, demand for edible microbial
pigments as food colorants is expected to rise to fulfill the food industry requirements [300].

Microbial species with high biomass and pigment yield, including the genetically
modified microbes, are highly interested in the current research. On the other hand, in
view of the side effects posed with synthetic colorants [31,36,301], the scientific community
has to reach the public through various social programs to make awareness about the
importance of natural pigments and negative impacts of synthetic colorants on health.
These awareness programs would save many lives from various health disorders, including
life-threatening cancer.

13. Future Perspective

Microbial pigments demonstrated a wide variety of applications in food, drug, and
textiles. These natural pigments can replace synthetic colorants and fulfill the emerging
need on food colorants in the global market. Microbial pigments play an indirect role
in the conservation of plants and animal resources by substituting them from pigment
resources. Many researchers are restricted to pigments like prodigiosin, violacein, monascin,
astaxanthin, lutein, and phycobiliproteins. Therefore, exploring other microbial pigments
from different environments would offer novel and potential known pigment molecules
for multifaceted applications. Research on microbial pigments would ultimately reveal
the evolutionary lineages of origin of life and the dispersal of various chromophore-based
phenomena in all lineages. Isolation and chemical characterization of microbial pigments
are easier than non-pigmented microbes, whose compounds’ characterization is arduous
and time-consuming. Thus, focusing on microbial pigments would garner more attention
to research and development and their economic demand in various industries.
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