
HAL Id: hal-04145599
https://hal.science/hal-04145599v1

Submitted on 29 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards trustworthy and privacy-preserving
decentralized auctions

Tiphaine Henry, Julien Hatin, Eloi Besnard, Nassim Laga, Walid Gaaloul

To cite this version:
Tiphaine Henry, Julien Hatin, Eloi Besnard, Nassim Laga, Walid Gaaloul. Towards trustworthy and
privacy-preserving decentralized auctions. Journal of Banking and Financial Technology, inPress,
�10.1007/s42786-024-00051-0�. �hal-04145599�

https://hal.science/hal-04145599v1
https://hal.archives-ouvertes.fr


Towards trustworthy and privacy-preserving

decentralized auctions

Tiphaine Henry1,2,3*, Julien Hatin2*, Eloi Besnard3, Nassim
Laga2 and Walid Gaaloul3

1Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France.
2Orange Innovation, Paris, France.

3Telecom SudParis, Institut Polytechnique de Paris, Paris, France.

*Corresponding author(s). E-mail(s): tiphaine.henry@cea.fr;
julien.hatin@orange.com;

Contributing authors: eloi.besnard@telecom-sudparis.eu;
nassim.laga@orange.com; walid.gaaloul@telecom-sudparis.eu;

Abstract

Blockchain smart-contracts can be used as service mappers, connect-
ing a contractor with the service provider best fitting desired service
requirements (e.g., price or quality of service). The allocation consists of
comparing competitive bids using a smart-contract. However, in competi-
tive environments, service providers may be reluctant to share sensitive
information offers with the blockchain as it makes any transaction implic-
itly public. To reconcile data privacy imperatives with the benefits of
blockchain, we propose to leverage fully homomorphic encryption (FHE)
for blockchain-based sealed-bid auctions. More precisely (i) FHE enables
the processing of bids without decrypting them, (ii) smart-contracts
gather and orchestrate bids comparison, and (iii) a computation ora-
cle carries on comparisons over ciphered data. Collusion attempts may
occur between bidders and the computation oracle. To prevent this,
we combine FHE with hybrid RSA/AES encryption to preserve the
privacy of the onchain bid contents. Hence, our protocol prevents infor-
mation leakage onchain and on the service providers’ side during bids
comparison. We validate this approach through an implemented prototype.

Keywords: Blockchain, Fully Homomorphic Encryption, Privacy, Auctions

1



2 Towards trustworthy and privacy-preserving decentralized auctions

1 Introduction

Decentralized collaborations have risen in recent years, mainly fostered by
progress in information systems technologies. Companies manage shared pro-
cesses to coordinate themselves efficiently [1, 2]. Open tenders are an example
of such decentralized collaborations, where several competitors submit their
tenders to the platform to win the service. As an illustration, in logistic sup-
ply chains, a dedicated allocation system maps delivery requests to the best
available carrier (Fig. 1). The allocation system may leverage the quality of
service ratings by aggregating metrics such as average delay or customer satis-
faction. The business process management system can manage service metrics
and accounting and compliance aspects. The platform will then connect the
winning tender with the service requester and manage the service enactment
and settlement.

Automation needs arise in such a context to reduce administrative costs
related to candidates’ selection, contracting, and payment stages. The following
requirements arise to foster automation and the adoption of autonomous
allocation systems. First, the allocation protocol should be trustworthy by
ensuring bid integrity and comparing all submitted bids based on predefined
metrics. Second, auditability of the protocol and decision-making should be
accessible to all participants to ease claim resolution if they occur. Lastly, the
protocol should offer bid privacy to limit information asymmetries and collusion
risks between actors [3], as they may comprise differentiating criteria.

The blockchain has emerged as a new tool for trustworthy decentralized data
storage and decision making [4, 5] with the potential for lower operational and
transaction costs [6, 7]. The blockchain ledger stores transactions in a tamper-
proof fashion and scripts referred to as smart-contracts execute predefined
protocols autonomously. Oracles can feed the blockchain with reliable external
data: the blockchain connects to several oracles to triangulate the status of
transactions outside the blockchain system. Hence, when combined with oracle
entities, smart-contracts can provide automation gains during the allocation
and process management stage [8, 9]. Smart-contracts can secure the allocation
and settlement of the allocation service in an efficient, finite, and autonomous
way [6, 10]. Such scripts can take action regarding the bids evaluation, service
completion, and payment without requiring a trusted third party. Such a
system can even, for accounting and compliance purposes, (1) record all settled
transactions in a tamper-proof fashion and (2) keep track of delivery information
provided by different oracles and tracking sensors. This configuration ensures
information transparency as the involved members can access past allocation
history and the tamper-proof delivery information stored in the ledger.

Transaction logs stored on the ledger may reveal publicly sensitive data.
Dealing with data privacy in a blockchain framework raises challenges regarding
access control enforcement and processing of sensitive data [11–13]. Privacy-
preserving methods can be used as a layer of protection. Zero-knowledge
proof [14] has been used as a building block for ring signatures and mixing
services. Additionally, encryption techniques such as homomorphic encryption



Towards trustworthy and privacy-preserving decentralized auctions 3

Fig. 1: Service allocation mechanism

have been used to carry on algebraic operations on ciphertexts [15–18]. Plain-
texts are thus not disclosed to participants. A trusted third party is often a
single point of attack or failure. This configuration may only be possible in
some use cases, for it may result in concerns of collusion of the trusted third
party with the other stakeholders.

Another approach combines secure multi-party computing, homomorphic
encryption, and zero-knowledge proof to compare offers while preserving privacy.
During a pre-processing stage, the candidates compare pairwise their offers
in private channels using zero-knowledge proof mechanisms[19, 20]. Results of
the comparison are then processed on-chain. This approach addresses power
asymmetry issues. Nonetheless, candidates need to interact with one another,
and communication costs may be prohibitive [21].

Despite several publications of blockchain-based allocation protocols to
map services and their procurement, there needs to be more research on
multi-objective service allocation in a privacy-preserving fashion [22]. Fully
homomorphic encryption (FHE) preserves algebraic operations over ciphered
data. Research is currently lacking regarding its potential for trustworthy
privacy-preserving computations on-chain.

Our contributions. This study sets out to answer the following question:
(RQ) How to leverage blockchain as a trustworthy service allocation tool while
preserving the confidentiality of offers?

This paper introduces a new mechanism for trustworthy, decentralized, and
privacy-preserving service allocation using ciphered multi-objective offers.

Fig. 2 depicts the system components and their interactions. Our solution
leverages the blockchain to compare ciphered offers in a trustworthy fashion
without needing trusted third parties. The blockchain ledger keeps track of all
transactions and offers tamper-proof storage facilities for service agreements.
Smart-contracts provide a reliable, decentralized, trustworthy allocation facil-
ity, managing the open tendering and the confidential service settlement. A
blockchain oracle service compares ciphered offers on-chain on behalf of the
smart contract for scalability reasons.

Fig. 2 presents the mechanism. Upon a service request (step 1), service
providers request the RSA public key of the comparison oracle to the smart con-
tract (steps 2-3). This key will be used to carry on hybrid RSA/AES encryption.
This encryption layer prevents collusion between participants wishing to access
other bid contents. A service provider authority generates a ciphering FHE key
and forwards it to the bidders (steps 4-5). Service providers will publish their



4 Towards trustworthy and privacy-preserving decentralized auctions

Fig. 2: Overview of the system

bids on-chain once ciphered with FHE and the hybrid RSA/AES ciphering
layer (step 6). As mentioned, this hybrid encryption layer protects bid content
from the service provider authority or other bidders. The latter have access to
the FHE key and the data stored on-chain. The comparison oracle retrieves
and compares the offers ciphered in FHE (step 7). The comparison output, the
ciphered argmax, is shuffled and provided to the service provider authority for
deciphering. Shuffling the argmax prevents the service providers’ authority from
gaining knowledge of the bidders’ identity. There is no linkage between bidding
requests posted on-chain and the ordering of the argmax. The service providers’
authority finally hands out the winning bid position to the smart contract. The
smart contract then enacts the binding using the offer linked to the argmax.

Our approach interest comes from using FHE techniques to carry on bid
comparison in such an ecosystem: any calculation is theoretically accessible to
compare offers while not needing trusted hardware having access to plaintext.
Additionally, as in [23, 24], this approach ensures bidders’ non-interactivity.
It also offers a distributed authority because several entities manage the bid
comparison (the service providers’ authority, the blockchain, and the ciphered
computation oracle). Finally, our approach differs from other literature by
using an oracle to delegate FHE comparisons while preventing smart-contracts’
rising transaction costs.

To summarize, we propose the following contributions:

• We propose a trustworthy mechanism for managing tendering leveraging
blockchain smart contracts. We leverage FHE and RSA/AES ciphering in
such blockchain context for privacy purposes.

• We leverage Fermat’s Little Theorem introduced in [25, 26] for onchain
comparison of FHE offers. To prevent collusion, we ensure a separation of
powers in bidding and using FHE so that the comparison oracle does not
know the actual value of the argmax.



Towards trustworthy and privacy-preserving decentralized auctions 5

• We demonstrate the feasibility of the mechanism using a proof-of-concept that
maps services to service providers in a decentralized and privacy-preserving
fashion.

We organize the remainder of this paper as follows. Section 2 introduces
key concepts around blockchain and cryptography algorithms leveraged in the
article. Section 3 reviews related work. Then, section 4 presents our motivating
example. Section 5 provides an abstract description of the system’s actors
and trust relationships. In section 6, we describe the proposed mechanism.
In section 7, we validate our approach by building and experimenting on a
prototype. We discuss the results and conclude the paper with section 8.

2 Preliminaries

This section introduces key concepts about blockchain, smart-contracts, and
oracles before introducing the two cryptography algorithms used in this paper,
namely the hybrid RSA/AES encryption scheme, and FHE.

2.1 Blockchain, smart-contracts, oracles, and IPFS

The blockchain is a distributed ledger organized into linked blocks of transac-
tions. A set of nodes (or users) hold a copy of the ledger and update it following
a set of rules, a consensus protocol. A consensus protocol defines the protocol
followed to verify and append new transactions to the chain. Proof-of-work and
proof-of-stake are among the best-known consensus protocols. With proof-of-
work, a puzzle needs to be solved by miners to append a new block and get a
financial fee. With proof of stake, the node responsible for adding a new block
of validated transactions has the most assets. These rules help avoid malicious
nodes or invalid transactions. Merkle trees ensure the ledger’s integrity by link-
ing transactions using cryptography rules. Cryptography technologies such as
Elliptic Curve Digital Signature Algorithm (ECDSA) provide each participant
with a public address and a private key to sign transactions [27]. This scheme
ensures participants’ pseudo-anonymity. Anonymity is not guaranteed as the
ledger links user public addresses to the transactions they are involved with.
Blockchain networks can be permission-less (any node can join or leave the net-
work) or permissionned (nodes must be approved to join the network; leaving
the network may be prone to more difficulties).

Blockchains comprise executable scripts, the smart-contracts. These smart-
contracts can store the states of defined variables and execute functions on-
demand. They can run the business logic and manage business processes in an
autonomous fashion [8]. Some smart-contract services depend on external data.
To answer this need, oracle services bridge the closed blockchain network [28].
Oracle services repeatedly trigger the same API and triangulate the results
to prevent malicious behavior on the API side. They forward the requested
external data to the smart-contract services. An alternative use for oracles is to
ask APIs to carry on heavy computations, otherwise too expensive to carry on



6 Towards trustworthy and privacy-preserving decentralized auctions

Fig. 3: FHE Scheme

directly on smart-contracts. Chainlink and Provable are examples of blockchain
oracle solutions.

IPFS is an open peer-to-peer file-sharing network providing high throughput
and low latency [29]. Two main building components are the distributed
hash tables and a Merkle DAG. First, distributed hash tables provide high
throughput and low latency for data distribution: nodes of the IPFS network
can store and share data in a decentralized fashion. Second, Merkle DAG
provides content addressing and tamper-resistance: data are identified uniquely
and permanently stored with integrity. In the blockchain context, IPFS provides
a reliable and low transaction cost storage capacity [30], which is useful for
blockchains with proof-of-work consensus such as Ethereum, where storing data
on smart-contracts is costly.

2.2 FHE and Hybrid RSA/AES encryption schemes

Homomorphic encryption, first proposed by Rivest et al. in 1978 [31] is a
ciphering algorithm preserving algebraic operations: one can carry computations
on encrypted data without requiring a decryption key. This encryption protocol
often helps address the millionaire problem where two millionaires want to
compare their wealth without disclosing the amount of money they own [32].
Building on this idea, several works defined partial homomorphic encryption
algorithms where only one type of algebraic operation is possible (e.g., Paillier
algorithm [33]).

The first fully homomorphic encryption scheme, aiming at evaluating any
arbitrary function, has first been proposed by Craig Gentry in his disserta-
tion [34]. Fig. 3 illustrates a high-level view of the FHE scheme. Let’s consider
a number x and the corresponding ciphertext c. Consider an algebraic opera-
tion f on x such that f(x) = y. In an FHE scheme, decrypting f(c) will give
us y. Hence, one can carry on an algebraic operation on a ciphertext with
homomorphic encryption without having access to plaintext.



Towards trustworthy and privacy-preserving decentralized auctions 7

In more details, it consists into the evaluation of an arbitrary boolean circuit
composed of binary gates (e.g., AND, OR, XOR, NAND, or NOR gates) over
encrypted data without revealing any information on the data The encryption
first consists of translating a plaintext into a binary. Afterward, the binary
goes through a set of boolean circuits. Each circuit corresponds to an operation
(addition, multiplication, etc.). Successive operations may trigger noise; hence
the deciphered output of the computation may not be exact. Bootstrapping
operations help reduce this noise [35].

The literature includes several iterations of FHE schemes building on
Gentry’s proposal. The most representative are BGV [36], FV [37], TFHE [38],
and CKKS [39]. A set of FHE libraries, addressing the different FHE scheme
generations, are available for research purposes. Examples of such libraries are
HeLIB, TFHE, PALISADE, or FHEW. A set of compilers and accelerators are
also available to facilitate the use of these tools.

Several technical limitations still hinder real-life uses, such as slow compu-
tation speed or accuracy problems, and a lack of common stack embodying
features proposed in the various iterations (matrix multiplication, non-linear
function evaluation, fast bootstrapping, etc). Research is currently being led to
overcome these limitations, especially through the length of hardware accelera-
tion. The survey of Marcolla et al [40] provides a more in-depth overview of
FHE technics and challenges.

The RSA/AES hybrid encryption protocol, first proposed in [41], leverages
RSA and AES. RSA (which is asymmetric) is computationally expensive, and
cannot be applied on large data. Hence, the large data is ciphered with AES
(which is symmetric). The secret AES key is ciphered with RSA and shared
conjointly with the data.

3 Related work

Multi-party computation, alongside zero-knowledge-proof [42], can be used
to conduct sealed-bid auctions. With zero-knowledge-proofs, a prover can
demonstrate knowledge on a piece of information without leaking information
directly to the verifier. In the context of sealed-bid auctions, the non-interactive
zero-knowledge proof variant, which consists of one-way communication between
the prover and the verifier (c.f. zk-SNARKs [43]), is often used by bidders to
compare offers pairwise in private channels without revealing the content of
the bids [19, 20, 44]. They reveal the result of each smart-contract comparison
using evidence techniques with zero knowledge disclosure. The main limitation
is that bidders need to interact with each other. Hence, issues may arise if one
bidder is unwilling to participate, takes more time than needed, or if too many
bidders need to interact. Additionally, the smart-contract can reconstruct the
bids ordering (e.g., from the most to the least expensive if the auctions are on
a price), reducing the bids’ privacy.

In [45], a hybrid public/private blockchain scheme, combined with encryp-
tion techniques, is proposed to carry on privacy-preserving auctions. The public



8 Towards trustworthy and privacy-preserving decentralized auctions

blockchain gathers bids, and once the auction terminates, the auctioneer can
access the content of the bids in the private blockchain. Such architecture
answers the need for low auction costs and low latency. Nonetheless, the auc-
tioneer must orchestrate and deploy the auction on the private chain. It may
reduce the benefits of smart-contracts as a trustworthy and autonomous third
party and reintroduces security downsides. Moreover, scalability is limited due
to the public section of the mechanism [24].

Other approaches use a smart-contract to gather offers and compare them
onchain using a trusted execution environment or enclave [17, 18, 23, 24, 46–
50]. A smart-contract bridges the gap between customers and the enclave.
Approaches using partial homomorphic encryption gather offers onchain. An
enclave then deciphers offers offchain, as in [46]. In [24], a trusted execution
environment computes allocations in a blockchain environment, using an oracle
to track node preferences. However, in these approaches, the enclave has access
to the content of offers, which can result in a single point of failure. Addi-
tionally, partial homomorphic encryption, used e.g., in [17, 18] does not allow
the combination of different operations (addition, subtraction, multiplication,
division), which is necessary to carry on typical aggregation strategies used
to compute a multi-objective comparison of offers. Some papers also build on
group signature schemes to ensure bidders anonymity [47, 49, 50]. Similarly,
hardware-based trusted execution environments can identify the winning bid.
However, in our cross-organizational setting where partners may collaborate for
the remaining process activities, we do not wish to reach bidders full anonymity.
Moreover, bids content are made accessible to the competitors. Hence, this
technique does not meet our motivating example need.

In summary, carrying on privacy-preserving auctions on blockchain with
multi-party-computing reintroduces bidders interactivity [23]. Additionally, the
use of the hybrid public/private blockchain scheme in [45] weakens trustless
governance due to the active role of the auctioneer. Furthermore, using trusted
execution environments reintroduces a single point of failure as the enclave
accesses the content of offers.

4 Motivating example

We introduce the main concepts and problem using a simple example that we
revisit in the sequel of this paper. Freight exchange procurement platforms are
an example of service allocation platforms. Shippers ask for a delivery service,
and several carriers registered into the platform compete for the service. The
carrier choice is paramount as the quality of the delivery directly impacts
customer satisfaction and may have significant financial consequences.

Suppose four carriers, A, B, C, and D. They answer a service delivery
request made by a shipper through a procurement platform. The shipper sets a
maximum price threshold and a minimum capacity for offers to be eligible: the
truck capacity should be at least 5m3, and the service price below 20$/m3/km.



Towards trustworthy and privacy-preserving decentralized auctions 9

Additionally, if two or more bids are suitable, the offer must be allocated to
the carrier with the optimal bid.

Table 1: Competing carriers offers

Carrier Availability Location Price1 Capacity12

A D1 C1 10$/m3/km 10
B D1 C1 5$/m3/km 5
C D2 C1 10$/m3/km 5
D D2 C1 10$/m3/km 8

1Sensitive metrics that should remain private.
2Truck capacity is normalized to scale 10.

Table 1 presents the candidates’ bids, with a normalized truck capacity. The
underlying allocation mechanism and data processed should be trustworthy
to discourage actors’ collusion and data tampering. Additionally, sensitive
information encapsulated into carriers’ offers should remain confidential (i.e.,
not accessible to other carriers).

Our use case is a cross-organizational business process (i.e., involving two
companies or more). In this setting, the business process management system,
managing tasks shared between actors (such as resource allocation) should
ensure (1) a distributed governance, (2) an open allocation system to avoid any
power imbalance, (3) transactions auditability for trust purposes, and (4) the
possibility to automate business process management tasks. Blockchain is a
technology that offers, by design, these characteristics. Hence, blockchain is
critical to answer the need for a trustless business process management system
in our cross-organizational context.

Preserving bids privacy in the blockchain ledger arises as a requirement for
the adoption of such system. Hence, we propose to leverage blockchain-based
resource allocation schemes with algebraic operations computed on ciphered
bids.

5 System context

This section gives an abstract description of the system’s actors, their
interactions, and their trust relationships.

5.1 Entities and data flows

• the bidders (also referred to as service providers)
• the service provider authority who has the FHE keys,
• the blockhain with (i) the ledger for a distributed non tamperable storage

where bidders can collect information without talking to each other, (ii) the
smart contract that acts as a trustworthy intermediary between bidders to



10 Towards trustworthy and privacy-preserving decentralized auctions

manage the tendering. It delegates the bids comparison to the comparison
oracle.

• the comparison oracle, triggered by the smart contract, that does the com-
parison of the ciphertexts by delegation of the smart contract for scalability
reasons, using FHE

• IPFS for distributed storage of the bids, used for blockchain scalability
purposes. Each IPFS hash is stored onchain for non repudiability of the bids.

Our mechanism comprises the following data: (1) the FHE key, accessible
by the service provider authority and bidders only; (2) the RSA public key,
accessible to all as it is stored onchain, and its corresponding RSA private key
accessible to the comparison oracle only, (3) bidders AES keys, that can be
accessed by the comparison oracle, (4) bidders offers, all ciphered with (i) the
same FHE key, and (ii) the unique AES key, which in turn is ciphered in RSA
to prevent deciphering attempts, (5) and finally the ciphered argmax issued
from the bids comparison.

5.2 Threat model

We define the actors’ behaviors as follows:

• We suppose bidders are dishonest;
• We suppose the service provider authority and the computation oracle are

honest but curious;

We now describe the possible collusions between actors:

• All bidders colluding together: Bidders have no interest in colluding together
as they are competitors;

• One bidder colluding with the service provider authority: they will hold the
content of the bidder offer, its AES key, and the FHE key. This collusion does
not allow the access to other bidders contents; and hence has no interest;

• One bidder colluding with the oracle: The bidder brings the FHE key, and
the oracle the offers of the other bidders. Hence they can access the offer
contents of all bidders;

• the service provider authority colluding with the oracle: The bidder brings
the FHE key and the oracle the other bidders’ offers. Similarly, they can
access all the offers of the bidders.

In the following, We hypothesise that the comparison oracle, and the service
providers authority have an honest but curious behavior: they will not try
to change the protocol, hence not collude with a bidder. In this context, we
propose a trustless mechanism, as each entity only has access to no information
or partial information regarding the tendering.



Towards trustworthy and privacy-preserving decentralized auctions 11

6 The approach

Notation. First we introduce the notations used in the following sections. We
refer to k as the ciphering key for the symmetric encryption of type . We
refer to (s , p ) as the couple of respectively secret and public keys for the
asymmetric encryption algorithm of type . Let x a natural number. C denotes
the ciphering function of type ; c = C (x, p ) denotes the ciphered version
of x obtained after applying the ciphering protocol of type ; D denotes the
ciphering function of type , and x = D(c, s ). For symmetric encryption, k
denotes both ciphering and deciphering. We define a service provider offer O as
a vector of offers, where O[i] is an array comprising sensitive metrics to evaluate.
We refer to Oenc as the array where each element of O has been ciphered with
the public key of the encryption algorithm of type : with i ∈ [0, size(O)− 1],
Oenc[i]=C(O[i], p ). We refer to L as the list of ciphered aggregated offers.

6.1 Overall approach

We now provide an overall view of the approach before diving into the details of
each stage. First, we initialize the ciphering keys for the AES, RSA, and FHE
algorithms. To preserve the privacy of sensitive offers during the allocation
protocol, we separate the management of the encryption keys between five
stakeholders. The second stage consists of the smart-contract gathering the
ciphered sensitive information of eligible candidates and the RSA-ciphered AES
key. The third stage consists of deciding on the best offer: the oracle receives
the ciphered keys and bids, deciphers the key, then uses the deciphered key
to access FHE-ciphered offers. As a final stage, the oracle computes the best
offer by comparing the FHE-ciphered data. The protocol sets the final binding,
and service management can begin[51]. We describe each stage in more detail
hereinafter.

The privacy-preserving allocation smart-contract holds a list of registered
service requests. Each registered service request comprises the blockchain
addresses of the service requester and allocated service provider (null at first).
It also comprises the open tendering and the service settling status. The open
tendering comprises the list of submitted bids, each attached to its issuer
blockchain address, and the open tendering status. The latter can be open:
the smart-contract accepts new bids. It can be pending: the smart-contract
no longer accepts bids and proceeds to the bids comparison. It can finally be
closed: the comparison has terminated, and the service is allocated. In this case,
the blockchain address of the service provider is populated with the address of
the winning bid issuer.

6.2 Key initialization

In our approach, we leverage three encryption algorithms: FHE, AES, and RSA.
FHE is used to compare offers that are encrypted without the need to reveal any
information on the offers. The service provider authority and service providers
hold the same FHE key. Hence, they can decipher bids stored onchain. An



12 Towards trustworthy and privacy-preserving decentralized auctions

Fig. 4: Initialization of cipher keys (SP=service provider)

asymmetric encryption layer is thus necessary to preserve offers confidentiality.
A standard asymmetric encryption algorithm is RSA. Nonetheless, the FHE
ciphertext length is too large for RSA, but not for AES. As AES is symmetric,
the issue of confidentiality rises again, and it must be combined with an
asymmetric scheme. To do so, we use the hybrid AES/RSA encryption scheme
presented in [41]. Each bidder generates its own AES key and ciphers the FHE
offer with the AES encryption. Hence only bidders can decipher their own
offers. Meanwhile, bidders apply the RSA encryption on their AES key. Hence
only the RSA key holder (the comparison oracle) can access the AES key.

Fig. 4 presents the sequence diagram of the initialization of the three RSA,
AES, and FHE ciphering keys. In this approach, three separate entities manage
the RSA, AES, and FHE key generation to avoid any deciphering attempt by
one of the entities.

• The service providers’ authority generates the FHE key kFHE (step 1) that
will be forwarded to the service providers once the auction time finishes. The
service providers will use this key to cipher their offers.

• Each service provider generates its own AES encryption key (steps 2).
• The oracle generates the pair of private and public RSA keys sRSA and pRSA

used to cipher and decipher messages with the RSA algorithm (step 3). The
private key sRSA remains secret for the oracle to retrieve offers ciphered
with the RSA algorithm. The public key pRSA is saved in IPFS to reduce
storage costs in the smart-contract (step 4). The IPFS hash used to retrieve
the public key on the IPFS network is forwarded to the oracle (step 5). The
oracle then publishes the hash of pRSA onchain (step 6).



Towards trustworthy and privacy-preserving decentralized auctions 13

Fig. 5: Ciphering and gathering offers

Let’s consider the delivering procurement allocation of our motivating example.
The carriers’ authority generates kFHE . The four bidders A, B, C, and D of
our motivating example all subscribe to the smart-contract to participate in
the bid. They each generate a private AES encryption key kAES . The oracle
generates the keyset {sRSA, pRSA} and publishes the public RSA key to IPFS.
It then publishes the hash of pRSA to the smart-contract.

6.3 Forwarding FHE-ciphered offers to the
smart-contract

Fig. 5 then depicts the ciphered offers comparisons stage.
In a first stage, each service provider SPi fetches the FHE and RSA ciphering

keys. Each candidate requests the FHE key to the service providers’ author-
ity (step 1). The service providers’ authority forwards the FHE key to each
candidate via private channels (step 2). Each candidate SPi then triggers
the smart-contract to retrieve the IPFS hash of pRSA (step 3). The smart-
contract returns the hash to SPA (step 4). SPi connects to IPFS to retrieve
pRSA (step 5). In a second stage, each service provider ciphers its offer and
publishes it in IPFS. SPi ciphers her offer Oi twice using FHE encryption
first and then AES encryption. She applies the following ciphering algorithms:
CAES(CFHE(Oi, kFHE), ki,AES) using her personal AES key ki,AES . She saves
it to IPFS (step 6). The corresponding hash is forwarded back to SPi (step
7). In a third stage, SPi also ciphers kA,AES using the RSA algorithm and



14 Towards trustworthy and privacy-preserving decentralized auctions

Fig. 6: Ciphered comparison and allocation

forwards it to IPFS (step 8). The corresponding hash is forwarded back to SPi
(step 9). SPi finally publishes the hashes of her ciphered offer and key to the
smart-contract (step 10).

In our motivating example, delivering driver A computes her ciphered AES
key is expressed as CRSA(kA,AES , pRSA). She also processes her ciphered offer

as follows: OAenc
=

[
CAES(CFHE(price, kFHE), kA,AES)

CAES(CFHE(capacity, kFHE), kA,AES)

]
.

6.4 Service allocation

Once all offers are forwarded, the smart-contract delegates the offers’ comparison
to the oracle. Delegation occurs to avoid intensive computations carried on the
blockchain network. Indeed, the more calculation on the blockchain, the more
expensive the transaction’s time and transaction fees.

Through this mechanism, we propose to compare ciphered offers directly.
Such mechanism has been missing in the literature, as oftentimes the oracle has
directly access to clear offers to realize the comparison, hence privacy leakages
could occur. What is more, to the best of our knowledge, there is a research gap
regarding the argmax computation of an array of elements ciphered in FHE.

Shuffling and forwarding ciphered offers

The smart-contract interchanges the randomly received ciphered offers (Fig.6,
step 1). By so doing, we prevent an honest but curious oracle behavior that
could lead to an information leakage on the order of candidates’ submissions and



Towards trustworthy and privacy-preserving decentralized auctions 15

hence on the winning offer. The smart-contract then forwards the interchanged
offers to the oracle for an argmax computation (Fig.6, step 2).

To do so, the smart-contract sends an API request to the oracle, specifying
the ID of the bid comparison to analyze. Meanwhile, the smart-contract sends
an event comprising the list of hashes of the ciphered offers and AES keys.

In the following, we refer to the interchanged offers as πA and πB .
In our motivating example, the smart-contract interchanges the received

ciphered offers [OAenc
, OBenc

] randomly and forwards the interchanged offers
to the oracle for an argmax computation.

Retrieving FHE offers and computing the mean

We now propose to leverage oracle services to carry on the offers comparison.
The oracle first retrieves the list of ciphered offers and keys hashes specified
in the comparison request event. It then connects to IPFS to fetch the offers
and keys from the hashes (Fig.6, step 3-4). For each offer i, the oracle uses the
private key sRSA to decipher ki,AES (Fig.6, step 5). It then uses each AES key
to process the corresponding FHE offers (Fig.6, step 6): it will first decipher the
offers to retrieve the FHE offers and then compute each offer’s ciphered mean.

In our motivating example, the oracle deciphers the RSA layer of the AES
key of A. It will then use this AES key to remove the AES encryption layer
of πA. The oracle then computes the mean for the offer submitted by A: it
obtains avg(πA) = (CFHE(capacityA, kFHE + CFHE(priceA, kFHE)/2. The
computation of avg(πA) gives CFHE(8, kFHE). The computation of avg(πB)
gives CFHE(5.5, kFHE).

As a side note, we chose a simple average as a possible use. Alternative
computations can be carried on to aggregate offer metrics. For example, Pareto
optima could be computed, or weighted mean with weighting factors defined in
the smart-contract in the service request.

Comparing offers

An oracle service now carries the pairwise comparison of the processed offers
(Fig.6, step 7).

Finding the argmax of a set of two or more ciphered numbers is challenging,
as the result of the maximum between two ciphered numbers is also ciphered [52–
54]. It cannot be reused to be compared with a third number without deciphering
it due to noise addition during ciphering and comparison [54].

Algorithm 1 circumvents this issue using pairwise comparisons between
offers [54], and equality testing using the Fermat little theorem, which has
been already applied for FHE in the context of cloud environments [25, 26].
We leverage these approaches here in a blockchain context.

B will store the argmax of the ciphered offers (Algorithm 1, line 2). A pair-
wise comparison is launched on L (Algorithm 1, line 3-11). More precisely, the
maximum m between two elements L[i] and L[j] is assessed (Algorithm 1, line
6). An equality assessment between L[i] and m is then determined (Algorithm 1,
line 7): if L[i] is maximum, the function testEquality returns a number cn



16 Towards trustworthy and privacy-preserving decentralized auctions

Algorithm 1 Ciphered numbers comparison

Input: L the list of ciphered aggregated offers, c1 and cn ciphered 1 and n,
and p a prime number large enough to fulfill the condition p > max(L).

Output: B the binary argmax vector
1: procedure cipherCompare(O)
2: var B ← []
3: for i ∈ [0, length(L)] do
4: for j ∈ [0, length(L)] do
5: if i != j then
6: var m← cmax(L[i], L[j])
7: var b ← testEquality(L[i],m, c1, cn, p)
8: B[i]← B[i] + b
9: end if

10: end for
11: end for
12: return B
13: end procedure

where n > 1. Otherwise, testEquality returns c0. We increment the argmax
B[i] with the output of each comparison (Algorithm 1, line 8). Once all pair-
wise comparisons are performed, B comprises the ciphered argmax of L. The
argmax will be the index with the maximum value.

In our motivating example, the forwarded ciphered offers are [πA, πB ]. The
respective indexes of πA and πB are 0 and 1. We suppose n=10. The oracle com-
putes the comparison for [mean(πA), mean(πB)] and [mean(πB),mean(πA)].
The argmax of the comparisons is B=[c0,c10].

Deciphering the argmax and retrieving the best offer

After the argmax computation, the oracle asks the service provider authority
to decipher the argmax (Fig. 6, step 8). The service provider authority uses its
FHE key to decrypt the argmax. It then forwards the deciphered argmax to the
oracle (Fig. 6, step 9). The oracle then transfers the argmax vector to summarize
the pairwise comparisons as an array to the smart-contract (Fig. 6, step 10).
The smart-contract reverts the shuffling applied in step 1 on the received array
(Fig. 6, step 11). The smart-contract sets the winning offer (Fig. 6, step 12).

If there is only one maximum, the winner is the service provider whose index
is mapped to the array’s maximum. If there are several offers, some mechanism
to break the tie can be implemented. We use the time of submission stored in
the blockchain ledger to break the tie (c.f., Fig. 5, step 10).

The smart-contract emits an event to notify service providers of the output
of the auction and sets the blockchain address of the service provider with the
address of the winning bid issuer.

In our motivating example, the oracle sends the ciphered argmax to the
carriers’ authority for deciphering. The carrier authority deciphers the argmax



Towards trustworthy and privacy-preserving decentralized auctions 17

and obtains Ldec=[10,0]. She forwards Ldec to the oracle, which sends Ldec to
the smart-contract. The smart-contract reverts the shuffling to the original
order on the deciphered argmax: it finds that B is the winning offer. The smart-
contract sets the blockchain address of the service provider with the address of
the winning bid issuer. It also sends a notification to A to inform her that her
bid has not been successful.

In summary, we have combined three ciphering algorithms to carry on a
privacy-preserving comparison of offers. This bidding stage can be followed by
smart contract-based payment, and business process management to a larger
extent to benefit from the blockchain characteristics. The use of FHE instead
of partial homomorphic encryption enables the comparison of multi-objective
offers. Meanwhile, the hybrid RSA/AES algorithm enables a confidential
transfer of FHE-ciphered offers in the blockchain. The content of offers is
tamper-proof and cannot be read by other competitors as they do not hold the
AES key. The only participant able to decipher the offers is the comparison
oracle, that holds the RSA secret key. Moreover, the content of offers remains
confidential, even for the comparison oracle, as it is ciphered with FHE, and
can only be deciphered by FHE key holders.

The bidding protocol could be extended to other confidential metrics stored
onchain. For example, truck volume should be considered as packages should
fit inside the different type of vehicles. Additionally, a fleet of vehicles could
be proposed to reach low CO2 emissions leveraging electric trucks and bikes
with carts. Hence, several algebraic operations would leverage carriers data.
During service allocation, the smart contract would filter trucks based on the
available volume (dividing the truck volume by package unitary volume), or
compute CO2 emissions based on the fleet of trucks proposed. We could also
imagine a price based on an hourly rate. Hence, at payment time, the smart
contract should compute the hourly rate price by number of hours for payment.
Hence, fully homomorphic encryption makes it possible to compute ciphered
data during the process life-cycle.

Smart-contract provides trust into the allocation system by acting as a
trustworthy intermediary to collect offers. The hashes of the keys and offers
are tamper-proof, and hence ensure an objective comparison of the offers,
while limiting collusion risks between different participants. We also ensure
public auditability as the following information is available on the ledger: IPFS
hashes containing ciphered offers, bidders participation, and the winning result
blockchain address.

7 Implementation and evaluation

This section aims at validating our approach experimentally. We build and eval-
uate a decentralized privacy-preserving resource-binding protocol for delivery
driving services.



18 Towards trustworthy and privacy-preserving decentralized auctions

Fig. 7: Protocol and key holders

7.1 Implementation

To demonstrate the approach’s feasibility, we build a C++ API that gathers
ciphered offers hashes and retrieves IPFS hashes and compares ciphered offers
using FHE. To do so, we also leverage the TFHE C++ library [38] that
implements FHE, as well as the Cryptopp C++ encryption library1 to provide
RSA and AES ciphering facilities. The C++ API holds the following functions:
FHE, RSA, and AES key generation, registration in IPFS, offers registration
that populates a JSON file comprising offers holding the hash of the AES+FHE
ciphered offer, and the ciphered AES public key, and offer comparison using
the content of the provided JSON file. Code is accessible here: https://github.
com/tiphainehenry/fhe oracle. We leverage the C++ API to implement the
proposed mechanism in the Ethereum network. We deploy our smart-contract
on a local test network to assess the approach. We use Infura2 as our API
gateway to IPFS. By this mean, we can store the ciphered offers and keys into
IPFS, and recover them using IPFS hashes. The comparison API is managed
with a personal computer with an Intel i5 core CPU, 4GB of RAM.

Our prototype comprises two parts. The first part demonstrates the offers
registration part of the approach using Ethereum and Infura. It covers RSA,
AES, and FHE key generation. To mimic real-life behavior, we initially generate
FHE and RSA key pairs to mimic the key creation stage and provide private
keys to the service providers’ authority and oracle, respectively. We publish the
RSA public key to the smart-contract to simulate the initial oracle behavior,
and transfer the FHE key to carriers (Fig. 7, step 1.a.). We also store the
bootstrapping key in IPFS (Fig. 7, step 1.b.). Two elements motivated the use of

1https://cryptopp.com/
2https://infura.io/docs/ipfs

https://github.com/tiphainehenry/fhe_oracle
https://github.com/tiphainehenry/fhe_oracle


Towards trustworthy and privacy-preserving decentralized auctions 19

a public blockchain for this experimental design setup: (1) We consider a use case
where carriers operate in a uberised market. (2) Ethereum is oftentimes used
in the literature, and these results can be used for future baseline comparisons.

Our prototype covers bidders’ local ciphering of offers: each bidder asks
the RSA key to the smart-contract (Fig. 7, step 2.a.), generates the AES key
pair locally, then ciphers the offer using FHE and AES private keys, and the
AES public key using the RSA public key. Bidders then publish the offers hash
into IPFS using Infura (Fig. 7, step 2.b.). They then register their offer in
the smart-contract (Fig. 7, step 2.c.). The smart-contract takes care of the
registration of competing offers. For bidders to interact with the smart-contract,
the smart-contract implements the following functionalities: bid initialization,
offer registration, and comparison launch. As a side note, the size of the RSA key
is set to 1024 bit, AES and TFHE key sizes follow the library standards (128
bit each).

The second part of the mechanism demonstrates the comparison part of
the approach, using a toy array of ciphered offers stored in IPFS. It mimics the
smart-contract, the oracle, and the service providers’ authority interactions on
the reception of a JSON file populated with ciphered submissions. The API
receives the IPFS hashes of ciphered offers and fetches the data (Fig. 7, step
3.b.) and the bootstrapping key. Then, it proceeds to bids deciphering and
comparison following the strategy presented in section 6.4 (Fig. 7, step 3.c.).
The winning bidder is allocated to the service request (Fig. 7, step 3.d.), and
the service management and later on settlement can proceed (Fig. 7, step 4)

7.2 Evaluation

We evaluate the protocol using three experiments: the ciphering file sizes, the
smart-contract transaction costs, and the ciphered comparison processing time.

7.2.1 Ciphering key and file sizes

Table 2: Size of files generated during the protocol (1 Mbit = 125 KB).
Acronyms: IS= information system

Context Participant Storage location Data type File size

Initialization

FHE key auth. Competitors’ IS kFHE 109MB
FHE key auth. Competitors’ IS FHE parameters 418B
Tender Initiator IPFS pRSA 160B
Tender Initiator Oracle sRSA 634B

Bid ciphering
Carrier Carrier kAES 128B
Carrier IPFS IV 16B
Carrier IPFS CAES(CFHE(offer)) 40KB



20 Towards trustworthy and privacy-preserving decentralized auctions

Table 2 gathers the size of the files generated during the execution of the
motivating example scenario. The largest file is the FHE key file kFHE (109MB).
The size depends on the initial parameters used to generate the FHE key, that
impact the multiplicative depth chosen to carry on bootstrapping operations,
and noise reduction [38, 55]. In our approach, the size of the FHE key is not a
bottleneck, as it is forwarded by the service providers’ authority to the bidders
in private channels. The files to be stored on IPFS are (1) the RSA public
key, (2) offers ciphered content, and (3) offers IV. The AES key file and IV
file sizes are 128 and 16B. The ciphered offer file is larger with 40KB. It is to
note that the length of ciphertext is around a hundred times the plaintext size.
Nonetheless, these file sizes range in the file sizes accepted to be stored in IPFS
(100MB per request with Infura at the time of writing).

7.2.2 Smart-contract execution time

Table 3: Smart-contract transaction costs.

Context Participant ETH Tx. fee

RSA Key IPFS hash storage Tender Initiator 0.00265454ETH
Offer creation Tender Initiator 0.00350124ETH
Offer registration IPFS hash storage Competitor1 0.00417978ETH
Comparison request Tender Initiator 0.152ETH

1Average transaction fees for competitors registration, where competitors offers are described
in the motivating example (see Section 4)

Table 3 presents the transaction costs required to perform smart-
contract executions on the Ethereum blockchain. At the time of writing,
1ETH=2842.09€. The transaction costs needed to store the RSA key on the
blockchain are worth 0.00265454ETH (7.54€). It is worth 0.00350124ETH
(9.95€) for the offer creation. The average cost paid by each competitor to
register the IPFS hash of the ciphered offer is worth 0.00488606ETH (13.89€).
Finally, the most expansive transaction consists of the comparison request
performed by the tender initiator when the auction terminates. It is worth
0.152ETH (432€). This transaction fee does not depend on the number of
offers to be compared, as offer content is sent via an event to the oracle, and
event triggers do not require transaction fees. Instead, price is fixed by the
oracle, here Provable, and derives from the need to compensate the oracle for
its computing power.

7.2.3 Ciphered comparison time

Finally, we investigate the time taken to compare integers ciphered following the
proposed encryption approach. To do so, we generate random numbers between
0 and 9. We cipher each using FHE and then launch the comparison algorithm.



Towards trustworthy and privacy-preserving decentralized auctions 21

Fig. 8: Comparison time according to the number of ciphered FHE offers
submitted

We measure the time needed to perform the pairwise FHE comparison. Fig. 8
depicts the comparison times recorded for arrays of ciphered offers of increasing
size. The time necessary to perform a comparison depends on the number of
offers at stake. The dotted line in the figure represents a polynomial of degree
3 and illustrates the complexity in x3 of our algorithm.

7.2.4 Extending the computation oracle with basic operations

We enrich the experiments section by investigating the time taken to perform
the following basic operation requests on ciphered data: addition, subtraction,
multiplication, and division. Indeed, as mentioned earlier, these operations
could be leveraged for enriching the bidding protocol (e.g., by computing the
truck volume necessary for a given package), or afterwards, e.g., to compute the
total service price based on an hourly rate. We thus investigate the computation
time taken to perform each operation based on the number of inputs. For each
number of input tested, we compute five times the time taken to perform the
computation, and derive the mean and standard deviation. Figure 9 present
the results.

Fig. 9a presents the time taken to perform addition on an increasing
number of inputs, and Fig. 9b the time taken to perform subtraction. For both
operations, we test between two and twenty input numbers, and record the
processing time. The time taken to perform additions or subtractions grows
linearly with the number of inputs. Adding two inputs take 1.89s, whereas
adding twenty inputs take 33s. Similarly, two inputs take 1.81s to be subtracted,



22 Towards trustworthy and privacy-preserving decentralized auctions

(a) Addition (b) Subtraction

(c) Multiplication (d) Division

Fig. 9: Computation time according to the number of ciphered numbers
submitted

whereas twenty inputs take 34s. These computation time results are equivalent
as ciphered numbers go through equivalent circuits for addition or subtraction.

Fig. 9c presents the time taken to perform multiplication on an increasing
number of inputs, ranging until eight input numbers. Two inputs take 32s
to be multiplied, whereas eight inputs take 220s. This is significantly longer
than the addition or subtraction results. This difference could be explained
by the circuit complexity. Multiplication circuits consist of repeated addition
circuits. Hence, the computation time to perform a multiplication comprises
several addition computation times. Additionally, our algorithm loops over the
maximum number of bits used to describe an input: we do not optimize the
computation time based on the input bit size.

Fig. 9d presents the time taken to perform divisions on an increasing number
of inputs, also ranging until eight inputs numbers. The result is always the
integer part. Two inputs take 36s to be divided, whereas eight inputs take 241s
(i.e., 4m01s). Like in the multiplication circuit, the size of the inputs are not
taken into account.



Towards trustworthy and privacy-preserving decentralized auctions 23

In summary, these operations remain costly regarding computation time,
as they grow linearly with the number of inputs. To lower this computation
time, several solutions could be considered such as the parallelization of the
computation over shared memory (OpenMP), distributed memory (OpenMPI)
or using GPUs (CUDA).

7.2.5 Threat model analysis

Our goal is to prove that bidders cannot view the content of other bids, and
that the comparison oracle and the service provider authority cannot access
bid contents. We propose the following threat model analysis:

• Bidders cannot access other bidders values as (i) the bids are encrypted
between each bidder and (ii) the comparison oracle uses hybrid encryption
(RSA + AES).

• The comparison oracle cannot access bidders value, nor the offers
argmax content. Indeed, the comparison oracle can only partially decrypt
the bids, which are still encrypted in FHE. Hence the comparison oracle
cannot access bids value. Additionally, it can only compute a ciphered argmax
to identify the winning bid. As it does not hold the FHE key, it is not possible
either to access the argmax.

• Service providers authority can only know whether one or several
best offers exist. The service provider authority cannot access bids contents
as FHE-ciphered offers are encapsulated with a RSA/AES ciphering layer.
Moreover, the smart contracts forwards shuffled offers to the comparison
oracle, that forwards to the service provider authority a ciphered argmax
to decipher. Hence, the deciphered argmax is also shuffled by extension: the
service provider authority cannot know who sent what, only that one or
several best offers have been found.

We ensure a separation of powers in bidding and using FHE so that the
comparison oracle does not know the actual value of the argmax. The two
authorities, the comparison oracle, and the service provider authority, are
trusted not to collude. However, even if they would collude, the oracle would
only gain access to the information that one or several best offers have been
found.

By using blockchain, we provide a public auditability of the tendering as
the following information is available on the ledger: IPFS hashes containing
ciphered offers, bidders participation, and the winning result blockchain address.

As a side note, an incentive mechanism shall be included in future work to
discourage the oracle from colluding with a bidder.

8 Discussion and conclusion

This paper proposes a mechanism to balance trust and privacy in a cross-
organizational system. To do so, we leverage the blockchain as a business
process management system as this technology offers by design (1) a distributed



24 Towards trustworthy and privacy-preserving decentralized auctions

governance, (2) an open allocation system to avoid any power imbalance, (3)
transactions auditability for trust purposes, and (4) the possibility to automate
business process management tasks. We propose to carry on trustworthy
auctions using blockchain smart contracts while preserving the confidentiality
of sensitive data values in bids.

Our solution comprises a computation oracle and a service provider authority
managing encryption keys. Smart-contracts manage autonomously and trans-
parently encryption keys attribution, offers registration, and bids allocation.
This distributed authority preserves bids privacy and bidders non interactivity.
The pseudo-anonymity of blockchain users also ensures bidders’ privacy require-
ments. The comparison of offers, managed by a comparison oracle, occurs on
FHE-ciphered data. As service providers and the service provider authority
both hold the FHE ciphering key, they could decipher the offers stored onchain.
We propose a mechanism leveraging hybrid RSA/AES encryption to prevent
this. In our mechanism, privacy is ensured as: (1) bidders cannot decipher other
offers content due to the RSA/AES ciphering, (2) the comparison oracle cannot
decipher the offers contents as offers are ciphered in FHE, and (3) the service
provider authority cannot decipher offers as it does not possess AES keys, nor
retrieve information regarding winning bids as the argmax comes shuffled. Addi-
tionally, we ensure public auditability of the sealed-bid auction as the following
information is available on the ledger: IPFS hashes containing ciphered offers,
bidders participation, and the winning bidder blockchain address.

We build a sealed-bid allocation prototype to demonstrate the feasibility of
the approach. Experiments show the approach’s feasibility, though scalability
and latency issues arise. The transaction costs required to launch a comparison
request depend on the oracle chosen, and using Provable may be prohibitive to
perform a ciphered comparison. The choice of public versus private blockchain
depends on the use case, and we will expand this study for private blockchain
settings in future work. Moreover, the change in consensus of Ethereum and
alternative designs such as Ethereum rollups may address the high cost and
scalability limitations of public blockchains. Future work will focus on these
alternative designs.

Additionally, the experiments show that the protocol requires tuning FHE
parameters for noise addition. Such tuning can impact FHE key, ciphered offers
size, and comparison time. It is to note that the FHE ecosystem is still maturing,
and the integration of FHE to the Solidity ecosystem shall be more accessible
in the years to come, thanks to better language interfaces and libraries.

Our approach assumes that the service providers’ authority does not col-
lude with the comparison API. Nonetheless, collusion risks may arise in our
system, as oracles and the service provider authority bring centralization to
the system. First, using oracles implies a re-centralization and requires trust in
the output. Triangulation methods from several oracles could partially answer
the risk of data tampering from a malicious node. Additionally, a collusion risk
may exist between the service providers’ authority managing FHE keys and the
computation oracle. The oracle possesses FHE offers, and the service providers’



Towards trustworthy and privacy-preserving decentralized auctions 25

authority has the decryption key. Hence, removing interactions between com-
petitors comes at the expense of a centralized authority responsible for both key
issuance and argmax deciphering. We aim to limit information leakage using
offer permutation on the smart-contract size to prevent linking offer content to
the pseudonymous identities of participants.

Moreover, public verifiability implies providing access to any blockchain
member (1) the legitimacy of the bidder, (2) the validity of the offer, and (3) the
accuracy of the auction issue. Bidder legitimacy and offers validity are ensured
with IPFS hashes containing ciphered offers, and bids onchain registration.
The public verifiability of the auction issue is a limitation of our approach, as
we leverage a trusted execution environment referred to as our computation
oracle. Nonetheless, ensuring bids privacy (and in a broader scope computing
sensitive data) is necessary in an industrial context. It should be enforced
both onchain and in the computation oracle environment. Hence minimum
verifiability comes as a consequence of this requirement. To mitigate this issue,
the selection algorithm proposed should not be centralized, but implemented
in several servers.

Another limitation of this approach concerns the latency of the compari-
son request of ciphered offers. The computation time follows the comparison
algorithm complexity of x³, induced by the ciphered maximum computation of
arrays: the comparison time is directly proportional to the cube to the number
of offers compared. The running time per gate seems to be a limiting factor for
FHE schemes, reducing our solution’s practical use for more complex operations.
Ongoing research in the field of FHE may help solve this latency issue [56].

We implement the comparison asynchronously, using smart-contract events,
as oracle requests have a maximum callback time often exceeded with the
FHE comparison. Hence, this approach does not apply to time-dependent
applications, especially if many offers are at stake.

Finally, scalability issues arise. The random access memory of the machine
limits the number of comparisons. In our testing configuration, with a personal
computer with an Intel i5 core CPU, 4GB of RAM, comparison works with a
maximum of 15 offers. Additionally, public IPFS storage can be limited if offer
sizes are consequent with multiple metrics. To circumvent this issue, one could
use a private or permissioned IPFS channel to store offers in a decentralized
fashion.

Our approach interest comes from FHE techniques for the bids comparison
in such an ecosystem: any calculation is theoretically accessible to compare
offers while not needing trusted hardware having access to plaintext. Hence,
FHE encryption provides more possibilities for more complex computations:
allocation protocols can evolve dynamically based on new allocation rules
without causing data privacy leakage, as data is ciphered.

An avenue for future work is to work on the formal verification of the pro-
posed algorithms. We also plan to leverage FHE for privacy-preserving business
process management systems, especially for activities involving data aggrega-
tion of sensitive metrics. Other protocol variants such as hybrid encryption



26 Towards trustworthy and privacy-preserving decentralized auctions

for service provider authority are also to be studied. Finally, another exciting
avenue is ensuring payment stage privacy at settlement time. Indeed, a payment
in cryptocurrency reveals the hidden content in the privacy-preserving auction.
Nonetheless, the winning service provider may not be willing to reveal the
content of its bid to competitors. To circumvent this issue, future approaches
may use oracle banks, single-use tokens linked to a random value, and ciphered
payment facilities such as Zether [57].

References

[1] Bermbach, D., Maghsudi, S., Hasenburg, J., Pfandzelter, T.: Towards
auction-based function placement in serverless fog platforms. In: 2020
IEEE International Conference on Fog Computing (ICFC), pp. 25–31
(2020). IEEE

[2] Zhang, Y., Lee, C., Niyato, D., Wang, P.: Auction approaches for resource
allocation in wireless systems: A survey. IEEE Communications Surveys
Tutorials 15(3), 1020–1041 (2013). https://doi.org/10.1109/SURV.2012.
110112.00125

[3] Alvarez, R., Nojoumian, M.: Comprehensive survey on privacy-preserving
protocols for sealed-bid auctions. Computers & Security 88, 101502 (2020)

[4] Wood, G., et al.: Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper 151(2014), 1–32 (2014)

[5] Mendling, J., Weber, I., Aalst, W.V.D., Brocke, J.V., Cabanillas, C., Daniel,
F., Debois, S., Ciccio, C.D., Dumas, M., Dustdar, S., et al.: Blockchains
for business process management-challenges and opportunities. ACM
Transactions on Management Information Systems (TMIS) 9(1), 1–16
(2018)

[6] Pan, S., Trentesaux, D., McFarlane, D., Montreuil, B., Ballot, E., Huang,
G.Q.: Digital interoperability in logistics and supply chain management:
state-of-the-art and research avenues towards physical internet. Computers
in Industry 128, 103435 (2021)

[7] Saripalli, S.H.: Transforming government banking by leveraging the poten-
tial of blockchain technology. Journal of Banking and Financial Technology
5(2), 135–142 (2021)

[8] Mendling et al., J.: Blockchains for business process management - chal-
lenges and opportunities. ACM Transactions on Management Information
Systems 9(1), 1–16 (2018). https://doi.org/10.1145/3183367. Accessed
2019-10-07

[9] Henry, T., Laga, N., Hatin, J., Beck, R., Gaaloul, W.: Hire me fairly:

https://doi.org/10.1109/SURV.2012.110112.00125
https://doi.org/10.1109/SURV.2012.110112.00125
https://doi.org/10.1145/3183367


Towards trustworthy and privacy-preserving decentralized auctions 27

towards dynamic resource-binding with smart contracts. In: 2021 IEEE
International Conference on Services Computing (SCC), pp. 407–412
(2021). IEEE

[10] Oranburg, S., Palagashvili, L.: The gig economy, smart contracts, and dis-
ruption of traditional work arrangements. Smart Contracts, and Disruption
of Traditional Work Arrangements (October 22, 2018) (2018)

[11] Pintado, O.L.: Challenges of blockchain-based collaborative business pro-
cesses: An overview of the caterpillar system. Blockchain and Robotic
Process Automation, 31–42 (2021)

[12] Dasgupta, D., Shrein, J.M., Gupta, K.D.: A survey of blockchain from
security perspective. Journal of Banking and Financial Technology 3(1),
1–17 (2019)

[13] De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Livraga, G., Para-
boschi, S., Samarati, P.: Distributed query evaluation over encrypted
data. In: IFIP Annual Conference on Data and Applications Security and
Privacy, pp. 96–114 (2021). Springer

[14] Feng, Q., He, D., Zeadally, S., Khan, M.K., Kumar, N.: A survey on
privacy protection in blockchain system. Journal of Network and Computer
Applications 126, 45–58 (2019)

[15] Du, M., Chen, Q., Xiao, J., Yang, H., Ma, X.: Supply chain finance inno-
vation using blockchain. IEEE Transactions on Engineering Management
67(4), 1045–1058 (2020)

[16] Tso, R., Liu, Z.-Y., Hsiao, J.-H.: Distributed e-voting and e-bidding systems
based on smart contract. Electronics 8(4), 422 (2019)

[17] Galal, H.S., Youssef, A.M.: Verifiable sealed-bid auction on the ethereum
blockchain. In: International Conference on Financial Cryptography and
Data Security, pp. 265–278 (2018). Springer

[18] Baranwal, P.R.: Blockchain based full privacy preserving public pro-
curement. In: International Conference on Blockchain, pp. 3–17 (2020).
Springer

[19] Blass, E.-O., Kerschbaum, F.: Strain: A secure auction for blockchains.
In: European Symposium on Research in Computer Security, pp. 87–110
(2018). Springer

[20] Ma, J., Qi, B., Lv, K.: Fully private auctions for the highest bid. In:
Proceedings of the ACM Turing Celebration Conference-China, pp. 1–6
(2019)



28 Towards trustworthy and privacy-preserving decentralized auctions

[21] Zhou, J., Feng, Y., Wang, Z., Guo, D.: Using secure multi-party computa-
tion to protect privacy on a permissioned blockchain. Sensors 21(4) (2021).
https://doi.org/10.3390/s21041540

[22] Mammadzada, K., Iqbal, M., Milani, F., Garćıa-Bañuelos, L., Matulevičius,
R.: Blockchain oracles: A framework for blockchain-based applications.
In: International Conference on Business Process Management, pp. 19–34
(2020). Springer

[23] Sonnino, A., Król, M., Tasiopoulos, A.G., Psaras, I.: Asterisk: Auction-
based shared economy resolution system for blockchain. arXiv preprint
arXiv:1901.07824 (2019)

[24] Keizer, N.V., Ascigil, O., Psaras, I., Pavlou, G.: Flock: Fast, lightweight,
and scalable allocation for decentralized services on blockchain. In: 2021
IEEE International Conference on Blockchain and Cryptocurrency (ICBC),
pp. 1–9 (2021). IEEE

[25] Xiang, G., Cui, Z.: The algebra homomorphic encryption scheme based
on fermat’s little theorem. In: 2012 International Conference on Com-
munication Systems and Network Technologies, pp. 978–981 (2012).
IEEE

[26] Tan, B.H.M., Lee, H.T., Wang, H., Ren, S., Aung, K.M.M.: Efficient private
comparison queries over encrypted databases using fully homomorphic
encryption with finite fields. IEEE Transactions on Dependable and Secure
Computing 18(6), 2861–2874 (2020)

[27] Xiong, H., Jin, C., Alazab, M., Yeh, K.-H., Wang, H., Gadekallu, T.R.,
Wang, W., Su, C.: On the design of blockchain-based ecdsa with fault-
tolerant batch verification protocol for blockchain-enabled iomt. IEEE
journal of biomedical and health informatics 26(5), 1977–1986 (2021)

[28] Al-Breiki, H., Rehman, M.H.U., Salah, K., Svetinovic, D.: Trustworthy
blockchain oracles: review, comparison, and open research challenges. IEEE
Access 8, 85675–85685 (2020)

[29] Benet, J.: Ipfs-content addressed, versioned, p2p file system. arXiv preprint
arXiv:1407.3561 (2014)

[30] Huang, H., Lin, J., Zheng, B., Zheng, Z., Bian, J.: When blockchain meets
distributed file systems: An overview, challenges, and open issues. IEEE
Access 8, 50574–50586 (2020)

[31] Rivest, R.L., Adleman, L., Dertouzos, M.L., et al.: On data banks and
privacy homomorphisms. Foundations of secure computation 4(11), 169–
180 (1978)

https://doi.org/10.3390/s21041540


Towards trustworthy and privacy-preserving decentralized auctions 29

[32] Lin, H.-Y., Tzeng, W.-G.: An efficient solution to the millionaires’ problem
based on homomorphic encryption. In: International Conference on Applied
Cryptography and Network Security, pp. 456–466 (2005). Springer

[33] Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: International Conference on the Theory and Applications of
Cryptographic Techniques, pp. 223–238 (1999). Springer

[34] Gentry, C.: A Fully Homomorphic Encryption Scheme. Stanford university,
??? (2009)

[35] Chen, H., Han, K.: Homomorphic lower digits removal and improved fhe
bootstrapping. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pp. 315–337 (2018). Springer

[36] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic
encryption without bootstrapping. ACM Transactions on Computation
Theory (TOCT) 6(3), 1–36 (2014)

[37] Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption.
Cryptology ePrint Archive (2012)

[38] Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Tfhe: fast fully
homomorphic encryption over the torus. Journal of Cryptology 33(1),
34–91 (2020)

[39] Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for
approximate homomorphic encryption. In: Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, pp.
360–384 (2018). Springer

[40] Marcolla, C., Sucasas, V., Manzano, M., Bassoli, R., Fitzek, F.H., Aaraj,
N.: Survey on fully homomorphic encryption, theory and applications
(2022)

[41] Mahalle, V.S., Shahade, A.K.: Enhancing the data security in cloud by
implementing hybrid (rsa & aes) encryption algorithm. In: 2014 Interna-
tional Conference on Power, Automation and Communication (INPAC),
pp. 146–149 (2014). IEEE

[42] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of
interactive proof systems. SIAM Journal on computing 18(1), 186–208
(1989)

[43] Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive
zero knowledge for a von neumann architecture. In: 23rd {USENIX}
Security Symposium ({USENIX} Security 14), pp. 781–796 (2014)



30 Towards trustworthy and privacy-preserving decentralized auctions

[44] Wang, D., Zhao, J., Wang, Y.: A survey on privacy protection of blockchain:
The technology and application. IEEE Access 8, 108766–108781 (2020)

[45] Desai, H., Kantarcioglu, M., Kagal, L.: A hybrid blockchain architecture
for privacy-enabled and accountable auctions. In: 2019 IEEE International
Conference on Blockchain (Blockchain), pp. 34–43 (2019). IEEE

[46] Galal, H.S., Youssef, A.M.: Trustee: full privacy preserving vickrey auc-
tion on top of ethereum. In: International Conference on Financial
Cryptography and Data Security, pp. 190–207 (2019). Springer

[47] Enkhtaivan, B., Takenouchi, T., Sako, K.: A fair anonymous auction scheme
utilizing trusted hardware and blockchain. In: 2019 17th International
Conference on Privacy, Security and Trust (PST), pp. 1–5 (2019). IEEE

[48] Król, M., Sonnino, A., Tasiopoulos, A., Psaras, I., Rivière, E.: Pastrami:
privacy-preserving, auditable, scalable & trustworthy auctions for multiple
items. In: Proceedings of the 21st International Middleware Conference,
pp. 296–310 (2020)

[49] Devidas, S., Rao YV, S., Rekha, N.R.: A decentralized group signature
scheme for privacy protection in a blockchain. International Journal of
Applied Mathematics and Computer Science 31(2) (2021)

[50] Zhang, S., Pu, M., Wang, B., Dong, B.: A privacy protection scheme of
microgrid direct electricity transaction based on consortium blockchain
and continuous double auction. IEEE access 7, 151746–151753 (2019)

[51] Henry, T., Brahem, A., Laga, N., Hatin, J., Gaaloul, W., Benatallah,
B.: Trustworthy cross-organizational collaborations with hybrid on/off-
chain declarative choreographies. In: International Conference on Service-
Oriented Computing, pp. 81–96 (2021). Springer

[52] Bourse, F., Sanders, O., Traoré, J.: Improved secure integer compari-
son via homomorphic encryption. In: Cryptographers’ Track at the RSA
Conference, pp. 391–416 (2020). Springer

[53] Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification
over encrypted data. In: NDSS, vol. 4324, p. 4325 (2015)

[54] Togan, M., Pleşca, C.: Comparison-based computations over fully homo-
morphic encrypted data. In: 2014 10th International Conference on
Communications (COMM), pp. 1–6 (2014). IEEE

[55] Bonnoron, G.: A journey towards practical fully homomorphic encryption.
PhD thesis, Ecole nationale supérieure Mines-Télécom Atlantique (2018)



Towards trustworthy and privacy-preserving decentralized auctions 31

[56] Chatterjee, A., Sengupta, I.: Sorting of fully homomorphic encrypted
cloud data: Can partitioning be effective? IEEE Transactions on Services
Computing 13(3), 545–558 (2017)

[57] Bünz, B., Agrawal, S., Zamani, M., Boneh, D.: Zether: Towards privacy
in a smart contract world. In: International Conference on Financial
Cryptography and Data Security, pp. 423–443 (2020). Springer


	Introduction
	Preliminaries
	Blockchain, smart-contracts, oracles, and IPFS
	FHE and Hybrid RSA/AES encryption schemes

	Related work
	Motivating example
	System context
	Entities and data flows
	Threat model

	The approach
	Overall approach
	Key initialization
	Forwarding FHE-ciphered offers to the smart-contract
	Service allocation
	Shuffling and forwarding ciphered offers
	Retrieving FHE offers and computing the mean
	Comparing offers
	Deciphering the argmax and retrieving the best offer



	Implementation and evaluation
	Implementation
	Evaluation
	Ciphering key and file sizes
	Smart-contract execution time
	Ciphered comparison time
	Extending the computation oracle with basic operations
	Threat model analysis


	Discussion and conclusion

