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Classical economics has developed an arsenal of methods, based on the idea of representative

agents, to come up with precise numbers for next year’s GDP, inflation and exchange rates,

among (many) other things. Few, however, will disagree with the fact that the economy is a

complex system, with a large number of strongly heterogeneous, interacting units of different

types (firms, banks, households, public institutions) and different sizes.

Now, the main issue in economics is precisely the emergent organization, cooperation and co-

ordination of such a motley crowd of micro-units. Treating them as a unique “representative” firm

or household clearly risks throwing the baby with the bathwater. As we have learnt from statisti-

cal physics, understanding and characterizing such emergent properties can be difficult. Because

of feedback loops of different signs, heterogeneities and non-linearities, the macro-properties are
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often hard to anticipate. In particular, these situations generically lead to a very large number

of possible equilibria, or even the lack thereof.

Spin-glasses and other disordered systems give a concrete example of such difficulties. In

order to tackle these complex situations, new theoretical and numerical tools have been invented

in the last 50 years, including of course the replica method and replica symmetry breaking, and

the cavity method, both static and dynamic. In this chapter we review the application of such

ideas and methods in economics and social sciences. Of particular interest are the proliferation

(and fragility) of equilibria, the analogue of satisfiability phase transitions in games and random

economies, and condensation (or concentration) effects in opinion, wealth, etc.

1 Game Theory

Can we expect cooperation in a population of selfish interacting individuals? Will a particular

technology be adopted? How will firms behave when competing in the same sector? What is

the optimal way of choosing a route to destination for a taxi driver in a crowded city? All these

questions involve phenomena whose outcomes depend on how humans interact with each other.

Game theory is a general, idealized framework that addresses these questions under the

assumption that each individual behaves rationally in order to maximize his/her utility. Because

such an assumption is quite unreasonable, the predictions of game theory – the so-called Nash

equilibria – are often incorrect when compared to real life outcomes. Yet, they provide a useful

benchmark for understanding the richness that may result from human interaction. This is

particularly true in “large games”, when statistical behavior with its regularities is expected to

set in.

There are two dimensions with respect to which a game can be “large”: one is when the

number of available strategies1 for each individual player becomes large, the other is when the

number of players itself becomes large. The generic outcome in “large games” is that the number

of possible Nash equilibria may become very large, i.e. exponential in the number of players or

strategies, much like the number of equilibrium states in spin-glasses [92].

Take for example a simple game: N individuals have to decide whether to take one of two

routes of the same length, to go from A to B. If their travel takes a time that decreases with

the number of people who took their same choice, it is intuitive that the optimal outcome is

one where the population will split exactly in two equal parts over the two choices. There are(
N
N/2

)
∼ eN log 2 arrangements of this type.

When heterogeneity is taken into account, either because strategies are different or because

the agents are different, the analysis of large games reveals a rich phenomenology with multiple

equilibria, phase transitions and complex behavior, that calls for methods of statistical physics
1A strategy is a possible course of action in the game.
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of disordered systems.

Two-player games, each with many different strategies were considered in Refs. [107, 101, 68],

within an evolutionary setting2, and then by Berg and Engel [13, 14], who analyzed games of two

players, each of which has N possible strategies. These are called bi-matrix games, because the

payoffs to the players depending on the strategy choices of players can be encoded in two N ×N

matrices. When these matrices are random, Berg and Engel [13, 14] show that the number of

Nash equilibria N ∼ eNS is exponentially large in N and that the entropy S can be computed

using the replica method. Given such degeneracy, the game’s outcome can hardly be predicted.

Yet, typical Nash equilibria share characteristic properties that provide statistical predictions on

the outcomes that we may expect in these settings3.

The replica and cavity method has also allowed one to shed light on the typical properties of

games of heterogeneous interacting agents, in the limit where the number N of agents diverge.

The Minority Game (MG) [40] is probably the prototypical model in this class. It describes the

competition of many agents with different strategies on a set of resources. It was introduced

as a simplification of the El Farol bar problem, originally proposed by Brian W. Arthur [6]

as a critique of the deductive rationality approach assumed in game theory. The MG will be

discussed in more details in Section 5. In brief, it extends the example of choosing the least

congested route discussed above, to the case where the origin and destination of each agent differ

and the available routes for each of them intersects in complex ways with the one of others. In

these situations, the MG assumes that each agent adapts to his/her “environment”, neglecting

the fact that they also contribute to it (i.e. to traffic congestion). Hence the MG is not really

a game, because agents do not behave strategically. As we shall see in Section 5, this makes

the equilibrium of the game unique, i.e. replica symmetric [40]. When instead agents behave

strategically (as in game theory) taking into account their systemic impact, replica symmetry is

broken, and the game features an exponential number of Nash equilibria [49].

Players’ heterogeneity may also result from the fact that each of them interacts with a different

sub-set of players. In these network games [81], each player sits on the nodes of a network and

interacts only with his/her neighbors4. The ensemble of games where the network is chosen at

random can be studied with cavity methods borrowed from the theory of disordered systems.

Consider, for example, a “local public good” setting where each player can exploit a resource

either by buying it, at some cost, or by free riding on the resources bought by their neighbors.

Given a network, who should invest in buying the resource? Dall’Asta et al. [47] show that
2The equilibria of a game can be thought of as the equilibria of an ecosystem of species each of which plays

one of the strategies, against randomly chosen opponents in a well mixed population.
3For example, it is possible to estimate the number of strategies that will be actually played by the two players,

among the N possible ones.
4Network games also include problems where the network itself – i.e. whom to interact with – can be chosen

strategically by the players [81].
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finding all Nash equilibria of this game is equivalent to finding all maximal independent sets of

the network, which is an NP-hard problem. Still, the number of Nash equilibria and their typical

properties in the limit of infinite networks can be computed using belief propagation approaches.

Dall’Asta et al. [46] use similar methods in order to understand under what conditions players

in a social network can sustain cooperation, in a repeated prisoners’ dilemma game.

2 Choice under Social Influence & “Bandwagon” Goods

As mentioned above, the success of the replica and cavity methods in dealing with complex

physical systems has triggered a general interest in the physics community for the study of

many complex systems outside the traditional domain of physics, like socio-economic systems

(whether or not these require to rely on such advanced statistical physics techniques). On the

methodological side, the use of well controlled agent-based simulations, further discussed in

Section 4 below, is one example of physicists contributions, as such simulations often reveal

collective, emergent phenomena typically encountered in statistical mechanics.

At the conceptual level, the importance of multiple equilibria and the difference between

quenched and annealed disorder can be quite subtle (see e.g. [92, 12]) and not always fully

understood in the economics literature. One reason comes from the standard view point in

theoretical economy based on game theory, introduced in the previous section. At each instant

of time, the ‘true’ underlying dynamics is supposed to be known to the players who compute the

Nash equilibria, and then simultaneously play Nash, anticipating that all the other agents will

do the same. Even with rational agents, such anticipations are not possible whenever there are

multiple equilibria. Although, as reviewed above, many games turn out to have a large number of

equilibria, the classical view in economics is either that models should be defined such that there

will be a single equilibrium, or that some postulated dynamics justifies the selection of one of

the equilibria – but such dynamics usually does not correspond to any actual agents’ dynamics!

‘Heterodox’ approaches in economics are more in line with the physicist approach, modeling

the dynamics of agents with limited rationality [83] and plausible learning rules [110, 40]. The

analysis of any such dynamics requires to specify the time scale over which the interactions or

other parameters change with time.

One example of interest is the general problem of the collective behavior of agents making

a binary choice under social influence, such as buying or not buying a fashion good, sorting or

not sorting the waste, joining or not a riot, etc. Each agent i has their idiosyncratic willingness

to adopt (or to buy), hi. This willingness is increased if others do the same (a case of "positive

externality"), so that if the price (or cost) of the active decision is P , agent i wants to make the

decision iff

hi − P + Jη > 0 ,
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where J > 0 is the strength of the social influence and η the current fraction of adopters.

When the idiosyncratic willingness hi are random but time independent, this specification

is equivalent to the mean-field Random Field Ising model (RFIM). Such model is a particular

instance of the random utility model[88] in theoretical economy and is also equivalent to the ‘dying

seminar’ model of the social scientist T. C. Schelling [111]. With an approach more similar to

the one of physicists than that of economists, Schelling correctly inferred the generic existence

of multiple equilibria and hysteresis, leading to the notion of critical mass (or tipping point).

Ising (or “Markov Random Fields" in the mathematical terminology) and RFIM type models

have been used to model socio-economic systems by mathematicians [58], economists [30, 19, 71],

physicists [118, 66, 119, 99], to mention but a few: see e.g [21] for a review and further references,

in particular in the context of multiple choices [20].

The statistical physics approach leads to the detailed study of the phase diagram in the pa-

rameter space (mean willingness to adopt ⟨h⟩ and strength of social influence J) [99]. Considering

the vicinity of the critical point, one can predict a scaling law in the case of continuous change

of (collective) behaviour [93]: the height of the variation peak should scale with the width w as

∼ w−2/3. This prediction appears to be in good agreement with empirical data on cell phones

adoption and birth rates evolution. This is a strong support to the relevance of this type of

modeling, since it is hard to think of an alternative argument that would lead to such anomalous

scaling.

In an economic context, considering that the seller is a profit-maximizer leads to the appear-

ance of systemic risk. Indeed, the price of the good that would maximize the seller’s profit is

generically very close to the value at which the demand, corresponding to a large number of

buyers, disappears abruptly. At this critical price value, one indeed crosses the line separating

a regime with two Nash equilibria (the ‘fashion good’ equilibrium with a high demand and the

low-demand equilibrium) and a regime with a single Nash equilibrium, for which only the rare

agents with a very high idiosyncratic willingness to pay buy the good [72]. Hence, for prices

slightly higher than the optimal price, demand falls precipitously!

This can be called a “cliff-edge” maximization situation: optimization can be tantamount to

fragility. As discussed in section 4, this situation is common in complex systems, which tend to

spontaneously stabilize close to a point where the system becomes unstable (on this topic, see

also [96]).

3 Opinion dynamics

There is a large literature on the modeling of opinion dynamics. The boundaries of this research

domain are ill-defined: many models of social behavior may be interpreted as models of opinion

dynamics, including the binary choice RFIM discussed in the previous Section 2. Another ex-
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ample is given by models of language change resulting from interactions between locutors, which

can be seen as describing a dynamics of opinions on the meaning of words [36].

In this section, we restrict to models more specifically related to opinion dynamics. The

main opinion dynamics models (with their variants) are the Voter model (see [36] and references

therein), the Hegselmann and Krause model [79], the Deffuant bounded-interaction model [50],

the Sznajd model [116], and the Galam consensus model [66] based on the RFIM (see Section 2).

All these models explore the hypothesis that opinion may change due to interactions with others,

with an imitation behavior – a search for consensus. For general reviews of opinion dynamics

model inspired by statistical mechanics, see [36, 82]. Although not fully developed, the use of

the cavity method to understand how opinions or rumors spread on a network like epidemics

(see e.g. [95, 100, 3, 4, 1, 8]) is surely an interesting path. Here we add a note on the less often

mentioned Seceder model [54] exploring a different hypothesis, the case where every agent wants

to imitate those who are not like everyone else.

Dittrich et al. [54] have introduced a model of agents trying to adopt opinions/behaviors

different from the ones of others. In the context of genetic evolution (genes being analogous

to opinions), the model explores the outcome of giving an advantage to individuals sufficiently

different from the others (see also [48]). The authors show that clusters can emerge from

a dynamics with such rule. Soulier and Halpin-Healy [115] have considered a simple variant

with such dynamics “pitting conformity against dissent". Opinions are described by vectors of

continuous variables in d dimension. At each time step, one randomly selects an agent (the

voter). Then one picks at random a set of m individuals, the polling group. The individual with

opinions most distant from the mean opinion of the polling group is selected. Then the voter

adopts, with small variations in opinion values, the opinions of this group-dissident agent.

The model behavior changes abruptly with the group size at small values of m. A surprise

is that the mean field behavior is reached at m = 4. In opinion dimension d = 1, for m ≥ 4, the

population clusters into two groups. The authors consider a variant with discrete opinions, in

which the randomly chosen agent adopts exactly the opinions of the distant outlier of the group.

They can then write deterministic equations of the replicator type. The analysis of the model

leads to a quite remarkable result. If d is equal or larger than 3, and m ≥ 4, the dynamics always

leads to a condensation of opinions in a space of two dimensions, with the emergence of three

clusters in the space of opinions.

Most of the opinion dynamics model have been introduced on the basis of theoretical moti-

vations. As pointed in [105], from the study of many variants one observes non-robust results

when rules are changed. Although it is useful to explore the space of possibilities, and interest-

ing to discover a rich variety of model behaviors, this calls for restricting such studies to more

empirically based models.

One should note that most models do not really make the difference between ‘having an

6



opinion’ and ‘making a decision’ – except for the fact that a decision may be the noisy outcome

of the opinion. When considering voting behavior, models do not address issues of strategic

behaviors.

Only few works try to test models on data or define data-specific models (see e.g. [67]).

However, models with rules inspired by the social psychology literature are being considered [82].

This allows one to study the outcome of behavioral rules motivated by experimental findings.

Much work remains to be done along such lines. The increasing possibility to access to data and

to perform online experiments should trigger studies more directly linked to empirical behavior.

4 Firm Networks, Ecologies & Portfolios

There is a renewed interest in models of networks of interacting firms as a possible framework

that accounts for excess fluctuations in economic systems, arising from “contagion” or default

cascades that propagate along the supply chains (see [35] for a recent review). Similar ideas

also exist in the context of bank networks [77, 65] or overlapping portfolios [33] to account for

banking crises and deleveraging spirals in financial markets.

The economic behavior of firm networks depends on the production function that models how

input goods and labor are transformed into a certain product. A classic production function that

expresses non-substitutability of inputs is the Leontief model, that reads:

πi = zimin
j

{
Qij

Jij

}
, (4.1)

where πi is the amount of goods firm i produces, zi is the so-called productivity of firm i, Qij

is the amount of goods j available to i and Jij are similar to “stoichiometric coefficients” in

chemistry, measuring how many units of j are needed to build i (when zi = 1). Conventionally,

labor corresponds to good j = 0.

Once the production function is specified, the equilibrium state of the economy is obtained

by imposing (a) that firms attempt to maximize their profit and (b) that markets clear, i.e. that

everything that is produced is consumed. These two conditions translate into enough equations

to determine equilibrium prices pi and productions πi. For example, for a Leontief production

function the equations for the vector of prices p⃗ (given in units of the cost of labor) read [94]

M p⃗ = V⃗ , Mij = ziδij − Jij , (4.2)

where Vi = Ji0.

The problem with such a set of equations is that the solution p⃗ is not necessarily a positive

vector [78]. In other words, some constraints must be fulfilled by the zi’s and the Jij ’s for the

economy to be viable.5 If such constraints are not satisfied, some firms (the least productive
5When all Jij are positive, the matrix M is an “M-matrix” and the constraints boil down to imposing that all

eigenvalues of M have a positive real part.
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ones) must necessarily be removed for the economy to become viable. So, much as counting

the number of equilibrium states in spin glasses, one can ask the following question: for given

productivities zi and interaction matrix Jij , how many viable economic equilibrium states are

possible as a function of the number of firms N? And for a generic equilibrium, what is the

eigenvalue spectrum of M, which determines the dynamical stability of such an equilibrium?

Interestingly, the very same questions arise in the context of the Lotka-Volterra description of

complex ecological networks. Denoting now as pi the population size of specie i, the equilibrium

states of the Lotka-Volterra equation are such that

pi

Vi − zipi +
∑
j ̸=i

Jijpj

 = 0 , (4.3)

where now Vi describes the fitness of specie i, zi is a saturation (self-interaction) term, and Jij

models the interactions between species: Jij > 0 means that the presence of specie j favors the

growth of specie i, whereas Jij < 0 means that the presence of specie j hampers the growth of

specie i. Ecological equilibria are thus such that either pi = 0 (i.e. specie i is extinct) or, for all

remaining species, Eq. (4.2) leads to a positive solution. When Jij is a symmetric matrix, the

Lotka-Volterra model can be mapped onto a spin-glass problem [18, 2].

For independent random symmetric Jij , there exists a replica symmetry broken phase, cor-

responding to a proliferation of possible ecological equilibria. These equilibria are furthermore

found to be marginally stable, in the sense that the eigenvalue spectrum of M touches zero,

meaning that such equilibria are extremely fragile to perturbations, for example small changes

in the interaction matrix Jij [18]. In this phase, evolution naturally leads to a self-organized

critical state, where the stability criterion proposed by R. May in his famous paper is exactly

saturated [91] (see also [62, 5] for further developments). One can speculate that economies, too,

spontaneously evolve towards a marginally stable state, for which small external shocks may lead

to anomalously high volatility [94].

Yet another, completely different setting where the very same mathematical discussion arises

is portfolio construction with constraints. Markowitz’ celebrated optimal portfolio (also known

as mean variance optimization) states that the weight pi of asset i should be chosen as the

solution of Eq. (4.2), where now M is the covariance matrix, measuring how the returns of asset i

and asset j are correlated, and V⃗ is the vector of predicted gains for each asset. Positive weights

correspond to long positions, whereas negative weights indicate that the asset manager should

go short the corresponding asset.

But more often than not, asset managers cannot take short positions. In other words, their

portfolios must satisfy a positivity constraint, pi ≥ 0, ∀i, much like prices in the firm network

model and population sizes in the Lotka-Volterra model. So we are again back to the same

“spin-glass” type problem [69, 42, 70, 86, 85, 104]: what is the number of positive solutions of
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Eq. (4.2) as a function of the number of assets and the parameters of the problem? A fully

soluble case is when there is a unique risk factor that correlates the returns of different assets

[70]. This corresponds to Mij = ziδij + βiβj(1 − δij), where βi is the exposure of asset i to

the common risk factor. One finds that for such a problem, optimal portfolios are typically

sparse, and the total number of solutions grows sub-exponentially with the number of assets –

whereas spin-glass problems typically have an exponentially large number of local optimums.

But, in common with spin-glass problems, one can find very different, quasi-degenerate optimal

portfolios in the presence of non-negative constraints, or other types of non-linear constraints

(see also [86, 104]).

In fact, many problems in economics and finance are constrained optimization problems,

or constraint satisfaction problems (see e.g. [113, 114] for a recent example). It is expected

that many of these problems share with spin-glasses two important properties, typical of replica

symmetry broken systems: a) the existence of a large number of quasi-degenerate solutions,

that are nearly equally good in terms of their performance but very far from one another in

phase space (e.g. surviving firms, surviving species, assets with non-zero weights in the above

examples); b) parameter “chaos”, i.e. the sensitivity of these solutions to the precise specification

of the parameters of the problem [57, 29, 108]. In other words, the optimal solution for one

choice of parameters can become suboptimal, or even disappear, when these parameters are only

slightly changed (in the limit of a large number of degrees of freedom N : number of firms, number

of species, number of assets).

Explosion of the number of optimal solutions and parameter chaos raise many difficulties in

the modelling of complex systems. The classical approach in terms of probabilities is doomed

by non-ergodicity, and the need to think in terms of probabilities of probabilities, like in spin-

glasses [103]. Such difficulties, that one could coin as “radical complexity” [22] with a nod to

Keynes’ “radical uncertainty”, should lead to significant rekindling of the way complex socio-

economic problems are addressed. Two particularly interesting directions are (a) minority games

and complex game theory and their relation with spin-glasses, see [40, 68, 14] and section 1; (b)

agent based modelling and scenario identification [75, 112, 22].

5 Replica Method for Financial Markets and Large Random Economies

The mutual attraction between finance and physics has diverse roots. One is to be found in

the financial industry’s thirst for analysts with a quantitative training. On the other side,

the increasing availability of financial data attracted the curiosity of physicists interested in

understanding the non-trivial statistical features of market prices, which suggest analogies with

fluid turbulence, avalanches, earthquakes and other phenomena in natural sciences.

On the theoretical side, the prevailing neo-classical paradigm relies on the pillars of the No-
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Arbitrage Hypothesis and the Efficient Market Hypothesis (EMH) [109, 55] – according to which

price behavior can not be predicted and hence no excess gain can be extracted from speculative

trading. This provides a theoretical foundation for asset pricing, but it was soon realized that

these assumptions lead to conceptual inconsistencies [74] and that observed market behavior is

incompatible with the neo-classical assumption of traders with rational expectations. (There is

an enormous literature on this last point, for a physicist viewpoint and many references, see [23,

Chapter 20].)

On the other hand, early simulations of agent based models [102] have shown that simple

models with way less sophisticated traders could reproduce the main stylized facts observed in

real financial markets. This spawned a line of research (see [56] for an early review, and [45] for

a more recent one) aimed at understanding financial markets within simple models of interacting

adaptive agents, that could explain the observed stylized facts and be amenable to theoretical

analysis (see e.g. [7, 31, 43] for some early examples).

5.1 The Minority Game

The Minority Game [40] was introduced [41] as one such attempts. It depicts the interaction

between financial traders as follows: in order to out-compete other traders, a trader needs to

anticipate when most of them will buy, so that the trader can sell at a high price (or vice-versa).

Each trader then aims at being in the minority group of either sellers or buyers. Note that

this interaction promotes the diversification of strategies across traders. A strategy prescribes

whether to buy or to sell, depending on the pattern of the m most recent signs of the price

fluctuations. Therefore each strategy is a table of P = 2m numbers, and each trader is assigned

few (say two) randomly drawn strategies. Each trader evaluates the performance of his/her

strategies in the course of time and then plays the best one – i.e. the one that would have placed

him/her most often in the minority — at each time step.

The stationary state of the MG can be fully analyzed with techniques coming from the

statistical mechanics of disordered systems [39, 44]. The main insight that the MG provides

on the behavior of financial markets is that, as the number of traders N increases, the market

becomes less and less predictable and, at a critical value nc of the ratio n = N/P , it becomes

completely unpredictable, meaning that the expected value of future returns is independent of

the past history. The point nc marks a second order phase transition between a symmetric

(information efficient) phase for n ≥ nc and an asymmetric (inefficient) phase. In other words,

the MG provides a stylized description of how a market becomes informationally efficient as

more and more (diverse) traders join it. The phase transition is also accompanied by critical

fluctuations similar to those observed in the statistics of real returns [38], which suggests that the

observed anomalous fluctuations in financial markets are the other side of the coin of market’s

information efficiency. The relation between market efficiency and criticality emerges also in
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other modelling approaches to financial markets, see e.g. [24, 23].

The MG proved to be a wellspring of further interesting results. Cavagna et al. [37] introduced

a thermal version of the MG whereby agents chose the strategy they play stochastically. Detailed

analysis of the dynamics [90] reveals that the “temperature" introduced at the microscopic scale

in this way turns out to play the role of the inverse of a “temperature" at the collective level.

The symmetric phase exhibits a peculiar type of broken ergodicity where the stationary state

“remembers" the initial conditions, e.g. the prior beliefs of agents. The replica theory of MG

provided a playground for addressing several issues, such as the effect of a Tobin tax [16] or a

prediction of the market impact of meta-orders6 [9].

The mechanism underlying the phase transition in the MG is rather generic. It also describes

information aggregation in an asset market with traders with heterogeneous information [15],

leading to conclusions similar to those discussed above.

5.2 Large Random Economies

Indeed, the nature of such a phase transition is similar to that occurring in large random systems

of linear equations with non-negative constraints (see e.g. [86, 85]), that can describe ecologies,

firm networks and economies, see Section 4. The financial industry as a whole can be considered

as a large random economy and therefore the statistical mechanics analysis, thanks to the replica

method, can shed light on the consequences of the expansion of the repertoire of financial instru-

ments, such as the one we have witnessed since the nineties. The neo-classical lore maintains

that the more financial instruments consumers have at their disposal, the better they can hedge

their risks. The ideal situation is that of complete markets, when the repertoire of financial in-

struments is so large that risk can be eliminated altogether, as in Black-Scholes theory of option

pricing [80].

The replica method however reveals that the quest for market completeness can lead to

financial instability [89]. The volumes of interbank trading necessary to hedge all financial

instruments, as well as the susceptibility of the equilibrium to exogenous shocks, diverge as the

financial sector approaches the ideal limit of complete markets even in an ideal model. Similar

conclusions were derived within a different modelling approach [32], suggesting that the same

may apply to real markets. As already mentioned above, “efficiency” and “optimality” can lead

complex systems to the brink of instability.

The effects of technological innovation in a large random production economy can be ana-

lyzed in a similar way. In this economy, firms produce final goods for household consumption
6Meta-orders are long sequences of orders in the same direction, i.e. either buy or sell, by the same investor.

A key issue is whether meta-order have a permanent effect on prices or not [117, 23]. In the MG the permanent

impact can be computed analytically and it is non-zero only in the asymmetric phase, whereas it vanishes when

the market is unpredictable.
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Figure 1: Phase diagram of the General Equilibrium of a large random economy, from [10]. The

technological innovation axis is the ratio between the number of technologies and the number of

goods. The introduction of new technologies amounts to a shift on the right along this axis. The

introduction of new goods reduces both this coordinate and the fraction of primary goods, so it

corresponds to shifts towards the origin.

from either primary goods or inputs produced by other firms, through a linear transformation.

Each firm’s technology is then a random vector in the space of commodities. In this standard

set-up [84], firms maximize profit, consumers buy and consume final goods maximizing their

utility and market prices are fixed by market clearing. Bardoscia et al. [10] show that a sta-

tistical mechanics analysis of the way the equilibrium of such a large random economy changes

(as more and more technologies are “invented”) has suggestive similarities with the industrial

development we have witnessed so far. As long as the number of technologies does not exceed

a given threshold7 consumers can rely only on those final goods that are also primary goods,

because no firm can operate. When the number of technologies exceeds this threshold, an “in-

dustrial revolution" takes place as a sharp phase transition. Beyond this point, the introduction

of new successful8 technologies increases the scale of production of already existing technologies.

This suggests that firms have incentives to incorporate all the technologies needed to produce

final goods, as well as to carry out in-house research and development. This is reminiscent of
7Which is proportional to the number of goods. In the statistical mechanics analysis both the number of goods

and the number of technologies diverge, with a fixed ratio.
8A new (random) technology is adopted only if it generated profits at the current prices. It is not adopted if

the profit is negative.
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the early stages of industrialization, which was characterized by vertically integrated firms [87],

where all intermediate production processes were managed within the firm. As technological

innovation proceeds, the economy crosses over to a regime characterized by a saturated techno-

logical repertoire. Beyond this second transition, that occurs close to the maximum in figure 1,

the introduction of further technologies is disruptive: most of the technological innovations are

not viable and the few that are successful displace other technologies when they are introduced,

reducing their scales of production. In this regime, the growth of the economy is not driven by

the introduction of new technologies but by the introduction of new goods. This is evocative of

the expansion of markets for intermediate goods, those who are neither primary nor final goods

(e.g. parts of a final good, like electronic components) and a parallel outsourcing of segments

of the processes involved in the production of complex goods. These are both processes that

advanced capitalist countries have experienced [87].

The prediction of the stylized picture provided by this model is that, on one side, pursuing

economic growth, advanced economies are expected to converge to the critical point separating

the two regimes, on the other that the expansion of intermediate goods markets and outsourcing

may lead the economy to a collapse, crossing the “industrial revolution" phase transition point.

6 Intermittency & Condensation Phenomena

6.1 Sums of Exponentials & RSB

In many cases of interest in physics, but also in finance, social sciences and economics, one has to

deal with sums of exponentials of random variables. In statistical physics, the partition function

is defined as the sum over all configurations of the Boltzmann-Gibbs weight, which is itself the

exponential of (minus) the energy of that configuration divided by temperature. When these

energies are random variables, one is confronted to a sum of exponentials of random variables

– this is Derrida’s Random Energy Model (REM), which is well-known to be characterised by

a 1-RSB glassy phase at low temperatures [51, 73, 25]. Population growth or survival [12], city

growth [64] or wealth growth [26] are other examples where such sums of exponentials naturally

appear.

So let us consider, generically,

ZN =
N∑
i=1

zi , zi := etξi , (6.4)

where t is a positive parameter and ξi are i.i.d. random variables, that we can always choose to be

of zero mean and unit standard deviation. We also assume that the right tail of the distribution

of ξ’s decays as

ρ(ξ) ∼ξ→∞ Ce−Aξb , (6.5)
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where A,C are positive parameters and b > 1 (corresponding to super-exponential decay). When

b = 1 the distribution of z’s has a power-law tail for large z, z−1−µ, with a tail exponent µ = A/t,

such that n-th moments with n ≥ µ are divergent. When b > 1, on the other hand, all moments

E[entξ] exist and are finite when t ≥ 0. Hence, formally, the Central Limit Theorem (CLT)

applies and, for large N , ZN should converge to a Gaussian distribution. In particular, the Law

of Large Numbers suggests that for large N

ZN ≈ NE[etξ] . (6.6)

However, consider the case where N is large but finite and take t to infinity first. Then, the

whole sum ZN will be concentrated in its largest term:

ZN ≈t→∞ etξ
⋆
, (6.7)

where ξ⋆ = maxi=1,...,N ξi. We thus see that depending on whether N is taken to infinity at fixed

t, or t is taken to infinity at fixed N , the result is markedly different.

More generally, one finds that for a given, large value of N , the relevant tail of the distribution

of z is again a power-law, but with an N -dependent tail exponent:

µ =
bA1/b

t
(logN)1−

1
b . (6.8)

We are now in position to state the following result, which generalizes the 1-RSB transition of

the REM. Suppose that both N and t go to infinity, with µ (as given by Eq. (6.8)) fixed. Then,

depending on the value of µ, the sum of exponentials of random variables, ZN =
∑

i exp(tξi),

obeys either the standard CLT or the generalized (Lévy) CLT [52, 12, 28]:

• µ > 2: ZN converges towards a Gaussian random variable of mean NE[etξ] and variance

N(E[e2tξ]− E[etξ]2).

• 1 < µ < 2: (ZN − NE[etξ])/N1/µ = u converges towards a Lévy-stable random variable,

with P (u) = Lµ,β=1(u), the totally asymmetric Lévy distribution of index µ.

• µ < 1: ZN/N1/µ = u converges towards a Lévy-stable random variable, with, again,

P (u) = Lµ,β=1(u), the totally asymmetric Lévy distribution of index µ.

Hence, for µ > 2, the LLN result holds (see Eq. (6.6)), but completely falls apart when µ < 1.

Take for simplicity ρ(ξ) = exp(−ξ2/2σ2)/
√
2πσ2. In this case, A = 1/(2σ2) and b = 2, so

that µ =
√
2 logN/(σt). What we learn from the previous discussion is that for small enough t,

ZN is Gaussian and the inverse participation ratio (called the Herfindahl index in social sciences),

defined as:9

H =

∑N
i=1 z

2
i

Z2
N

, (6.9)

9This quantity is often noted Y2 in the spin-glass literature, see e.g. [52].
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is of order N−1, i.e. the whole sum is spread out over all elements. As t increases, the Herfindahl

index increases and ZN becomes more and more concentrated in a few terms. When t > tc =
√
2 logN/σ, the Herfindahl index becomes of order unity, even as N → ∞. This corresponds to a

genuine “condensation” or “localization” transition, with many relevant applications, in particular

in the context of the glass transition [17].

As a vivid illustration, imagine a portfolio composed of many different assets, each with a

different rate of return ri. At time zero, the total capital K0 is invested uniformly across all

these N assets. After time t, the capital has accrued and is given by

K(t) =
K0

N

N∑
i=1

etri . (6.10)

The above analysis tells us that there exists a critical time tc beyond which the initially diversified

capital becomes concentrated among a small subset of assets. Furthermore, at large t, the growth

rate of K(t) is given by r⋆ = max{ri}. A way to avoid such a condensation phenomenon is to

periodically rebalance the portfolio, redistributing the profit and losses of the portfolio among

all assets. But if the redistribution graph is sparse, or low dimensional, condensation still takes

place if the redistribution rate is small enough [26]. One can similarly consider a multiplicative

growth model for firms, wealth, cities, biological species, etc. The model can also be used in the

context of the famous “exploration-exploitation” tradeoff [76].

Note that these random growth with redistribution problems map onto the “Directed Poly-

mer” problem – a “baby spin-glass” problem where disorder and interactions compete. The case of

directed polymers on a tree-like graph, introduced by Derrida & Spohn [53], can in fact be solved

using either replicas, or propagating front methods (see also [34, 76]). The “condensed” phase

corresponds to the pinned, glassy phase of the directed polymer. The Derrida-Spohn model has

also strong connections with the multifractal model of financial price series, as discussed below.

6.2 Multiscaling, Intermittency & RSB

The scaling behavior of the different moments of a random variable brings us to the topic of

multiscaling, which is an important feature of intermittent systems, like turbulent flows where it

was first discovered (for a review, see [59]). Consider a fluctuating time series x(t), for example

the velocity in a turbulent flow, the (log-)price of a stock, or the output level of an economy, etc.

A natural question to ask is: how much does x(t) varies between two instant of times? One

usually first “detrends” the time series by removing a (generalized) drift, defined as:

m1(τ) := ⟨x(t+ τ)− x(t)⟩T , (6.11)

where ⟨. . . ⟩T denotes an empirical sliding average over a total interval of size T .
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Assuming stationarity in time, the fluctuation around the trend is often characterized by the

variance of the de-trended increments of x(t), i.e.

σ2(τ) := ⟨(x(t+ τ)− x(t)−m1(τ))
2⟩T . (6.12)

The simplest example of a random time series is the Brownian motion. Once detrended, the

increments ∆ = x(t + τ) − x(t) are Gaussian random variables with zero mean and variance

σ2(τ) = Σ2τ . Hence all higher moments can be computed and expressed in terms of σ(τ), as

mq(τ) = Cq σ
q(τ), where Cq are the moments of the standard normal distribution. In other

words, the moment of order q simply scales as the q-th power of the standard deviation. All

moments thus give the same characterization of the time evolution of the fluctuations of x(t).

One speaks of “monoscaling” in such a case.

This is however not the only possibility. An example coming from the Burgers equation,

and again deeply related to 1-RSB and pinning problems, is the following [27, 25]. Consider a

time series made of upward “ramps” of constant slope S, separated by downward “shocks”, i.e.

discontinuities of amplitude −∆0 appearing at a Poisson rate λ. We choose the parameters S,

∆0 and λ in such a way that our time series has no long term bias. The computation of the

different moments mq(τ) is easy in the limit where λτ ≪ 1, i.e. when the probability p(τ) ≈ λτ

for a shock to exist between t and t+ τ is very small. The scaling behaviour of mq(τ) for λτ ≪ 1

is found to be very different depending on whether q is ≤ 1 or ≥ 1 [11]:mq(τ) ∼ (λτ)q ∼ σ2q(τ) , ∀q ≤ 1 ,

mq(τ) ∼ λτ ∼ σ2(τ) , ∀q ≥ 1 .
(6.13)

Note, interestingly, that m2(τ) grows like τ both for the standard Brownian motion and for the

“ramps and shocks” model, although the underlying processes are clearly very different. This

shows that the second moment is totally blind to intermittency effects.

In order to characterize these intermittency effects, one defines an exponent ζ(q) from the

scaling of the q-th moment, as:

mq(τ) ∼ [σ(τ)]ζ(q) . (6.14)

Any concave deviation away from the monoscaling behaviour ζ(q) = q is a signature of “intermit-

tency”, i.e. the concentration of activity (here the variations of x(t)) in some particular regions

of space and/or time.

A well studied model of intermittency is the “multifractal Brownian motion” (MBM) [97, 98].

The (detrended) MBM x(t) can be constructed as follows:

dx(t) = Σ eω(t) dW (t), (6.15)

where W (t) is a standard Wiener process (or Brownian motion) and ω(t) is itself a Gaussian
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random variable with logarithmic correlations, i.e. a very long memory process:10

E [ω(t)ω(t+ τ)] = κmax(log(τ/T ), 0) , 0 ≤ κ <
1

2
, (6.16)

where κ is the so-called intermittency parameter, and T is a large time scale cut-off, beyond which

volatility is uncorrelated. When κ = 0, the process recovers the standard Brownian motion with

a constant volatility. In financial parlance, ω is the local log-volatility of the price x(t). One can

show that within this model,

σ2(τ) = Σ2τ , (6.17)

independently of κ. In other words, the second moment of x(t + τ) − x(t) is the same for the

standard Brownian motion and for the MBM. For other moments, however, differences appear.

In particular, one finds that the multi-scaling exponent ζ(q) is given by [97]:

ζ(q) = q − κq(q − 2) , (qκ < 1) , (6.18)

i.e. a linear function for κ = 0 (no intermittency) and a concave function for κ > 0 when volatility

is fluctuating. (When qκ ≥ 1, the corresponding moment is infinite: the MBM develops power-

law tail increments, with a tail index µ = 1/κ [97].)

The deep relation with the REM is the following. The MBM is a Brownian motion subordi-

nated to a “fractal time” s defined as:

s2 :=

∫ t

0
dt′ e2ω(t

′) , (6.19)

which can be seen as the partition function Zt of a particle in a logarithmically correlated

one-dimensional random potential ω(·) at inverse temperature β = 2. It turns out that this

problem has been thoroughly studied [34, 60], in particular in connection with the Derrida-Spohn

Directed Polymer problem and other specific models of glasses, with the Gaussian Free Field in

two dimensions and “multiplicative chaos” [106] and with Random Matrix Theory problems [63].

Physically, we recover the same phenomenology as the Derrida-Spohn model: there is a 1-RSB

low temperature phase (corresponding to κ > 1), although the distribution of low-lying energy

states has a tail that is slightly different from that of the Gumbel distribution, which characterizes

the pure REM [34, 60].

Note finally that one can generalize such a logarithmically correlated random potential, which

corresponds to a 1-RSB REM, to the full replica symmetry broken case, providing an explicit

construction of hierarchical Parisi landscapes in finite dimensions [61].
10Here there is a subtlety that we carelessly sweep under the rug: in order to be well defined, the log function

must be regularized for small τ , see e.g. [106].
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