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Abstract— This paper proposes a parametric network that 

benefits from the system knowledge and jointly compensates for 

the transmitter in-phase/quadrature imbalance, carrier 

frequency offset, and laser phase noise in coherent optical 

systems. The approach uses an original training technique that 

increases its experimentally validated effectiveness. For the 

considered setup, the performance of the network reaches the 

3rd Generation Partnership Project threshold of 17.5% Error 

Vector Magnitude for 4-QAM communications. 

 
Index Terms— Joint compensation, parametric network, 

coherent optical systems, experimental demonstration. 

I. INTRODUCTION 

Coherent optical communications are essential in meeting 

the requirements for high data rate applications [1]. At these 

data rates, device imperfections and channel effects are key 

challenges that need to be faced in order to maintain desirable 

system performance. Different digital signal processing 

techniques have been proposed to compensate for these 

imperfections and effects as they have good performances 

and are more flexible than analog ones [2,3]. These 

approaches generally benefit from a model knowledge and 

can provide optimal performances in particular scenarios. 

Unfortunately, they are sensible of model mismatches and are 

difficult to adapt to new scenarios. Recently, machine 

learning and deep learning approaches have proved near-

optimal performance in different engineering tasks [4,5]. 

These techniques are known as data-driven methods that 

acquire knowledge from the data, with minimal prior 

assumption about it. However, these techniques require large 

amount of data to achieve good performance and, in addition, 
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have difficulties to operate in the presence of time-variant 

effects. In [6-9], both concepts are combined by inserting the  

domain knowledge into the network model. By this, the cited 

works benefit from the advantages of both approaches, while 

minimizing their drawbacks. In our recent work [10], we 

proposed a parametric network for global compensation of 

linear impairments in coherent optical systems. This network 

benefits from the system knowledge by using some 

compensation parameters related to the parametric model of 

the impairments.   

In this paper, an experimental demonstration of the 

parametric network effectiveness is presented. The proposed 

approach is experimentally validated in a simplified back-to-

back optical setup, where a joint compensation of transmitter 

in-phase/quadrature (IQ) imbalance, carrier frequency offset 

(CFO), and laser phase noise (PN) is performed.  

The paper is organized as follows. First, in section II, the 

signal model is introduced. Then, in section III, the network 

architecture is presented. Finally, in section IV, the results are 

analyzed. 

II. SYSTEM MODEL 

This work considers a single-polarization coherent optical 

system like the one depicted in Figure 1. The transmitted 

signal is upsampled with an upsampling ratio of 4 and pulse 

shaping filtered using a Root-Raised-Cosine (RRC) filter. 

Then, the signal undergoes multiple imperfections occurring 

over the global communication chain. On the receiver side, 

the signal is once again filtered by an RRC filter, which has 

also the role of matched filtering and downsampled. Finally, 

the imperfections impact is compensated for using the 

proposed parametric network and the data is recovered.  The 

transmitted signal x is impaired by transmitter IQ imbalance, 

CFO, laser PN, and noise. Mathematically, the system can be 

described by a linear equation with respect to real and 

imaginary parts of the original data: 

�̃�  =  𝐅(𝛂)�̃� (1) 

where the tilde denotes the real augmented values of the 

original data, 𝒚 is the received signal before compensation, 

and 𝐅(𝛂) is a real-valued transfer matrix that depends on the 

unknown vector of parameters 𝛂 =  [μ, ν, f0, δf] related to the 

imperfections. The impact of each imperfection is modeled in 

the following. 
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Figure 1- Block diagram of the communication chain

A. Impairments model 

Each block corresponding to an impairment from Figure 

1 can be modeled by using the generic expression 𝐱𝐨𝐮𝐭 =
𝑓(𝐱𝐢𝐧), where 𝐱𝐢𝐧 represents the signal at the input of the 

block, and 𝐱𝐨𝐮𝐭 the impaired signal at the output of it. The 

function 𝑓(. ) is a generic function that describes the 

impairment impact on the input signal.  

1) Transmitter IQ Imbalance 

Transmitter IQ imbalance is a critical impairment that can 

degrade communications performance. It can occur on the 

electrical or optical side of the transmitter because of 

amplifiers gain differences, unequal split and/or combining 

ratios of the couplers, phase control shift, or diverse 

manufacturing problems. Regarding its time-evolution, it can 

be considered as a quasi-static imperfection. It is 

characterized by an amplitude imbalance and a phase 

deviation from the ideal 90o. Its impact can be modeled in an 

analytical more convenient manner by using the complex 

parameters μ and ν as follows [11]: 

𝑥𝑜𝑢𝑡[𝑛]  =  μ 𝑥𝑖𝑛[𝑛]  +  𝜈 𝑥𝑖𝑛
∗ [𝑛]. (2) 

2) CFO 

The CFO is another important impairment that impacts 

coherent optical communications. It appears because of the 

frequency difference between the transmitter and receiver 

lasers and can be assumed quasi-static during a transmission. 

Its impact can be modeled as follows [12]: 

𝑥𝑜𝑢𝑡[𝑛]  =  𝑥𝑖𝑛[𝑛]𝑒𝑗2𝜋𝑛𝑓0𝑇𝑆 , (3) 

where 𝑓0 is the frequency offset, and 𝑇𝑆 the symbol period. 

3) Laser PN 

Finally, the laser PN is yet another significant impairment 

that occurs in coherent optical communications. It appears 

because of the frequency fluctuation of the lasers and is 

described by the laser linewidth 𝛿𝑓. It is a time-variant 

impairment that can be modeled as Wiener process as follows 

[13]: 

φ[𝑛]  =  ∑ 𝑓[𝑙]

𝑛

𝑙=−∞

, (4) 

where 𝑓[𝑙] are independent and identically distributed 

random Gaussian variables with zero mean and variance 

𝜎𝑓
2 =  2𝜋𝛿𝑓𝑇𝑆. The impact of laser PN on a transmitted signal 

can be expressed as: 

𝑥𝑜𝑢𝑡[𝑛]  =  𝑥𝑖𝑛[𝑛]𝑒𝑗𝜑[𝑛]. (5) 

III. PROPOSED NETWORK ARCHITECTURE 

A parametric network that exploits the knowledge of 

impairments parametric model is considered in order to 

compensate for the impact of imperfections. The network 

compensates for the impairments by applying the following 

linear transformation: 

�̂�  =  𝐁(𝛃)�̃�, (6) 

where 𝐁(𝛃) is the transfer matrix of the parametric network 

depending on the 𝛃 = [𝛃𝟏,   β2, β3, β4] vector parameter 

that is learned during the training.  

A. Compensation Layers 

The network architecture is depicted in Figure 2. It can be 

seen that it is composed of three layers. Similarly, to the 

impairments’ models, each layer corresponds to a 

compensation operation that can be modeled by using the 

generic expression 𝐱𝐨𝐮𝐭 = 𝑟(𝐱𝐢𝐧), where 𝐱𝐢𝐧 represents the 

signal at the input of the layer, and 𝐱𝐨𝐮𝐭 the compensated 

signal at the output of it. The function 𝑟(. ) is a generic 

function that describes the compensation operation. It is 

important to note that the order of the compensation layer is 

reversed compared to the one of the impairments. 

1) Laser PN compensation layer 

The impact of the laser PN can be mitigated using the real-

valued compensation vector parameter 𝛃𝟏. It can be checked 

that by setting 𝛽1[𝑛]  =  −𝜑[𝑛], the network can compensate 

for the impact of the laser PN. Generally, the laser phase has 

a slower evolution compared to the signal phase, and we can 

assume it to be constant over K consecutive symbols [14]. 

Using this assumption, the compensated signal at the output 

of this layer can be expressed as: 

𝑥𝑜𝑢𝑡[𝑛]  =  𝑥𝑖𝑛[𝑛]𝑒𝑗𝛽1[⌊𝑛/𝐾⌋], (7) 

where ⌊ . ⌋ denotes the integer part. This layer has a single 

learnable real-valued vector parameter represented by 𝛃𝟏. 

 

 

Figure 2 - Parametric network architecture 
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2) CFO compensation layer 

The impact of the CFO can be mitigated using the scalar real-

valued parameter 𝛽2. By setting 𝛽2 =  −𝑓0 the impact of CFO 

is completely compensated for. The compensated signal at the 

output of this layer can be expressed as: 

𝑥𝑜𝑢𝑡[𝑛]  =  𝑥𝑖𝑛[𝑛]𝑒𝑗2𝜋𝑛𝛽2𝑇𝑆 , (8) 

This layer has a single learnable real-valued scalar parameter 

represented by  𝛽2. 

3) IQ imbalance compensation layer 

The IQ imbalance impact can be compensated for by 

using the complex parameters 𝛽3 and 𝛽4. The compensated 

signal at the output of the layer can be expressed as: 

𝑥𝑜𝑢𝑡[𝑛]  =  𝛽3 𝑥𝑖𝑛[𝑛]  + 𝛽4 𝑥𝑖𝑛
∗ [𝑛]. (9) 

It can be checked that by setting: 

𝛽3 =  
𝜇∗

|𝜇|2 − |𝜈|2
, (10) 

𝛽4 =  
−𝜈

|𝜇|2 − |𝜈|2
, (11) 

the IQ imbalance impact can be fully compensated for. This 

compensation layer has four learnable real-valued scalar 

parameters: Re{𝛽3}, Im{𝛽3}, Re{𝛽4}, Im{𝛽4}.  

B. Network Training and Validation 

During the training the network objective is to estimate 

the unknown parameters 𝛃. This is generally done by 

minimizing the cost between some target data and the output 

of the network: 

�̂� = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽‖𝒙𝒕𝒂𝒓𝒈𝒆𝒕  −  𝒙𝒐𝒖𝒕‖
𝟐
.  (12) 

To be able to do that we consider a particular target data 

allocation as can be seen in Figure 3. The frame structure 

consists of a preamble and multiple pilot symbols inserted 

periodically into the data blocks. The preamble and pilot 

symbols are known on the receiver side. Based on this, the 

training is divided into three steps: a preamble-based training, 

a pilot-based training, and a self-labeling training that make 

use of the modulation knowledge. 

1) Preamble-based training 

This training is performed only once, and during it all the 

parameters of β are estimated. The target data is represented 

by transmitted preamble symbols 𝒙𝒕𝒂𝒓𝒈𝒆𝒕 = 𝒙𝟎, while the 

output of the network is represented by 𝒙𝒐𝒖𝒕  =  𝐁(𝛃)�̃�. After 

this training, the quasi-static parameters related to IQ 

imbalance and CFO are fixed during the following training 

stages and testing. 

2) Pilot-based training 

The pilot-based training is performed for each data block 

and has the role to estimate the compensation parameters 

related to the time-variant laser PN. Specifically, during this 

stage, the network re-updates the 𝛃𝟏 vector parameter. The 

target data is represented by the transmitted pilot symbols 

𝒙𝒕𝒂𝒓𝒈𝒆𝒕 = 𝒙𝟏, while the output of the network is represented 

by the compensated received pilot symbols 𝒙𝒐𝒖𝒕  = 𝐏𝐁(𝛃)�̃�,  

 
Figure 3 - Data frame structure consisting of preamble and pilot symbols 

where P is an allocation matrix that extracts the pilot symbols 

on the receiver side. 

3) Self-labeling-based training 

The final step of the training is also performed for each 

data block and has the role to perform a finer estimation of 

the time-variant 𝛃𝟏 parameter. It can be seen as a decision-

directed step, where the detected data after the pilot-based 

training is used as a target 𝒙𝒕𝒂𝒓𝒈𝒆𝒕 = 𝒙𝟐. The output is as in 

the case of the preamble-based training 𝒙𝒐𝒖𝒕  =  𝐁(𝛃)�̃�. 

4) Validation 

As in our previous work [10], to avoid overfitting during 

the pilot-based training, the received data is periodically 

projected on the constellation and the cost function from (11) 

is computed using 𝒙𝒕𝒂𝒓𝒈𝒆𝒕 = 𝒙𝟐, and 𝒙𝒐𝒖𝒕  =  𝐁(𝛃)�̃�. If the 

values of the cost function stop decreasing with the number 

of iterations, the training is stopped.  

IV. EXPERIMENTAL RESULTS 

The experimental setup used is the one depicted in  Figure 

4 [15]. The setup consists of an Keysight M8195A Arbitrary 

Waveform Generator that operates at 32 GSa/s and has 

Digital-to-Analog Converters with 8 bits resolution. To 

convert the signal into the optical domain the MXIQER-LN-

30 optical modulator that has a 𝑉𝜋 of 5.4 V and the Keysight 

N4391A Optical Modulation Analyzer (OMA) local 

oscillator operating at 1540 nm with a laser linewidth of 100 

kHz are used. On the receiver side, the conversion from the 

optical to the electrical domain is performed using the OMA 

with the 40 GSa/s analog-to-digital converters at a resolution 

of 8 bits. An 8 GHz bandwidth signal is transmitted over the 

back-to-back chain, then is sent to the computer, where it goes 

through synchronization, compensation, and demodulation. 

The results are obtained by using 3900 4-QAM symbols. The 

preamble and data blocks contain 300 symbols. Each data 

block contains pilots inserted at an interval of 30 symbols. 

The laser phase noise corresponds to a 100 kHz linewidth, 

and we consider software IQ imbalance and CFO of (1 dB, 

200) and 200 MHz, respectively. We initialize the IQ 

imbalance parameters search with the values related to the 

absence of this impairment (β3 = 1, β4 = 0), CFO 

compensation parameter (β2) with a random value related to 

a CFO interval of [187.5,212.5] MHz, and laser phase 

compensation parameter (𝛃𝟏) with 0s for preamble. To be 

able to track the evolution of the laser phase over the data 

blocks, we initialize it with the last estimated phase value of 

the previous block. During the training, we use approximately 

3000 iterations for the preamble-based, 400 

 

Figure 4 - QAM coherent optical experimental setup. AWG: Arbitrary 

Waveform Generator, OMA: Optical Modulation Analyzer 
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for supervised pilots-based, and 100 for self-labeling training. 

Throughout the self-labeling step, we investigate the 

influence of the number 𝐾 of consecutive symbols with an 

assumed constant phase. A low value of 𝐾 leads to a better 

reproduction of the laser phase dynamic, but is more prone to 

overfitting, and more computationally demanding. In Figure 

5, the Error Vector Magnitude (EVM) evolution for different 

values of 𝐾 during the self-labeling step can be observed. As 

we reduce the values of 𝐾, the EVM decreases. For the case 

where 𝐾 =2, the EVM value is 17.5%, reaching the imposed 

performance by 3rd Generation Partnership Project [16].  

However, reducing 𝐾 increases the computational complexity 

since it requires estimating more parameters. In Figure 6 (a), 

the highly impacted constellation after synchronization can 

be seen. In Figure 6 (b), (c), (d), the symbol constellations for 

the pilots-based tracking, and self-labeling tracking with 𝐾 

=300 and 𝐾 =2 can be seen. The EVM decreases from 21.98% 

for the pilot-based tracking to 20.34%, and 17.5% for the self-

labeling tracking with 𝐾=300, and 𝐾=2, respectively. In 

addition, the EVM penalty introduced by the IQ imbalance 

and CFO is less than 2% for 𝐾=2. 

V. CONCLUSION 

The joint compensation of transmitter IQ imbalance, CFO, 

and laser phase noise was experimentally demonstrated by  

 

 

Figure 5 - EVM for the self-labeling tracking for different values of 𝐾 

           
       (a) Synchronization                               (b) Pilot-based tracking 

           
(c) Self-labeling tracking for 𝐾 =300         (d) Self-labeling tracking for 𝐾 =2 

Figure 6 - (a) Constellation after synchronization, (b) Constellation after 

pilot-based tracking, (c) Constellation after self-labeling tracking for 𝐾 

=300, (d) Constellation for self-labeling tracking for 𝐾 =2 

using a parametric network. The proposed approach uses a 

reduced database for training and relies on an original 

technique to avoid overfitting. The approach proves to be 

flexible by being able to switch between improved 

performance and reduced computational complexity. In 

future work, we propose to extend the experimental research 

for more complex scenario. 
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