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A B S T R A C T 

The 1D power spectrum P 1D 

of the Ly α forest provides important information about cosmological and astrophysical parameters, 
including constraints on warm dark matter models, the sum of the masses of the three neutrino species, and the thermal state of 
the intergalactic medium. We present the first measurement of P 1D 

with the quadratic maximum likelihood estimator (QMLE) 
from the Dark Energy Spectroscopic Instrument (DESI) surv e y early data sample. This early sample of 54 600 quasars is 
already comparable in size to the largest previous studies, and we conduct a thorough investigation of numerous instrumental 
and analysis systematic errors to e v aluate their impact on DESI data with QMLE. We demonstrate the excellent performance of 
the spectroscopic pipeline noise estimation and the impressive accuracy of the spectrograph resolution matrix with 2D image 
simulations of raw DESI images that we processed with the DESI spectroscopic pipeline. We also study metal line contamination 

and noise calibration systematics with quasar spectra on the red side of the Ly α emission line. In a companion paper, we present 
a similar analysis based on the Fast Fourier Transform estimate of the power spectrum. We conclude with a comparison of these 
two approaches and discuss the key sources of systematic error that we need to address with the upcoming DESI Year 1 analysis. 

Key words: methods: data analysis – intergalactic medium – quasars: absorption lines. 
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 I N T RO D U C T I O N  

eutral hydrogen gas between us and distant quasars forms ab- 
orption lines at wavelengths shorter than the Ly α emission line 
n the quasar spectrum through absorption and scattering. These 
bsorption lines are collectively called the Ly α forest; and they 
race the underlying matter distribution in the intergalactic medium 

IGM) and the circumgalactic medium (CGM). The Ly α forest is 
onsequently a powerful tool to map vast volumes at redshifts 2 � z 

 5 and probing scales from hundreds of Mpc to below 1 Mpc. 
Gunn & Peterson ( 1965 ) first estimated the density of neutral

ydrogen in the IGM. They realized that the measurement of some 
ontinuum flux of 3C 9 below the Ly α emission line by Schmidt
 1965 ) implied the IGM was mostly ionized. Later work by Lynds
 1971 ) showed that the IGM absorption was in the form of discrete
 E-mail: karacayli.1@osu.edu 
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eatures. In the 1990s, work by many investigators (Bi, Boerner &
hu 1992 ; Cen et al. 1994 ; Zhang, Anninos & Norman 1995 ; Bi &
avidsen 1997 ) clearly established that this Ly α forest originates 

rom smooth IGM fluctuations. Based on this smooth density 
uctuations picture, the 1D power spectrum ( P 1D ) has emerged as
n important quantity to measure in high-resolution, high-signal-to- 
oise (SNR) spectra (Croft et al. 1998 ; Ir ̌si ̌c et al. 2017 ; Walther et al.
017 ; Kara c ¸aylı et al. 2022 ), as well as medium-resolution, medium-
NR spectra (McDonald et al. 2006 ; Palanque-Delabrouille et al. 
013 ; Chabanier et al. 2019 ). P 1D is valuable because it is sensitive
o smaller scales than are accessible in high-redshift galaxy surv e ys,
nd consequently to particular physical quantities. Applications of 
he Ly α P 1D include investigations of the thermal state of the IGM
Boera et al. 2019 ; Walther et al. 2019 ; Villasenor et al. 2022 ),
nference of the primordial power spectrum (Viel, Weller & Haehnelt 
004 ), constraints on the sum of neutrino masses (Croft, Hu & Dav ́e
999 ; Palanque-Delabrouille et al. 2015 ; Y ̀eche et al. 2017 ), and
xplorations of the nature of dark matter (Narayanan et al. 2000 ;
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eljak et al. 2006 ; Wang et al. 2013 ; Ir ̌si ̌c et al. 2017b ), with warm
ark matter receiving particular attention (Boyarsky et al. 2009 ; Viel
t al. 2013 ; Baur et al. 2016 ; Ir ̌si ̌c et al. 2017a ; Villasenor et al. 2023 ).

Even though P 1D is a summary statistic for cosmological analysis,
t is very sensitive to several sources of systematic errors. The five-
ear data from the Dark Energy Spectroscopic Instrument (DESI;
evi et al. 2013 ) will provide approximately 700 000 Ly α quasar
pectra with medium resolution ( R ≈ 3000), medium SNR ( ≈2
er Å; DESI Collaboration 2016a , b ), which will constitute a data
et that is four times larger than the Extended Baryon Oscillation
pectroscopic Surv e y (eBOSS; Da wson et al. 2016 ). DESI will
onsequently substantially expand the statistical power of Ly α forest
easurements relative to previous work. To fully exploit this great

ncrease in statistical power requires comprehensive studies of P 1D 

ystematics. These include systematics related to the theoretical
nterpretation (e.g. Luki ́c et al. 2015 ; Walther et al. 2021 ; Chabanier
t al. 2023 ), instrumental effects, and other spectroscopic extraction
etails. We address the latter two topics in this paper with early DESI
bservations. 
We analyse two distinct data sets in this paper. The first set

f spectra was collected between December 2020 and May 2021
uring the DESI Surv e y Validation (SV; DESI Collaboration 2023a )
hase. The purpose of this phase was to perform various tests to
erify the pipeline for target selection, spectral extraction, classifier
erformance, and clustering analysis. The spectra collected during
his period will be publicly available as early data release (DESI
ollaboration 2023b ). The second set was obtained during the
rst two months of the DESI main surv e y, which be gan in May
021. Together, these data span a wide range of SNR. We use
hem to measure P 1D and characterize the noise, flux calibration,
nd spectrograph resolution calculated by the DESI spectroscopic
ipeline. 
The two main methods to estimate P 1D are the maximum likelihood

stimator and the Fast Fourier transform (FFT). The maximum
ikelihood estimator is typically considered to be statistically optimal,
lthough it is slower than FFT-based algorithms. The maximum like-
ihood estimator can be implemented in two different ways. A direct
mplementation finds the maximum likelihood solution by sampling
he likelihood with respect to P 1D (Palanque-Delabrouille et al. 2013 ).
his implementation has slower convergence properties and is more
rone to numerical instabilities. The second implementation takes
dvantage of the Newton–Raphson method and achieves a faster
nd more stable performance. We call this estimator the quadratic
aximum likelihood estimator (QMLE; McDonald et al. 2006 ;
ont-Ribera, McDonald & Slosar 2018 ; Kara c ¸aylı, Font-Ribera &
admanabhan 2020 ) and the application of QMLE to DESI data is

he main focus of this paper. In a companion paper by Ra v oux et al.
 2023 ), we present the application of the FFT-based estimator to early
ESI data. That paper adapts the FFT approach previously used for

BOSS (Chabanier et al. 2019 ). 
A major virtue of QMLE is that it is robust against challenges such

s strong sky emission lines, high-column density (HCD) systems,
nd bad CCD pix els. Pix els affected by these features must be masked
o a v oid contamination from unrelated physical effects and imperfec-
ions in instrumentation. This masking introduces a bias that must be
orrected in FFT estimates; and these corrections in turn introduce
ncertainties to the measurement (Chabanier et al. 2019 ). A major
dvantage of QMLE is that it can handle masked, uneven spectra
ithout further corrections by construction. Relatedly, QMLE is

apable of weighting individual pixels by the inverse pipeline noise,
nd hence diminishes the impact of variations in instrument noise and
ther noisy spectral regions such as certain sky lines. In addition, the
NRAS 528, 3941–3963 (2024) 
MLE implementation of Kara c ¸aylı, Font-Ribera & Padmanabhan
 2020 ) interpolates pixel pairs into two redshift bins to account for
he redshift evolution within the Ly α forest. These properties, among
thers discussed later in the text, make the QMLE an excellent tool
or DESI Ly α P 1D estimation. 

For a medium-resolution, medium-SNR survey such as DESI,
he potential systematics due to the pipeline noise estimation and
he spectrograph resolution require the most attention. Previous ex-
eriments suffered from spectroscopic pipeline noise miscalibration
evels of 15 per cent, which necessitated separate calculations and
ecalibrations of the pipeline noise (McDonald et al. 2006 ; Palanque-
elabrouille et al. 2013 ). DESI was meticulously designed to abate

uch miscalibrations (DESI Collaboration 2022 ; Guy et al. 2023 ).
et even though the pipeline is significantly impro v ed, the statistical
o wer of e ven the early data demands ever-stringent precision.
nother consideration is that spectral extraction for DESI is based
n the spectro-perfectionism algorithm, which can handle arbitrarily
omplicated (i.e. not solely separable) 2D point-spread functions
PSF; Bolton & Schle gel 2010 ). This e xtraction preserv es the full
ative resolution of the 2D spectrograph without degradation in the
D spectrum and yields an independent resolution matrix for each 1D
pectrum that is based on the spectrograph resolution and the noise
n each spectrum (Guy et al. 2023 ). QMLE can naturally incorporate
his no v el resolution matrix, and in this paper, we validate the
pectro-perfectionism and its synergy with the QMLE by simulating
CD images and extracting spectra with the DESI spectroscopic
ipeline. 
The outline of this paper is as follows. First, we describe the

ESI surv e y, target selection, the creation of quasar catalogues, the
dentification of damped Ly α (DLA) systems and broad absorption
ines (BAL), and the properties of the early spectra in Section 2 . We
utline the continuum fitting algorithm and detail the QMLE and
arious updates in Section 3 . Synthetic spectra are central in our
alidation to make robust statistical claims. In Section 4 , we validate
he continuum fitting algorithm, DLA masking and damping wing
orrections with e xtensiv e sets of 1D mock spectra, and validate the
esolution matrix derived by the pipeline CCD image simulations that
e analyse with the same spectroscopic pipeline that we use with

eal DESI observations. We perform various tests for systematics
nd present our P 1D measurement from data in Section 5 . Finally,
e compare DESI P 1D measurements from the QMLE and FFT

stimators to each other and to eBOSS in Section 6 . We summarize
ur results in Section 7 . As noted before, a companion paper by
a v oux et al. ( 2023 ) presents the FFT-based results. 

 DATA  

he DESI collaboration began a five-year survey of 40 million
alaxies and quasars in May 2021. The main goal of this surv e y
s to measure distances with the baryon acoustic oscillation (BAO)
ethod from the local universe to beyond z > 3.5 and use these data

o explore the nature of dark energy. DESI will also employ redshift
pace distortions to measure the growth of cosmic structures and test
otential modifications to general relativity, measure the sum of neu-
rino masses, and investigate primordial density fluctuations from the
nflationary epoch. The collaboration is conducting this surv e y with
 new, high-throughput, fiber-fed spectrograph on the 4 m Mayall
elescope that can obtain 5000 spectra in each observation (DESI
ollaboration 2016b ; Silber et al. 2023 ). The light from each fiber is
irected into one of ten, identical, bench-mounted spectrographs that
ecord the light from 360 to 980 nm in three wavelength channels. The
lue channel is optimized for Ly α forest studies and extends from
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Figure 1. Quasar at z = 2.94 observed during DESI survey validation (TargetID 39627871806818826). The Ly α forest is defined to be the spectral region 
between a quasar’s Ly α and Ly β emission lines. Absorption features redward of the quasar’s Ly α emission line may be due to metal systems. The regions from 

Ly α to Si IV and from Si IV to C IV are called the ‘side bands’ (SB). We call the Ly α –Si IV region SB 1 and the Si IV –C IV re gion SB 2, and use these re gions 
to quantify metal contamination, noise and flux calibrations. 
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60 to 593 nm with a resolution that ranges from 2000 to 3500. These
pectrographs are in a climate-controlled enclosure that provides 
ery stable calibrations and minimizes systematic errors due to 
nstrumental effects. The instrumentation is described in detail in 
ESI Collaboration ( 2022 ) and the spectroscopic pipeline in Guy 

t al. ( 2023 ). 
DESI targets were selected with g , r , z photometry from the

e gac y Imaging Surv e ys (De y et al. 2019 ) and W 1, W 2 photometry
rom the Wide-field Infrared Explorer ( WISE ; Wright et al. 2010 ).
he target selection process is described in detail in Myers et al.
 2023 ). The targets include quasars at 0.9 < z < 2.1 that are used
o trace large-scale structure and at z > 2.1 that are used to trace
he matter distribution with the Ly α forest (Y ̀eche et al. 2020 ).
he collaboration refined the target selection algorithms during the 
urv e y Validation (SV; DESI Collaboration 2023a ) period in early
022 with a significant visual inspection effort (Alexander et al. 
023 ). The final quasar target selection is based on a random forest
lgorithm and selects quasars in the magnitude range 16.5 < r <
3 (Chaussidon et al. 2023 ). We use the One-Percent Surv e y (SV3)
pectra that are part of early data release (EDR; DESI Collaboration 
023b ), and further include two months of main surv e y (DESI-
2) to increase the statistical precision in our analysis. We call 

his combined data set EDR + . The target selection validation (SV1)
pectra are the deepest observations in EDR, but their pipeline noise 
stimates differ from the other two data sets (Ra v oux et al. 2023 ).
herefore, we rely on these spectra only for the DLA identification 
nd not for P 1D estimation since the pipeline noise estimates do not
ffect DLA identification as they affect P 1D . Fig. 1 shows a quasar at
 = 2.94 from this DESI early data. 

DESI employs three classification algorithms to identify quasars. 
ost targets are correctly classified with Redrock 1 (Bailey et al., in 
 https:// github.com/ desihub/ redrock

t  

S  

M  

E

reparation). This algorithm performs a χ2 analysis for a range of 
pectral templates as a function of redshift and identifies the best
edshift and spectral template for each target. Our visual inspection 
rocess demonstrated that Redrock misses some quasars, so we 
mploy QuasarNET (Busca & Balland 2018 ; F arr, F ont-Ribera &
ontzen 2020 ) and an Mg II afterburner (Napolitano et al. 2023 ) to
elp identify additional quasars. QuasarNET is a machine learning 
lgorithm that uses convolutional neural networks for classification 
nd the Mg II afterburner searches for broad Mg II emission at
he Redrock redshift in the spectral of quasar targets classified as
alaxies. Chaussidon et al. ( 2023 ) describe this process in more
etail. We limit ourselves to objects that are targeted as quasars in
he afterburner catalogue. 

.1 Quasars with broad absorption lines 

AL features are present in about 15 per cent of all quasar spectra
nd can contaminate the Ly α forest as well as impact quasar redshift
rrors and classifications. The vast majority of BAL quasars exhibit 
lueshifted absorption associated with the C IV emission feature 
nd the BAL identification algorithm searches this region in every 
uasar spectrum where this spectral region is visible (1.57 < z <

). This algorithm is similar to the one presented by Guo & Martini
 2019 ), except that it does not use the Convolutional Neural Network
CNN) classifier. Filbert et al. ( 2023 ) describe the BAL identification
nd characterization for the early DESI quasar catalogues in detail, 
ncluding the catalogue completeness and purity, and the impact of 
AL features on redshift errors (Garc ́ıa et al. 2023 ). We use the
easured velocity range of the BAL features associated with C IV

o mask this ion and also mask the wavelengths that correspond to
he same velocities associated with the S IV , P V , C III , Ly α, N V , and
i IV . All of these features may be present in BALs (Mas-Ribas &
auland 2019 ), and all but S IV can contaminate the Ly α forest (e.g.

nnesser et al. 2022 ). 
MNRAS 528, 3941–3963 (2024) 
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mean of pixel size of �z = 0.1. Having BAL quasars ( orange ) improves 
SNR, but it also comes with possible biases in P 1D (see Section 2 ). 
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.2 Damped Ly α systems 

LAs are identified using both CNN and Gaussian process (GP)
nders, then their results are combined into a concordance catalogue
hile adopting GP results o v er CNN if both detect the same DLA

Ho, Bird & Garnett 2021 ; Wang et al. 2022 ). We pick unique DLA
dentifications while combining three separate DLA catalogues for
V1, SV3, and DESI-M2 since the same quasars and DLAs can be
resent in different catalogues. If two DLAs are within a threshold
edshift separation �z t that corresponds to a DLA’s observed redshift
ize, we pick the highest confidence identification, where 

z t = (1 + z DLA ) 
7 . 3 Å

λLy α
10 ( N HI −20) / 2 . (1) 

e select systems based on average signal-to-noise ratio SNR
etween 1420 and 1480 Å in quasar’s rest frame. For DLAs that
re identified by CNN, we keep them in the catalogue if the host
uasar spectrum has SNR > 3, but remo v e them from the catalogue
f the confidence level is less than 0.3 in quasars with SNR < 3. We
eep all systems GP identifies. There are 41 946 DLAs with N H I >

0.3 in the combined catalogue. Sub-DLA detections contain many
alse positives, so we do not mask them. Our selection criteria and
uplicate removal reduce this number to 30 131. Introducing a minor
onfidence threshold of 0.2 for high SNR and 0.9 for GP systems
emo v es 567 DLAs. We believe masking possible DLAs in this small
ample is more valuable than missing them. We note that not all DLA
ightlines end up in our final sample since some host quasars are left
ut due to quality cuts. 

.3 Redshift distribution 

ig. 2 shows the quasar redshift distribution of our sample on the
op panel. The quasar distribution n qso ( z) drops off rapidly at higher
edshift, as expected from the selection function. There are 67 241
uasars in our final sample. On the bottom panel, we show the
NR distribution in the forest as a function of redshift with bin
ize �z = 0.1. We define SNR based on the propagated error σ ( z),
here SNR = 1/ σ ( z) and the propagated error σ ( z) on the weighted
ean as follows: 

( z) = 

√ ∑ 

i 

w 

2 
i σ

2 
pipe ,i 

/ ∑ 

i 

w i , (2) 

here w 

−1 
i = σ 2 

LSS ,i + σ 2 
pipe ,i and summation is done o v er all pix els

hat fall into the redshift bin. This quantity is equi v alent to pixel SNR
alues after coadding all quasar spectra in the forest region into coarse
z = 0.1 pixels. Large-scale structure variance σ 2 

LSS is calculated
uring the continuum fitting process as described in Section 3 . Even
hough we keep BAL quasars while continuum fitting, we remo v e
hem from final P 1D estimates. Removing these BAL quasars leaves
s with 54 600 spectra and reduces our SNR as shown in blue in
ig. 2 . 
We explain the details regarding DLA and BAL masking in

ection 5 . 

 M E T H O D  

.1 Continuum fitting 

he continuum fitting algorithm we use was developed over the last
ew years and has been applied to both 3D analyses (Bautista et al.
017 ; du Mas des Bourboux et al. 2019 , 2020 ) and P 1D measurements
NRAS 528, 3941–3963 (2024) 
Chabanier et al. 2019 ). This algorithm is part of the software Package
or Igm Cosmological-Correlations Analyses ( PICCA ) and is publicly
vailable. 2 We summarize the algorithm below. 

One important aspect of the algorithm is that the definition of
he quasar continuum absorbs the mean transmission F ( z) of the
GM. Specifically, we model every quasar ‘continuum’ F C q ( λRF )
y a global mean continuum C ( λRF ) and two quasar ‘diversity’
arameters, amplitude a q and slope b q : 

 C q ( λRF ) = C ( λRF ) 
(
a q + b q 	 

)
(3) 

	 = 

log λRF − log λ(1) 
RF 

log λ(2) 
RF − log λ(1) 

RF 

(4) 

here λRF is the wavelength in quasar’s rest frame and λ(1 , 2) 
RF are the

inimum and maximum wavelengths considered for calculation. We
ssume that the global mean continuum C ( λRF ) does not depend on

https://github.com/igmhub/picca
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edshift, and therefore our model only adjusts F ( z), as well as solves
or the a q and b q parameters for each quasar. In other words, the
mplitude and slope parameters do not only fit for intrinsic quasar 
iversity such as brightness, but also for the IGM mean transmission.
iven these definitions, transmitted flux fluctuations are given by 

q ( λ) = 

f q ( λ) 

F C q ( λ) 
− 1 , (5) 

here λ = (1 + z q ) λRF is the observed wavelength and f q ( λ) is the
bserved flux. The effect of spectrograph resolution has been ignored 
or simplicity as noted in Slosar et al. ( 2013 ), since the affected scales
re small for 3D analysis. The features in the continuum are also
ider than the spectrograph resolution, so this assumption should 

lso hold for P 1D . 
Our continuum fitting procedure calculates a q and b q for each 

uasar, and three global functions: the mean quasar continuum 

 ( λRF ), the large-scale Ly α fluctuations σ 2 
LSS ( λ), and the pipeline 

oise correction term η( λ). We do not assume a functional form
or these three functions; instead, we construct linear interpolations 
ased on binned estimates. Specifically, C ( λRF ) is calculated between 
est-frame wavelengths λ(1) 

RF and λ(2) 
RF in bins of size �λRF . The other 

wo parameters η( λ) and σ 2 
LSS ( λ) are calculated in the observed frame

n N obs bins linearly spaced between λ(1) and λ(2) . These binning 
arameters are tuned for each analysis depending on the available 
tatistics. Before we start our fitting process, we co-add the three 
pectrograph arms using the pipeline inverse variance as weights. 
ur fitting procedure is iterative. Each iteration i is as follows: 

(i) Fit each spectrum for a q and b q while keeping other parameters 
xed. 
(ii) Calculate C i+ 1 ( λRF ). 
(iii) Fit for variance parameters η and σ 2 

LSS (defined below) for 
ach bin. 

For each quasar, we find the a q and b q values that minimize the
ollowing cost function while keeping all other parameters fixed: 

2 = 

∑ 

j 

[ 
f j − ( a q + b q 	 j ) C 

(
λj 

1 + z q 

)] 2 
σ 2 

q,j 

+ 

∑ 

j 

ln σ 2 
q,j , (6) 

here the summation j is o v er all pix els in the forest region and
j is the observed wavelength. The major complication comes from 

2 
q,j , which must take into account the intrinsic large-scale Ly α
uctuations σ 2 

LSS : 

2 
q,j = η( λj ) σ

2 
pipe , j + σ 2 

LSS ( λj )( a q + b q 	 j ) 
2 C 

2 
(

λj 

1 + z q 

)
. (7) 

fter every quasar is fit, we stack all continua in the rest frame
nd update the global mean continuum C . As described abo v e,
arameters η and σ 2 

LSS are calculated at discrete wavelength bins. 
or each bin, we rebin the δ values with respect to the pipeline noise
stimates σ pipe and calculate the scatter in these σ pipe bins to measure 
he σ 2 

q − σ 2 
pipe relation from the data. Lastly, we fit equation ( 7 ) to

his relation to find η and σ 2 
LSS values for every wavelength bin. 

.2 Quadratic estimator 

e measure P 1D using the quadratic maximum likelihood estimator 
QMLE), which was e xtensiv ely studied in the 90s in the context of
osmic microwave background radiation, galaxy surveys, and weak 
ensing (Hamilton 1997 ; Tegmark, Taylor & Heavens 1997 ; Seljak 
998 ; Tegmark et al. 1998 ), and later also applied to the Ly α forest
McDonald et al. 2006 ; Kara c ¸aylı, Font-Ribera & Padmanabhan 
020 ; Kara c ¸aylı et al. 2022 ). The QMLE works in real space (instead
f Fourier space) to estimate the power spectrum, and therefore 
llows weighting by the pipeline noise, accounts for intrinsic Ly α
arge-scale structure correlations, and most importantly is not biased 
y gaps in the spectra. We refer the reader to Kara c ¸aylı, Font-
ibera & Padmanabhan ( 2020 ) and Kara c ¸aylı et al. ( 2022 ) for our
evelopment process and application to high-resolution spectra. In 
his section, we provide a short summary of QMLE and then describe
he important steps for the resolution matrix and shifting Nyquist 
requency implementations. Details regarding the continuum error 
arginalization are in Appendix A and signal–noise coupling cor- 

ection is in Appendix B . 
One moti v ation for the de velopment of QMLE is that the po wer

pectrum is typically estimated on discrete wavenumbers k as band 
owers, since it cannot be estimated continuously on k , and this
iscretization inevitably averages the underlying power o v er these 
ands. Our QMLE implementation alleviates this effect by estimating 
eviations from a fiducial power spectrum such that P ( k , z) = P fid ( k ,
) + 

∑ 

m , n w ( mn ) ( k , z) θ ( mn ) , where we adopt top-hat k bands with k n 
s bin edges and linear interpolation for z bins with z m as bin centres.
his fiducial power spectrum further impro v es the weighting by

ncluding large-scale Ly α correlations, does not have to exactly 
atch the true power spectrum, and can be approximated in an

nbiased way if no safe guess is available (as shown by Kara c ¸aylı,
 ont-Ribera & P admanabhan 2020 ). We use the following fitting
unction: 

k P fid ( k , z) 

π
= A 

( k/k 0 ) 3 + n + α ln k/k 0 

1 + ( k/k 1 ) 2 

(
1 + z 

1 + z 0 

)B+ β ln k/k 0 

, (8) 

here k 0 = 0.009 s km 

−1 and z 0 = 3.0, and stress that this is sufficient
or a baseline estimate, which in turn can be used to weight pixels,
ut does not capture all of the scientific information in P 1D . 

Given a collection of pixels representing normalized flux fluctua- 
ions δF , the quadratic estimator is formulated as follows: 

ˆ ( X+ 1) 
α = 

∑ 

α′ 

1 

2 
F 

−1 
αα′ ( d α′ − b α′ − t α′ ) , (9) 

here X is the iteration number and 

 α = δT 
F C 

−1 Q αC 

−1 δF , (10) 

 α = Tr ( C 

−1 Q αC 

−1 N ) , (11) 

 α = Tr ( C 

−1 Q αC 

−1 S fid ) . (12) 

he covariance matrix C ≡ 〈 δF δ
T 
F 〉 is the sum of signal and noise,

 = S fid + 

∑ 

αQ αθα + N , Q α = ∂ C / ∂ θα and the estimate of the
isher matrix is 

 αα′ = 

1 

2 
Tr ( C 

−1 Q αC 

−1 Q α′ ) . (13) 

he covariance matrices on the right-hand side of equation ( 9 )
re computed using parameters from the previous iteration θ ( X) 

α . 
ssuming different quasar spectra are uncorrelated, the Fisher matrix 
 αα′ and the expression in parentheses in equation ( 9 ) can be
omputed for each quasar, then accumulated, i.e. F = 

∑ 

q F q etc. 
We convert wavelength to velocity using logarithmic spacing, 

ollowing the convention in cosmology: 

 i = c ln ( λi /λLy α) (14) 

here λLy α = 1215.67 Å. We assume the noise is uncorrelated at
ifferent wavelengths, which results in a diagonal noise matrix with 
 ii = σ 2 

i , where σ i is the continuum-normalized pipeline noise. 
MNRAS 528, 3941–3963 (2024) 



3946 N.G. Kara c ¸aylı et al. 

M

3

I  

t  

v

δ

E  

u  

t  

b  

S  

r  

t  

s  

s  

b

δ

T  

W  

a

S

Q

w  

w  

r

S

w  

m

Q

w  

w
 

F  

s  

e  

d  

c  

w  

m  

t  

g  

s  

S  

i  

t  

G  

r  

w  

m  

m  

H  

e  

T  

a  

i  

c  

n  

l  

r  

r  

t  

o  

t

3

A  

w  

w  

N  

w  

a  

b  

e  

t
 

m  

p  

m  

N  

i  

F

3

T
s  

b  

c  

s  

i  

t  

1

3

O  

a  

s  

l  

P  

s  

t  

a  

3 https:// github.com/ p-slash/ lyspeq 
4 https:// www.gnu.org/ software/ gsl 
5 https://fftw.org 
6 https://www.mpi-forum.org 
7 https://www.mpich.org 
8 https://www.open-mpi.org 
9 https://www .astropy .org 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/528/3/3941/7560571 by guest on 16 M
ay 2024
.2.1 Resolution matrix 

n our previous applications of QMLE, we approximated the spec-
rograph resolution effects by a continuous window function W ( v,
 

′ ) such that the smoothed flux fluctuations δR were given by 

R ( v) = 

∫ 
d v ′ W ( v, v ′ ) δ( v ′ ) . (15) 

ven though it is a valid and prevalent approximation, this formalism
nfortunately fails to capture wavelength-dependent resolution of
he spectrographs. Ho we ver, for DESI the spectral extraction is
uilt on the impro v ed spectro-perfectionism algorithm (Bolton &
chlegel 2010 ; Guy et al. 2023 ). Spectro-perfectionism produces a
esolution matrix R associated with each spectrum that is based on
he spectrograph resolution as well as the noise properties of each
pectrum, and captures the wavelength-dependent resolution on the
ame discrete wavelength bins as the spectrum. The observed signal
ecomes a matrix–vector multiplication: 

R = R δ. (16) 

his redefinition is natural to incorporate into the QMLE formalism.
e achieve this by replacing the integral equations for the signal S

nd deri v ati ve matrices Q by the follo wing expressions: 

 R = 〈 δR δ
T 
R 〉 = RSR 

T (17) 

 

α
R = RQ 

αR 

T , (18) 

here the subscript R denotes the smoothed matrices, and matrices
ithout a subscript are e v aluated as integrals but now without a

esolution window function. 

 

fid 
ij = 

∫ ∞ 

0 

dk 

π
cos ( k v ij ) P fid ( k , z ij ) , (19) 

here v ij ≡ v i − v j and 1 + z ij ≡
√ 

(1 + z i )(1 + z j ) . The deri v ati ve
atrix for redshift bin m and wavenumber bin n is 

 

( mn ) 
ij = I m 

( z ij ) 
∫ k n + 1 

k n 

dk 

π
cos ( kv ij ) , (20) 

here I m ( z) is the interpolation kernel. This is 1 when z = z m and 0
hen z = z m ± 1 . 
Ho we ver, there are more subtleties regarding the resolution matrix.

irst, these matrix multiplications require that all pixels are present,
o we mark masked pixels with large noise estimates instead of
liminating them from the spectrum. Secondly, the resolution matrix
oes not capture the resolution outside the spectral range (by
onstruction). This is a potential problem at the largest scales, so
e implement an option in QMLE that pads the resolution matrix by
irroring its columns at the edges. Thirdly, both synthetic spectra and

he actual DESI pipeline produce this matrix on the same wavelength
rid as the spectrum with the same spacing. This is natural in the
pectro-perfectionism formalism in data, and we test its accuracy in
ection 4.2 ; ho we ver, it yields an undercorrection at small scales

n the mock analysis. Our solution to this problem in mocks is
o o v ersample ev ery row of the resolution matrix (Appendix D;
uy et al. 2023 ). One could model the resolution matrix at each

ow (i.e. wavelength) as a convolution of Gaussian and top-hat
indow functions, and fit for one or two free parameters for this
odel. One then e v aluates each row of the o v ersampled resolution
atrix using the best-fitting parameters at smaller wavelength steps.
o we ver, spectro-perfectionist resolution matrix carries negative

lements and evidently does not follow this simple description.
NRAS 528, 3941–3963 (2024) 
herefore, achieving a stable o v ersampling method requires a nu-
nced procedure. We decided to use an unassuming description by
nterpolating the intermediate values. To correctly capture the rapid
hange in resolution matrix elements, we interpolate using their
atural logarithms with a cubic spline. To obtain a valid natural
ogarithm, we shift every element to a small positive value in each
ow. This small positive value is the smallest absolute value in that
ow (using an arbitrary number breaks down in subsequent steps). We
hen apply a cubic spline to the natural logarithm of these elements,
 v ersample at a desired factor (usually three), and finally trace back
hese changes to obtain the new resolution matrix. 

.2.2 Shifting Nyquist frequency on a linear wavelength grid 

nother update to QMLE concerns the Fisher matrix and DESI’s
avelength binning. The DESI pipeline extracts spectra on a linear
avelength grid of �λ = 0.8 Å, which results in an increasing
yquist frequency with wavelength in velocity space k Ny = π / dv ,
here dv = c �λ/ λ. In other words, we can measure higher k modes

t higher redshifts. Ho we ver, forcing the code to measure the same k
ins at lower redshifts results in numerically unstable Fisher matrix
lements that could contaminate all scales when inverted. Hence,
hese modes should be remo v ed from the analysis. 

We decide each spectral segment’s Nyquist frequency using their
edian dv , then set k > k Ny /2 modes in the Fisher matrix and the

ower spectrum to zero. Since this procedure results in a ‘singular’
atrix, we replace zeros on the diagonal with one while inverting.
ote this replacement does not contaminate lower k modes, because

t constitutes a block diagonal matrix. This process stabilizes the
isher matrix. 

.2.3 Nominal estimator settings 

hroughout this paper, we use 20 linear bins with � k lin = 0.5 × 10 −3 

 km 

−1 and 13 log-linear bins with � k log = 0.05. We use redshift
ins of size �z = 0.2 from z = 2.0 to z = 3.8 included. To reduce
omputation time and help continuum marginalization, we split the
pectra into two segments if they have more than 500 pixels, and we
gnore segments having less than 20 remaining pixels. We interpolate
he signal and deri v ati ve matrices using 3601 points in velocity with
0 km s −1 spacing and 400 points in redshift. 

.3 Software 

ur quadratic estimator 3 is written in C ++ . It depends on CBLAS

nd LAPACKE routines for matrix/vector operations, GSL 

4 for certain
cientific calculations (Galassi et al. 2021 ), FFTW3 5 for deconvo-
ution when needed (Frigo & Johnson 2005 ); and uses the Message
assing Interface (MPI) standard 6 , 7 , 8 to parallelize tasks. The DESI
pectra are organized using HEALPIX (G ́orski et al. 2005 ) scheme on
he sky. We use the following commonly used software in PYTHON

nalysis: ASTROPY 

9 a community-developed core PYTHON package

https://github.com/p-slash/lyspeq
https://www.gnu.org/software/gsl
https://fftw.org
https://www.mpi-forum.org
https://www.mpich.org
https://www.open-mpi.org
https://www.astropy.org
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or Astronomy (Astropy Collaboration 2013 , 2018 , 2022 ), NUMPY 

10 

n open source project aiming to enable numerical computing 
ith PYTHON (Harris et al. 2020 ), SCIPY 

11 an open source project
ith algorithms for scientific computing, HEALPY to interface with 
EALPIX in PYTHON (Zonca et al. 2019 ), NUMBA 

12 an open source
ust-in-time (JIT) compiler that translates a subset of PYTHON and 
UMPY code into fast machine code, MPI4PY 

13 which provides 
YTHON bindings for the MPI standard (Dalcin & Fang 2021 ). Finally,
e make plots using MATPLOTLIB 

14 a comprehensive library for 
reating static, animated, and interactive visualizations in PYTHON 

Hunter 2007 ). 

 VA LIDATION  

ynthetic data are crucial to verify that the measurements are 
nbiased, and the errors are correctly captured. Our mock generation 
rocedure consists of the generation of transmission files with forest 
uctuations, diverse quasar spectra, and simulation of the DESI 

nstrument. The lognormal mock transmission files are generated 
sing the procedure in Kara c ¸aylı, Font-Ribera & Padmanabhan 
 2020 ). We generate them on a linear wavelength grid of 0.2 Å
pacing without any resolution and noise effects. 

We develop two methods to simulate and validate the DESI 
nalysis pipeline. The first set of mocks is produced using quick-
uasars , which is part of the DESISIM package 15 and uses SPEC-
IM 

16 (Kirkby et al. 2021 ) for quick simulations of fiber spectrograph
esponse (see Herrera-Alcantar et al. ( 2023 ) for a detailed description
f quickquasars mocks). This program generates random quasar 
ontinua, simulates sky and instrumental noise, and incorporates 
avelength-dependent camera resolution, but does not validate the 

omputationally e xpensiv e spectral e xtraction. Hence, we cannot 
alidate the spectro-perfectionist resolution matrix with these mocks. 
n order to apply and validate the spectro-perfectionism algorithm in 
he Ly α forest, we create a second set of mocks called ‘CCD image
imulations’ that project mock quasar spectra on to 2D images that 
imulate DESI raw data at the CCD pixel level with the DESISIM

ackage. These CCD image simulations are then processed in a 
imilar manner to actual data with the algorithms that comprise 
he DESI spectroscopic reduction pipeline (Guy et al. 2023 ). This
pproach is more computationally e xpensiv e than 1D mocks, so we
nly employ it on a smaller number of mock spectra. 

.1 Quickquasars mocks 

or these mocks, the quasar diversity, DESI instrument, and the sky
re simulated through a program called quickquasars in the 
ESISIM package. This program randomly generates quasar continua 
rom a broken power law with emission lines, convolves with the 
avelength-dependent camera resolution for each arm, adds noise for 
 giv en e xposure time and observation program, and finally resamples 
n to the output DESI wavelength grid of �λDESI = 0.8 Å per pixel.
e smooth out the source contribution to noise with a Gaussian 

ernel of σ = 10 Å to imitate the DESI pipeline (Guy et al. 2023 ). 
0 https://numpy.org 
1 https://scipy.org 
2 https://numba.pydata.org 
3 https://mpi4py.readthedocs.io 
4 https://matplotlib.org 
5 https:// github.com/ desihub/ desisim 

6 https:// github.com/ desihub/ specsim 
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All unique targets that are identified as quasars are simulated 
n our mocks. Ho we ver, in real data analysis, we remo v e certain
urv e ys, programs and low SNR targets. We generate the trans-
ission files with the exact redshift distribution of DESI quasars 

n our sample and assume a constant 4000 s exposure time for all
pectra. 

As e xtensiv e and realistic as quickquasars is, it does not
ully reproduce the spectral extraction pipeline output since it does 
ot generate 2D CCD images. As an important consequence, the 
utput resolution matrix does not follow the spectro-perfectionism 

ormalism and instead it is approximated as a box-car average over
ows and columns of the finely sampled camera resolution matrix. 
nfortunately, this approximation is not correct as it smoothes the 

esolution matrix twice, once o v er rows and once o v er columns.
o correct that implementation, we deconvolve a top-hat window 

unction and o v ersample each row of this matrix by a factor of 3 in the
ower spectrum estimation. This yields adequately unbiased power 
pectrum results but is not a precise enough solution to strongly rely
n χ2 criteria. We also perform CCD image simulations to understand 
he behaviour of the resolution matrix in data. 

As noted, we generate a mock spectrum for each unique target
n our sample, which yields 92 780 quasars in our final sample. We
efine the forest to be between 1050 and 1180 Å in the quasar rest
rame, use the analytically calculated true power spectrum as our 
ducial and perform a single iteration using the QMLE (Kara c ¸aylı,
 ont-Ribera & P admanabhan 2020 ). We define our small-scale
onfidence range with respect to ef fecti v e v elocity spacing R z =
 �λDESI /(1 + z) λLy α of each redshift bin, where �λDESI = 0.8 Å. 

.1.1 True continuum, no systematics 

e start validating our analysis without any continuum fitting 
omplications or other systematics. We obtain flux transmission 
uctuations δF using the true continuum (which is provided by 
uickquasars ) and true mean transmission. We estimate the 
ean transmission from pure transmission files, confirm that this 

stimate is correct using the analytical mean transmission expres- 
ion (Kara c ¸aylı, Font-Ribera & Padmanabhan 2020 ), and use the
nalytical expression to remove the measurement noise. 

We find that the estimated power spectrum agrees with the 
rue underlying power albeit the problems at small scales due to
naccuracy in the resolution as mentioned abo v e. We calculate the
educed chi-square χ2 

ν = χ2 /ν, where the number of degrees of 
reedom ν is equal to the number of P ( k , z) points in the range
f concern, and χ2 = ( P − P true ) T C 

−1 ( P − P true ) where P is the
easurement, P true is the underlying true power spectrum, and C 

s the covariance matrix from QMLE. Fig. 3 shows the reduced
2 
ν from the true continuum analysis results in blue triangles. χ2 

ν

alues increase as we include higher k values (going from the top
o the bottom row), which is unfortunate but expected since our
orrection to the quickquasars resolution matrix is not exact. 
he kR < 0.9 range is firmly validated with χ2 

ν ≈ 1. The kR < 1
ange deteriorates the agreement between power spectra by 1.5 σ , 
nd finally, the agreement breaks down in the kR < 1.2 range. 

.1.2 Continuum fitting, no systematics 

e now turn to validating our continuum fitting procedure, since we
o not have access to the true quasar continua. The quickquasars
ode generates quasar continua with broken power laws and emission 
ines, so our continuum fitting model with a single global mean and
MNRAS 528, 3941–3963 (2024) 
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M

Figure 3. Reduced χ2 
ν comparison for different k cuts and continuum marginalization polynomials on mocks. We find χ2 

ν increases for all settings as we include 
higher k values, which is unfortunate but expected since our correction to the quickquasars resolution matrix is not exact. The true continuum analysis 
results ( blue triangles ) stay within 1.5 σ of χ2 

ν = 1. Lo wer ro ws correspond to larger small-scale confidence regions. From left-most column to the right, we 
remo v e large-scale modes. When continuum errors are not marginalized ( orange squares ), throwing out these large-scale modes brings χ2 

ν down to 1 within 
error bars. We also find that first ( green circles ) and second ( red triangle ) order marginalizations remo v e the contamination from continuum errors at all scales. 
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wo diversity parameters is not exact. Therefore, our mock continuum
s not tailored towards our fitting model, and the test results we
resent here also capture model mismatches. 
There are 92 780 quasars in our mock data set. We find that fitting

or σ LSS is not valid for observed wavelength λ > 6000 Å due to
he small number of high-redshift quasars with forest data at these
avelengths (only 883), so we limit our continuum fitting region

o 3600 −6000 Å. This sets z Ly α = 3.8 as our largest redshift bin.
e measure the global mean continuum C ( λRF ) in 2.5 Å steps. We

x η = 1, and measure σ 2 
LSS in 20 wavelength bins in the observed

rame in equation ( 7 ). We do not apply an SNR cut in order to keep
ll spectra and perform five iterations. 

In Fig. 4 , we compare the mean continua from the true continuum
nalysis to the one from continuum fitting. Continuum fitting accen-
uates peaks and valleys in the mean continuum compared to when the
rue continuum is known. These deviations are interesting and merit
urther investigation, but our main objective is to obtain unbiased
 1D results. As we discuss below, these deviations do not impede

hat objective. The bottom panel of Fig. 4 shows σ 2 
LSS estimated from

he true and continuum fitting analyses. We find fitting the variance
eads to the correct σ 2 

LSS values. We note that σ 2 
LSS is not only a

unction of P 1D , but also depends on spectrograph resolution and
avelength spacing. 
We investigate reduced χ2 

ν values for various settings to judge the
ccuracy of the P 1D estimate. In addition to the true continuum re-
ults, Fig. 3 shows results for no continuum marginalization (orange
NRAS 528, 3941–3963 (2024) 
quares), first-order ln λ polynomial (green circles), and second-order
olynomical (red triangles). χ2 

ν from no the marginalization case is
ot visible in the left-most column, but produces reasonable values
hen large-scale modes are remo v ed in the middle and right columns.
his result illustrates the importance of continuum marginalization,
specially in that we can retain even the largest scales. We note
hat this analysis does not account for metals or DLA systematics,
hich dominate at these scales. Furthermore, we estimate the power

pectrum produced by the remaining continuum errors by calculating
C ≡ C est / C true − 1 and running it through QMLE. We do not
ubtract noise and fiducial terms in this case, but keep everything
lse the same. We find this continuum error power spectrum is a
actor of 10 −5 smaller than the signal at most scales and redshifts as
hown in Fig. 5 . With these results, we consider our continuum fitting
nd marginalization validated for this work. In future work, we will
est our analysis pipeline on multiple (ideally 100) realizations and
irectly study the χ2 distribution. 

.1.3 Masking high-column density systems 

e finally tested masking the high-column density (HCD) systems
oth in continuum fitting and in the P 1D estimate. We generate mocks
ith randomly placed HCDs and build a truth catalogue using their

edshifts and column densities. There are 17 273 HCDs with N H I >

9 . 5 on 15 097 sightlines, which corresponds to 16.2 per cent of all
ightlines. 
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Figure 4. (Top) Mean global continuum from the true continuum analysis 
versus from continuum fitting on mocks. The continuum fitting accentuates 
features in the mean continuum. (Bottom) σ 2 

LSS values from the true 
continuum analysis versus continuum fitting. Our fitting algorithm finds the 
correct σ 2 

LSS values. 

Figure 5. Power spectrum of the remaining continuum errors after marginal- 
ization, divided by the true underlying mock Ly α power spectrum. We find 
the remaining continuum errors are a factor of 10 −5 smaller than the signal 
at most scales and redshifts. The maximum is 10 −3 at the largest scales. 

Figure 6. Power spectrum when DLAs and sub-DLAs are not masked 
divided by the true underlying mock power spectrum. These systems add 
power to large scales. 
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We calculate a DLA transmission profile based on the column den-
ity for each system. The damping wings extend to large wavelength 
eparations from the central wavelength, such that an aggressive 
asking strategy would remove many data points. Therefore, we 
ask pixels where the model profile is below a transmission threshold

nd correct the damping wings at larger transmission values based 
n the same model profile. A higher transmission threshold results 
n smaller corrections, but eliminates more data points. We tested 
wo thresholds: a nominal threshold with the DLA absorption 
reater than 20 per cent and a conserv ati ve cut of greater than 10
er cent. We find both options yield similar χ2 

ν ∼ 1 within error
ars. 
When unmasked, these systems add power to the large scales, 

s shown in Fig. 6 . Furthermore, this extra power depends on
hether these systems are correlated with the underlying matter field 

McDonald et al. 2005 ), and it has different amplitudes and shapes for
ifferent column densities (Rogers et al. 2018 ). Accurate simulation 
f these systems embedded in the Ly α forest remains challenging, 
et they cannot be completely removed from the measurement 
ither. For instance, the catalogue produced by the DLA finder is
pproximately 90 per cent efficient and pure (Wang et al. 2022 ). As
e discuss in Section 5.3 , we report the systematics associated with

he DLA finder inefficiency based on a simple scaling of this ratio.
o we ver, the ef fect of uncorrected and undetected DLAs still needs

o be modelled and marginalized o v er in cosmological inferences
Palanque-Delabrouille et al. 2013 ; Chabanier et al. 2019 ). 

.2 CCD image simulations 

e validated the resolution matrix implementation in the DESI 
ipeline and the QMLE with CCD image simulations. The image 
imulations draw on extensive infrastructure in the DESISIM package 
hat was built by the DESI team to develop and validate the
pectroscopic data processing pipeline (Guy et al. 2023 ) in advance 
f first light. This package produces realistic 2D spectroscopic 
mage simulations that include the bias, readnoise, and gain for 
ach amplifier for each of the 30 CCDs, models the throughput
ased on engineering data for each channel of each spectrograph, the
odel PSF and trace of each fiber as a function of wavelength and

osition on the detector based on the Zemax optical design models,
MNRAS 528, 3941–3963 (2024) 
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Figure 7. (Top) Power spectrum estimates for various resolution matrix 
treatments at z = 2.8 based on CCD image simulations. The default pipeline 
output ( blue squares ) performs best, whereas o v ersampling ( green line ) 
deviates from the truth. Padding the edges of the resolution matrix ( orange 
triangles ) impro v es the agreement at the largest scales, but those modes are 
lost to continuum errors in any case. (Bottom) The difference between power 
spectrum estimates using the fitted PSF and the true model PSF, divided by 
the true underlying signal. The fitted PSF introduces a wavelength dependent 
resolution error. 
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17 This definition of SNR is not ideal since it discriminates against high 
redshift forests which intrinsically have lower mean flux, and therefore lower 
SNR. We will investigate improvements in the SNR definition in future work. 
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ky emission, and applies noise appropriate for the flux of each object
t the desired exposure time. 

The typical input to the simulation code is a library of the model
pectra for a single DESI observation and a file that describes how
hese objects are distributed into the fibers. This mapping of targets
o fiber positions for one observation corresponds to a single DESI
ile. Normally, a tile would include all of the DESI target classes,
long with a selection of flux calibration stars and designated ‘empty’
bers that are used to measure the night sky spectrum. Since we are

ust interested in validating the performance with the Ly α forest and
he time to construct one simulation tile of 30 CCD images is not
nsignificant, each of our tile designs has only quasars, standard stars,
nd sky fibers. There are approximately 4500 quasars in each tile,
nd the quasars are all at 2.6 < z < 3.6 so we observe the entire forest
egion for each quasar in the blue channel of the spectrographs. We
enerate ten tiles, or approximately 45 000 total Ly α forest spectra,
ith apparent magnitudes representative of DESI quasar targets and
oise that is representative of a single, 1000 s exposure in nominal
ark conditions. We also generate a mock set of arc calibration lamp
xposures, which are used by the pipeline to measure the PSF and
or wavelength calibration. 

We processed this simulated data set with the DESI pipeline, which
s described in detail by Guy et al. ( 2023 ). Briefly, the pipeline
re-processes the raw images to remove the bias level, fits the arc
alibration lamps to measure the nightly PSF, spectral trace, and
avelength calibration, refits the nightly PSF to the PSF of each
 xposure, e xtracts the spectra, applies a flat field, subtracts the
ky, fits the flux calibration stars, applies the flux calibration, and
easures the redshift and identifies the best spectral type for each

arget. The pipeline fits the PSF with an empirical model that consists
f a linear combination of Gauss–Hermite functions. The pipeline
odel is an excellent but not exact match to true PSF, which is well-

pproximated by the (non-parametric) PSF predicted by the optical
esign, and we generated the simulated arc and observation files with
he optical model PSF to include any systematic error associated with
he pipeline’s PSF model fit in our analysis. To isolate the impact of
tting the PSF model from the remainder of the spectral extraction
nd calibration steps, we also processed the simulations with the
orrect PSF model. 

Fig. 7 ( top ) shows the results for the case where the pipeline
tarts with the correct PSF model. This panel shows the ratio of
he measured power spectrum P to the input power spectrum P true 

ased on the resolution matrix provided ‘as is’ by the pipeline (blue
quares) for a subset of the quasars at z = 2.8. The ratio is consistent
ith unity o v er the entire range in k , with the exception of the largest

cales (smallest k ), which are in any case not usable due to continuum
tting errors. We also explored oversampling the resolution matrix

o better match the input model (see Section 3.2.1 for details), and
adding the resolution matrix to remo v e edge effects. None of these
odifications is superior to using the resolution matrix provided by

he pipeline. 
We also analysed the performance of the pipeline with an empirical

SF measured from the arc calibration lamps, rather than with the
nput PSF model as in the previous case. The bottom panel of Fig.
 shows the difference in the 1D power spectrum measurement
tarting with the arc calibration lamps P arcfit and starting with the
orrect model PSF P model for seven redshift bins from 2.2 to 3.4.
he fractional difference relative to the true power spectrum is at the

evel of 1–2 per cent up to k = 0.01 s km 

−1 after which the errors
row exponentially as expected. This behaviour is consistent with
 per cent precision on the resolution itself. This is our best estimate
NRAS 528, 3941–3963 (2024) 
f the systematic error contribution of the resolution matrix to the
easurement. 
A potential limitation of these simulations is that real DESI

bservations have mostly galaxies, rather than quasars. While our
imulations have typical numbers of standard stars and sky fibers,
he y hav e no galaxies and consequently do not simulate potential
ross-talk between galaxy and quasar targets. Guy et al. ( 2023 )
arefully studied cross talk between adjacent fibers and found that this
s minimal, even for bright calibration lines, so we do not anticipate
his will be important for much fainter the continuum and emission
ines present in galaxies and quasars. 

 RESULTS  F RO M  DATA  

fter our comprehensive validation tests on the synthetic spectra,
e now analyse DESI early data. The Ly α forest is measured in

he 1050–1180 Å rest-frame region of each quasar; and the global
ean continuum is calculated using �λRF = 0.8 Å coarse rest-frame

inning pixels in this range. We limit our analysis to the observed
avelength range of 3600–6000 Å. We also remove forests with mean
NR less than 0.25 in the forest region in order to minimize possible

mpurities in the quasar catalogue, where SNR ≡ F / σ pipe 
17 The

ocations of sky lines are naturally down-weighted by the pipeline,
ut we mask certain particularly strong lines because they are difficult
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Table 1. Rest-frame wavelength ranges and number of quasars in DESI early 
data. Quasars with BAL features are ignored. 

Wavelength range [ Å] # All quasars 

Ly α 1050–1180 54 600 
SB 1 1268–1380 115 086 
SB 2 1409–1523 153 326 
SB 3 1600–1800 194 666 
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o reliably model. 18 DLAs are difficult to simulate accurately and 
omplicate cosmological inference from P 1D . We thus mask DLAs 
t the wavelengths of their strongest absorption F < 0.8 and correct
or the damping wings (due to both L y α and L y β transitions) abo v e
his threshold. Furthermore, BAL features can contaminate the forest, 
nd hence these features are also masked. We do not estimate the
ipeline noise calibration errors simultaneously (i.e. we fix η = 1 in 
quation 7 ) and only measure σ 2 

LSS in 20 observed frame wavelength 
ins. As we show below, the noise and flux reported by the pipeline
ave calibration errors, but due to heavy absorption and correlations 
etween pixels, the Ly α forest region is not stable to calibrate for
hese errors. Instead, we carry out a meticulous study of statistics
n the side band regions to calibrate our final reduction. We limit
ontinuum fitting to five iterations where we update the global mean 
ontinuum and σ 2 

LSS . 
We estimate P 1D using the following fiducial power parameters in 

quation ( 8 ): A = 0.066, n = −2.685, α = −0.22, B = 3.59, β =
0.16, and k 1 = 0.053 s km 

−1 . We neither o v ersample nor pad the
esolution matrix, and use it as provided by the pipeline. We perform
 single iteration to measure the power spectrum. Further iterations 
ostly refine Fisher matrix estimates (Kara c ¸aylı, Font-Ribera & 

admanabhan 2020 ), which we replace with a regularized bootstrap 
stimate as described below. Even though we keep BAL quasars 
ith masked features while fitting the continuum, since Ennesser 

t al. ( 2022 ) showed masking BAL lines yields an uncontaminated
stimate of the mean continuum, we remo v e them from the P 1D 

stimation to be conserv ati ve in our approach. 19 

Wavelengths larger than the Ly α line in the spectrum are free 
rom neutral hydrogen absorption, so they can be used to statistically 
stimate metal contamination and other systematics (McDonald et al. 
006 ; Palanque-Delabrouille et al. 2013 ; Chabanier et al. 2019 ). The
egions between strong emission lines at these wavelengths are called 
he ‘side bands’ (SB). Table 1 lists the wavelength ranges for the
ide bands and the number of quasars in each region. Subtracting 
he SB 1 power spectrum statistically remo v es all power due to

etals with λRF > 1380 Å, but some metal contamination remains. 
 or e xample, the Si III –Ly α cross-correlation imprints oscillatory 
eatures (McDonald et al. 2006 ; Palanque-Delabrouille et al. 2013 ). 

e provide the details regarding the metal power estimations and 
ther studies on systematics in the following subsections. 
The results after we subtract the metal power are shown in Fig.

 . These P 1D results are 5 − 15 per cent larger than the eBOSS
easurements (Chabanier et al. 2019 ), which corresponds to 1.5–3 σ

ension. This tension is most visible in the z = 2.2 and 2.4 bins, but is
resent in all redshift bins. We present possible explanations for the 
rigins of this discrepancy in Section 6 . Furthermore, accurate noise 
stimates are crucial to our final P 1D results. Fig. 9 shows the ratio of
8 https:// github.com/ corentinra v oux/ p1desi/ blob/ main/ etc/ skylines/ 
ist mask p1d DESI EDR.txt
9 Our preliminary comparison showed some deviation in P 1D between two 
amples that we will explore in a future study. 

e  

m  

2

c

he noise power spectrum (equation 11 ) to the noise-subtracted Ly α
ower spectrum, which ranges between 25–100 per cent and is larger
t higher k values. The features in this figure can mostly be attributed
o the inverse of P 1D , but to be exact, QMLE’s noise power spectrum
s an inverse covariance weighted average and therefore manifests 
eatures based on the fiducial Ly α power spectrum, continuum 

arginalization, and characteristics of pipeline noise. We stress that 
his noise power strictly comes from the randomness of observed flux
alues, and is not related to metal absorption, continuum fitting er-
ors, DLA masking, or noise correlations between pix els. Ev en small
iscalibrations can directly propagate to our final P 1D estimates. The 
B power subtraction can balance out some miscalibration, but not 
ll of it. We find that the SB noise power estimate is 10–25% of
he Ly α region as shown in Fig. 10 . Fortunately, the pipeline noise
stimates are accurate at the per cent level and the remaining errors
an be corrected by investigating the side bands. 

.1 Bootstrap error estimates 

he Fisher matrix given by the QMLE assumes Gaussianity, and 
ence may not be representative of the statistical errors in the
ata either due to non-linearities in the Ly α forest at small scales
r other effects in quasar selection, DLA masking etc. For that
eason, we calculate the bootstrap covariance matrix for a more 
eliable error estimate as follows. First, we save QMLE’s power 
pectrum and Fisher matrix estimates in 256 sub-samples. 20 We 
hen estimate the bootstrap covariance using these sub-samples over 
00 000 realizations. As we noted in Kara c ¸aylı et al. ( 2022 ), the
ootstrap covariance is noisy (especially off-diagonal terms) and 
eeds regularization. We take advantage of the sparsity pattern of 
he covariance matrix (Padmanabhan et al. 2016 ), and regularise the
ootstrap covariance as follows: 

(i) We apply a sparsity pattern on the bootstrap covariance ma- 
rix using the Gaussian covariance matrix from QMLE such that 

r 
QMLE 
ij 

∣∣∣ > r min and r ij ≡ C ij / 
√ 

C ii C jj . 

(ii) We find the eigenvalues λi and eigenvectors e i of this sparse 
ootstrap covariance matrix. 
(iii) We calculate the precision of these eigenvectors under Gaus- 

ianity: λQMLE 
i = e T i C 

QMLE e i . This is the theoretical minimum for 
he covariance. 

(iv) We replace λi → max ( λi , λ
QMLE 
i ) (McDonald et al. 2006 ). 

We repeat these steps until convergence or for a maximum of 500
terations. We choose r min = 0.01 for Ly α and r min = 0.001 for SB
, because SB 1 values are more strongly correlated. 
Fig. 11 shows that the bootstrap error estimates are mostly larger

han the Gaussian estimates except between 0.003 s km 

−1 � k � 0.1 s
m 

−1 for z � 3.0. QMLE consequently somewhat underestimates the 
rrors on most scales for most redshifts. 

.2 Side bands 

e have investigated wavelengths larger than the Ly α line in the
pectrum to statistically estimate metal contamination and other 
ystematics as they are free from neutral hydrogen absorption 
McDonald et al. 2006 ; Palanque-Delabrouille et al. 2013 ; Chabanier
t al. 2019 ). As mentioned previously, we use SB 1 to estimate the
etal power in the Ly α forest. In this section, we provide details
MNRAS 528, 3941–3963 (2024) 

0 Number of sub-samples is based on the MPI tasks used, which is a current 
ode limitation. 

https://github.com/corentinravoux/p1desi/blob/main/etc/skylines/list_mask_p1d_DESI_EDR.txt


3952 N.G. Kara c ¸aylı et al. 

M

Figure 8. Final Ly α forest P 1D results. We remo v e BAL quasars from our sample, mask DLAs and major sky lines, and correct for pipeline noise and flux 
miscalibrations. Metal power is subtracted using side bands as described in Section 5.2 . Error bars are from 200 000 bootstrap realizations of 256 subsamples. 
Our P 1D results are slightly larger than eBOSS measurements (Chabanier et al. 2019 ), which is most visible at z = 2.2 and 2.4 bins. 

Figure 9. Ratio of noise power to noise-subtracted Ly α power from data. 
The noise power spectrum is not negligible even at large scales. Results at 
z = 2.0 are most sensitive to the noise power estimates. The features in this 
ratio mostly come from the inverse of P 1D . 

Figure 10. Ratio of noise power in SB 1 to Ly α region from data. It is 
redshift and scale dependent. Noise power is smaller in side band regions, 
which means pipeline noise miscalibrations cannot be fully remo v ed by side 
band subtraction. 
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Figure 11. Ratio of the regularized bootstrap error estimates to Gaussian 
(QMLE) errors for Ly α. We estimate the bootstrapped covariance matrix 
from 200 000 realizations o v er 256 subsamples. This shows that QMLE 

underestimates the errors on most scales and redshifts. 

Figure 12. Ratio of metal (SB 1) power spectrum to metals-subtracted Ly α
power spectrum. The metal power is well below 20 per cent for k � 0.001 s 
km 

−1 , but it is potentially a significant source of systematic error at larger 
scales. 
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Figure 13. Pipeline noise correction term η on all three side bands. These 
regions are relatively absorption free and can be observed in lower redshift 
quasars, so they provide robust statistics. ( Top ) All three side bands show 

the same η trend. We find that the pipeline noise estimates are correct at 
the per cent level. The sharp feature at 4800 Å occurs at the boundary between 
CCD amplifiers. ( Bottom ) Av erage η o v er three side bands. The SNR > 2 
sample ( orange circles ) has higher η than lower SNR < 2 sample ( blue 
triangles ). This difference is 1.1 per cent on average. We correct the pipeline 
noise estimates by η of all spectra ( black squares ) and assign 1.1 per cent as 
our noise systematic error budget. 
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or the SB 1 power spectrum measurement and further make use 
f the SB 2 and SB 3 regions as diagnostics of the metal power
nd other systematics such as noise calibration. As before, we mask 
AL features on all continuum fitting reductions, then ignore these 
uasars in further analysis. 
We first fit the continuum in the SB 1 and SB 2 regions while fixing
= 1. We find the power in SB 1 is larger than in SB 2 as expected,

xcept at z = 2.0, where P SB 2 > P SB 1 for k � 0.003 s km 

−1 . This
ikely points to some remaining continuum errors in the side bands. 
he C IV doublet feature is clearly visible in our estimates. We refer

he reader to our companion paper on modelling the doublets in the
ide band power spectrum (Kara c ¸aylı et al. 2023 ). 

The accuracy of noise calibration and its dependence on SNR can 
lso be studied using these side bands. We divide the spectra into
igh (SNR > 2) and low (SNR < 2) signal-to-noise ratio samples.
his corresponds to approximately a 30/70 per cent split in terms
f the number of quasars for both side bands. We find that the low
NR sample sometimes has larger power, as was the case in SDSS
McDonald et al. 2006 ), but we note that the low SNR sample yields
ignificantly noisier P 1D estimates, which hinders strong conclusions, 
o we further explore this dependence using variance statistics below. 
nfortunately, the power difference between the low and high SNR 

amples is potentially due to the SNR dependence of the pipeline
oise estimates. Therefore, we remo v e the metal power from the
y α forest estimates using our best estimates after we recalibrate the
ipeline noise, which is different from what was done in McDonald
t al. ( 2006 ). Finally, Fig. 12 sho ws the ratio of the SB 1 po wer
pectrum to the metals-subtracted Ly α power spectrum. The metal 
ower is potentially a large source of systematic error at k � 0.001 s
m 

−1 , but its effect is well below 20 per cent at higher k values. 

.2.1 Noise calibration error 

s we have alluded to before, the pipeline noise estimates can suffer
rom miscalibrations, which then directly propagate to the final Ly α
MNRAS 528, 3941–3963 (2024) 
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Figure 14. Stacked normalized flux from all three side bands in observed wavelength. We smooth the normalized flux with a 4.8 Å moving box-car average 
to suppress spurious fluctuations. Residual errors peak at most at 3 per cent at the Balmer and Ca II H&K doublet lines. We correct the pipeline flux and noise 
estimates using the average of all three side bands ( black line ) and perform the final calibrated continuum fitting (which also includes the η correction). This 
calibration remo v es significant features from SB 1 ( red line ), such that the remaining fluctuations are 0.2 per cent on av erage. 
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 1D estimates. Fortunately, smooth quasar continua in relatively
bsorption-free regions (i.e. the side bands) provide near-ideal
ata to investigate the estimated pipeline variance versus observed
ariance in the data. These regions can furthermore be observed in
umerous lower redshift quasars, so they provide robust statistical
easurements. Our continuum fitting algorithm quantifies this noise

alibration error through the η parameter, which is measured by
omparing the scatter in δF to the reported pipeline σ pipe values. The
ipeline noise is underestimated for η > 1 and o v erestimated for η
 1. 
First, we fit the continuum on all three side bands while keeping
= 1 fixed. Then we calculate the multipoles 〈 δF 〉 , 〈 δ2 

F 〉 , and 〈 δ4 
F 〉 in

ogarithmic σ pipe bins. We find that use of 
√ 

( 〈 δ4 
F 〉 − 〈 δ2 

F 〉 2 ) /N as an
rror estimate yields biased results, so we instead estimate the error
n the observed scatter 〈 δ2 

F 〉 with the delete-one Jackknife method
 v er sub-samples. Finally, we fit for η and σ LSS using equation ( 7 ),
here the continuum is already taken into account in δF . 
We find that all three side bands yield similar η values to those

hown in Fig. 13 . Our calculated η values fluctuate by a few per cent
round one, which means the pipeline noise calibration is correct
t the per cent level. The boundary between CCD amplifiers is
esponsible for the sharp feature at 4800 Å. The average noise
alibration correction η is shown in black squares in the lower
anel. We correct the pipeline noise estimates using this mean η as
 function of wavelength and perform a final calibrated continuum
tting, which further includes the flux calibration as discussed below.
e again split the data into high (SNR > 2) and low (SNR < 2)

ignal sub-samples and measure the η parameter in each sample.
hese are shown with orange circles and blue triangles in the same

ower panel of Fig. 13 . We observe a clear SNR dependence in the
oise calibration error, as has been indicated by the power spectrum
stimates on these same low and high signal sub-samples. We assign
he average difference ση = 1 . 1 per cent to the systematic error
udget. 

syst 
N = σηP N . (21) 

Finally, we calculate the average pipeline inverse variance as a
unction of flux transmission fluctuations δF and wavelength. The
NRAS 528, 3941–3963 (2024) 
ipeline inverse variance overweights δF = −1 pixels at λobs =
200 Å which we confirm does not happen in our mock analysis. We
o not observe such a peak in SB 1, so we speculate that it is a bias in
oise calibration due to substantial Ly α absorption. We confirm that
sing σ LSS in the continuum fitting and P fid in the QMLE remo v es
his feature from the weights. Therefore, we conclude that it does not
ias our results. 

.2.2 Flux calibration error 

ollowing du Mas des Bourboux et al. ( 2020 ), we tested possible flux
alibration errors by stacking all normalized quasar spectra in the
bserved frame using all three side bands. This stacked normalized
ux is shown in Fig. 14 . The residual errors are at most 3 per cent,
nd we find that the largest errors are at the locations of the Balmer
eries and Ca II H&K doublet lines. 

We average the stacked normalized flux in all three side bands and
mooth with a 4.8 Å moving box-car average. We then divide the flux
nd noise estimates by this correction factor. This calibration remo v es
ignificant features from SB 1 (red line), such that the remaining
uctuations are 0.2 per cent on average (smoothed on the same 4.8 Å
cale). 

.3 Systematic error budget 

e identified four sources of systematic errors. First, given the large
ontribution of the noise power, our power spectrum estimates are
usceptible to pipeline noise misestimates. Second, the DLA finder
s not perfect and can miss some DLAs or introduce false positives,
hich would add power to large scales. Third, the spectrograph reso-

ution limits the smallest scale we can measure, and its uncertainties
ust be propagated to the remaining scales. Finally, our continuum
arginalization does not remo v e all modes of error, so we estimate

he systematic error due to the remaining fluctuations. 
Our systematic error analysis relies on various scalings of the

nderlying signal. Directly using the power spectrum estimates
ntroduces spurious fluctuations, so we instead use a smooth power
pectrum P smooth ( k , z) that we calculate as follows: We apply
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Figure 15. Systematic error budget divided by the statistical errors estimated 
by bootstrap analysis. Systematics due to the noise calibration is persistent on 
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moothBivariateSpline to the logarithms of 1 + z, k and 
 1D with corresponding statistical weights σ stat / P 1D and a smoothing 

actor that is five times the number of data points. This function in
CIPY is based on the algorithm presented in Dierckx ( 1981 , 1995 ). 

(i) Noise: As we discussed abo v e, we use the average difference of
values in the side bands between high and low signal sub-samples

o quantify the systematic error budget shown in Fig. 13 . 

syst 
N = σηP N , (22) 

here ση = 1 . 1 per cent as discussed previously. In this case, we do
ot smooth the noise power spectrum P N since it does not suffer from
andom fluctuations. Possible origins of this error include correlated 
CD readout noise and errors in sky estimates per fiber. We revisit

his point at the end of Section 6 . 
(ii) Resolution: Based on our analysis in Section 4.2 , we assign

 per cent precision to the pipeline resolution estimates that is
pproximately consistent with the redshift average values in Fig. 
 . 

syst 
res = 1 per cent × 2 k 2 R 

2 
z × P smooth ( k, z) , (23) 

here R z ≡ c �λDESI /(1 + z) λLy α as defined in Section 4.1 . We do
ot directly use the values in Fig. 7 as it could introduce double
ounting of noise calibration errors as spectro-perfectionism couples 
oise and resolution. 
(iii) Incomplete DLA remo v al: Wang et al. ( 2022 ) report o v er

0 per cent efficiency and purity for the DLA finder for a range of
NR and column density ranges. To be conserv ati ve, we pick the
orst performance number at SNR = 1 − 2 and assign an average
5 per cent inefficiency ratio and multiply the smooth power estimate 
ith the redshift average of the absolute ratio of P wDLA / P true − 1 in
ig. 6 . 

syst 
DLA = 15 per cent × 〈 | P wDLA /P true − 1 | 〉 z × P smooth ( k, z) (24) 

(iv) Continuum errors: We use the absolute ratio of P cont / P true in
ig. 5 , which is of the order of 10 −5 . This error also scales with the
mooth power. 

syst 
cont = | P cont /P true | ( k, z) × P smooth ( k, z) (25) 

ote that continuum errors themselves are larger than 10 −5 as shown 
n Fig. 4 . Ho we ver, our marginalization pre vents the bulk of these
rrors from contaminating the P 1D measurements and the remaining 
ontinuum errors are fortunately extremely small. Furthermore, the 
odes that are most affected are not in our conservative range. 

Fig. 15 shows the systematic errors relative to the statistical 
rrors. DLA systematics heavily affect the large scales, whereas the 
esolution systematics become rele v ant at k � 0.01 s km 

−1 (small
cales). The strength of noise systematics decreases with redshift as 
 consequence of decreasing number of quasars. Change from linear 
o log-linear binning at k = 0.01 s km 

−1 increases the bin size and
auses the jump at this wavenumber for the noise systematics ratio. 

 DISCUSSION  

n this section, we first provide a qualitative comparison of our results
o FFT estimates on the same DESI EDR + data, and compare
oth to eBOSS measurements. We then discuss the effects of each 
ystematics and their contribution to the covariance matrix. A full 
osmological comparison with respect to physical parameters will be 
he subject of future analysis with DESI Year 1 data, and will require
ignificant development to generate hydrodynamic simulations and 
rain emulators (Pedersen et al. 2021 ; Cabayol-Garcia et al. 2023 ;
habanier et al. 2023 ). We instead provide a comparison using a

implified version of equation ( 8 ). 

.1 Consistency between methods and literature 

ig. 16 compares P 1D from DESI EDR + using FFT and QMLE
ethods. Both methods agree with each other within error bars 

ntil half the Nyquist frequency. We note that the FFT sample is
imited to SNR > 1, whereas the QMLE sample is extended to SNR
MNRAS 528, 3941–3963 (2024) 
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Figure 16. Comparison of P 1D between FFT and QMLE methods on DESI EDR + and to eBOSS. Both methods agree with each other o v erall, but disagree 
with eBOSS mostly at large scales at z � 2.6. We suspect the efficiency of the DLA finder and the noise calibration could cause this discrepancy, and we will 
explore this further in future work. 
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 0.25. Since QMLE applies a weighted average based on SNR,
his choice has minimal effect, which we confirm by comparing the
MLE estimates on the SNR > 1 sample. The agreement between

he two estimators is noteworthy given the built-in different methods
f handling noise, metals, masking, etc. Since we find z = 2 bin
s highly contaminated by various systematics, we recommend not
sing our QMLE results at z = 2 for any cosmological inference.
pecifically, we find larger power than eBOSS on large scales, and we
ut substantial effort into identifying the root cause. The continuum
tting method slightly differs between eBOSS and DESI analyses,
hich could affect these large scales. Ho we ver, our tests on mocks

ndicate that the effect of continuum errors on the power spectrum is
mall for DESI. The prime candidate then is systematics related to
LAs. We find that eliminating sub-DLAs (log N � 20.3) remo v es
ower from large scales, but impro v ement in lower redshift bins
omes with deterioration at higher redshifts. Furthermore, the DLA
nder yields many false-positi ve, lo w-column density systems and

s not reliable to identify such systems. The second candidate is a
ossible error in the noise power subtraction. However, our noise
alibration correction does not fix this issue. We will study this
NRAS 528, 3941–3963 (2024) 
isagreement further after additional development and testing of the
LA finder and how DLAs are included in our mock data sets, as
ell as with additional tests on the continuum fitting method. 

.2 Off-diagonal systematics in the co v ariance matrix 

roper use of our systematics budget requires special guidance.
habanier et al. ( 2019 ) and Kara c ¸aylı et al. ( 2022 ) added the

ystematics errors in quadrature to the diagonal of the covariance
atrix. This may be true if systematic uncertainties are uncorrelated

etween bins, but is inconsistent with our characterization. Simply
ut, we characterize each systematic error by an unknown scalar ε
ultiplied with some P ( k ) such that the uncertainty is in ε, not in
 ( k ). For a given true signal s ( k ), the observed data is given by d ( k ) =
 ( k ) + εP ( k ), and the covariance matrix becomes C ≡ 〈 d ( k ) d ( k ′ ) 〉 =
 s ( k ) s ( k ′ ) 〉 + 〈 ε2 〉 P ( k ) P ( k ′ ). In terms of the systematic error budget we
resented in Section 5.3 , the covariance matrix should be modified as
 total = C stat + 

∑ 

i∈{ syst } v i v 
T 
i for each systematic error mode v i . This

otation also highlights the mathematical relation with the continuum
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Figure 17. Best-fitting parameters and 60 and 95 per cent confidence 
contours when the covariance matrix has systematic error contributions 
in its off-diagonal elements ( orange ) and in its diagonal only ( blue ) at 
z = 2.2. Off-diagonal terms shift the best-fitting values and increase the 
error bars, which has potentially important implications for cosmological 
inference. 
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arginalization procedure. Unlike the continuum marginalization 
rocedure which adds infinitely large error modes v i to fully remo v e
ontamination, systematic error modes are down-weighted by finite 
umbers. 
Let us now discuss how these off-diagonal systematic error 

erms affect the parameters of interest. As we have noted, a full
osmological comparison is out of the scope of this work, and we
nstead use a fitting function based on equation ( 8 ). In our preliminary
nalysis, we found that not all parameters in equation ( 8 ) can be
tted properly and securely, so we simplify it by first ignoring the
edshift evolution parameters B and β. We instead fit each redshift bin
eparately and deduce the redshift evolution of each fitting parameter 
rom these independent fits, though this redshift evolution itself is not 
ertinent to our discussion. We also found that the data is not sensitive
nough to constrain the k 1 parameter and it is highly degenerate with
thers. These two aspects of the k 1 parameter destabilize the fitting, 
o we also eliminate it from our fitting function. We therefore instead
se the following simplified fitting function: 

 base ( k) = 

Aπ

k 0 

(
k 

k 0 

)2 + n + α ln k/k 0 

, (26) 

here k 0 = 0.009 s km 

−1 as before. This formulation has simplistic
et useful characterizations such as parameter A as the amplitude and 
 as the slope of the power spectrum. Even though this procedure
oes not completely describe P 1D , it is adequate to compare different
easurements. 
Another consideration in the fitting is that the Si II and Si III ions

bsorb at wavelengths that are close to the Ly α transition line 
McDonald et al. 2006 ). The more visible oscillations in the power
pectrum estimates are due to the Si III line at λRF = 1206.5 Å,
hich corresponds to a velocity spacing of �v = 2270 km s −1 .
ather than complicating our fitting function with numerous Si II 
ines (at 1190, 1193, and 1194.5 Å; Kramida et al. 2021 ), we take a
ingle, av erage v elocity spacing of �v = 5770 km s −1 to model its
attern in the power spectrum. We multiply the base fitting function
n equation ( 26 ) with 1 + a 2 s + 2 a s cos ( k �v ) for each Si ion s , where
 s is the relative bias with respect to neutral hydrogen (McDonald
t al. 2006 ; Palanque-Delabrouille et al. 2013 ). We find the least χ2 

olution using IMINUIT 21 (Dembinski et al. 2022 ), and then sample
round the minimum using the EMCEE 22 sampler (F oreman-Macke y 
t al. 2013 ). 

We apply this procedure to our metal-power subtracted power 
pectrum results. The covariance matrices are obtained with the 
ootstrap method. Fig. 17 shows a corner plot at redshift z = 2.2
t 68 and 95 per cent confidence levels generated using the GETDIST

ackage (Lewis 2019 ). Results from adding the systematic error 
udget to the diagonals of the covariance matrix are shown in blue
ontours. Our recipe for the off-diagonal contribution (shown in 
range) not only enlarges the confidence area (i.e. increases the 
rror bars), but also shifts the best-fitting parameter value, which 
s particularly pronounced in the amplitude parameter A . This has
otentially important implications for cosmological inference. These 
f f-diagonal cov ariance matrix contributions will be important to 
ncorporate into future analyses. 

.3 Effects on parameters of each systematic 

he systematic error budget diminishes the benefit of having a large
nd statistically powerful data set. As the data size increases, the
tatistical error bars decrease, but the systematic error budget stays 
he same and eventually saturates the constraining power of any 
nalysis. Using the same off-diagonal recipe for the covariance 
atrix, we break down how each systematic influences the error 

ar of inferred parameters. First starting with only the statistical 
ovariance matrix from bootstraps, we add each systematic indi- 
idually to the covariance matrix, find the least χ2 solution, and 
ample around this minimum. Fig. 18 shows the confidence regions 
sing the statistical covariance in black dashed lines, where the noise
ystematics are in blue, the resolution systematics are in orange, 
nd the DLA systematics are in green at z = 2.8. The noise and
esolution systematics visibly enlarge the contours, and resolution 
ystematics further shift the best-fitting values. The DLA systematics 
o not seem to increase the error bars significantly compared to the
ther two. Based on our analysis with the minimizer, we find that
he error in the A parameter increases by 50 per cent due to noise
ystematics, 34 per cent due to resolution systematics, and 74 per cent
hen all systematics are included. Ho we ver, the slope parameter n

s affected more unevenly: its error increases only 7 per cent due
o noise systematics, but 89 per cent due to resolution systematics.
ables 2 and 3 detail these numbers. 
Year 1 DESI spectra will provide even more statistical power. To

ully exploit its statistical power, we will have to prioritise mitigation
f the noise calibration and spectrograph resolution systematics. 
s mentioned in the previous section, correlated CCD readout 
oise and sky subtraction errors can source noise systematics. The 
mall number of quasars in the EDR + sample limited our ability
o perform ambitious data splits. The first-year data will have 
bout a million quasars, which will enable a granular investiga- 
ion. To remedy the noise systematics, we will first split the data
MNRAS 528, 3941–3963 (2024) 
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Figure 18. The 60 and 95 per cent confidence regions using only the 
statistical covariance ( black dashed lines ), and individually adding the noise 
systematics ( blue ), resolution systematics ( orange ), and DLA systematics 
( green ) at z = 2.8. DLA systematics do not seem to increase the error bars as 
much as the other sources of systematic error. The noise and resolution 
systematics visibly enlarge the contours, and the resolution systematics 
further shifts the best-fitting values. 

Table 2. Percentage increase in error given by the minimizer for each 
systematics at z = 2.8. The precision of the amplitude A is nearly equally 
affected by noise and resolution systematics, whereas for n , it is thoroughly 
affected by resolution systematics. 

Increase in error 
Systematics A n α

Noise 49 .8% 6 .9% 0 .7% 

Resolution 34 .0% 89 .1% 26 .5% 

DLA 0 .9% 2 .8% 30 .5% 

All 74 .3% 99 .9% 62 .5% 

Table 3. Best-fitting values and error estimates given by the minimizer for 
each systematics at z = 2.8. 

Best ± (stat.) ± (noise) ± (reso.) ± (DLA) 

A 0 .05578 0 .00033 0 .00037 0 .00030 0 .00005 
n − 2 .643 0 .008 0 .003 0 .012 0 .002 
α − 0 .1451 0 .0064 0 .0008 0 .0050 0 .0054 
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nto ten spectrograph subsamples, and then further subdivide the
ata within each spectrograph into two to isolate different CCD
mplifiers. This division results in about 50 000 quasars in each
egion, approximating the sample size in this analysis, and so
hould provide enough statistics to study P 1D in each subsample
recisely. CCD image simulations could also be studied for noise
ecalibration parameters as well as refining the pipeline resolution
stimates. 
NRAS 528, 3941–3963 (2024) 

n  
 SUMMARY  

he 1D Ly α forest power spectrum P 1D quantifies the clustering
f diffuse neutral hydrogen gas in the intergalactic medium. P 1D has
een measured from various data sets, and has been used to constrain
he thermal state of the IGM, the sum of neutrino masses, and various
ark matter models. DESI will collect o v er 700 000 z > 2 quasars
uring the five-year survey and will provide enormous statistical
ower for future P 1D cosmology. It will be able to measure P 1D from
 = 2 to z = 5 and from approximate scales of 60 down to 1 Mpc. 

This power must be matched with rigorous studies of data
nd estimation methods. In this work, we employed the quadratic
aximum likelihood estimator (QMLE) to measure P 1D . QMLE is

uilt to be statistically optimal and robust against Ly α forest-specific
hallenges such as gaps in spectra and errors due to continuum fitting.
dditionally, QMLE benefits from the resolution matrix output of

pectro-perfectionism that preserves the full 2D resolution of the
pectrograph. 

In order to test the pipeline at various stages, DESI collected
housands of spectra during its Surv e y Validation phase. We used
hese early spectra to determine if the DESI P 1D pipeline (such
s noise calibration, resolution matrix, continuum fitting, and P 1D 

stimator itself) is accurate at the desired level and measure the
nitial P 1D from DESI. 

The quasar continuum estimation is a potential source of large-
cale uncertainty and bias. We described each quasar with two
ree fitting parameters (amplitude and slope) that multiply a mean
ontinuum, and fit each continuum in the forest region. The two-
arameter description is simplistic in terms of quasar continuum
iversity; and furthermore fitting the continuum in the forest region
emo v es the large-scale density information. Using synthetic spectra,
e found that the estimated large-scale variance matches the input,
ut the estimated mean continuum deviated from the truth. Even
hough the estimated mean continuum was different, we showed
hat QMLE successfully marginalized out large-scale biases, and the
esidual power due to unmarginalized continuum error modes was
ignificantly smaller than the signal. 

The small-scale structure in the Ly α forest is extremely important
or the many science applications of P 1D , and accurate knowledge
f the spectrograph resolution is important to make the best use
f the smallest scales. We created CCD image simulations with
pproximately 45 000 z > 2.1 quasars (ten simulated observations
f just quasars) and extracted the 1D spectra of these quasars using
he DESI pipeline. We used these simulations to demonstrate that
he resolution matrix produced by the pipeline was valid and did
ot require any modifications. We also showed that the PSF is
ell approximated by the pipeline’s PSF model and that systematic

rrors due to PSF mismatch between the true PSF and the PSF
t by the pipeline were consistent with 1 per cent precision on the
esolution. 

The noise power subtraction is not an insignificant part of
he P 1D estimation for DESI’s medium-SNR spectra. Hence, any

iscalibration of the pipeline noise is directly transmitted to the
nal results. We showed that the side band power subtraction that
emo v es the metal power also eliminates some of this miscalibration,
lthough not perfectly. Therefore, we examined the variance statistics
f the transmission fluctuations in the relatively absorption-free side
and regions to quantify the noise and flux miscalibration of the
ipeline. We showed that these calibration errors are small (around a
ew per cent) and corrected them in our analysis. We also found that
he pipeline noise estimates are still coupled to the signal, and the
oise calibration error depends on SNR. We do not try to correct for
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his SNR dependence and instead include this effect in the systematic 
rror budget. 

In order to have accurate error estimates, we relied on bootstrap 
ealizations, which yielded larger statistical errors than their Gaussian 
ounterparts from QMLE on almost all scales and redshifts. We 
urther identified and quantified four major systematic error sources: 
oise, resolution, incomplete DLA removal, and continuum errors. 
ff-diagonal terms in the covariance matrix due to these systematic 

rrors enlarge the error bars of inferred parameters and can also shift
he best-fitting values, hence biasing cosmological interpretations. 

e showed that the noise calibration and resolution systematics 
eaken the statistical power of the current DESI early data, and 
ill be priorities for additional study and mitigation for the Year 
 analysis. For the latter, we plan to conduct data split studies to
uantify and mitigate noise systematics, create more e xtensiv e image 
imulations to quantify resolution systematics, and produce more 
ynthetic data sets to better quantify the performance of the DLA 

nder and its impact on our results. 
We found that the resulting P 1D measurement from DESI early 

ata and two months of main surv e y was in agreement between
MLE and FFT results, which is remarkable since the two estimators
ave different approaches for systematics. Furthermore, the two 
ethods apply different SNR thresholds to the DESI sample. We 

onfirmed that QMLE results are not affected by this threshold, 
hich is expected since QMLE applies a weighted average based on 
NR. These DESI QMLE and FFT P 1D results are 5 − 15 per cent

arger than previous measurements from eBOSS and in 1.5–3 σ
ension with those results. We investigated: (1) DLA finder efficiency 
nd column density cuts; (2) noise calibration errors to explain 
his disagreement. Ho we ver , none of these in vestigations offered
 satisfactory explanation for the disagreement with eBOSS. This 
eature is worth further attention in future work. 

To conclude, the DESI spectral pipeline works exceptionally well. 
he major analysis pipeline errors are no larger than few per cent,
nd QMLE is well suited for DESI P 1D measurements. The next five
ears will bring incredible accuracy, precision, and power to Ly α
orest cosmology. 
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PPENDI X  A :  C O N T I N U U M  E R RO R  

A R G I NA L I Z AT I O N  

e fit the quasar continuum in the forest region as discussed
reviously. This method not only fits for the quasar continuum (and
he mean transmission of the IGM), but also fits the large-scale
ensity modes in the forest. This remo v es the large-scale information
rom the estimated flux transmission fluctuations and further cause
istortions in the 3D correlation function (Slosar et al. 2011 ; Bautista
t al. 2017 ; du Mas des Bourboux et al. 2020 ). Fortunately, the modes
f error are known; and the QMLE is capable of marginalizing out
hese errors (Slosar et al. 2013 , Appendix B). 

The continuum marginalization in Kara c ¸aylı, Font-Ribera &
admanabhan ( 2020 ) is implemented by modifying the covariance
atrix to C 

′ = C + N v v T , where N is large and v is the mode to be
arginalized out. Then, one can show that C 

′−1 ( δ′ 
F + αv ) ≈ C 

−1 δ′ 
F ,

here the new data vector δ′ 
F is orthogonal to v , which ef fecti vely

emo v es an y information from data that is in mode v . 
We updated our continuum marginalization technique for more

umerical stability. Instead of adding large numbers to the covariance
atrix, which could destabilize the inversion, we take advantage of

he Sherman-Morrison formula (Sherman & Morrison 1950 ): 

 C + v v T ) −1 = C 

−1 − C 

−1 v v T C 

−1 

1 + v T C 

−1 v 
. (A1) 

ince the covariance matrix C is symmetric, this formula can be
alculated by defining an intermediate vector y = C 

−1 v . Moreover,
he marginalization vector mode v is theoretically multiplied by a
arge number, such that v T C 

−1 v � 1, and that large number cancels
ut by the division, hence does not need to be explicitly defined
nymore. Putting these together also makes the workings of the
arginalization clearer: 

 

′ −1 = C 

−1 − y y T 

y T v 
(A2) 

 

′ −1 
v = C 

−1 v − y y T v 
y T v 

= 0 (A3) 

There are two caveats to this approach. First, when we marginalize
 v er multiple templates, we have to iterate this formula with the
pdated covariance matrix in each step. Fortunately, this does not
ntroduce additional memory strain in our case since we already store
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Figure B1. Coupling parameter 	 vs quasar brightness C q as electrons 
per Angstrom for DESI fiducial values at 3800 Å. The upper axis is the 
human-readable SNR of the quasar. DESI expects mean SNR = 0.45, which 
corresponds to 	 = 34 (low coupling). 

Figure B2. Biased power spectrum estimates for different 	 values. Using 
true mean flux to extract deltas ( dashed lines ) shows slightly less bias than 
using biased delta extraction ( solid lines ). For comparison, our estimates from 

mocks without smoothing fall close to 	 = 50 ( red line ) as expected from 

the fiducial value. 
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he inv erse co variance matrix in memory, but other applications may
refer the Woodbury formula (Woodbury 1950 ). Second, trying to 
emo v e two templates that are approximately the same results in a
ivision by near zero. After removing the first vector v 1 , the second
ector results in y 2 = C 

′ −1 
v 2 ≈ 0. To prevent numerical problems, 

e first store all n template vectors in a rectangular matrix and
erform a singular value decomposition. This yields an orthogonal 
asis for the templates and vectors with small singular values can be
eft out of the marginalization process. 

PPEN D IX  B:  SIGNAL-NOISE  C O U P L I N G  A N D  

M O OT H I N G  

nother important caveat from our preliminary analysis on mocks 
s the well-known signal-noise coupling in the Ly α forest. The 
ipeline noise is coupled to the observed flux by construction through 
oisson statistics, which means pixels with less flux are weighted 
ore in the quadratic estimator formalism (McDonald et al. 2006 ). 
o we ver, this does not mean the noise estimates are wrong, the
oise is non-diagonal, or there are cross-correlations between signal 
nd noise. The simulations truthfully populate the mocks with noise 
sing independent random numbers. The core problem is that these 
correct) noise amplitudes are biased weights for the inverse variance 
eighted averages since they depend upon the signal (see below for

n analytical description of this effect). To mitigate this problem, the 
ESI pipeline determines a smoothed version of the sky-subtracted 

pectrum of each target that is obtained with a convolution using
 Gaussian kernel of σ = 10 Å (Guy et al. 2023 ). Ho we ver, our
reliminary analysis showed this is not enough to fully uncouple the 
ignal and noise, so we further smooth out noise estimates in only
heir contribution to the covariance matrix in QMLE. 

First, we find the median M ( x) and the median absolute deviation
( x) = M ( | x i − M ( x) | ) in the pipeline noise estimates while

gnoring pixels with σ pipe > 1000. Noise outliers are then identified 
y 

pipe > M ( σpipe ) + 3 . 5 × D( σpipe ) , (B1) 

nd replaced with the median pipeline noise value. We pad the noise
rray by 25 pixels at both ends with the edge values to mitigate
ny boundary effects. We convolve the resulting noise estimates by 
 hybrid Gaussian box-car window function, where the smoothing 
ernel has a size of 51 pixels and a Gaussian sigma of 20 pixels. After
pplying this hybrid boxcar-Gaussian smoothing kernel, we return 
utlier values to their original positions. This smoothing broadly 
aptures the spectrograph behaviour while still down-weighting the 
asked or high-variance pixels. 
Analytical expressions: The pipeline noise estimate of a CCD 

ixel depends on the exposure time t exp , and has the following
ontributions: 

(i) Source electrons N source = C q ( λ) F ( λ) ∝ t exp . Note F = F (1 +
) 

(ii) Sky electrons N sky ∝ t exp . 
(iii) Dark electrons ∝ t exp . We can absorb this term into sky

ontribution. 
(iv) Read noise electrons as Gaussian noise with constant σ 2 

G 

ndependent of t exp . 

Then, pipeline variance estimate on flux f is σ 2 
f , pipe = N source + 

 sky + σ 2 
G 

. We can write the pipeline noise estimate on F as follows: 

2 
F, pipe = 

σ 2 
f , pipe 

C 

2 
q ( λ) 

= 

F 

C q 

+ 

N sky + σ 2 
G 

C 

2 
q 

. (B2) 
The total variance includes large-scale structure fluctuations σ 2 
LSS , 

hich should be multiplied by the mean IGM flux F . 

2 
F = F 

2 
σ 2 

LSS + 

F 

C q 

+ 

N sky + σ 2 
G 

C 

2 
q 

. (B3) 

et us write this variance on F as follows: 

2 
F = 

1 

C q 

[
F + C q F 

2 
σ 2 

LSS + 

N sky + σ 2 
G 

C q 

]
(B4) 

2 
F = 

F + 	 

C q 

, (B5) 

here we defined 

 ≡ C q F 

2 
σ 2 

LSS + 

N sky + σ 2 
G 

C q 

. (B6) 

sing inverse variance weights means w i ∝ ( F + 	 ) −1 . Since 0 <
 < 1, our weights are highly correlated with the signal if 	 � 1.
MNRAS 528, 3941–3963 (2024) 
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nbiased limit 	 � 1 is satisfied when the sky dominates the signal
noisy spectra) or the quasar is so bright that the LSS term dominates
he variance. 

There are two important points to note. First, strictly speaking,
ipeline noise estimates are correct. The problem is not an error
n the pipeline but in the nature of Ly α forest. As we mentioned
n the main text, DESI decouples signal and noise by smoothing
ource contribution at 10 Å scale (Guy et al. 2023 ). Second, noise
s still diagonal, and there are no cross correlations between signal
nd noise. Noise on each pixel is another independently generated
andom number. Therefore, even though its amplitude depends on the
ignal, this dependence does not introduce auto or cross correlations
o noise. 

DESI already has expected values for these quantities. Fig. B1
hows coupling parameter 	 vs quasar SNR. Low SNR quasars
anifest less coupling (high 	 ) since they are dominated by sky and

ead noise. High SNR quasars also manifest less coupling as the LSS
erm dominates. On av erage, DESI e xpects the mean quasar SNR to
e 0.45, which corresponds to 	 = 34. 
The weighted average estimator for the mean flux is given by

ˆ 
 = 

∑ 

w i F i / 
∑ 

w i , where w i = ( F i + 	 ) −1 , where F is signal only
s before. The expected value of this estimator can be calculated by
sing the probability distribution function P( F ). 〈 

ˆ F 

〉 

= A 

∫ 1 

0 

F 

F + 	 

P( F )d F (B7) 

 

−1 = 

∫ 1 

0 

1 

F + 	 

P( F )d F (B8) 

 e can T aylor e xpand these e xpressions for 	 � 1. The normalisa-
ion is A ≈ 	 

(
1 + F /	 

)
. The mean flux estimate is 

 ̂

 F 〉 = A 

∫ 1 

0 

F 

F + 	 

P( F )d F (B9) 

≈ A 

	 

∫ 
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(
1 − F 

	 

)
P( F )d F (B10) 
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(
1 + 

F 

	 

)( 

F − F 

2 

	 

) 

(B11) 

inally, the error on the mean flux estimate is 

 F = −F 

2 
σ 2 

LSS 

	 

. (B12) 

The same calculation can be done for two-point statistics. Gauss–
ermite quadrature is still the best way to numerically calculate the

xpected value. We can either use the true mean flux or use the
iased mean flux estimates from weighted averages to calculate δs.
t is worth noting that using biased mean flux does not scale but shifts
stimated deltas. 

i → 

F (1 + δi ) 

F + � F 

− 1 = δi − � F 

F 

(B13) 

his does not make a big difference and only affects the k = 0
ode of the po wer spectrum. Ho we ver, the correlation function

symptotically approaches a constant at large scales. Assuming true
eltas are used with biased weights, the error on the two-point
unction estimate is 

ξij = −F 

	 

(〈 δ2 
i δj 〉 + 〈 δi δ

2 
j 〉 
)
. (B14) 

n other words, estimated two-point statistics are contaminated by
hree-point statistics and distorted at all scales through correlations
etween weights. 
NRAS 528, 3941–3963 (2024) 
We have numerically calculated both expressions. For brevity, Fig.
2 shows only biased P 1D with respect to different 	 values. Using

rue mean flux to extract deltas (dashed lines) shows slightly less
ias than using biased delta extraction (solid lines). For comparison,
ur estimates from mocks without smoothing fall close to 	 = 50
red line) as expected from the fiducial value. As we note in the main
ext, smoothing the noise estimates solves this problem. 
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