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ABSTRACT

The 1D power spectrum P of the Ly « forest provides important information about cosmological and astrophysical parameters,
including constraints on warm dark matter models, the sum of the masses of the three neutrino species, and the thermal state of
the intergalactic medium. We present the first measurement of P with the quadratic maximum likelihood estimator (QMLE)
from the Dark Energy Spectroscopic Instrument (DESI) survey early data sample. This early sample of 54 600 quasars is
already comparable in size to the largest previous studies, and we conduct a thorough investigation of numerous instrumental
and analysis systematic errors to evaluate their impact on DESI data with QMLE. We demonstrate the excellent performance of
the spectroscopic pipeline noise estimation and the impressive accuracy of the spectrograph resolution matrix with 2D image
simulations of raw DESI images that we processed with the DESI spectroscopic pipeline. We also study metal line contamination
and noise calibration systematics with quasar spectra on the red side of the Ly o emission line. In a companion paper, we present
a similar analysis based on the Fast Fourier Transform estimate of the power spectrum. We conclude with a comparison of these
two approaches and discuss the key sources of systematic error that we need to address with the upcoming DESI Year 1 analysis.

Key words: methods: data analysis —intergalactic medium — quasars: absorption lines.

1 INTRODUCTION

Neutral hydrogen gas between us and distant quasars forms ab-
sorption lines at wavelengths shorter than the Ly o emission line
in the quasar spectrum through absorption and scattering. These
absorption lines are collectively called the Ly« forest; and they
trace the underlying matter distribution in the intergalactic medium
(IGM) and the circumgalactic medium (CGM). The Ly « forest is
consequently a powerful tool to map vast volumes at redshifts 2 < z
< 5 and probing scales from hundreds of Mpc to below 1 Mpc.
Gunn & Peterson (1965) first estimated the density of neutral
hydrogen in the IGM. They realized that the measurement of some
continuum flux of 3C 9 below the Ly o emission line by Schmidt
(1965) implied the IGM was mostly ionized. Later work by Lynds
(1971) showed that the IGM absorption was in the form of discrete
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features. In the 1990s, work by many investigators (Bi, Boerner &
Chu 1992; Cen et al. 1994; Zhang, Anninos & Norman 1995; Bi &
Davidsen 1997) clearly established that this Ly o forest originates
from smooth IGM fluctuations. Based on this smooth density
fluctuations picture, the 1D power spectrum (Pip) has emerged as
an important quantity to measure in high-resolution, high-signal-to-
noise (SNR) spectra (Croft et al. 1998; Irsic¢ et al. 2017; Walther et al.
2017; Karagayl et al. 2022), as well as medium-resolution, medium-
SNR spectra (McDonald et al. 2006; Palanque-Delabrouille et al.
2013; Chabanier et al. 2019). P;p is valuable because it is sensitive
to smaller scales than are accessible in high-redshift galaxy surveys,
and consequently to particular physical quantities. Applications of
the Ly o P;p include investigations of the thermal state of the IGM
(Boera et al. 2019; Walther et al. 2019; Villasenor et al. 2022),
inference of the primordial power spectrum (Viel, Weller & Haehnelt
2004), constraints on the sum of neutrino masses (Croft, Hu & Davé
1999; Palanque-Delabrouille et al. 2015; Yeche et al. 2017), and
explorations of the nature of dark matter (Narayanan et al. 2000;
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Seljak et al. 2006; Wang et al. 2013; Irsic et al. 2017b), with warm
dark matter receiving particular attention (Boyarsky et al. 2009; Viel
etal. 2013; Baur et al. 2016; IrSic et al. 2017a; Villasenor et al. 2023).

Even though P;p is a summary statistic for cosmological analysis,
it is very sensitive to several sources of systematic errors. The five-
year data from the Dark Energy Spectroscopic Instrument (DESI;
Levi et al. 2013) will provide approximately 700000 Ly o quasar
spectra with medium resolution (R =~ 3000), medium SNR (~2
per A; DESI Collaboration 2016a, b), which will constitute a data
set that is four times larger than the Extended Baryon Oscillation
Spectroscopic Survey (eBOSS; Dawson et al. 2016). DESI will
consequently substantially expand the statistical power of Ly o forest
measurements relative to previous work. To fully exploit this great
increase in statistical power requires comprehensive studies of Pp
systematics. These include systematics related to the theoretical
interpretation (e.g. Lukic¢ et al. 2015; Walther et al. 2021; Chabanier
et al. 2023), instrumental effects, and other spectroscopic extraction
details. We address the latter two topics in this paper with early DESI
observations.

We analyse two distinct data sets in this paper. The first set
of spectra was collected between December 2020 and May 2021
during the DESI Survey Validation (SV; DESI Collaboration 2023a)
phase. The purpose of this phase was to perform various tests to
verify the pipeline for target selection, spectral extraction, classifier
performance, and clustering analysis. The spectra collected during
this period will be publicly available as early data release (DESI
Collaboration 2023b). The second set was obtained during the
first two months of the DESI main survey, which began in May
2021. Together, these data span a wide range of SNR. We use
them to measure Pip and characterize the noise, flux calibration,
and spectrograph resolution calculated by the DESI spectroscopic
pipeline.

The two main methods to estimate Pp are the maximum likelihood
estimator and the Fast Fourier transform (FFT). The maximum
likelihood estimator is typically considered to be statistically optimal,
although it is slower than FFT-based algorithms. The maximum like-
lihood estimator can be implemented in two different ways. A direct
implementation finds the maximum likelihood solution by sampling
the likelihood with respect to P (Palanque-Delabrouille et al. 2013).
This implementation has slower convergence properties and is more
prone to numerical instabilities. The second implementation takes
advantage of the Newton—Raphson method and achieves a faster
and more stable performance. We call this estimator the quadratic
maximum likelihood estimator (QMLE; McDonald et al. 2006;
Font-Ribera, McDonald & Slosar 2018; Karacayli, Font-Ribera &
Padmanabhan 2020) and the application of QMLE to DESI data is
the main focus of this paper. In a companion paper by Ravoux et al.
(2023), we present the application of the FFT-based estimator to early
DESI data. That paper adapts the FFT approach previously used for
eBOSS (Chabanier et al. 2019).

A major virtue of QMLE is that it is robust against challenges such
as strong sky emission lines, high-column density (HCD) systems,
and bad CCD pixels. Pixels affected by these features must be masked
to avoid contamination from unrelated physical effects and imperfec-
tions in instrumentation. This masking introduces a bias that must be
corrected in FFT estimates; and these corrections in turn introduce
uncertainties to the measurement (Chabanier et al. 2019). A major
advantage of QMLE is that it can handle masked, uneven spectra
without further corrections by construction. Relatedly, QMLE is
capable of weighting individual pixels by the inverse pipeline noise,
and hence diminishes the impact of variations in instrument noise and
other noisy spectral regions such as certain sky lines. In addition, the
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QMLE implementation of Karacayli, Font-Ribera & Padmanabhan
(2020) interpolates pixel pairs into two redshift bins to account for
the redshift evolution within the Ly « forest. These properties, among
others discussed later in the text, make the QMLE an excellent tool
for DESI Ly @ P)p estimation.

For a medium-resolution, medium-SNR survey such as DESI,
the potential systematics due to the pipeline noise estimation and
the spectrograph resolution require the most attention. Previous ex-
periments suffered from spectroscopic pipeline noise miscalibration
levels of 15 percent, which necessitated separate calculations and
recalibrations of the pipeline noise (McDonald et al. 2006; Palanque-
Delabrouille et al. 2013). DESI was meticulously designed to abate
such miscalibrations (DESI Collaboration 2022; Guy et al. 2023).
Yet even though the pipeline is significantly improved, the statistical
power of even the early data demands ever-stringent precision.
Another consideration is that spectral extraction for DESI is based
on the spectro-perfectionism algorithm, which can handle arbitrarily
complicated (i.e. not solely separable) 2D point-spread functions
(PSF; Bolton & Schlegel 2010). This extraction preserves the full
native resolution of the 2D spectrograph without degradation in the
1D spectrum and yields an independent resolution matrix for each 1D
spectrum that is based on the spectrograph resolution and the noise
in each spectrum (Guy et al. 2023). QMLE can naturally incorporate
this novel resolution matrix, and in this paper, we validate the
spectro-perfectionism and its synergy with the QMLE by simulating
CCD images and extracting spectra with the DESI spectroscopic
pipeline.

The outline of this paper is as follows. First, we describe the
DESI survey, target selection, the creation of quasar catalogues, the
identification of damped Ly o (DLA) systems and broad absorption
lines (BAL), and the properties of the early spectra in Section 2. We
outline the continuum fitting algorithm and detail the QMLE and
various updates in Section 3. Synthetic spectra are central in our
validation to make robust statistical claims. In Section 4, we validate
the continuum fitting algorithm, DLA masking and damping wing
corrections with extensive sets of 1D mock spectra, and validate the
resolution matrix derived by the pipeline CCD image simulations that
we analyse with the same spectroscopic pipeline that we use with
real DESI observations. We perform various tests for systematics
and present our P;p measurement from data in Section 5. Finally,
we compare DESI P;p measurements from the QMLE and FFT
estimators to each other and to eBOSS in Section 6. We summarize
our results in Section 7. As noted before, a companion paper by
Ravoux et al. (2023) presents the FFT-based results.

2 DATA

The DESI collaboration began a five-year survey of 40 million
galaxies and quasars in May 2021. The main goal of this survey
is to measure distances with the baryon acoustic oscillation (BAO)
method from the local universe to beyond z > 3.5 and use these data
to explore the nature of dark energy. DESI will also employ redshift
space distortions to measure the growth of cosmic structures and test
potential modifications to general relativity, measure the sum of neu-
trino masses, and investigate primordial density fluctuations from the
inflationary epoch. The collaboration is conducting this survey with
a new, high-throughput, fiber-fed spectrograph on the 4 m Mayall
telescope that can obtain 5000 spectra in each observation (DESI
Collaboration 2016b; Silber et al. 2023). The light from each fiber is
directed into one of ten, identical, bench-mounted spectrographs that
record the light from 360 to 980 nm in three wavelength channels. The
blue channel is optimized for Ly « forest studies and extends from
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Figure 1. Quasar at z = 2.94 observed during DESI survey validation (TargetID 39627871806818826). The Ly @ forest is defined to be the spectral region
between a quasar’s Ly & and Ly 8 emission lines. Absorption features redward of the quasar’s Ly o emission line may be due to metal systems. The regions from
Ly « to Si1v and from Si1v to C1V are called the ‘side bands’ (SB). We call the Ly o —Si v region SB 1 and the SiIV-CIV region SB 2, and use these regions

to quantify metal contamination, noise and flux calibrations.

360 to 593 nm with a resolution that ranges from 2000 to 3500. These
spectrographs are in a climate-controlled enclosure that provides
very stable calibrations and minimizes systematic errors due to
instrumental effects. The instrumentation is described in detail in
DESI Collaboration (2022) and the spectroscopic pipeline in Guy
et al. (2023).

DESI targets were selected with g, r, z photometry from the
Legacy Imaging Surveys (Dey et al. 2019) and W1, W2 photometry
from the Wide-field Infrared Explorer (WISE; Wright et al. 2010).
The target selection process is described in detail in Myers et al.
(2023). The targets include quasars at 0.9 < z < 2.1 that are used
to trace large-scale structure and at z > 2.1 that are used to trace
the matter distribution with the Ly o forest (Yeche et al. 2020).
The collaboration refined the target selection algorithms during the
Survey Validation (SV; DESI Collaboration 2023a) period in early
2022 with a significant visual inspection effort (Alexander et al.
2023). The final quasar target selection is based on a random forest
algorithm and selects quasars in the magnitude range 16.5 < r <
23 (Chaussidon et al. 2023). We use the One-Percent Survey (SV3)
spectra that are part of early data release (EDR; DESI Collaboration
2023b), and further include two months of main survey (DESI-
M?2) to increase the statistical precision in our analysis. We call
this combined data set EDR+. The target selection validation (SV1)
spectra are the deepest observations in EDR, but their pipeline noise
estimates differ from the other two data sets (Ravoux et al. 2023).
Therefore, we rely on these spectra only for the DLA identification
and not for Pp estimation since the pipeline noise estimates do not
affect DLA identification as they affect Pip. Fig. 1 shows a quasar at
z = 2.94 from this DESI early data.

DESI employs three classification algorithms to identify quasars.
Most targets are correctly classified with Redrock' (Bailey et al., in

Thttps://github.com/desihub/redrock

preparation). This algorithm performs a x? analysis for a range of
spectral templates as a function of redshift and identifies the best
redshift and spectral template for each target. Our visual inspection
process demonstrated that Redrock misses some quasars, so we
employ QuasarNET (Busca & Balland 2018; Farr, Font-Ribera &
Pontzen 2020) and an Mg 11 afterburner (Napolitano et al. 2023) to
help identify additional quasars. QuasarNET is a machine learning
algorithm that uses convolutional neural networks for classification
and the Mgil afterburner searches for broad Mgil emission at
the Redrock redshift in the spectral of quasar targets classified as
galaxies. Chaussidon et al. (2023) describe this process in more
detail. We limit ourselves to objects that are targeted as quasars in
the afterburner catalogue.

2.1 Quasars with broad absorption lines

BAL features are present in about 15 per cent of all quasar spectra
and can contaminate the Ly « forest as well as impact quasar redshift
errors and classifications. The vast majority of BAL quasars exhibit
blueshifted absorption associated with the CIvV emission feature
and the BAL identification algorithm searches this region in every
quasar spectrum where this spectral region is visible (1.57 < z <
5). This algorithm is similar to the one presented by Guo & Martini
(2019), except that it does not use the Convolutional Neural Network
(CNN) classifier. Filbert et al. (2023) describe the BAL identification
and characterization for the early DESI quasar catalogues in detail,
including the catalogue completeness and purity, and the impact of
BAL features on redshift errors (Garcia et al. 2023). We use the
measured velocity range of the BAL features associated with C1v
to mask this ion and also mask the wavelengths that correspond to
the same velocities associated with the S1v, Pv, C1i1, Ly &, N v, and
Si1v. All of these features may be present in BALs (Mas-Ribas &
Mauland 2019), and all but S 1v can contaminate the Ly « forest (e.g.
Ennesser et al. 2022).

MNRAS 528, 3941-3963 (2024)
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2.2 Damped Ly o systems

DLAs are identified using both CNN and Gaussian process (GP)
finders, then their results are combined into a concordance catalogue
while adopting GP results over CNN if both detect the same DLA
(Ho, Bird & Garnett 2021; Wang et al. 2022). We pick unique DLA
identifications while combining three separate DLA catalogues for
SV1, SV3, and DESI-M2 since the same quasars and DLAs can be
present in different catalogues. If two DLAs are within a threshold
redshift separation Az, that corresponds to a DLA’s observed redshift
size, we pick the highest confidence identification, where

°

7.3A

Az = (1+2p1a) 3 10Wu=20)/2, )

Lya

We select systems based on average signal-to-noise ratio SNR
between 1420 and 1480 Ain quasar’s rest frame. For DLAs that
are identified by CNN, we keep them in the catalogue if the host
quasar spectrum has SNR > 3, but remove them from the catalogue
if the confidence level is less than 0.3 in quasars with SNR < 3. We
keep all systems GP identifies. There are 41 946 DLAs with Ny, >
20.3 in the combined catalogue. Sub-DLA detections contain many
false positives, so we do not mask them. Our selection criteria and
duplicate removal reduce this number to 30 131. Introducing a minor
confidence threshold of 0.2 for high SNR and 0.9 for GP systems
removes 567 DLAs. We believe masking possible DLAS in this small
sample is more valuable than missing them. We note that not all DLA
sightlines end up in our final sample since some host quasars are left
out due to quality cuts.

2.3 Redshift distribution

Fig. 2 shows the quasar redshift distribution of our sample on the
top panel. The quasar distribution ngs,(z) drops off rapidly at higher
redshift, as expected from the selection function. There are 67 241
quasars in our final sample. On the bottom panel, we show the
SNR distribution in the forest as a function of redshift with bin
size Az = 0.1. We define SNR based on the propagated error o (z),
where SNR = 1/0(z) and the propagated error o (z) on the weighted
mean as follows:

o) = | wiok., / > wi, @)

where w! = ol + 02, and summation is done over all pixels
that fall into the redshift bin. This quantity is equivalent to pixel SNR
values after coadding all quasar spectra in the forest region into coarse
Az = 0.1 pixels. Large-scale structure variance o is calculated
during the continuum fitting process as described in Section 3. Even
though we keep BAL quasars while continuum fitting, we remove
them from final P, estimates. Removing these BAL quasars leaves
us with 54 600 spectra and reduces our SNR as shown in blue in
Fig. 2.

We explain the details regarding DLA and BAL masking in
Section 5.

3 METHOD

3.1 Continuum fitting

The continuum fitting algorithm we use was developed over the last
few years and has been applied to both 3D analyses (Bautista et al.
2017; du Mas des Bourboux et al. 2019, 2020) and P;p measurements
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Figure 2. (Top) Quasar redshift distribution of our sample. (Bottom)
Weighted mean SNR distribution in the forest as a function of redshift, where
we define SNR to be 1/0(z) and o (z) is the propagated error on the weighted
mean of pixel size of Az = 0.1. Having BAL quasars (orange) improves
SNR, but it also comes with possible biases in Pip (see Section 2).

(Chabanier et al. 2019). This algorithm is part of the software Package
for Igm Cosmological-Correlations Analyses (PICCA) and is publicly
available.” We summarize the algorithm below.

One important aspect of the algorithm is that the definition of
the quasar continuum absorbs the mean transmission F(z) of the
IGM. Specifically, we model every quasar ‘continuum’ FC,(Agr)
by a global mean continuum C(Agr) and two quasar ‘diversity’
parameters, amplitude a, and slope b,:

FCy(hrr) = COrp) (ag + by A) 3)

log re — log Ay

= ®) (1) @)
log Agg — log Agg

where Agp is the wavelength in quasar’s rest frame and Agl;-z) are the
minimum and maximum wavelengths considered for calculation. We
assume that the global mean continuum C(gr) does not depend on

Zhttps://github.com/igmhub/picca
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redshift, and therefore our model only adjusts F(z), as well as solves
for the a, and b, parameters for each quasar. In other words, the
amplitude and slope parameters do not only fit for intrinsic quasar
diversity such as brightness, but also for the IGM mean transmission.
Given these definitions, transmitted flux fluctuations are given by

_f
%)= FC,(1)

where A = (1 + z,)Arr is the observed wavelength and f, (1) is the
observed flux. The effect of spectrograph resolution has been ignored
for simplicity as noted in Slosar et al. (2013), since the affected scales
are small for 3D analysis. The features in the continuum are also
wider than the spectrograph resolution, so this assumption should
also hold for Pp.

Our continuum fitting procedure calculates a, and b, for each
quasar, and three global functions: the mean quasar continuum
C(\gp), the large-scale Ly @ fluctuations GLZSS(A), and the pipeline
noise correction term n(A). We do not assume a functional form
for these three functions; instead, we construct linear interpolations
based on binned estimates. Specifically, C(hgp) is calculated between
rest-frame wavelengths Agl): and )L%Z in bins of size AAgg. The other
two parameters 7(1) and ULZSS(A) are calculated in the observed frame
in Ngp, bins linearly spaced between A" and A®. These binning
parameters are tuned for each analysis depending on the available
statistics. Before we start our fitting process, we co-add the three
spectrograph arms using the pipeline inverse variance as weights.
Our fitting procedure is iterative. Each iteration i is as follows:

-1 (&)

(i) Fiteach spectrum for a, and b, while keeping other parameters
fixed.

(11) Calculate 6,4] ()\RF)

(iii) Fit for variance parameters 1 and Ufss (defined below) for
each bin.

For each quasar, we find the a, and b, values that minimize the
following cost function while keeping all other parameters fixed:
— (2
[fj —(a, + byA )T (ﬁ

=Y —

j q.J

2
)] +) InoZ . (6)
J

where the summation j is over all pixels in the forest region and
Aj is the observed wavelength. The major complication comes from
aqz. ;» Which must take into account the intrinsic large-scale Ly o
fluctuations o

—2 A
g =N )0ppe; + ss(A)ag + by A ;)*C (ﬁ) . 7
q

After every quasar is fit, we stack all continua in the rest frame
and update the global mean continuum C. As described above,
parameters 7 and o are calculated at discrete wavelength bins.
For each bin, we rebin the § values with respect to the pipeline noise
estimates o . and calculate the scatter in these o ;. bins to measure
the o — o, relation from the data. Lastly, we fit equation (7) to
this relation to find 1 and o values for every wavelength bin.

3.2 Quadratic estimator

We measure P;p using the quadratic maximum likelihood estimator
(QMLE), which was extensively studied in the 90s in the context of
cosmic microwave background radiation, galaxy surveys, and weak
lensing (Hamilton 1997; Tegmark, Taylor & Heavens 1997; Seljak
1998; Tegmark et al. 1998), and later also applied to the Ly « forest

DESI early 1D power spectrum — 3945
(McDonald et al. 2006; Karacayli, Font-Ribera & Padmanabhan
2020; Karagayl et al. 2022). The QMLE works in real space (instead
of Fourier space) to estimate the power spectrum, and therefore
allows weighting by the pipeline noise, accounts for intrinsic Ly «
large-scale structure correlations, and most importantly is not biased
by gaps in the spectra. We refer the reader to Karacayli, Font-
Ribera & Padmanabhan (2020) and Karacayl et al. (2022) for our
development process and application to high-resolution spectra. In
this section, we provide a short summary of QMLE and then describe
the important steps for the resolution matrix and shifting Nyquist
frequency implementations. Details regarding the continuum error
marginalization are in Appendix A and signal-noise coupling cor-
rection is in Appendix B.

One motivation for the development of QMLE is that the power
spectrum is typically estimated on discrete wavenumbers k as band
powers, since it cannot be estimated continuously on k, and this
discretization inevitably averages the underlying power over these
bands. Our QMLE implementation alleviates this effect by estimating
deviations from a fiducial power spectrum such that P(k, z) = Pgq(k,
2) + Dm0 Wonm (ks 2)0 oy, Where we adopt top-hat k bands with &,
as bin edges and linear interpolation for z bins with z,, as bin centres.
This fiducial power spectrum further improves the weighting by
including large-scale Ly o correlations, does not have to exactly
match the true power spectrum, and can be approximated in an
unbiased way if no safe guess is available (as shown by Karagayli,
Font-Ribera & Padmanabhan 2020). We use the following fitting
function:

kPﬁd(k, Z) _ (k/k0)3+n+ozlnk/ko ( 14z )B+ﬂlnk/k0
P N 1+ (k/kp)? 1+2

where ko = 0.009 skm™" and zo = 3.0, and stress that this is sufficient
for a baseline estimate, which in turn can be used to weight pixels,
but does not capture all of the scientific information in P;p.

Given a collection of pixels representing normalized flux fluctua-
tions § r, the quadratic estimator is formulated as follows:

, (®)

A 1

O+ — az EF;,(da/ — by — to), )
where X is the iteration number and

dy =87C7'Q,C '8, (10)
by = Tr(C'Q,C™'N), (1
te = Tr(C™'Q,C ™' Spa). (12)

The covariance matrix C = (§8%) is the sum of signal and noise,
C = Shs + > eQs0, + N, Q, = 0C/06, and the estimate of the
Fisher matrix is

Fow = %Tr(C“QQC"Qw. (13)

The covariance matrices on the right-hand side of equation (9)
are computed using parameters from the previous iteration 6%,
Assuming different quasar spectra are uncorrelated, the Fisher matrix
F,, and the expression in parentheses in equation (9) can be
computed for each quasar, then accumulated, i.e. F = Zqu etc.

We convert wavelength to velocity using logarithmic spacing,
following the convention in cosmology:

Vi =¢C ln()\.,'/)\.Lya) (14)

where Ay, = 1215.67 A. We assume the noise is uncorrelated at
different wavelengths, which results in a diagonal noise matrix with
N;; = a,-z, where o; is the continuum-normalized pipeline noise.
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3.2.1 Resolution matrix

In our previous applications of QMLE, we approximated the spec-
trograph resolution effects by a continuous window function W(v,
v") such that the smoothed flux fluctuations §; were given by

Sr(v) = /dv’ W, v)8(). (15)

Even though it is a valid and prevalent approximation, this formalism
unfortunately fails to capture wavelength-dependent resolution of
the spectrographs. However, for DESI the spectral extraction is
built on the improved spectro-perfectionism algorithm (Bolton &
Schlegel 2010; Guy et al. 2023). Spectro-perfectionism produces a
resolution matrix R associated with each spectrum that is based on
the spectrograph resolution as well as the noise properties of each
spectrum, and captures the wavelength-dependent resolution on the
same discrete wavelength bins as the spectrum. The observed signal
becomes a matrix—vector multiplication:

3z =R4. 16)

This redefinition is natural to incorporate into the QMLE formalism.
We achieve this by replacing the integral equations for the signal S
and derivative matrices Q by the following expressions:

Sk = (8z8%) = RSR” (17)

Q% = RQ*R’, (18)

where the subscript R denotes the smoothed matrices, and matrices
without a subscript are evaluated as integrals but now without a
resolution window function.

6d * dk
Si; = = cos(kvi;) Pa(k, zij), 19
0

where vj; =v; — vjand 1 4 z;; = /(1 4 z;)(1 + z;). The derivative
matrix for redshift bin m and wavenumber bin » is

() kn+1 dk
i = L(zi)) — cos(kv;;), (20
kn

where 7,,(z) is the interpolation kernel. This is 1 when z = z,, and 0
when z =z, 4 1.

However, there are more subtleties regarding the resolution matrix.
First, these matrix multiplications require that all pixels are present,
so we mark masked pixels with large noise estimates instead of
eliminating them from the spectrum. Secondly, the resolution matrix
does not capture the resolution outside the spectral range (by
construction). This is a potential problem at the largest scales, so
we implement an option in QMLE that pads the resolution matrix by
mirroring its columns at the edges. Thirdly, both synthetic spectra and
the actual DESI pipeline produce this matrix on the same wavelength
grid as the spectrum with the same spacing. This is natural in the
spectro-perfectionism formalism in data, and we test its accuracy in
Section 4.2; however, it yields an undercorrection at small scales
in the mock analysis. Our solution to this problem in mocks is
to oversample every row of the resolution matrix (Appendix D;
Guy et al. 2023). One could model the resolution matrix at each
row (i.e. wavelength) as a convolution of Gaussian and top-hat
window functions, and fit for one or two free parameters for this
model. One then evaluates each row of the oversampled resolution
matrix using the best-fitting parameters at smaller wavelength steps.
However, spectro-perfectionist resolution matrix carries negative
elements and evidently does not follow this simple description.

MNRAS 528, 3941-3963 (2024)

Therefore, achieving a stable oversampling method requires a nu-
anced procedure. We decided to use an unassuming description by
interpolating the intermediate values. To correctly capture the rapid
change in resolution matrix elements, we interpolate using their
natural logarithms with a cubic spline. To obtain a valid natural
logarithm, we shift every element to a small positive value in each
row. This small positive value is the smallest absolute value in that
row (using an arbitrary number breaks down in subsequent steps). We
then apply a cubic spline to the natural logarithm of these elements,
oversample at a desired factor (usually three), and finally trace back
these changes to obtain the new resolution matrix.

3.2.2 Shifting Nyquist frequency on a linear wavelength grid

Another update to QMLE concerns the Fisher matrix and DESI’s
wavelength binning. The DESI pipeline extracts spectra on a linear
wavelength grid of AL = 0.8 A, which results in an increasing
Nyquist frequency with wavelength in velocity space kny = 7/dv,
where dv = cAA/A. In other words, we can measure higher k modes
at higher redshifts. However, forcing the code to measure the same k
bins at lower redshifts results in numerically unstable Fisher matrix
elements that could contaminate all scales when inverted. Hence,
these modes should be removed from the analysis.

We decide each spectral segment’s Nyquist frequency using their
median dv, then set k > kyy/2 modes in the Fisher matrix and the
power spectrum to zero. Since this procedure results in a ‘singular’
matrix, we replace zeros on the diagonal with one while inverting.
Note this replacement does not contaminate lower k modes, because
it constitutes a block diagonal matrix. This process stabilizes the
Fisher matrix.

3.2.3 Nominal estimator settings

Throughout this paper, we use 20 linear bins with Ak, = 0.5 x 1073
s km™! and 13 log-linear bins with Akjog = 0.05. We use redshift
bins of size Az = 0.2 from z = 2.0 to z = 3.8 included. To reduce
computation time and help continuum marginalization, we split the
spectra into two segments if they have more than 500 pixels, and we
ignore segments having less than 20 remaining pixels. We interpolate
the signal and derivative matrices using 3601 points in velocity with
10 km s~! spacing and 400 points in redshift.

3.3 Software

Our quadratic estimator® is written in C++. It depends on CBLAS
and LAPACKE routines for matrix/vector operations, GSL* for certain
scientific calculations (Galassi et al. 2021), FFTW3? for deconvo-
Iution when needed (Frigo & Johnson 2005); and uses the Message
Passing Interface (MPI) standard®:”-® to parallelize tasks. The DESI
spectra are organized using HEALPIX (Gorski et al. 2005) scheme on
the sky. We use the following commonly used software in PYTHON
analysis: ASTROPY® a community-developed core PYTHON package

3https://github.com/p-slash/lyspeq
“https://www.gnu.org/software/gsl
Shttps://fftw.org
Ohttps://www.mpi-forum.org
"htps://www.mpich.org
Shttps://www.open-mpi.org
https://www.astropy.org
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for Astronomy (Astropy Collaboration 2013, 2018, 2022), NUMPY °
an open source project aiming to enable numerical computing
with PYTHON (Harris et al. 2020), sciPY!' an open source project
with algorithms for scientific computing, HEALPY to interface with
HEALPIX in PYTHON (Zonca et al. 2019), NUMBA'? an open source
just-in-time (JIT) compiler that translates a subset of PYTHON and
NUMPY code into fast machine code, MPI4PY!*® which provides
PYTHON bindings for the MPI standard (Dalcin & Fang 2021). Finally,
we make plots using MATPLOTLIB'* a comprehensive library for
creating static, animated, and interactive visualizations in PYTHON
(Hunter 2007).

4 VALIDATION

Synthetic data are crucial to verify that the measurements are
unbiased, and the errors are correctly captured. Our mock generation
procedure consists of the generation of transmission files with forest
fluctuations, diverse quasar spectra, and simulation of the DESI
instrument. The lognormal mock transmission files are generated
using the procedure in Karagayli, Font-Ribera & Padmanabhan
(2020). We generate them on a linear wavelength grid of 0.2 A
spacing without any resolution and noise effects.

We develop two methods to simulate and validate the DESI
analysis pipeline. The first set of mocks is produced using quick-
quasars, which is part of the DESISIM package!®> and uses SPEC-
siM'® (Kirkby et al. 2021) for quick simulations of fiber spectrograph
response (see Herrera-Alcantar et al. (2023) for a detailed description
of quickquasars mocks). This program generates random quasar
continua, simulates sky and instrumental noise, and incorporates
wavelength-dependent camera resolution, but does not validate the
computationally expensive spectral extraction. Hence, we cannot
validate the spectro-perfectionist resolution matrix with these mocks.
In order to apply and validate the spectro-perfectionism algorithm in
the Ly « forest, we create a second set of mocks called ‘CCD image
simulations’ that project mock quasar spectra on to 2D images that
simulate DESI raw data at the CCD pixel level with the DESISIM
package. These CCD image simulations are then processed in a
similar manner to actual data with the algorithms that comprise
the DESI spectroscopic reduction pipeline (Guy et al. 2023). This
approach is more computationally expensive than 1D mocks, so we
only employ it on a smaller number of mock spectra.

4.1 Quickquasars mocks

For these mocks, the quasar diversity, DESI instrument, and the sky
are simulated through a program called quickquasars in the
DESISIM package. This program randomly generates quasar continua
from a broken power law with emission lines, convolves with the
wavelength-dependent camera resolution for each arm, adds noise for
a given exposure time and observation program, and finally resamples
on to the output DESI wavelength grid of Aipgs; = 0.8 A per pixel.
We smooth out the source contribution to noise with a Gaussian
kernel of ¢ = 10 A to imitate the DESI pipeline (Guy et al. 2023).

10https:/mumpy.org
https://scipy.org
2https://mumba.pydata.org
Bhttps://mpidpy.readthedocs.io
https://matplotlib.org
Bhttps://github.com/desihub/desisim
16https://github.com/desihub/specsim
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All unique targets that are identified as quasars are simulated
in our mocks. However, in real data analysis, we remove certain
surveys, programs and low SNR targets. We generate the trans-
mission files with the exact redshift distribution of DESI quasars
in our sample and assume a constant 4000 s exposure time for all
spectra.

As extensive and realistic as quickquasars is, it does not
fully reproduce the spectral extraction pipeline output since it does
not generate 2D CCD images. As an important consequence, the
output resolution matrix does not follow the spectro-perfectionism
formalism and instead it is approximated as a box-car average over
rows and columns of the finely sampled camera resolution matrix.
Unfortunately, this approximation is not correct as it smoothes the
resolution matrix twice, once over rows and once over columns.
To correct that implementation, we deconvolve a top-hat window
function and oversample each row of this matrix by a factor of 3 in the
power spectrum estimation. This yields adequately unbiased power
spectrum results but is not a precise enough solution to strongly rely
on x 2 criteria. We also perform CCD image simulations to understand
the behaviour of the resolution matrix in data.

As noted, we generate a mock spectrum for each unique target
in our sample, which yields 92 780 quasars in our final sample. We
define the forest to be between 1050 and 1180 A in the quasar rest
frame, use the analytically calculated true power spectrum as our
fiducial and perform a single iteration using the QMLE (Karagayli,
Font-Ribera & Padmanabhan 2020). We define our small-scale
confidence range with respect to effective velocity spacing R, =
cAhpgsi/(1 + 2)Aiye of each redshift bin, where Akpes; = 0.8 A.

4.1.1 True continuum, no systematics

We start validating our analysis without any continuum fitting
complications or other systematics. We obtain flux transmission
fluctuations 65 using the true continuum (which is provided by
quickquasars) and true mean transmission. We estimate the
mean transmission from pure transmission files, confirm that this
estimate is correct using the analytical mean transmission expres-
sion (Karagayli, Font-Ribera & Padmanabhan 2020), and use the
analytical expression to remove the measurement noise.

We find that the estimated power spectrum agrees with the
true underlying power albeit the problems at small scales due to
inaccuracy in the resolution as mentioned above. We calculate the
reduced chi-square x2 = x2/v, where the number of degrees of
freedom v is equal to the number of P(k, z) points in the range
of concern, and 2 = (P — Pyy)"C™ (P — Pyy) where P is the
measurement, P, is the underlying true power spectrum, and C
is the covariance matrix from QMLE. Fig. 3 shows the reduced
%2 from the true continuum analysis results in blue triangles. x2
values increase as we include higher k values (going from the top
to the bottom row), which is unfortunate but expected since our
correction to the quickquasars resolution matrix is not exact.
The kR < 0.9 range is firmly validated with x; ~ 1. The kR < 1
range deteriorates the agreement between power spectra by 1.50,
and finally, the agreement breaks down in the kR < 1.2 range.

4.1.2 Continuum fitting, no systematics

We now turn to validating our continuum fitting procedure, since we
do not have access to the true quasar continua. The quickquasars
code generates quasar continua with broken power laws and emission
lines, so our continuum fitting model with a single global mean and
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Figure 3. Reduced XUZ comparison for different k cuts and continuum marginalization polynomials on mocks. We find XVZ increases for all settings as we include
higher k values, which is unfortunate but expected since our correction to the quickquasars resolution matrix is not exact. The true continuum analysis
results (blue triangles) stay within 1.5¢0 of XVZ = 1. Lower rows correspond to larger small-scale confidence regions. From left-most column to the right, we
remove large-scale modes. When continuum errors are not marginalized (orange squares), throwing out these large-scale modes brings x2 down to 1 within
error bars. We also find that first (green circles) and second (red triangle) order marginalizations remove the contamination from continuum errors at all scales.

two diversity parameters is not exact. Therefore, our mock continuum
is not tailored towards our fitting model, and the test results we
present here also capture model mismatches.

There are 92 780 quasars in our mock data set. We find that fitting
for o gs is not valid for observed wavelength A > 6000 A due to
the small number of high-redshift quasars with forest data at these
wavelengths (only 883), so we limit our continuum fitting region
to 3600—6000 A. This sets Z1lye = 3.8 as our largest redshift bin.
We measure the global mean continuum C(Agr) in 2.5 A steps. We
fix 7 = 1, and measure o7 in 20 wavelength bins in the observed
frame in equation (7). We do not apply an SNR cut in order to keep
all spectra and perform five iterations.

In Fig. 4, we compare the mean continua from the true continuum
analysis to the one from continuum fitting. Continuum fitting accen-
tuates peaks and valleys in the mean continuum compared to when the
true continuum is known. These deviations are interesting and merit
further investigation, but our main objective is to obtain unbiased
Pip results. As we discuss below, these deviations do not impede
that objective. The bottom panel of Fig. 4 shows o/ estimated from
the true and continuum fitting analyses. We find fitting the variance
leads to the correct o values. We note that o is not only a
function of P)p, but also depends on spectrograph resolution and
wavelength spacing.

We investigate reduced 2 values for various settings to judge the
accuracy of the P p estimate. In addition to the true continuum re-
sults, Fig. 3 shows results for no continuum marginalization (orange
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squares), first-order In A polynomial (green circles), and second-order
polynomical (red triangles). x> from no the marginalization case is
not visible in the left-most column, but produces reasonable values
when large-scale modes are removed in the middle and right columns.
This result illustrates the importance of continuum marginalization,
especially in that we can retain even the largest scales. We note
that this analysis does not account for metals or DLA systematics,
which dominate at these scales. Furthermore, we estimate the power
spectrum produced by the remaining continuum errors by calculating
8¢ = Ces/Ciye — 1 and running it through QMLE. We do not
subtract noise and fiducial terms in this case, but keep everything
else the same. We find this continuum error power spectrum is a
factor of 107> smaller than the signal at most scales and redshifts as
shown in Fig. 5. With these results, we consider our continuum fitting
and marginalization validated for this work. In future work, we will
test our analysis pipeline on multiple (ideally 100) realizations and
directly study the x? distribution.

4.1.3 Masking high-column density systems

We finally tested masking the high-column density (HCD) systems
both in continuum fitting and in the P estimate. We generate mocks
with randomly placed HCDs and build a truth catalogue using their
redshifts and column densities. There are 17273 HCDs with Ny >
19.5 on 15097 sightlines, which corresponds to 16.2 per cent of all
sightlines.
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Figure 5. Power spectrum of the remaining continuum errors after marginal-
ization, divided by the true underlying mock Ly o power spectrum. We find
the remaining continuum errors are a factor of 10=> smaller than the signal
at most scales and redshifts. The maximum is 1073 at the largest scales.
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Figure 6. Power spectrum when DLAs and sub-DLAs are not masked
divided by the true underlying mock power spectrum. These systems add
power to large scales.

We calculate a DLA transmission profile based on the column den-
sity for each system. The damping wings extend to large wavelength
separations from the central wavelength, such that an aggressive
masking strategy would remove many data points. Therefore, we
mask pixels where the model profile is below a transmission threshold
and correct the damping wings at larger transmission values based
on the same model profile. A higher transmission threshold results
in smaller corrections, but eliminates more data points. We tested
two thresholds: a nominal threshold with the DLA absorption
greater than 20 percent and a conservative cut of greater than 10
percent. We find both options yield similar x> ~ 1 within error
bars.

When unmasked, these systems add power to the large scales,
as shown in Fig. 6. Furthermore, this extra power depends on
whether these systems are correlated with the underlying matter field
(McDonald et al. 2005), and it has different amplitudes and shapes for
different column densities (Rogers et al. 2018). Accurate simulation
of these systems embedded in the Ly o forest remains challenging,
yet they cannot be completely removed from the measurement
either. For instance, the catalogue produced by the DLA finder is
approximately 90 per cent efficient and pure (Wang et al. 2022). As
we discuss in Section 5.3, we report the systematics associated with
the DLA finder inefficiency based on a simple scaling of this ratio.
However, the effect of uncorrected and undetected DLASs still needs
to be modelled and marginalized over in cosmological inferences
(Palanque-Delabrouille et al. 2013; Chabanier et al. 2019).

4.2 CCD image simulations

We validated the resolution matrix implementation in the DESI
pipeline and the QMLE with CCD image simulations. The image
simulations draw on extensive infrastructure in the DESISIM package
that was built by the DESI team to develop and validate the
spectroscopic data processing pipeline (Guy et al. 2023) in advance
of first light. This package produces realistic 2D spectroscopic
image simulations that include the bias, readnoise, and gain for
each amplifier for each of the 30 CCDs, models the throughput
based on engineering data for each channel of each spectrograph, the
model PSF and trace of each fiber as a function of wavelength and
position on the detector based on the Zemax optical design models,

MNRAS 528, 3941-3963 (2024)
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sky emission, and applies noise appropriate for the flux of each object
at the desired exposure time.

The typical input to the simulation code is a library of the model
spectra for a single DESI observation and a file that describes how
these objects are distributed into the fibers. This mapping of targets
to fiber positions for one observation corresponds to a single DESI
tile. Normally, a tile would include all of the DESI target classes,
along with a selection of flux calibration stars and designated ‘empty’
fibers that are used to measure the night sky spectrum. Since we are
just interested in validating the performance with the Ly« forest and
the time to construct one simulation tile of 30 CCD images is not
insignificant, each of our tile designs has only quasars, standard stars,
and sky fibers. There are approximately 4500 quasars in each tile,
and the quasars are all at 2.6 < z < 3.6 so we observe the entire forest
region for each quasar in the blue channel of the spectrographs. We
generate ten tiles, or approximately 45 000 total Ly « forest spectra,
with apparent magnitudes representative of DESI quasar targets and
noise that is representative of a single, 1000 s exposure in nominal
dark conditions. We also generate a mock set of arc calibration lamp
exposures, which are used by the pipeline to measure the PSF and
for wavelength calibration.

We processed this simulated data set with the DESI pipeline, which
is described in detail by Guy et al. (2023). Briefly, the pipeline
pre-processes the raw images to remove the bias level, fits the arc
calibration lamps to measure the nightly PSF, spectral trace, and
wavelength calibration, refits the nightly PSF to the PSF of each
exposure, extracts the spectra, applies a flat field, subtracts the
sky, fits the flux calibration stars, applies the flux calibration, and
measures the redshift and identifies the best spectral type for each
target. The pipeline fits the PSF with an empirical model that consists
of a linear combination of Gauss—Hermite functions. The pipeline
model is an excellent but not exact match to true PSF, which is well-
approximated by the (non-parametric) PSF predicted by the optical
design, and we generated the simulated arc and observation files with
the optical model PSF to include any systematic error associated with
the pipeline’s PSF model fit in our analysis. To isolate the impact of
fitting the PSF model from the remainder of the spectral extraction
and calibration steps, we also processed the simulations with the
correct PSF model.

Fig. 7 (top) shows the results for the case where the pipeline
starts with the correct PSF model. This panel shows the ratio of
the measured power spectrum P to the input power spectrum P
based on the resolution matrix provided ‘as is’ by the pipeline (blue
squares) for a subset of the quasars at z = 2.8. The ratio is consistent
with unity over the entire range in k, with the exception of the largest
scales (smallest k), which are in any case not usable due to continuum
fitting errors. We also explored oversampling the resolution matrix
to better match the input model (see Section 3.2.1 for details), and
padding the resolution matrix to remove edge effects. None of these
modifications is superior to using the resolution matrix provided by
the pipeline.

We also analysed the performance of the pipeline with an empirical
PSF measured from the arc calibration lamps, rather than with the
input PSF model as in the previous case. The bottom panel of Fig.
7 shows the difference in the 1D power spectrum measurement
starting with the arc calibration lamps Py.q; and starting with the
correct model PSF P4 for seven redshift bins from 2.2 to 3.4.
The fractional difference relative to the true power spectrum is at the
level of 1-2 percent up to k = 0.01 s km~! after which the errors
grow exponentially as expected. This behaviour is consistent with
1 per cent precision on the resolution itself. This is our best estimate
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Figure 7. (Top) Power spectrum estimates for various resolution matrix
treatments at z = 2.8 based on CCD image simulations. The default pipeline
output (blue squares) performs best, whereas oversampling (green line)
deviates from the truth. Padding the edges of the resolution matrix (orange
triangles) improves the agreement at the largest scales, but those modes are
lost to continuum errors in any case. (Bottom) The difference between power
spectrum estimates using the fitted PSF and the true model PSF, divided by
the true underlying signal. The fitted PSF introduces a wavelength dependent
resolution error.

of the systematic error contribution of the resolution matrix to the
measurement.

A potential limitation of these simulations is that real DESI
observations have mostly galaxies, rather than quasars. While our
simulations have typical numbers of standard stars and sky fibers,
they have no galaxies and consequently do not simulate potential
cross-talk between galaxy and quasar targets. Guy et al. (2023)
carefully studied cross talk between adjacent fibers and found that this
is minimal, even for bright calibration lines, so we do not anticipate
this will be important for much fainter the continuum and emission
lines present in galaxies and quasars.

5 RESULTS FROM DATA

After our comprehensive validation tests on the synthetic spectra,
we now analyse DESI early data. The Ly forest is measured in
the 1050-1180 A rest-frame region of each quasar; and the global
mean continuum is calculated using AAgr = 0.8 A coarse rest-frame
binning pixels in this range. We limit our analysis to the observed
wavelength range of 3600-6000 A. We also remove forests with mean
SNR less than 0.25 in the forest region in order to minimize possible
impurities in the quasar catalogue, where SNR = F/o,.!” The
locations of sky lines are naturally down-weighted by the pipeline,
but we mask certain particularly strong lines because they are difficult

"This definition of SNR is not ideal since it discriminates against high
redshift forests which intrinsically have lower mean flux, and therefore lower
SNR. We will investigate improvements in the SNR definition in future work.
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Table 1. Rest-frame wavelength ranges and number of quasars in DESI early
data. Quasars with BAL features are ignored.

Wavelength range [A] # All quasars

Lya 1050-1180 54 600
SB 1 1268-1380 115086
SB 2 1409-1523 153326
SB3 1600-1800 194 666

to reliably model.'® DLAs are difficult to simulate accurately and
complicate cosmological inference from P;p. We thus mask DLAs
at the wavelengths of their strongest absorption ' < 0.8 and correct
for the damping wings (due to both Ly & and Ly S transitions) above
this threshold. Furthermore, BAL features can contaminate the forest,
and hence these features are also masked. We do not estimate the
pipeline noise calibration errors simultaneously (i.e. we fix n = 1 in
equation 7) and only measure o in 20 observed frame wavelength
bins. As we show below, the noise and flux reported by the pipeline
have calibration errors, but due to heavy absorption and correlations
between pixels, the Ly « forest region is not stable to calibrate for
these errors. Instead, we carry out a meticulous study of statistics
in the side band regions to calibrate our final reduction. We limit
continuum fitting to five iterations where we update the global mean
continuum and o/g.

We estimate P;p using the following fiducial power parameters in
equation (8): A = 0.066, n = —2.685, « = —0.22, B =3.59, § =
—0.16, and k; = 0.053 skm~'. We neither oversample nor pad the
resolution matrix, and use it as provided by the pipeline. We perform
a single iteration to measure the power spectrum. Further iterations
mostly refine Fisher matrix estimates (Karacayli, Font-Ribera &
Padmanabhan 2020), which we replace with a regularized bootstrap
estimate as described below. Even though we keep BAL quasars
with masked features while fitting the continuum, since Ennesser
et al. (2022) showed masking BAL lines yields an uncontaminated
estimate of the mean continuum, we remove them from the Pp
estimation to be conservative in our approach.'®

Wavelengths larger than the Ly « line in the spectrum are free
from neutral hydrogen absorption, so they can be used to statistically
estimate metal contamination and other systematics (McDonald et al.
2006; Palanque-Delabrouille et al. 2013; Chabanier et al. 2019). The
regions between strong emission lines at these wavelengths are called
the ‘side bands’ (SB). Table 1 lists the wavelength ranges for the
side bands and the number of quasars in each region. Subtracting
the SB 1 power spectrum statistically removes all power due to
metals with Agr > 1380 A, but some metal contamination remains.
For example, the Silll-Ly o cross-correlation imprints oscillatory
features (McDonald et al. 2006; Palanque-Delabrouille et al. 2013).
We provide the details regarding the metal power estimations and
other studies on systematics in the following subsections.

The results after we subtract the metal power are shown in Fig.
8. These P)p results are 5 — 15 per cent larger than the eBOSS
measurements (Chabanier et al. 2019), which corresponds to 1.5-3¢
tension. This tension is most visible in the z = 2.2 and 2.4 bins, but is
present in all redshift bins. We present possible explanations for the
origins of this discrepancy in Section 6. Furthermore, accurate noise
estimates are crucial to our final P;p, results. Fig. 9 shows the ratio of

Bhttps://github.com/corentinravoux/p1desi/blob/main/etc/skylines/
list_mask_p1d_DESI_EDR.txt

190ur preliminary comparison showed some deviation in Pip between two
samples that we will explore in a future study.
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the noise power spectrum (equation 11) to the noise-subtracted Ly«
power spectrum, which ranges between 25-100 per cent and is larger
at higher k values. The features in this figure can mostly be attributed
to the inverse of P)p, but to be exact, QMLE’s noise power spectrum
is an inverse covariance weighted average and therefore manifests
features based on the fiducial Ly o power spectrum, continuum
marginalization, and characteristics of pipeline noise. We stress that
this noise power strictly comes from the randomness of observed flux
values, and is not related to metal absorption, continuum fitting er-
rors, DLA masking, or noise correlations between pixels. Even small
miscalibrations can directly propagate to our final P,p estimates. The
SB power subtraction can balance out some miscalibration, but not
all of it. We find that the SB noise power estimate is 10-25% of
the Ly o region as shown in Fig. 10. Fortunately, the pipeline noise
estimates are accurate at the per cent level and the remaining errors
can be corrected by investigating the side bands.

5.1 Bootstrap error estimates

The Fisher matrix given by the QMLE assumes Gaussianity, and
hence may not be representative of the statistical errors in the
data either due to non-linearities in the Ly @ forest at small scales
or other effects in quasar selection, DLA masking etc. For that
reason, we calculate the bootstrap covariance matrix for a more
reliable error estimate as follows. First, we save QMLE’s power
spectrum and Fisher matrix estimates in 256 sub-samples.”’ We
then estimate the bootstrap covariance using these sub-samples over
200000 realizations. As we noted in Karacayl et al. (2022), the
bootstrap covariance is noisy (especially off-diagonal terms) and
needs regularization. We take advantage of the sparsity pattern of
the covariance matrix (Padmanabhan et al. 2016), and regularise the
bootstrap covariance as follows:

(i) We apply a sparsity pattern on the bootstrap covariance ma-
trix using the Gaussian covariance matrix from QMLE such that

i CiiCjj-
(i) We find the eigenvalues A; and eigenvectors e; of this sparse
bootstrap covariance matrix.

(iii) We calculate the precision of these eigenvectors under Gaus-
sianity: A2 = 7 COMLE¢, . This is the theoretical minimum for
the covariance.

(iv) We replace A; — max(A;, A?MLE) (McDonald et al. 2006).

’r ‘ > Fmin and ri; = Cjj/

We repeat these steps until convergence or for a maximum of 500
iterations. We choose ry;, = 0.01 for Ly o and ryy, = 0.001 for SB
1, because SB 1 values are more strongly correlated.

Fig. 11 shows that the bootstrap error estimates are mostly larger
than the Gaussian estimates except between 0.003skm™' Sk <0.1's
km~! for z > 3.0. QMLE consequently somewhat underestimates the
errors on most scales for most redshifts.

5.2 Side bands

We have investigated wavelengths larger than the Ly « line in the
spectrum to statistically estimate metal contamination and other
systematics as they are free from neutral hydrogen absorption
(McDonald et al. 2006; Palanque-Delabrouille et al. 2013; Chabanier
et al. 2019). As mentioned previously, we use SB 1 to estimate the
metal power in the Ly o forest. In this section, we provide details

20Number of sub-samples is based on the MPI tasks used, which is a current
code limitation.

MNRAS 528, 3941-3963 (2024)
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Figure 8. Final Ly « forest Pip results. We remove BAL quasars from our sample, mask DLAs and major sky lines, and correct for pipeline noise and flux

miscalibrations. Metal power is subtracted using side bands as described in Section 5.2. Error bars are from 200 000 bootstrap realizations of 256 subsamples.
Our Pjp results are slightly larger than eBOSS measurements (Chabanier et al. 2019), which is most visible at z = 2.2 and 2.4 bins.
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Figure 9. Ratio of noise power to noise-subtracted Ly « power from data.
The noise power spectrum is not negligible even at large scales. Results at
z = 2.0 are most sensitive to the noise power estimates. The features in this
ratio mostly come from the inverse of Pip.
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Figure 10. Ratio of noise power in SB 1 to Ly« region from data. It is
redshift and scale dependent. Noise power is smaller in side band regions,
which means pipeline noise miscalibrations cannot be fully removed by side
band subtraction.
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Figure 11. Ratio of the regularized bootstrap error estimates to Gaussian
(QMLE) errors for Ly . We estimate the bootstrapped covariance matrix
from 200000 realizations over 256 subsamples. This shows that QMLE
underestimates the errors on most scales and redshifts.
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Figure 12. Ratio of metal (SB 1) power spectrum to metals-subtracted Ly «
power spectrum. The metal power is well below 20 per cent for k = 0.001 s
km™!, but it is potentially a significant source of systematic error at larger
scales.

for the SB 1 power spectrum measurement and further make use
of the SB 2 and SB 3 regions as diagnostics of the metal power
and other systematics such as noise calibration. As before, we mask
BAL features on all continuum fitting reductions, then ignore these
quasars in further analysis.

We first fit the continuum in the SB 1 and SB 2 regions while fixing
n = 1. We find the power in SB 1 is larger than in SB 2 as expected,
except at z = 2.0, where Psg, > Psp for £ < 0.003 s km~!. This
likely points to some remaining continuum errors in the side bands.
The C 1v doublet feature is clearly visible in our estimates. We refer
the reader to our companion paper on modelling the doublets in the
side band power spectrum (Karacayl et al. 2023).

The accuracy of noise calibration and its dependence on SNR can
also be studied using these side bands. We divide the spectra into
high (SNR > 2) and low (SNR < 2) signal-to-noise ratio samples.
This corresponds to approximately a 30/70 percent split in terms
of the number of quasars for both side bands. We find that the low
SNR sample sometimes has larger power, as was the case in SDSS
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Figure 13. Pipeline noise correction term »n on all three side bands. These
regions are relatively absorption free and can be observed in lower redshift
quasars, so they provide robust statistics. (Top) All three side bands show
the same n trend. We find that the pipeline noise estimates are correct at
the per cent level. The sharp feature at 4800 A occurs at the boundary between
CCD amplifiers. (Bottom) Average n over three side bands. The SNR > 2
sample (orange circles) has higher n than lower SNR < 2 sample (blue
triangles). This difference is 1.1 per cent on average. We correct the pipeline
noise estimates by 7 of all spectra (black squares) and assign 1.1 per cent as
our noise systematic error budget.

(McDonald et al. 2006), but we note that the low SNR sample yields
significantly noisier Pp estimates, which hinders strong conclusions,
so we further explore this dependence using variance statistics below.
Unfortunately, the power difference between the low and high SNR
samples is potentially due to the SNR dependence of the pipeline
noise estimates. Therefore, we remove the metal power from the
Lyo forest estimates using our best estimates after we recalibrate the
pipeline noise, which is different from what was done in McDonald
et al. (2006). Finally, Fig. 12 shows the ratio of the SB 1 power
spectrum to the metals-subtracted Ly o power spectrum. The metal
power is potentially a large source of systematic error at k < 0.001 s
km™!, but its effect is well below 20 per cent at higher k values.

5.2.1 Noise calibration error

As we have alluded to before, the pipeline noise estimates can suffer
from miscalibrations, which then directly propagate to the final Ly o«

MNRAS 528, 3941-3963 (2024)
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Figure 14. Stacked normalized flux from all three side bands in observed wavelength. We smooth the normalized flux with a 4.8 A moving box-car average
to suppress spurious fluctuations. Residual errors peak at most at 3 per cent at the Balmer and Ca 11 H&K doublet lines. We correct the pipeline flux and noise
estimates using the average of all three side bands (black line) and perform the final calibrated continuum fitting (which also includes the » correction). This
calibration removes significant features from SB 1 (red line), such that the remaining fluctuations are 0.2 per cent on average.

Pip estimates. Fortunately, smooth quasar continua in relatively
absorption-free regions (i.e. the side bands) provide near-ideal
data to investigate the estimated pipeline variance versus observed
variance in the data. These regions can furthermore be observed in
numerous lower redshift quasars, so they provide robust statistical
measurements. Our continuum fitting algorithm quantifies this noise
calibration error through the 1 parameter, which is measured by
comparing the scatter in §F to the reported pipeline o ip. values. The
pipeline noise is underestimated for n > 1 and overestimated for n
< 1.

First, we fit the continuum on all three side bands while keeping
n = 1 fixed. Then we calculate the multipoles (§), (§2), and (§%) in
logarithmic o pip bins. We find that use of 4/ ((8%) — (82)2)/N as an
error estimate yields biased results, so we instead estimate the error
on the observed scatter (8%) with the delete-one Jackknife method
over sub-samples. Finally, we fit for n and o ss using equation (7),
where the continuum is already taken into account in 8.

We find that all three side bands yield similar n values to those
shown in Fig. 13. Our calculated n values fluctuate by a few per cent
around one, which means the pipeline noise calibration is correct
at the percent level. The boundary between CCD amplifiers is
responsible for the sharp feature at 4800 A. The average noise
calibration correction 77 is shown in black squares in the lower
panel. We correct the pipeline noise estimates using this mean 77 as
a function of wavelength and perform a final calibrated continuum
fitting, which further includes the flux calibration as discussed below.
We again split the data into high (SNR > 2) and low (SNR < 2)
signal sub-samples and measure the n parameter in each sample.
These are shown with orange circles and blue triangles in the same
lower panel of Fig. 13. We observe a clear SNR dependence in the
noise calibration error, as has been indicated by the power spectrum
estimates on these same low and high signal sub-samples. We assign
the average difference oy = 1.1 per cent to the systematic error
budget.

syst

oy =o5Py. (21)

Finally, we calculate the average pipeline inverse variance as a
function of flux transmission fluctuations §r and wavelength. The

MNRAS 528, 3941-3963 (2024)

pipeline inverse variance overweights §p = —1 pixels at Aops =
5200 A which we confirm does not happen in our mock analysis. We
do not observe such a peak in SB 1, so we speculate that it is a bias in
noise calibration due to substantial Lyx absorption. We confirm that
using o ss in the continuum fitting and Pgy in the QMLE removes
this feature from the weights. Therefore, we conclude that it does not
bias our results.

5.2.2 Flux calibration error

Following du Mas des Bourboux et al. (2020), we tested possible flux
calibration errors by stacking all normalized quasar spectra in the
observed frame using all three side bands. This stacked normalized
flux is shown in Fig. 14. The residual errors are at most 3 per cent,
and we find that the largest errors are at the locations of the Balmer
series and Ca I H&K doublet lines.

We average the stacked normalized flux in all three side bands and
smooth with a 4.8 A moving box-car average. We then divide the flux
and noise estimates by this correction factor. This calibration removes
significant features from SB 1 (red line), such that the remaining
fluctuations are 0.2 per cent on average (smoothed on the same 4.8 A
scale).

5.3 Systematic error budget

We identified four sources of systematic errors. First, given the large
contribution of the noise power, our power spectrum estimates are
susceptible to pipeline noise misestimates. Second, the DLA finder
is not perfect and can miss some DLAS or introduce false positives,
which would add power to large scales. Third, the spectrograph reso-
lution limits the smallest scale we can measure, and its uncertainties
must be propagated to the remaining scales. Finally, our continuum
marginalization does not remove all modes of error, so we estimate
the systematic error due to the remaining fluctuations.

Our systematic error analysis relies on various scalings of the
underlying signal. Directly using the power spectrum estimates
introduces spurious fluctuations, so we instead use a smooth power
spectrum Pgnoom(k, z) that we calculate as follows: We apply
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SmoothBivariateSpline to the logarithms of 1 + z, k and
Pip with corresponding statistical weights o g,/P1p and a smoothing
factor that is five times the number of data points. This function in
SCIPY is based on the algorithm presented in Dierckx (1981, 1995).

(i) Noise: As we discussed above, we use the average difference of
n values in the side bands between high and low signal sub-samples
to quantify the systematic error budget shown in Fig. 13.

oy = oy Py, (22)

where o;; = 1.1 per cent as discussed previously. In this case, we do
not smooth the noise power spectrum Py since it does not suffer from
random fluctuations. Possible origins of this error include correlated
CCD readout noise and errors in sky estimates per fiber. We revisit
this point at the end of Section 6.

(ii) Resolution: Based on our analysis in Section 4.2, we assign
1 percent precision to the pipeline resolution estimates that is
approximately consistent with the redshift average values in Fig.
7.

o3 =1 per cent x 2k*R? X Pymoon(, 2), (23)

res

where R, = cAApgsi/(1 + 2)Ary« as defined in Section 4.1. We do
not directly use the values in Fig. 7 as it could introduce double
counting of noise calibration errors as spectro-perfectionism couples
noise and resolution.

(iii) Incomplete DLA removal: Wang et al. (2022) report over
90 per cent efficiency and purity for the DLA finder for a range of
SNR and column density ranges. To be conservative, we pick the
worst performance number at SNR = 1 — 2 and assign an average
15 per cent inefficiency ratio and multiply the smooth power estimate
with the redshift average of the absolute ratio of Pypa/Pywe — 1 in
Fig. 6.

syst

opLa = 15 percent X (| PypLa/ Pirue — ll)z X Psmoorn(k, 2) 24)

(iv) Continuum errors: We use the absolute ratio of Pon/Pyye in
Fig. 5, which is of the order of 107>, This error also scales with the
smooth power.

oo = | Peont/ Puuel(k, 2) X Panoom(k, 2) (25)

Note that continuum errors themselves are larger than 107> as shown
in Fig. 4. However, our marginalization prevents the bulk of these
errors from contaminating the P;p measurements and the remaining
continuum errors are fortunately extremely small. Furthermore, the
modes that are most affected are not in our conservative range.

Fig. 15 shows the systematic errors relative to the statistical
errors. DLA systematics heavily affect the large scales, whereas the
resolution systematics become relevant at k > 0.01 s km™! (small
scales). The strength of noise systematics decreases with redshift as
a consequence of decreasing number of quasars. Change from linear
to log-linear binning at k = 0.01 s km™! increases the bin size and
causes the jump at this wavenumber for the noise systematics ratio.

6 DISCUSSION

In this section, we first provide a qualitative comparison of our results
to FFT estimates on the same DESI EDR + data, and compare
both to eBOSS measurements. We then discuss the effects of each
systematics and their contribution to the covariance matrix. A full
cosmological comparison with respect to physical parameters will be
the subject of future analysis with DESI Year 1 data, and will require
significant development to generate hydrodynamic simulations and
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Figure 15. Systematic error budget divided by the statistical errors estimated
by bootstrap analysis. Systematics due to the noise calibration is persistent on
all scales and prevalent over the statistical error at lower redshifts. Resolution
systematics predominantly influence small scales (high k).

train emulators (Pedersen et al. 2021; Cabayol-Garcia et al. 2023;
Chabanier et al. 2023). We instead provide a comparison using a
simplified version of equation (8).

6.1 Consistency between methods and literature

Fig. 16 compares Pp from DESI EDR + using FFT and QMLE
methods. Both methods agree with each other within error bars
until half the Nyquist frequency. We note that the FFT sample is
limited to SNR > 1, whereas the QMLE sample is extended to SNR

MNRAS 528, 3941-3963 (2024)
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Figure 16. Comparison of Pp between FFT and QMLE methods on DESI EDR + and to eBOSS. Both methods agree with each other overall, but disagree
with eBOSS mostly at large scales at z < 2.6. We suspect the efficiency of the DLA finder and the noise calibration could cause this discrepancy, and we will

explore this further in future work.

> 0.25. Since QMLE applies a weighted average based on SNR,
this choice has minimal effect, which we confirm by comparing the
QMLE estimates on the SNR > 1 sample. The agreement between
the two estimators is noteworthy given the built-in different methods
of handling noise, metals, masking, etc. Since we find z = 2 bin
is highly contaminated by various systematics, we recommend not
using our QMLE results at z = 2 for any cosmological inference.
Specifically, we find larger power than eBOSS on large scales, and we
put substantial effort into identifying the root cause. The continuum
fitting method slightly differs between eBOSS and DESI analyses,
which could affect these large scales. However, our tests on mocks
indicate that the effect of continuum errors on the power spectrum is
small for DESI. The prime candidate then is systematics related to
DLAs. We find that eliminating sub-DLAs (log N < 20.3) removes
power from large scales, but improvement in lower redshift bins
comes with deterioration at higher redshifts. Furthermore, the DLA
finder yields many false-positive, low-column density systems and
is not reliable to identify such systems. The second candidate is a
possible error in the noise power subtraction. However, our noise
calibration correction does not fix this issue. We will study this

MNRAS 528, 3941-3963 (2024)

disagreement further after additional development and testing of the
DLA finder and how DLAs are included in our mock data sets, as
well as with additional tests on the continuum fitting method.

6.2 Off-diagonal systematics in the covariance matrix

Proper use of our systematics budget requires special guidance.
Chabanier et al. (2019) and Karagayli et al. (2022) added the
systematics errors in quadrature to the diagonal of the covariance
matrix. This may be true if systematic uncertainties are uncorrelated
between bins, but is inconsistent with our characterization. Simply
put, we characterize each systematic error by an unknown scalar €
multiplied with some P(k) such that the uncertainty is in €, not in
P(k). For a given true signal s(k), the observed data is given by d(k) =
s(k) + €P(k), and the covariance matrix becomes C = (d(k)d(k')) =
(s(k)s(k')) + (€2)P(k)P(K'). In terms of the systematic error budget we
presented in Section 5.3, the covariance matrix should be modified as
Cootar = Csrat + D tsyst) Vi viT for each systematic error mode v;. This
notation also highlights the mathematical relation with the continuum
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Figure 17. Best-fitting parameters and 60 and 95 percent confidence
contours when the covariance matrix has systematic error contributions
in its off-diagonal elements (orange) and in its diagonal only (blue) at
z = 2.2. Off-diagonal terms shift the best-fitting values and increase the
error bars, which has potentially important implications for cosmological
inference.

marginalization procedure. Unlike the continuum marginalization
procedure which adds infinitely large error modes v; to fully remove
contamination, systematic error modes are down-weighted by finite
numbers.

Let us now discuss how these off-diagonal systematic error
terms affect the parameters of interest. As we have noted, a full
cosmological comparison is out of the scope of this work, and we
instead use a fitting function based on equation (8). In our preliminary
analysis, we found that not all parameters in equation (8) can be
fitted properly and securely, so we simplify it by first ignoring the
redshift evolution parameters B and 8. We instead fit each redshift bin
separately and deduce the redshift evolution of each fitting parameter
from these independent fits, though this redshift evolution itself is not
pertinent to our discussion. We also found that the data is not sensitive
enough to constrain the k; parameter and it is highly degenerate with
others. These two aspects of the k; parameter destabilize the fitting,
so we also eliminate it from our fitting function. We therefore instead
use the following simplified fitting function:

A k 2+4n+a Ink/kgy
Pbase(k) = kf <;) s (26)
0 0

where ko = 0.009 s km~! as before. This formulation has simplistic
yet useful characterizations such as parameter A as the amplitude and
n as the slope of the power spectrum. Even though this procedure
does not completely describe Pjp, it is adequate to compare different
measurements.

Another consideration in the fitting is that the Sill and Si il ions
absorb at wavelengths that are close to the Ly« transition line
(McDonald et al. 2006). The more visible oscillations in the power
spectrum estimates are due to the Silll line at Agp = 1206.5 A,
which corresponds to a velocity spacing of Av = 2270 km s!,
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Rather than complicating our fitting function with numerous Silt
lines (at 1190, 1193, and 1194.5 A; Kramida et al. 2021), we take a
single, average velocity spacing of Av = 5770 km s~! to model its
pattern in the power spectrum. We multiply the base fitting function
in equation (26) with 1 + af + 2a, cos(k Av) for each Siion s, where
ay is the relative bias with respect to neutral hydrogen (McDonald
et al. 2006; Palanque-Delabrouille et al. 2013). We find the least x>
solution using IMINUIT?! (Dembinski et al. 2022), and then sample
around the minimum using the EMCEE??> sampler (Foreman-Mackey
et al. 2013).

We apply this procedure to our metal-power subtracted power
spectrum results. The covariance matrices are obtained with the
bootstrap method. Fig. 17 shows a corner plot at redshift z = 2.2
at 68 and 95 per cent confidence levels generated using the GETDIST
package (Lewis 2019). Results from adding the systematic error
budget to the diagonals of the covariance matrix are shown in blue
contours. Our recipe for the off-diagonal contribution (shown in
orange) not only enlarges the confidence area (i.e. increases the
error bars), but also shifts the best-fitting parameter value, which
is particularly pronounced in the amplitude parameter A. This has
potentially important implications for cosmological inference. These
oft-diagonal covariance matrix contributions will be important to
incorporate into future analyses.

6.3 Effects on parameters of each systematic

The systematic error budget diminishes the benefit of having a large
and statistically powerful data set. As the data size increases, the
statistical error bars decrease, but the systematic error budget stays
the same and eventually saturates the constraining power of any
analysis. Using the same off-diagonal recipe for the covariance
matrix, we break down how each systematic influences the error
bar of inferred parameters. First starting with only the statistical
covariance matrix from bootstraps, we add each systematic indi-
vidually to the covariance matrix, find the least X2 solution, and
sample around this minimum. Fig. 18 shows the confidence regions
using the statistical covariance in black dashed lines, where the noise
systematics are in blue, the resolution systematics are in orange,
and the DLA systematics are in green at z = 2.8. The noise and
resolution systematics visibly enlarge the contours, and resolution
systematics further shift the best-fitting values. The DLA systematics
do not seem to increase the error bars significantly compared to the
other two. Based on our analysis with the minimizer, we find that
the error in the A parameter increases by 50 percent due to noise
systematics, 34 per cent due to resolution systematics, and 74 per cent
when all systematics are included. However, the slope parameter n
is affected more unevenly: its error increases only 7 percent due
to noise systematics, but 89 per cent due to resolution systematics.
Tables 2 and 3 detail these numbers.

Year 1 DESI spectra will provide even more statistical power. To
fully exploit its statistical power, we will have to prioritise mitigation
of the noise calibration and spectrograph resolution systematics.
As mentioned in the previous section, correlated CCD readout
noise and sky subtraction errors can source noise systematics. The
small number of quasars in the EDR + sample limited our ability
to perform ambitious data splits. The first-year data will have
about a million quasars, which will enable a granular investiga-
tion. To remedy the noise systematics, we will first split the data

2l https://iminuit.readthedocs.io
22https://emcee.readthedocs.io
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Figure 18. The 60 and 95 percent confidence regions using only the
statistical covariance (black dashed lines), and individually adding the noise
systematics (blue), resolution systematics (orange), and DLA systematics
(green) at z = 2.8. DLA systematics do not seem to increase the error bars as
much as the other sources of systematic error. The noise and resolution
systematics visibly enlarge the contours, and the resolution systematics
further shifts the best-fitting values.

Table 2. Percentage increase in error given by the minimizer for each
systematics at z = 2.8. The precision of the amplitude A is nearly equally
affected by noise and resolution systematics, whereas for n, it is thoroughly
affected by resolution systematics.

Increase in error

Systematics A n o

Noise 49.8% 6.9% 0.7%
Resolution 34.0% 89.1% 26.5%
DLA 0.9% 2.8% 30.5%
All 74.3% 99.9% 62.5%

Table 3. Best-fitting values and error estimates given by the minimizer for
each systematics at z = 2.8.

Best =+ (stat.) =+ (noise) =+ (reso.) + (DLA)
A 0.05578 0.00033 0.00037 0.00030 0.00005
n —2.643 0.008 0.003 0.012 0.002
o —0.1451 0.0064 0.0008 0.0050 0.0054

into ten spectrograph subsamples, and then further subdivide the
data within each spectrograph into two to isolate different CCD
amplifiers. This division results in about 50000 quasars in each
region, approximating the sample size in this analysis, and so
should provide enough statistics to study Pjp in each subsample
precisely. CCD image simulations could also be studied for noise
recalibration parameters as well as refining the pipeline resolution
estimates.

MNRAS 528, 3941-3963 (2024)

7 SUMMARY

The 1D Ly« forest power spectrum P;p quantifies the clustering
of diffuse neutral hydrogen gas in the intergalactic medium. P;p has
been measured from various data sets, and has been used to constrain
the thermal state of the IGM, the sum of neutrino masses, and various
dark matter models. DESI will collect over 700 000 z > 2 quasars
during the five-year survey and will provide enormous statistical
power for future P;p cosmology. It will be able to measure P;p from
z =210z =5 and from approximate scales of 60 down to 1 Mpc.

This power must be matched with rigorous studies of data
and estimation methods. In this work, we employed the quadratic
maximum likelihood estimator (QMLE) to measure P;p. QMLE is
built to be statistically optimal and robust against Ly « forest-specific
challenges such as gaps in spectra and errors due to continuum fitting.
Additionally, QMLE benefits from the resolution matrix output of
spectro-perfectionism that preserves the full 2D resolution of the
spectrograph.

In order to test the pipeline at various stages, DESI collected
thousands of spectra during its Survey Validation phase. We used
these early spectra to determine if the DESI P;p pipeline (such
as noise calibration, resolution matrix, continuum fitting, and Pp
estimator itself) is accurate at the desired level and measure the
initial Pp from DESI.

The quasar continuum estimation is a potential source of large-
scale uncertainty and bias. We described each quasar with two
free fitting parameters (amplitude and slope) that multiply a mean
continuum, and fit each continuum in the forest region. The two-
parameter description is simplistic in terms of quasar continuum
diversity; and furthermore fitting the continuum in the forest region
removes the large-scale density information. Using synthetic spectra,
we found that the estimated large-scale variance matches the input,
but the estimated mean continuum deviated from the truth. Even
though the estimated mean continuum was different, we showed
that QMLE successfully marginalized out large-scale biases, and the
residual power due to unmarginalized continuum error modes was
significantly smaller than the signal.

The small-scale structure in the Ly « forest is extremely important
for the many science applications of Pp, and accurate knowledge
of the spectrograph resolution is important to make the best use
of the smallest scales. We created CCD image simulations with
approximately 45000 z > 2.1 quasars (ten simulated observations
of just quasars) and extracted the 1D spectra of these quasars using
the DESI pipeline. We used these simulations to demonstrate that
the resolution matrix produced by the pipeline was valid and did
not require any modifications. We also showed that the PSF is
well approximated by the pipeline’s PSF model and that systematic
errors due to PSF mismatch between the true PSF and the PSF
fit by the pipeline were consistent with 1 percent precision on the
resolution.

The noise power subtraction is not an insignificant part of
the Pip estimation for DESI’s medium-SNR spectra. Hence, any
miscalibration of the pipeline noise is directly transmitted to the
final results. We showed that the side band power subtraction that
removes the metal power also eliminates some of this miscalibration,
although not perfectly. Therefore, we examined the variance statistics
of the transmission fluctuations in the relatively absorption-free side
band regions to quantify the noise and flux miscalibration of the
pipeline. We showed that these calibration errors are small (around a
few per cent) and corrected them in our analysis. We also found that
the pipeline noise estimates are still coupled to the signal, and the
noise calibration error depends on SNR. We do not try to correct for
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this SNR dependence and instead include this effect in the systematic
error budget.

In order to have accurate error estimates, we relied on bootstrap
realizations, which yielded larger statistical errors than their Gaussian
counterparts from QMLE on almost all scales and redshifts. We
further identified and quantified four major systematic error sources:
noise, resolution, incomplete DLA removal, and continuum errors.
Off-diagonal terms in the covariance matrix due to these systematic
errors enlarge the error bars of inferred parameters and can also shift
the best-fitting values, hence biasing cosmological interpretations.
We showed that the noise calibration and resolution systematics
weaken the statistical power of the current DESI early data, and
will be priorities for additional study and mitigation for the Year
1 analysis. For the latter, we plan to conduct data split studies to
quantify and mitigate noise systematics, create more extensive image
simulations to quantify resolution systematics, and produce more
synthetic data sets to better quantify the performance of the DLA
finder and its impact on our results.

We found that the resulting P;p measurement from DESI early
data and two months of main survey was in agreement between
QMLE and FFT results, which is remarkable since the two estimators
have different approaches for systematics. Furthermore, the two
methods apply different SNR thresholds to the DESI sample. We
confirmed that QMLE results are not affected by this threshold,
which is expected since QMLE applies a weighted average based on
SNR. These DESI QMLE and FFT P,p results are 5 — 15 per cent
larger than previous measurements from eBOSS and in 1.5-3¢
tension with those results. We investigated: (1) DLA finder efficiency
and column density cuts; (2) noise calibration errors to explain
this disagreement. However, none of these investigations offered
a satisfactory explanation for the disagreement with eBOSS. This
feature is worth further attention in future work.

To conclude, the DESI spectral pipeline works exceptionally well.
The major analysis pipeline errors are no larger than few per cent,
and QMLE is well suited for DESI Pp measurements. The next five
years will bring incredible accuracy, precision, and power to Ly «
forest cosmology.
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APPENDIX A: CONTINUUM ERROR
MARGINALIZATION

We fit the quasar continuum in the forest region as discussed
previously. This method not only fits for the quasar continuum (and
the mean transmission of the IGM), but also fits the large-scale
density modes in the forest. This removes the large-scale information
from the estimated flux transmission fluctuations and further cause
distortions in the 3D correlation function (Slosar et al. 2011; Bautista
etal. 2017; du Mas des Bourboux et al. 2020). Fortunately, the modes
of error are known; and the QMLE is capable of marginalizing out
these errors (Slosar et al. 2013, Appendix B).

The continuum marginalization in Karagayli, Font-Ribera &
Padmanabhan (2020) is implemented by modifying the covariance
matrix to C’ = C + Nvv", where N is large and v is the mode to be
marginalized out. Then, one can show that C'~!(§/, + av) ~ C~1§,
where the new data vector 8§ is orthogonal to v, which effectively
removes any information from data that is in mode v.

We updated our continuum marginalization technique for more

numerical stability. Instead of adding large numbers to the covariance
matrix, which could destabilize the inversion, we take advantage of
the Sherman-Morrison formula (Sherman & Morrison 1950):
ClyyTC™!
1+vTC-ly’
Since the covariance matrix C is symmetric, this formula can be
calculated by defining an intermediate vector y = C~'v. Moreover,
the marginalization vector mode v is theoretically multiplied by a
large number, such that v"C~'v > 1, and that large number cancels
out by the division, hence does not need to be explicitly defined
anymore. Putting these together also makes the workings of the
marginalization clearer:

C+vvH)'=Cc!- (A1)

T
cl=ct'-2L A2
= (A2)
T
clv=clv-22 2 (A3)
yv

There are two caveats to this approach. First, when we marginalize
over multiple templates, we have to iterate this formula with the
updated covariance matrix in each step. Fortunately, this does not
introduce additional memory strain in our case since we already store
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the inverse covariance matrix in memory, but other applications may
prefer the Woodbury formula (Woodbury 1950). Second, trying to
remove two templates that are approximately the same results in a
division by near zero. After removing the first vector vy, the second
vector results in y, = c! v, &~ (. To prevent numerical problems,
we first store all n template vectors in a rectangular matrix and
perform a singular value decomposition. This yields an orthogonal
basis for the templates and vectors with small singular values can be
left out of the marginalization process.

APPENDIX B: SIGNAL-NOISE COUPLING AND
SMOOTHING

Another important caveat from our preliminary analysis on mocks
is the well-known signal-noise coupling in the Lya forest. The
pipeline noise is coupled to the observed flux by construction through
Poisson statistics, which means pixels with less flux are weighted
more in the quadratic estimator formalism (McDonald et al. 2006).
However, this does not mean the noise estimates are wrong, the
noise is non-diagonal, or there are cross-correlations between signal
and noise. The simulations truthfully populate the mocks with noise
using independent random numbers. The core problem is that these
(correct) noise amplitudes are biased weights for the inverse variance
weighted averages since they depend upon the signal (see below for
an analytical description of this effect). To mitigate this problem, the
DESI pipeline determines a smoothed version of the sky-subtracted
spectrum of each target that is obtained with a convolution using
a Gaussian kernel of ¢ = 10A (Guy et al. 2023). However, our
preliminary analysis showed this is not enough to fully uncouple the
signal and noise, so we further smooth out noise estimates in only
their contribution to the covariance matrix in QMLE.

First, we find the median M (x) and the median absolute deviation
D(x) = M(|x; — M(x)]) in the pipeline noise estimates while
ignoring pixels with o pipe > 1000. Noise outliers are then identified
by

Obpipe > M(Upipe) +3.5x D(apipe)’ (B1)

and replaced with the median pipeline noise value. We pad the noise
array by 25 pixels at both ends with the edge values to mitigate
any boundary effects. We convolve the resulting noise estimates by
a hybrid Gaussian box-car window function, where the smoothing
kernel has a size of 51 pixels and a Gaussian sigma of 20 pixels. After
applying this hybrid boxcar-Gaussian smoothing kernel, we return
outlier values to their original positions. This smoothing broadly
captures the spectrograph behaviour while still down-weighting the
masked or high-variance pixels.

Analytical expressions: The pipeline noise estimate of a CCD
pixel depends on the exposure time f..,, and has the following
contributions:

(i) Source electrons Nyoyree = Cy(A)F(X) o teyp. Note F = F(1+
)

(ii) Sky electrons Ny X fexp.

(iii) Dark electrons o< fey,. We can absorb this term into sky
contribution.

(iv) Read noise electrons as Gaussian noise with constant aé
independent of feyp.

Then, pipeline variance estimate on flux f is a%pipe = Nsource +

Ny + 02. We can write the pipeline noise estimate on F as follows:
2
2 _ Ofpipe _ F Ny + 0(2;

e = ==+ —. B2
O'F,plpe C;()\) Cq + C3 ( )
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Figure B1. Coupling parameter A vs quasar brightness C; as electrons
per Angstrom for DESI fiducial values at 3800A. The upper axis is the
human-readable SNR of the quasar. DESI expects mean SNR = 0.45, which
corresponds to A = 34 (low coupling).
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Figure B2. Biased power spectrum estimates for different A values. Using
true mean flux to extract deltas (dashed lines) shows slightly less bias than
using biased delta extraction (solid lines). For comparison, our estimates from
mocks without smoothing fall close to A = 50 (red line) as expected from
the fiducial value.

The total variance includes large-scale structure fluctuations olsss
which should be multiplied by the mean IGM flux F.

2 2 5 F | Ngy+0g
on = F o —_—+ ——" B3
F Lss T C + C§ (B3)
Let us write this variance on F as follows:
1 — Ny z
02 = — |F 4 C,Fois+ 0 T% (B4)
C‘I CC]
F+A
op=18 (B5)
C‘I
where we defined
— Nyey + 02
A=C,Foks+ R (B6)
q

Using inverse variance weights means w; o< (F + A)~!. Since 0 <
F < 1, our weights are highly correlated with the signal if A < 1.
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Unbiased limit A >> 1 is satisfied when the sky dominates the signal
(noisy spectra) or the quasar is so bright that the LSS term dominates
the variance.

There are two important points to note. First, strictly speaking,
pipeline noise estimates are correct. The problem is not an error
in the pipeline but in the nature of Lyo forest. As we mentioned
in the main text, DESI decouples signal and noise by smoothing
source contribution at 10A scale (Guy et al. 2023). Second, noise
is still diagonal, and there are no cross correlations between signal
and noise. Noise on each pixel is another independently generated
random number. Therefore, even though its amplitude depends on the
signal, this dependence does not introduce auto or cross correlations
to noise.

DESI already has expected values for these quantities. Fig. B1
shows coupling parameter A vs quasar SNR. Low SNR quasars
manifest less coupling (high A) since they are dominated by sky and
read noise. High SNR quasars also manifest less coupling as the LSS
term dominates. On average, DESI expects the mean quasar SNR to
be 0.45, which corresponds to A = 34.

The weighted average estimator for the mean flux is given by
F =Y w;F;/Y_ w;, where w; = (F; + A)~!, where Fis signal only
as before. The expected value of this estimator can be calculated by
using the probability distribution function P(F).

e I F
<F> - A/o Fa PUAE (B7)

L |
-1 _
A _/O F+A’P(F)dF (B8)

We can Taylor expand these expressions for A >> 1. The normalisa-
tionis A &~ A (14 F/A). The mean flux estimate is

(F)

1
F
A‘/0 7 +A73(F)dF (B9)

A e (1= 5 pryar B10
X/(_X>() (B10)

Afﬁ—lffﬁ Bl11
X‘K—<+X) S B

Finally, the error on the mean flux estimate is

%

AF = T 0iss (B12)

The same calculation can be done for two-point statistics. Gauss—
Hermite quadrature is still the best way to numerically calculate the
expected value. We can either use the true mean flux or use the
biased mean flux estimates from weighted averages to calculate §s.
It is worth noting that using biased mean flux does not scale but shifts
estimated deltas.

F(l+6; AF
gq:si_j (B13)
F+ AF F
This does not make a big difference and only affects the k = 0
mode of the power spectrum. However, the correlation function
asymptotically approaches a constant at large scales. Assuming true

deltas are used with biased weights, the error on the two-point
function estimate is

i

F
Ay = —— ((878;) + (8:67)) (B14)

In other words, estimated two-point statistics are contaminated by
three-point statistics and distorted at all scales through correlations
between weights.
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‘We have numerically calculated both expressions. For brevity, Fig.
B2 shows only biased P;p with respect to different A values. Using
true mean flux to extract deltas (dashed lines) shows slightly less
bias than using biased delta extraction (solid lines). For comparison,
our estimates from mocks without smoothing fall close to A = 50
(red line) as expected from the fiducial value. As we note in the main
text, smoothing the noise estimates solves this problem.
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