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Abstract. We address the problem of computing a control for a time-dependent nonlinear system to reach a target set in a
minimal time. To solve this minimal time control problem, we introduce a hierarchy of linear semi-infinite programs, the values
of which converge to the value of the control problem. These semi-infinite programs are increasing restrictions of the dual of the
nonlinear control problem, which is a maximization problem over the subsolutions of the Hamilton-Jacobi-Bellman (HJB) equation.
Our approach is compatible with generic dynamical systems and state constraints. Specifically, we use an oracle that, for a given
differentiable function, returns a point at which the function violates the HJB inequality. We solve the semi-infinite programs using
a classical convex optimization algorithm with a convergence rate of O( 1

k
), where k is the number of calls to the oracle. This

algorithm yields subsolutions of the HJB equation that approximate the value function and provide a lower bound on the optimal
time. We study the closed-loop control built on the obtained approximate value functions, and we give theoretical guarantees
on its performance depending on the approximation error for the value function. We show promising numerical results for three
non-polynomial systems with up to 6 state variables and 5 control variables.
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1. Introduction.

1.1. Motivation and related works. This paper deals with the control of a deterministic dynamical
system to reach a target set in a minimal time. We consider a general case of a time-dependent nonlinear system
under nonlinear state constraints. Several applications in various fields, such as robotics [22], aerospace [38],
maritime routing [30] or medicine [42], can be formulated as minimal time control problems. Minimal time
control, also known as time optimal control, can be seen as a special case of the general framework of Optimal
Control Problems (OCP). Solving an OCP for such generic dynamics and constraints is a difficult challenge,
although deep theoretical tools are available such as the Pontryagin Maximum Principle (PMP) [8, 13, 35]
and the Hamilton-Jacobi-Bellman (HJB) equation [14, 15]. Those theoretical tools, initially developed in the
unconstrained setting, have been extended to the case of state constraints [10, 37]. From an numerical point of
view, the multiple shooting techniques [34, 41] are based on the PMP, and reduce to the solution of a two-point
boundary value problem. The direct methods reduce to the solution a nonlinear programming problem after
discretizing the time space, or parameterizing the control u(t) in a finite dimensional subspace [38, 41]. The
celebrated Model Predictive Control (MPC) approach belongs to the category of direct methods [9]. Another
approach is to compute the value function of the problem as a maximal subsolution of the HJB equation [40].
This approach is related to the weak formulation of the OCP, which is an infinite dimensional linear program
(LP) involving occupation measures. The dual problem of this LP is exactly the problem of finding a maximal
subsolution of the HJB equation [20, 26]. In [19, 26], the Moment Sum-of-Squares (SoS) hierarchy is used to
approximate the solution of the resulting infinite dimensional LPs, in the case where the dynamics and the
constraints of the OCP are defined by polynomials. The convergence rate of this numerical scheme is studied
in [25] for infinite-time discounted polynomial control problems. Still in the context of polynomial control
problems, a work [23] based on the dual LP and the SoS hierarchy also studies the design of a closed-loop
controller based on the approximate value function that is computed. In [5], an extension of the SoS hierarchy
based on Kernel methods is employed to extend this computation to general nonlinear system. Regarding the
methods specifically dedicated to time-optimal control, we find the same categories: direct methods such as
MPC [39], indirect methods based on the PMP and the bang-bang property [28, 31] or methods based on convex
optimization [27].

1.2. Contribution. In this paper, we focus on the problem of computing a control to reach a target set
in a minimal time. We follow the line of works that use convex optimization to solve the dual problem of the
nonlinear control problem, over the subsolutions of the HJB equation [19, 20, 25, 26, 40]. In contrast to several
works using the Moment-SoS hierarchy [23, 25, 26, 33, 36], the dynamical system and the state constraints
considered here are generic and, in particular, are not assumed to be defined by polynomials. Instead of using
polynomial optimization theory and the associated positivity certificates, our approach relies on the existence of
a separation oracle capable of returning, for a given differentiable function V, a point (t, x) where the function
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V does not satisfy the HJB inequality. Such an oracle can be provided by a global optimization solver or by
a sampling scheme in a black-box optimization approach. In particular, our approach is compatible with the
sampled-data control paradigm [5, 8, 24]. Our contribution is manifold

• We introduce a hierarchy of linear semi-infinite programs, the values of which converge to the value of the
control problem. After regularization, we solve these semi-infinite programs using a classical algorithm
with a convergence rate in O( 1

k ), where k is the number of calls to the oracle. This yields subsolutions
of the HJB equation that lower-approximate the value function and provide a certified lower bound on
the minimum time.

• It is known that one can leverage any function V (t, x) approximating the value function, to design
a closed-loop, i.e., feedback controller [18, 23]. In this paper, we study the existence of trajectories
generated by such a controller.

• We study the performance of such a closed-loop controller, depending on how well V (t, x) approximates
the value function, in a way distinct from the analysis in [23]. In particular, this novel analysis enables
us to give a sufficient condition for the closed-loop controller to effectively generate a trajectory reaching
the target set within the considered time horizon.

• We perform numerical experiments on three non-polynomial controlled systems and compute lower and
upper bounds on the minimum time.

1.3. Mathematical notation. For any p ∈ N∗, and k ∈ N ∪ {∞}, we denote by Ck(Rp) = Ck(Rp,R)
the vector space of real-valued functions with k continuous derivatives over Rp. For a given set A ⊂ Rp, for
any function f ∈ Ck(Rp), we denote by f|A the restriction of f on A; moreover, we define the vector space
Ck(Rp|A) = {f|A : f ∈ Ck(Rp)} of restrictions on A of Ck functions. For any locally Lipschitz function f ,
we denote by ∂cf its Clarke subdifferential [12], to be distinguished from ∂xig, the partial derivative of a
differentiable function g with respect to xi.

For any two Lebesgue integrable functions f, g ∈ L1(Rp), we define the convolution product f ? g = g ? f as
f ? g(x) =

∫
Rp f(x)g(x−h)dh. We emphasize that this convolution product is also well defined if f is supported

on a compact set, and g is locally integrable. We denote by R[x1, . . . xp] the vector space of real multivariate
polynomials with variables x1, . . . , xp, and Rd[x1, . . . xp] the vector space of such real multivariate polynomials
with degree at most d.

For any set A ⊂ Rp, we write conv(A) for the convex hull of the set A. For any nonempty set A, and any
x ∈ Rp, we denote d(x,A) = infa∈A‖x− a‖2 the distance between the set A and the point x. We also define the
contingent cone to A at x ∈ A, denoted TA(x) as the set of directions d ∈ Rp, such that there exist a sequence
(tk) ∈ RN

++, and a sequence (dk) ∈ (Rp)N, satisfying tk → 0, dk → d, and x+ tkdk ∈ A, for all k ∈ N. Finally, we
say that a property P holds “almost everywhere” (a.e.) on A, or equivalently “for almost all x ∈ A”, to denote
that there exists a set N of Lebesgue measure zero such that the property P holds for all x ∈ A \N .

2. Problem statement and Linear Programming formulations.

2.1. Definition of the minimal time control problem. Let n and m be nonzero integers. We consider
on Rn the control system

ẋ(t) = f(t, x(t), u(t)),(2.1)

where f : R×Rn×Rm → Rn is Lipschitz continuous, and where the controls are bounded measurable functions,
defined on intervals [t0, t1] ⊂ [0, T ], and taking their values in a compact set U of Rm. Let X and K ⊂ X be
compact sets of Rn and x0 ∈ R. For t0, t1 ≥ 0, a control u is said admissible on [t0, t1] whenever the solution
x(.) of (2.1), such that x(t0) = x0, is well defined on [t0, t1] and satisfies the constraints

(x(t), u(t)) ∈ X × U, a. e. on [t0, t1],(2.2)

and satisfies the terminal state constraint

x(t1) ∈ K.(2.3)

We denote by U(t0, t1, x0) the set of admissible controls on [t0, t1]. We consider the question of the minimal time
problem from x0 to K,

V ∗(t0, x0) = inf
t1∈[t0,T ]

u(·)∈U(t0,t1,x0)

t1 − t0.(2.4)
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This is a particular case of the OCP with free final time [26], associated with the cost
∫ t1
t0
`(t, x(t), u(t))dt for

`(t, x(t), u(t)) = 1. The function V ∗ is called the value function of this minimal time control problem: this
describes the smallest time to reach the target set K, starting from x0 at time t0.

Assumption 1. For any (t, x) ∈ [0, T ]×X, the set f(t, x, U) is convex.

We underline that we do not have any convexity assumption on the constraint set X and on the target set K.

Remark 1. Even if the dynamical system of interest does not satisfy Assumption 1, we can apply the present
analysis to the convexified inclusion ẋ(t) ∈ conv f(t, x(t), U). According to the Filippov-Ważewski relaxation
Theorem [2, Th. 10.4.4], the trajectories of the original control problem are dense in the set of trajectories of
the convexified inclusion. The trajectories of the convexified inclusion may be seen as the limit of chattering
trajectories, i.e., when the control oscillates infinitely fast and where the constraint set is infinitesimally dilated.

Theorem 2.1. Under Assumption 1, the minimal time control problem (2.1)-(2.4) associated with a starting
point (t0, x0) ∈ [0, T ]×X is either infeasible or admits an optimal trajectory.

Proof. We consider the case where a feasible trajectory exists. This is a direct application of [40, Th. 2.1],
which, among others, characterizes the existence of an optimal trajectory for a control problem over a differential
inclusion. To emphasize the correspondence with the notation of [40], we highlight that we apply the theorem
with: the running cost function `(t, x, p) = 1, the terminal cost function g(t, x) = 0, the set-valued map
F (t, x) = f(t, x, U), the constraint set A = [0, T ]×X and the target set C = [0, T ]×K. We underline that the
assumptions (H1)-(H5) in [40] are satisfied here; more precisely, we highlight that our Assumption 1 enforces
(H2) and the hypothesis that a feasible trajectory exists enforces (H4).

2.2. Hamilton-Jacobi-Bellman equation and subsolutions. In optimal control theory, a well-known
sufficient condition for a function V to be the value function V ∗ is to satisfy the Hamilton-Jacobi-Bellman (HJB)
Partial Differential Equation (PDE). This PDE may be seen as a continuous time generalization of Bellman’s
dynamic programming optimality principle in discrete time [4]. In our minimal time control setting, the HJB
PDE reads

∂tV (t, x) + min
u∈U
{1 +∇xV (t, x)>f(t, x, u)} = 0, ∀(t, x) ∈ [0, T ]×X(2.5)

V (t, x) = 0, ∀(t, x) ∈ [0, T ]×K.(2.6)

In general, differentiable solutions of this PDE may not exist, so the concept of viscosity solutions is typically
used [14]. Another approach to get around the lack of a differentiable solution to the HJB PDE consists in
leveraging the concept of subsolutions [40], i.e., functions V ∈ C1(Rn+1) satisfying the following inequalities:

∂tV (t, x) + min
u∈U
{1 +∇xV (t, x)>f(t, x, u)} ≥ 0, ∀(t, x) ∈ [0, T ]×X(2.7)

V (t, x) ≤ 0, ∀(t, x) ∈ [0, T ]×K.(2.8)

The following lemma states that any subsolution of the HJB PDE is an under-approximation of the value
function.

Lemma 2.2. For any V ∈ C1(Rn+1) satisfying Eqs. (2.7)-(2.8), the following holds:

V (t, x) ≤ V ∗(t, x), ∀(t, x) ∈ [0, T ]×X.

Proof. We take any (t, x) ∈ [0, T ] × X and we consider that V ∗(t, x) < ∞, since the case V ∗(t, x) = ∞
is trivial. Hence, according to Th. 2.1, there exists an admissible control ū(·) ∈ U(t, t1, x) for t1 ∈ [t, T ] such
that V ∗(t, x) = t1 − t, and an associate trajectory x̄(t) such that x̄(t) = x and x̄(t1) ∈ K. We observe
that d

dt [V (t, x̄(t))] = ∂tV (t, x̄(t)) + ∇xV (t, x̄(t))>f(t, x̄(t), ū(t)) ≥ −1 a.e. on [t, t1], the inequality holding
since V satisfies Eq. (2.7). By integration, we observe that V (t1, x̄(t1)) − V (t, x) ≥ t − t1 = −V ∗(t, x), i.e.,
V (t1, x̄(t1)) + V ∗(t, x) ≥ V (t, x). As V satisfies Eq. (2.8) and as x̄(t1) ∈ K, we observe that 0 ≥ V (t1, x̄(t1)),
and therefore V ∗(t, x) ≥ V (t, x).

2.3. Infinite dimensional Linear Programming formulations. In the rest of the paper, we consider
a given point x0 ∈ X, and we raise the issue of computing the minimal time from x0 to K and the associated
control. We make the following assumption:
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Assumption 2. There exists an admissible control u ∈ U(0, t1, x0) associated with t1 ∈ [0, T ]. In other
words, V ∗(0, x0) ≤ t1 <∞.

We consider the optimization problem of finding the subsolution of the HJB PDE that maximizes the evaluation
in (0, x0). This problem may be cast as an infinite dimensional linear program:

sup
V ∈F

V (0, x0)

s.t. ∂tV (t, x) + 1 +∇xV (t, x)>f(t, x, u) ≥ 0 ∀(t, x, u) ∈ [0, T ]×X × U
V (t, x) ≤ 0 ∀(t, x) ∈ [0, T ]×K,

(DF )

with F ∈ {C1(Rn+1), C∞(Rn+1),R[t, x1, . . . , xn]}. For a given V ∈ F , the feasibility in (DF ) is clearly equivalent
to the satisfaction of Eqs. (2.7)-(2.8). We also note that this infinite dimensional LP formulation corresponds
to the dual LP formulation in [26]; in fact, this is the dual problem of an infinite dimensional LP formulation
of the control problem based on occupation measures. According to the next theorem, the problem (DF ) on C1

functions has the same value as the minimal time control problem.

Theorem 2.3. Under Assumption 1 and Assumption 2, and for F = C1(Rn+1), the value of the LP for-
mulation (DF ) equals V ∗(0, x0).

Proof. As for the proof of Th. 2.1, this is a direct application of [40, Th. 2.1], which also states the absence of
duality gap between a control problem over a differential inclusion and a maximization problem over subsolutions
of the HJB equation. We underline that the assumptions (H1)-(H5) in [40] are satisfied here; more precisely, our
Assumption 1 enforces (H2) and our Assumption 2 enforces (H4).

Theorem 2.5 extends this result by stating that we can require the subsolutions of the HJB equation to be in
C∞(Rn+1), while preserving the value of (DF ). Before stating this theorem, we introduce an auxiliary lemma.

Lemma 2.4. For any V ∈ C1(Rn+1) satisfying Eqs. (2.7)-(2.8) with feasibility error less or equal than η ≥ 0,
V (t, x) + η(t− 1− T ) satisfies Eqs. (2.7)-(2.8).

Proof. We introduce Ṽ (t, x) = V (t, x) + η(t − 1 − T ). By assumption on V (t, x), we have ∂tV (t, x) + 1 +
∇xV (t, x)>f(t, x, u) ≥ −η, for all (t, x, u) ∈ [0, T ] × X × U . By linearity, and since ∂t(t − 1 − T ) = 1 and
∇x(t− 1− T ) = 0, ∂tṼ (t, x) + 1 +∇xṼ (t, x)>f(t, x, u) ≥ 0. By assumption on V (t, x), we have V (t, x) ≤ η, for
all (t, x) ∈ [0, T ]×K. Hence, Ṽ (t, x) ≤ η + η(t− 1− T ) ≤ η + η(T − 1− T ) = 0 for all (t, x) ∈ [0, T ]×K.

Theorem 2.5. Under Assumption 1 and Assumption 2, and for F = C∞(Rn+1), the value of the LP
formulation (DF ) equals V ∗(0, x0).

Proof. We consider F = C∞(Rn+1) and we use the notation Y to denote the compact set [0, T ] × X.
We fix ε > 0, and we will prove that there exists V ∈ C∞(Rn+1) that is feasible in (DF ) and such that
V (0, x0) ≥ V ∗(0, x0) − ε. According to Th. 2.3, there exists V1 ∈ C1(Rn+1) that is feasible in (DF ) and such
that V1(0, x0) ≥ V ∗(0, x0)− ε

2 . For any σ ∈ (0, 1], we introduce the mollified function V1σ = V1∗φσ ∈ C∞(Rn+1),

where ωσ is the standard mollifier defined as ωσ(y) = 1
σn+1ω(y/σ), where ω(y) =

{
ξe
− 1

1−‖y‖2 if ‖y‖ < 1
0 if ‖y‖ ≥ 1

for a

given constant ξ > 0 such that
∫
Rn+1 ω(y)dy = 1. Hence, a simple change of variable shows that

∫
Rn+1 ωσ(y)dy =

1. We also underline that ωσ is non-negative and supported on the ball B(0, σ). For any y = (t, x) ∈ Y and any
σ ∈ (0, 1], we have that |V1(y)−V1σ(y)| = |V1(y)−

∫
B(0,σ)

V1(y−h)ωσ(h)dh| = |
∫
B(0,σ)

(V1(y)−V1(y−h))ωσ(h)dh|
as
∫
B(0,σ)

ωσ(h)dh = 1. We denote by LV an upper bound for the continuous function ‖∇V1(y)‖2 over the

compact set Ŷ = {y ∈ Rn+1 : d(y, Y ) ≤ 1}, which is a Lipschitz constant for the function V1. We deduce, by
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triangular inequality and non-negativity of ωσ that for any y ∈ Y ,

|V1(y)− V1σ(y)| ≤
∫
B(0,σ)

|V1(y)− V1(y − h)|ωσ(h)dh(2.9)

≤
∫
B(0,σ)

LV ‖h‖ωσ(h)dh(2.10)

≤ LV σ
∫
B(0,σ)

‖h/σ‖ω(h/σ)
1

σn+1
dh(2.11)

≤ LV σ
∫
B(0,1)

‖h̃‖ω(h̃)dh̃.︸ ︷︷ ︸
constant, denoted I.

(2.12)

By property of the mollifiers [21], we have ∂iV1σ(y) = ∂i(V1 ∗ ωσ) = (∂iV1 ∗ ωσ) for any i ∈ {t, x1, . . . , xn}.
Therefore, ∂tV1σ(y) =

∫
B(0,σ)

∂tV1(y − h)ωσ(h)dh and ∇xV1σ(y) =
∫
B(0,σ)

∇xV1(y − h)ωσ(h)dh. Using the
equality

∫
B(0,σ)

ωσ(h)dh = 1, we deduce that for any y ∈ Y ,

∂tV1σ(y) + 1 + (∇xV1σ(y))>f(y, u) =

∫
B(0,σ)

(∂tV1(y − h) + 1 + (∇xV1(y − h))>f(y, u))ωσ(h)dh(2.13)

=

∫
B(0,σ)

(∂tV1(y − h) + 1 + (∇xV1(y − h))>f(y − h, u))ωσ(h)dh(2.14)

+

∫
B(0,σ)

∇xV1(y − h)>(f(y, u)− f(y − h, u))ωσ(h)dh.(2.15)

We compute lower bounds for the two terms of the sum. We start with the second term: using Cauchy-Schwarz
inequality, we notice that

∫
B(0,σ)

∇xV1(y − h)>(f(y, u)− f(y − h, u))ωσ(h)dh ≥ −
∫
B(0,σ)

‖V1(y − h)‖‖f(y, u)−
f(y − h, u)‖ωσ(h)dh. Noticing that ‖∇xV1(y − h)‖ ≤ LV , since y − h ∈ Ŷ for any h ∈ B(0, σ) ⊂ B(0, 1), and
introducing the Lipschitz constant Lf for f , we have∫

B(0,σ)

∇xV1(y − h)>(f(y, u)− f(y − h, u))ωσ(h)dh ≥ −LV Lf
∫
B(0,σ)

‖h‖ωσ(h)dh = −LV LfσI.(2.16)

We define η = ε
2(T+2) . We introduce the compact set Z = [0, T ] × X × U and the family of compact sets

Zδ = {z ∈ RN : d(z, Z) ≤ δ} for δ ∈ (0, 1]. For any z = (y, u) ∈ Z1, we introduce ψ(z) = ∂tV1(y) + 1 +
(∇xV1(y))>f(y, u). The function ψ(z) is continuous and according to Lemma A.1, there exists σ1 > 0 such that
minz∈Zσ ψ(z) ≥ minz∈Z ψ(z)− η

2 for any σ ∈ (0, σ1]. By feasibility of V1 in (DF ), we know that minz∈Z ψ(z) ≥ 0,
which yields that ψ(z) ≥ −η2 for any z ∈ Zσ1

. We deduce that∫
B(0,σ)

(∂tV1(y − h) + 1 + (∇xV1(y − h))>f(y − h, u))ωσ(h)dh ≥ −
∫
B(0,σ)

η

2
ωσ(h)dh = −η

2
,(2.17)

since (y − h, u) ∈ Zσ for any h ∈ B(0, σ). Combining the decomposition of Eqs. (2.13)-(2.15), with the lower
bounds of Eq. (2.16) and (2.17), we deduce that

∂tV1σ(y) + 1 + (∇xV1σ(y))>f(y, u) ≥ −(LV LfσI +
η

2
),(2.18)

for any (y, u) = (t, x, u) ∈ [0, T ]×X×U and σ ∈ (0, σ1]. We define σ̃ = min{σ1,
η

2LV LfI ,
η

LV I }. From Eq. (2.12)
and Eq. (2.18), we deduce that

V1σ̃(0, x0) ≥ V1(0, x0)− η ≥ V ∗(0, x0)− ε

2
− η(2.19)

V1σ̃(t, x) ≤ V1(t, x) + η ≤ η, ∀(t, x) ∈ [0, T ]×K(2.20)

∂tV1σ̃(t, x) + 1 +∇xV1σ̃(t, x)>f(t, x, u) ≥ −η, ∀(t, x, u) ∈ [0, T ]×X × U.(2.21)

From Lemma 2.4, we deduce that V (t, x) = V1σ̃(t, x) + η(t − 1 − T ) ∈ C∞(Rn+1) is feasible in (DF ). From
Eq. (2.19), we deduce that V (0, x0) ≥ V ∗(0, x0)− ε

2−η−(1+T )η, and by definition of η, V (0, x0) ≥ V ∗(0, x0)−ε.
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The next theorem underlies the convergence proof of the hierarchy of semi-infinite problems in Sect. 3: if we
restrict to polynomials HJB subsolutions, the value of the problem (DF ) remains unchanged.

Theorem 2.6. Under Assumption 1 and Assumption 2, and for F = R[t, x1, . . . , xn], the value of the LP
formulation (DF ) equals V ∗(0, x0).

Proof. We consider F = R[t, x1, . . . , xn]. For a given ε > 0, and we will prove that there exists V ∈
R[t, x1, . . . , xn] that is feasible in (DF ) and such that V (0, x0) ≥ V ∗(0, x0)−ε. According to Th. 2.5, there exists
a function Q ∈ C∞(Rn+1) which is a subsolution of the HJB equation and such that Q(0, x0) ≥ V ∗(0, x0)− ε

2 . We
notice that Q has a locally Lipschitz gradient. Therefore, we can apply Lemma A.2. This yields, in particular,
that for any ν > 0, there exists a polynomial w ∈ R[t, x1, . . . , xn] such that for all (t, x) ∈ [0, T ] ×X, |w(y) −
w(y)| ≤ ν and |∂iw(t, x)−∂iV (t, x)| ≤ ν, i ∈ {t, x1, . . . , xN}. We deduce that |∂tQ(t, x) +∇xQ(t, x)>f(t, x, u)−
∂tw(t, x) +∇xw(t, x)>f(t, x, u)| ≤ |∂tQ(t, x)− ∂tw(t, x)|+

∑n
i=1 |∂xiQ(t, x)− ∂xiw(t, x)|Mi ≤ ν(1 +

∑n
i=1Mi),

where Mi = max(t,x,u)∈[0,T ]×X×U |fi(t, x, u)|. Therefore, we observe that for all (t, x, u) ∈ [0, T ]×X × U ,

∂tw(t, x) + 1 +∇xw(t, x)>f(t, x, u) ≥ ∂tQ(t, x) + 1 +∇xQ(t, x)>f(t, x, u)− ν(1 +

n∑
i=1

Mi)(2.22)

≥ −ν(1 +

n∑
i=1

Mi),(2.23)

as Q is a subsolution of the HJB equation. In summary, for ν = η(1 +
∑n
i=1Mi)

−1 ≤ η,

w(0, x0) ≥ Q(0, x0)− η ≥ V ∗(0, x0)− ε

2
− η(2.24)

w(t, x) ≤ Q(t, x) + η ≤ η, ∀(t, x) ∈ [0, T ]×K(2.25)

∂tw(t, x) + 1 +∇xw(t, x)>f(t, x, u) ≥ −η, ∀(t, x, u) ∈ [0, T ]×X × U,(2.26)

the last inequality following from Eq. (2.23). Based on Eqs. (2.25)-(2.26) and Lemma 2.4, we notice that the
polynomial V (t, x) = w(t, x) + η(t − T − 1) ∈ R[t, x1, . . . , xn] is feasible in the problem (DF ). Having defined
η = ε

2(T+2) , we see, based on Eq. (2.24), that it satisfies V (0, x0) ≥ V ∗(0, x0)− ε
2 −η−η(T +1) = V ∗(0, x0)− ε.

3. Convex semi-infinite programming to compute near-optimal subsolutions. For F being ei-
ther C1(Rn+1), C∞(Rn+1), or R[t, x1, . . . , xn]}, the linear program (DF ) is infinite dimensional, and thus, not
tractable as it stands. Therefore, we next present a hierarchy of convex SIP problems that are solvable with a
dedicated algorithm, to compute subsolutions to the HJB equation that are near optimal in the problem (DF ).

3.1. A hierarchy of linear semi-infinite programs. Instead of having an optimization space F that is
infinite dimensional, we suggest to restrict to the finite dimensional subspaces Rd[t, x1, . . . , xn] of polynomials
of degree bounded by d. This restricted dual problem is:

sup
V ∈Rd[t,x1,...,xn]

V (0, x0)

s.t. ∂tV (t, x) + 1 +∇xV (t, x)>f(t, x, u) ≥ 0 ∀(t, x, u) ∈ [0, T ]×X × U
V (t, x) ≤ 0 ∀(t, x) ∈ [0, T ]×K.

(Rd)

In the rest of the paper, we will denote by N the dimension of the vector space Rd[t, x1, . . . , xn] and Φ(t, x) ∈ RN
a basis of this space. For both objects, there is indeed a dependence of d, that is implicit here for readability
reasons. For any V ∈ Rd[t, x1, . . . , xn], we introduce the vector θ of the coordinates of V in the basis Φ. Hence,
we have the relation

V (t, x) = θ>Φ(t, x) ∈ Rd[t, x1, . . . , xn].(3.1)

Expressing problem (Rd) as an optimization problem over the vector of coefficients, it appears clearly that this
is a linear semi-infinite program.

Proposition 3.1. For d ∈ N∗, problem (Rd) is a linear semi-infinite program, i.e, a linear program with a
finite number of variables and an infinite number of constraints. More precisely, there exist a vector c ∈ RN ,
and a compact set Y ⊂ RN+1 such that (Rd) reads

sup
θ∈RN

c>θ

s.t. a>θ + b ≤ 0 ∀(a, b) ∈ Y.
(SIP )
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Proof. We define the vector c = Φ(0, x0), and the compact sets

Y1 = {(−∂tΦ(t, x)−∇xΦ(t, x)>f(t, x, u),−1), (t, x, u) ∈ [0, T ]×X × U}(3.2)
Y2 = {(Φ(t, x), 0), (t, x) ∈ [0, T ]×K}(3.3)
Y = Y1 ∪ Y2.(3.4)

We see that for any Vθ(t, x) = θ>Φ(t, x) ∈ Rd[t, x1, . . . , xn], Vθ(0, x0) = c>θ, and Vθ(t, x) is feasible in (Rd) if
and only if a>θ + b ≤ 0, for all (a, b) ∈ Y.

We will see in the next section how to efficiently solve those semi-infinite programs. Prior to that, we state the
convergence of this hierarchy of semi-infinite programs.

Theorem 3.2. The sequence val(Rd) converges to V ∗(0, x0) when d→∞.

Proof. On the one hand, we introduce the notation vd = val(Rd). This sequence is obviously an increasing
sequence, bounded above by V ∗(0, x0). Hence, it converges to a value `, and any subsequence converges to ` ≤
V ∗(0, x0). On the other hand, Th. 2.6 guarantees that there exists a sequence of polynomials wk ∈ R[t, x1, . . . , xn]
that are feasible in (DF ) and such that wk(0, x0) →k V

∗(0, x0). By definition, we have vdk ≥ wk(0, x0), where
dk = deg(wk). Up to the extraction of a subsequence of (wk), we can assume that the sequence dk increasing,
therefore (vdk)k∈N is a subsequence of (vd)d∈N. As vdk → ` and wk(0, x0) →k V ∗(0, x0), we deduce that
` ≥ V ∗(0, x0), which yields the equality ` = V ∗(0, x0).

3.2. Regularization and solution of the semi-infinite programs. We introduce a quadratic regular-
ization in the semi-infinite program (SIP ), yielding the following formulation depending on µ ∈ R++:

max
θ∈RN

c>θ − µ
2 ‖θ‖

2

s.t. a>θ + b ≤ 0 ∀(a, b) ∈ Y.
(SIPµ)

Proposition 3.3. For any µ > 0, the semi-infinite program (SIPµ) has a unique optimal solution with
value val(SIPµ) ≤ V ∗(0, x0). Moreover, val(SIPµ) →

µ→0
val(SIP ).

Proof. The feasible set of (SIPµ) being convex, and the objective function being strongly concave, this
optimization problem admits a unique maximum θ. By definition, val(SIPµ) = c>θ− µ

2 ‖θ‖
2 ≤ c>θ ≤ val(SIP ),

since θ is also feasible in the maximization problem (SIP ). Additionally, val(SIP ) ≤ V ∗(0, x0), since any
function V feasible in (Rd) satisfies V (0, x0) ≤ V ∗(0, x0). We also notice that the function µ 7→ val(SIPµ) is
decreasing, so it admits a limit ` at 0+, due to the aforementioned inequalities, ` ≤ val(SIP ). For any µ, ε > 0,
if we take θε an ε-optimal solution in the problem (SIP ), we see that val(SIP )− ε− µ

2 ‖θε‖
2 ≤ c>θε − µ

2 ‖θε‖
2 ≤

val(SIPµ). For a fixed ε, and taking µ → 0+, we obtain val(SIP ) − ε ≤ `. This being true for any ε > 0, we
deduce that val(SIP ) ≤ `, which proves the equality.

Setting the regularization parameter µ in practice implies a trade-off between the computational tractability of
the semi-infinite program (SIPµ) and the accuracy of the approximation of the original problem (SIP ). To
solve the formulation (SIPµ), we propose to use a standard algorithm for convex semi-infinite programming,
called cutting-plane (CP) algorithm [11]. To that extent, we assume to have an separation oracle computing,
for any θ ∈ RN ,

φ(θ) = max
(a,b)∈Y

a>θ + b,(3.5)

and an associate argmaximum. Solving the optimization problem in Eq. (3.5) may be computationally intensive,
since the compact set Y may not be convex. Therefore, we only assume to have an oracle with relative optimality
gap δ ∈ [0, 1) computing (a, b) ∈ Y, such that φ(θ) − (a>θ + b) ≤ δ|φ(θ)|. We treat this oracle as a black box,
regardless of its implementation, via global optimization, gridding, interval arithmetics or sampling for instance.
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Algorithm 3.1 Cutting-plane algorithm for (SIPµ)
Input: An oracle with parameter δ ∈ [0, 1), a tolerance ε ∈ R+, a finite set Y0 ⊂ Y, k ← 0

0: while true do
1: Compute θk, the solution of the convex Quadratic Programming problem

max
θ∈RN

c>θ − µ
2 ‖θ‖

2

s.t. a>θ + b ≤ 0 ∀(a, b) ∈ Yk.
(3.6)

2: Call the oracle to compute (ak, bk) an approximate solution of (3.5) with relative optimality gap δ.
3: if (ak)>θk + bk ≤ ε then
4: Return θk.
5: else
6: Yk+1 ← Yk ∪ {(ak, bk)}
7: k ← k + 1
8: end if
9: end while

Before stating the termination and the convergence of Algorithm 3.1, we introduce the vector θ̂ ∈ RN of
coordinates of the polynomial v̂(t, x) = t − 1 − T in the basis Φ(t, x), and we notice that this element helps
obtaining feasible solutions since φ(θ̂) = −1: Due to Lemma 2.4, we observe that if θ has a feasibility error less
or equal than η ≥ 0 in (SIP ) and (SIPµ) then, θ+ηθ̂ is feasible in (SIP ) and (SIPµ). For any µ > 0, we define
the convex and compact set Xµ = {θ ∈ RN : c>θ − µ

2 ‖θ‖
2 ≥ c>θ̂ − µ

2 ‖θ̂‖
2}, and we define Rµ = supθ∈Xµ‖θ‖.

Finally, we define the function rµ(e) = e(1 + T + µR2
µ(1 + e

2 )). Note that rµ(e) →
e→0

0.

Theorem 3.4. If ε > 0, Algorithm 3.1 stops after a finite number K of iterations, and θK + ε
1−δ θ̂ is a

feasible and rµ( ε
1−δ )-optimal in (SIPµ). If ε = 0, the alternative holds: (a) Algorithm 3.1 either stops after a

finite number of iterations, and the last iterate is the optimal solution of (SIPµ), (b) Or it generates an infinite
sequence, and the optimality gap and the feasibility error converge towards zero with an asymptotic rate in O( 1

k ).

Proof. First of all, we notice that during the execution of Algorithm 3.1, we necessarily have θk ∈ Xµ, since
θ̂ is a feasible solution in (3.6) with value c>θ̂ − µ

2 ‖θ̂‖
2, therefore by optimality of θk in (3.6), c>θk − µ

2 ‖θ
k‖2 ≥

c>θ̂ − µ
2 ‖θ̂‖

2. The finite convergence of Algorithm 3.1 if ε > 0, and the convergence rate in the case ε = 0 (if
no finite convergence) follows from [32, Th.1.1-1.2] (which is an extension of [11]) : we apply these theorems to
the problem (SIPµ) with the additional constraint θ ∈ Xµ. As previously explained, this additional constraint
does not change the execution of the algorithm, but it enables us to satisfy the compactness assumption of [32,
Th.1.1-1.2]. We also note that the objective function is µ-strongly concave, and that θ̂ ∈ Xµ is a strictly feasible
point with respect to the semi-infinite constraints.

We finish the proof by showing that if Algorithm 3.1 stops at iteration K, then θ̃ = θK + ε
1−δ θ̂ is feasible

and rµ( ε
1−δ )-optimal in (SIPµ). If Algorithm 3.1 stops at iteration K, this means that (aK)>θK + bK ≤ ε. If

φ(θK) ≤ 0, then θK is feasible in (SIPµ), and so is θ̃ due to Lemma 2.4. If φ(θK) > 0, then by property of
the δ-oracle, (1− δ)φ(θK) ≤ (aK)>θK + bK ≤ ε, and we deduce that the feasibility error is φ(θK) ≤ ε

1−δ . With
Lemma 2.4, we deduce that θ̃ is feasible in (SIPµ). We also note that

c>θ̃ − µ

2
‖θ̃‖2 = c>θK +

ε

1− δ
c>θ̂ − µ

2
‖θK +

ε

1− δ
θ̂‖2(3.7)

≥ c>θK − ε

1− δ
(1 + T )− µ

2

(
‖θK‖2 +

2ε

1− δ
‖θK‖ ‖θ̂‖+

ε2

(1− δ)2
‖θ̂‖2

)
,(3.8)

since c>θ̂ = Vθ̂(0, x0) = −(1 + T ), and due to the Cauchy-Schwartz inequality. By optimality of θK in (3.6),
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which is a relaxation of (SIPµ), we know that val(SIPµ) ≤ c>θK − µ
2 ‖θ

K‖2. Applying this, we deduce that

c>θ̃ − µ

2
‖θ̃‖2 ≥ val(SIPµ)−

ε

1− δ
(1 + T )− µ

2

(
2ε

1− δ
‖θK‖ ‖θ̂‖+

ε2

(1− δ)2
‖θ̂‖2

)
(3.9)

≥ val(SIPµ)−
ε

1− δ
(1 + T )− µR2

µ

(
ε

1− δ
+

ε2

2(1− δ)2

)
(3.10)

≥ val(SIPµ)− rµ(
ε

1− δ
),(3.11)

the second inequality following from the fact that ‖θ̂‖ ≤ Rµ and ‖θK‖ ≤ Rµ, as θ̂, θK ∈ Xµ.

4. Feedback control based on approximate value functions. In the previous section, we have seen
how to compute subsolutions of the HJB equation based on convex semi-infinite programming, and how to
deduce a lower bound on the minimal travel time. In this section, we focus on how subsolutions of the HJB
equation, which approximate the value function V ∗, enable one to recover a near-optimal control for the minimal
time control problem (2.1)-(2.4).

4.1. Controller design and existence of trajectories. For a given continuously differentiable function
V ∈ C1(Rn+1), we define the set-valued maps

UV (t, x) = argmin
u∈U

∇xV (t, x)>f(t, x, u)(4.1)

IV (t, x) = {u ∈ UV (t, x) : f(t, x, u) ∈ TX(x)},(4.2)

where TX(x) is the contingent cone to X at point x (see Introduction). In line with previous works designing
feedback controllers based on approximate value functions [18, 23], we are interested in the trajectories satisfying
the following differential inclusion depending on the function V ∈ C1(Rn+1):

ẋV (t) = f(t, xV (t), uV (t)) with uV (t) ∈ UV (t, xV (t)).(CLV )

Intuitively, such a feedback control pushes the system towards the descent direction of the function V . The
following proposition confirms that, should the function V ∈ C1(Rn+1) be optimal in problem (DF ), then any
minimal time trajectory satisfies the differential inclusion (CLV ) with respect to V .

Proposition 4.1. Under Assumptions 1-2, we consider an optimal trajectory (x∗(·), u∗(·)) of the minimal
time control problem (2.1)-(2.4) starting from (0, x0), with hitting time τ∗ = V ∗(0, x0). If the linear program
(DF ), for F = C1(Rn+1), admits an optimal solution V , then, for almost every t ∈ [0, τ∗],

u∗(t) ∈ IV (t, x∗(t)) ⊂ UV (t, x∗(t)).(4.3)

In particular, the trajectory (x∗(·), u∗(·)) satisfies the differential inclusion (CLV ).

Proof. We define the function α(t) = V (t, x∗(t)) + t, which is differentiable. We have that α′(t) =
∂tV (t, x∗(t)) + 1 +∇xV (t, x∗(t))>f(t, x∗(t), u∗(t)), for almost all t ∈ [0, τ∗]. Since V is feasible in (DF ), there-
fore satisfies Eq. (2.7), and since (x∗(t), u∗(t)) ∈ X × U a. e. on [0, τ∗], we know that α′(t) ≥ 0 a. e. on
[0, τ∗]. This proves that the differentiable function α(t) is non-decreasing function over [0, τ∗]. By optimality
of V in (DF ), and due to Th. 2.3 (Assumptions 1-2 are satisfied), α(0) = V (0, x0) = val(DF ) = τ∗. Moreover,
α(τ∗) = τ∗ + V (τ∗, x∗(τ∗)) ≤ τ∗, since V satisfies Eq. (2.8) and x∗(τ∗) ∈ K. From α(τ∗) ≤ α(0), we obtain
that α(t) is constant. Hence, ∂tV (t, x∗(t)) + 1 +∇xV (t, x∗(t))>f(t, x∗(t), u∗(t)) = 0, meaning

∇xV (t, x∗(t))>f(t, x∗(t), u∗(t)) = −(∂tV (t, x∗(t)) + 1), a.e. on [0, τ∗].(4.4)

As V satisfies Eq. (2.7), we have that ∇xV (t, x∗(t))>f(t, x∗(t), u) ≥ −(∂tV (t, x∗(t)) + 1) for all t ∈ [0, τ∗] and
for all u ∈ U . Together with Eq. (4.4), we deduce that u∗(t) ∈ UV (t, x∗(t)) for almost all t ∈ [0, τ∗]. Based on
this fact, Lemma A.3 yields that for almost all t ∈ [0, τ∗], f(t, x∗(t), u∗(t)) ∈ TX(x∗(t)). Therefore, for almost
all t ∈ [0, τ∗], u∗(t) ∈ IV (t, x∗(t)).

We just saw that whenever V ∈ C1(Rn+1) is optimal in the linear program (DF ), any minimal time trajectory
is a solution of the differential inclusion (CLV ) associated with the function V . However, we may not be able
to compute exactly such an optimal function in practice, especially because it may not exist. The next theorem
states the existence of closed-loop trajectories following (CLV ), for any function V ∈ C1(Rn+1).
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Theorem 4.2. Under Assumptions 1-2, if V ∈ C1(Rn+1) is such that for any (t, x) ∈ R+×X, IV (t, x) 6= ∅,
then there exists a trajectory (xV (·), uV (·)) starting at (0, x0), satisfying the differential inclusion (CLV ) over
[0,∞) and such that xV (t) ∈ X for almost all t ∈ [0,∞).

Proof. We introduce an auxiliary control system to reduce to a time-invariant system with a convex control
set, so as to fit in the setting of [1, Th. 6.6.6]. In what follows, we use the notation y = (t, x) again. We introduce

two objects: the set-valued map Û(y) = {f(y, u), u ∈ U} and the function f̂(y, v) =

(
1
v

)
for y ∈ Rn+1 and

v ∈ Rn. According to the terminology introduced in [1, Def. 6.1.3], (Û , f̂) is a Marchaud control system, as (i)
{(y, v) ∈ R2n+1 : v ∈ Û(y)} is closed, (ii) f̂ is continuous, (iii) the velocity set {1}×f(y, U) is convex according to
Assumption 1 and (iv) f̂ has a linear growth, and so has Û due to the fact that f is Lipschitz continuous and U is
bounded. We introduce C = R+×X and define the regulation map REG(y) = {v ∈ Û(y) : f̂(y, v) ∈ TC(y)}. We
also introduce the set-valued map SEL(y) = argmin

v∈Û(y)

∇xV (y)>v. We prove now that the graph of SEL is closed.

For any converging sequence (yk, vk) → (ȳ, v̄) with vk ∈ SEL(yk), we see that for all k ∈ N, vk = f(yk, uk) for
a given uk ∈ U and ∇xV (yk)>f(yk, uk) = h(yk), where h(yk) = minu∈U ∇xV (yk)>f(yk, u). Up to extracting a
subsequence of uk, we can assume that uk → ū, as U is compact. Note that h is continuous, by application of
the Maximum Theorem [1, Th. 2.1.6], in so far as (i) (y, u) 7→ ∇xV (y)>f(y, u) is continuous, therefore lower and
upper semicontinuous, (ii) the set-valued mapM(y) = U is compact-valued, and lower and upper semicontinuous
since it is constant. By continuity of h, ∇V and f , we conclude that ∇xV (ȳ)>v̄ = ∇xV (ȳ)>f(ȳ, ū) = h(ȳ) =
min
v∈Û(ȳ)

∇xV (ȳ)>v, meaning that v̄ = f(ȳ, ū) ∈ SEL(ȳ).

We notice that if u ∈ IV (y), then v = f(y, u) ∈ REG(y) ∩ SEL(y). As IV (y) 6= ∅ for all y ∈ C (by
assumption), REG(y) ∩ SEL(y) 6= ∅. Together with the closedness of the graph of SEL, this means SEL is a
selection procedure of REG, according to the terminology of [1, Def. 6.5.2], and has convex values. We underline
that REG(y) 6= ∅, for all y ∈ C, i.e., C is a viability domain for (Û , f̂). As (0, x0) ∈ C, [1, Th. 6.6.6] yields the
existence of a solution (y(·), v(·)) such that y(t) ∈ C, v(t) ∈ REG(y(t)) and

v(t) ∈ SEL(y(t)) ∩REG(y(t)),(4.5)

for almost all t ∈ [0,∞). We notice first that y1(0) = 0 and ẏ1(t) = 1 for almost all t ≥ 0, thus y1(t) = t. Hence,
we can indeed see y(t) as (t, x(t)), with x(0) = x0 and ẋ(t) = v(t). Moreover, v(t) = f(t, x(t), u(t)) for a given
u(t) ∈ U , since v(t) ∈ Û(y(t)) = f(t, x(t), U) a.e. on [0,∞). We deduce from v(t) ∈ SEL(y(t)), which comes
from (4.5), that u(t) ∈ UV (t, x(t)). Moreover, we deduce from y(t) ∈ C that x(t) ∈ X a.e. on [0,∞).

Remark 2. The condition IV (t, x) 6= ∅ in Th. 4.2 may appear restrictive, because it is not evident why a
vector f(t, x, uV ) minimizing ∇xV (t, x)>f(t, x, u) over u ∈ U would belong to TX(x). However, we have seen
that under the hypotheses of Prop. 4.1, Eq. (4.3) yields IV (t, x) 6= ∅. Moreover, should the condition IV (t, x) 6= ∅
not be satisfied, we could enlarge the definition of UV (t, x) in UV,ε(t, x) = argminε

u∈U
∇xV (t, x)>f(t, x, u), so that

for ε > 0 large enough, IV,ε(t, x) = {u ∈ UV,ε(t, x) : f(t, x, u) ∈ TX(x)} 6= ∅.

4.2. Performance of the feedback controller depending on the value function approximation
error. Previously, we introduced closed-loop trajectories satisfying the differential inclusion (CLV ) with respect
to a function V ∈ C1(Rn+1). In this section, we state some performance guarantees on those trajectories,
depending on some properties of the function V . In the following, we assume that, up to an enlargement of the
time horizon, the system can reach the target set starting from any initial condition (t, x) ∈ [0, T ]×X, and that
the associated value function is Lipschitz.

Assumption 3. There exists a time T ] ≥ T such that the minimal time control problem (2.1)-(2.4) defined
over [0, T ]] has a value function V ] which takes finite values over Y = [0, T ]×X, and is Lipschitz continuous.

We emphasize that, under Assumption 3, V ∗(t, x) < ∞ implies V ∗(t, x) = V ](t, x) for any (t, x) ∈ Y . Since
V ] is Lipschitz continuous over Y ⊂ Rn+1, it admits a Lipschitz continuous extension over Rn+1 [16, Chap. 3,
Th. 1]. We assimilate the value function and its extension on Rn+1, such that we can speak about the Clarke’s
generalized derivative ∂cV ](y) of V ] at y ∈ Y . For any V ∈ C1(Rn+1), we introduce the notation

‖∇V −∇V ]‖∞ = sup
y∈Y

sup
g∈∂cV ](y)

‖∇V (y)− g‖2.(4.6)

We also define the constant Cf = sup(t,x,u)∈Y×U‖f(t, x, u)‖ <∞.
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Theorem 4.3. Let V ∈ C1(Rn+1) be a continuously differentiable function, and let (xV (·), uV (·)) be a
closed-loop trajectory starting at (0, x0) satisfying the differential inclusion (CLV ) and the state constraints over
[0, T ]. We define tV = sup{t ∈ [0, T ] : xV ([0, t]) ⊂ X \K}. Then, under Assumptions 1-3,

V ](t, xV (t)) ≤ (τ∗ − t) + t 2(1 + Cf )‖∇V −∇V ]‖∞ ∀t ∈ [0, tV ],(4.7)

where τ∗ = V ∗(0, x0) = V ](0, x0) ≤ tV . In particular, we notice that

V ](τ∗, xV (τ∗)) ≤ 2τ∗(1 + Cf )‖∇V −∇V ]‖∞.(4.8)

In Eq. (4.8), V ](τ∗, xV (τ∗)) measures how far the closed-loop trajectory (xV (·), uV (·)) is from the target set
K at the moment when the time-optimal trajectory reaches K. As a corollary, we give a condition for the
closed-loop trajectory (xV (·), uV (·)) to effectively reach the target set K, with a bounded delay compared to the
time-optimal trajectory.

Corollary 4.4. Under the same hypotheses as Th. 4.3, if ‖∇V −∇V ]‖∞ ≤ 1−τ∗/T
2(1+Cf ) , then

xV (tV ) ∈ K with tV ∈ [τ∗,
1

1− 2(1 + Cf )‖∇V −∇V ]‖∞
τ∗].(4.9)

We underline that the hitting time tV ≥ τ∗ converges to the minimal time τ∗, when the approximation error
‖∇V −∇V ]‖∞ vanishes.

Proof of Th 4.3 and Cor. 4.4. For any Lipschitz continuous function F : Rn+1 → R, we recall that ∂cF (y)
denote the Clarke’s generalized derivative at y, and we define HF as

HF (y) = 1 + min
u∈U

g∈∂cF (y)

{g>
(

1
f(y, u)

)
}.(4.10)

The minimum is attained by continuity of the objective, and by compactness of U and ∂cF (y) (see [12]). Note also
that for any V ∈ C1(Rn+1), for any y = (t, x) ∈ Rn+1, HV (t, x) = 1 + ∂tV (t, x) + minu∈U ∇xV (t, x)>f(t, x, u),
and the argmin is UV (t, x). By application of the Maximum Theorem [1, Th. 2.1.6], we know that HF is lower
semi-continuous, since (i) ∂cF (y) is a compact-valued and upper semi-continuous set-valued map [12], therefore

so is y 7→ U × ∂cF (y), and (ii) (y, u, g) 7→ g>
(

1
f(y, u)

)
is continuous.

First, we take any y1 = (t1, x1) ∈ [0, T ] × X \ K, and we prove that HV ](t1, x1) ≤ 0. According to
Assumption 3, V ](t1, x1) <∞, and according to Th. 2.1 applied to the control system (2.1)-(2.4) on the interval
[0, T ]], there exists an optimal trajectory (x(·), u(·)) over [t1, t2] (with t2 > t1 since x0 /∈ K) starting from
(t1, x1). By definition, V ](t1, x1) = t2− t1. We can also prove that for all t ∈ [t1, t2], V ](t, x(t)) = t2− t: (i) the
trajectory restricted to [t, t2], yields an admissible trajectory starting from (t, x(t)), therefore V ](t, x(t)) ≤ t2−t,
and (ii) for an optimal trajectory (x̃(·), ũ(·)) starting from (t, x(t)) over [t, t3], the trajectory following (x(·), u(·))
over [t1, t] and (x̃(·), ũ(·)) over [t, t3] is admissible and starting from (t1, x1), therefore, V ](t, x(t)) + (t − t1) ≥
V ](t1, x1) = t2 − t1, giving V ](t, x(t)) ≥ t2 − t. As α(t) = V ](t, x(t)) = t2 − t for all t ∈ [t1, t2], we deduce that

α′(t) = −1 a. e. on [t1, t2].(4.11)

Moreover, since V ] is Lipschitz continuous by assumption, and t 7→ (t, x(t)) is Lipschitz continuous as x(t) is dif-

ferentiable a.e. with a bounded derivative, Lemma A.4 gives: α′(t) = d(V ](t,x(t)))
dt ≥ ming∈∂cV ](t,x(t)) g

>
(

1
ẋ(t)

)
a.e. on [t1, t2]. Using that ẋ(t) = f(t, x(t), u(t)) a.e. on [t1, t2], and the definition of HV ] :

α′(t) ≥ min
g∈∂cV ](t,x(t))

g>
(

1
f(t, x(t), u(t))

)
≥ HV ](t, x(t))− 1,(4.12)

a.e. on [t1, t2]. Combining this with Eq. (4.11), we deduce that for almost all t ∈ [t1, t2], HV ](t, x(t)) ≤ 0. By
lower semi-continuity of HV ] (see above), and by continuity of x(·)

HV ](t1, x1) ≤ 0.(4.13)
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Second, still for any (t1, x1) ∈ [0, T ] ×X \K, we observe that there exists (g, u1) ∈ ∂cV ](t1, x1) × U such

that HV ](t1, x1) = 1+g>
(

1
f(t1, x1, u1)

)
; indeed, we already mentioned that the minimum in (4.10) is attained.

Therefore, for any V ∈ C1(Rn+1)

1 + ∂tV (t1, x1) +∇xV (t1, x1)>f(t1, x1, u1) = HV ](t1, x1) + (∇V (t1, x1)− g)>
(

1
f(t1, x1, u1)

)
(4.14)

≤ HV ](t1, x1) + ‖∇V −∇V ]‖(1 + Cf ),(4.15)

the inequality being due to Cauchy-Schwartz inequality, and the definition of ‖∇V − ∇V ]‖. We know that
HV (t1, x1) ≤ ∂tV (t1, x1) + 1 + ∇xV (t1, x1)>f(t1, x1, u1) by definition of HV (t1, x1) (as u1 ∈ U), therefore
Eq. (4.15) gives HV (t1, x1) ≤ HV ](t1, x1) + (1 + Cf )‖∇V − ∇V ]‖. Using this inequality and Eq. (4.13), we
deduce that for all (t1, x1) ∈ [0, T ]×X \K,

HV (t1, x1) ≤ (1 + Cf )‖∇V −∇V ]‖.(4.16)

Third, according to the hypotheses of the theorem, we take any V ∈ C1(Rn+1), and any closed-loop trajectory
(xV (·), uV (·)) starting at (0, x0) satisfying the differential inclusion (CLV ) and the state constraints over [0, T ].
We, then, study the evolution of V ] over this trajectory. As xV (t) is Lipschitz continuous, Lemma A.4 yields
the existence of g(t) ∈ ∂cV ](t, xV (t)) for almost all t ∈ [0, T ], such that

d

dt

(
V ](t, xV (t))

)
≤ g(t)>

(
1

f(t, xV (t), uV (t))

)
a.e. on [0, T ].(4.17)

As uV (t) ∈ UV (t, xV (t)), we know that HV (t, xV (t)) = 1 +∇V (t, xV (t))>
(

1
f(t, xV (t), uV (t)),

)
, and therefore,

d

dt

(
V ](t, xV (t))

)
≤ −1 +HV (t, xV (t)) + (g(t)−∇V (t, xV (t)))>

(
1

f(t, xV (t), uV (t)),

)
(4.18)

We deduce, using Cauchy-Schwartz inequality and the definition of ‖∇V −∇V ]‖,

d

dt

(
V ](t, xV (t))

)
≤ −1 +HV (t, xV (t)) + (1 + Cf )‖∇V −∇V ]‖,(4.19)

for almost all [0, T ]. Moreover, for all t ∈ [0, tV ), xV (t) /∈ K. Therefore, we can apply Eq. (4.16) to deduce,
in combination with Eq. (4.19), that for almost all [0, tV ], ddt

(
V ](t, xV (t))

)
≤ −1 + 2(1 + Cf )‖∇V −∇V ]‖. By

integration, we deduce that for all t ∈ [0, tV ], V ](t, xV (t))−τ∗ ≤ −t+2t(1+Cf )‖∇V −∇V ]‖, as V ](0, xV (0)) =
V ](0, x0) = τ∗. This proves Eq. (4.7).

Fourth and finally, we prove the corollary. Due to the definition of tV , the following (non-exclusive) alterna-
tive holds: either xV (tV ) ∈ K or tV = T . Moreover, if ‖∇V −∇V ]‖∞ ≤ 1−τ∗/T

2(1+Cf ) , then V
](t, xV (t))− τ∗ ≤ −t+

t(1− τ∗/T ) and V ](t, xV (t)) ≤ τ∗(1− t/T ) for all t ∈ [0, tV ]. We notice that if tV = T , then V ](tV , xV (tV )) ≤ 0,
i.e., xV (tV ) ∈ K. Coming to the aforementioned alternative, we deduce that xV (tV ) ∈ K. Moreover, this fact
combined with Eq. (4.7) gives us that 0 ≤ (τ∗ − tV ) + tV 2(1 + Cf )‖∇V −∇V ]‖∞, hence

tV
(
1− 2(1 + Cf )‖∇V −∇V ]‖∞

)
≤ τ∗.(4.20)

By assumption, 1 − 2(1 + Cf )‖∇V − ∇V ]‖∞ ≥ τ∗/T > 0, we can thus divide Eq. (4.20) by this quantity to
obtain the result of the corollary: tV ≤ τ∗/

(
1− 2(1 + Cf )‖∇V −∇V ]‖∞

)
.

In the previous theorem and the corollary, we saw that the suboptimality, in terms of hitting time, of a closed-
loop trajectory (xV (·), uV (·)) satisfying the differential inclusion (CLV ) decreases as the approximation error
‖∇V −∇V ]‖∞ decreases. Furthermore, we see that the closed-loop trajectory comes close to optimality when
the approximation error vanishes. We now study a sufficient condition under which the approximation ‖∇Vd −
∇V ]‖∞ can be made arbitrarily small, using a polynomial Vd(t, x) of sufficiently large degree d ∈ N.
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4.3. A sufficient regularity condition for the existence of near-optimal controllers based on
polynomials. In the case where the value function is twice differentiable, there exist polynomials Vd with
such a vanishing approximation error ‖∇Vd − ∇V ]‖∞, and that are near optimal solutions in the hierarchy of
semi-infinite programs (Rd).

Theorem 4.5. Under Assumptions 1-3, if the value function V ] belongs to C2(Rp|Y ), and is a subsolution
to the HJB equation, then there exist a sequence of polynomials (Vd(t, x))d∈N∗ , with Vd(t, x) ∈ Rd[t, x1, . . . , xn],
and two constants c1, c2 > 0, such that for all d ∈ N∗,

• The polynomial Vd(t, x) is feasible, and c1
d -optimal in the problems (DF ) and (Rd),

• The following inequality holds: ‖∇Vd −∇V ]‖∞ ≤ c2
d .

Under these hypotheses, the polynomials Vd(t, x) are subsolutions to the HJB equation, and form a maximizing
sequence of the problem (DF ); we also notice that the hierarchy of semi-infinite programs (Rd) converges in
O( 1

d ) in terms of objective value. Moreover, according to Cor. 4.4, for any sequence of closed-loop trajectories
(xVd(·), uVd(·)), the associated hitting times converge to the minimal time τ∗: this is a minimizing sequence of
trajectories for the optimal time control problem (2.1)-(2.4).

Proof. By definition of C2(Rn+1|Y ), there exists a function Q ∈ C2(Rn+1) such that V ](y) = Q(y) and
∇V ](y) = ∇Q(y) for all y ∈ Y . In application of Lemma A.2, as Q has a locally Lipschitz gradient since it is
twice differentiable, there exists a constant A > 0, and a sequence of polynomials (wd(t, x))d∈N∗ with wd(t, x) ∈
Rd[t, x1, . . . , xn] and such that for all (t, x) ∈ Y , |wd(t, x) − Q(t, x)| ≤ A

d and ‖∇wd(t, x) − ∇Q(t, x)‖2 ≤ A
d .

With αd =
A(1+Cf )

d , and βd = A
d (1 + T + TCf ), we define the polynomial Vd(t, x) = wd(t, x) + αdt − βd ∈

Rd[t, x1, . . . , xn]. First, we notice that ‖∇Vd − ∇V ]‖∞ ≤ ‖∇wd − ∇V ]‖∞ + αd ≤ A(2+Cf )
d for all d ≥ 1. This

proves the second point of the theorem, having defined the constant c2 = A(2 +Cf ), which is independent from
d. We prove now the first point. For all d ≥ 1, and (t, x, u) ∈ [0, T ]×X × U ,

∂tVd(t, x) + 1 +∇xVd(t, x)>f(t, x, u) = αd + ∂tV
](t, x) + 1 +∇xV ](t, x)>f(t, x, u)(4.21)

+(∇wd(t, x)−∇V ](t, x))>
(

1
f(t, x, u)

)
(4.22)

≥ αd + (∇wd(t, x)−∇V ](t, x))>
(

1
f(t, x, u)

)
,(4.23)

as V ] is a subsolution to the HJB equation, hence satisfies Eq. (2.7). Using the Cauchy-Schwartz inequality, we
obtain ∂tVd(t, x) + 1 +∇xVd(t, x)>f(t, x, u) ≥ αd − ‖∇wd(y)−∇V ](y)‖2(1 + Cf ) ≥ αd − A

d (1 + Cf ) = 0. This
proves that Vd satisfies Eq. (2.7). It also satisfies Eq. (2.8), because for any (t, x) ∈ [0, T ]×K,

Vd(t, x) = wd(t, x) + αdt− βd(4.24)

≤ V ](t, x) +
A

d
+ αdt− βd(4.25)

≤ V ](t, x) +
A

d
+ αdT − βd(4.26)

≤ V ](t, x) = 0.(4.27)

since A
d +αdT −βd = 0 by definition of βd, and since x ∈ K. We deduce that Vd is feasible in (Rd). Its objective

value is Vd(0, x0) ≥ wd(0, x0) − βd ≥ V ](0, x0) − A
d − βd = V ](0, x0) − c1

d , where c1 = A(2 + T + TCf ). As
V ](0, x0) = V ∗(0, x0) due to Assumption 2, Vd(0, x0) ≥ V ∗(0, x0) − c1

d ≥ val(DF ) − c1
d ≥ val(Rd) − c1

d , and we
therefore conclude that Vd is c1

d -optimal in (DF ) and (Rd).

Remark 3. Admittedly, the hypothesis in Th. 4.5 that the value function V ] belongs to C2(Rp|Σ) is strin-
gent. It is worth noting, however, that there exist systems that satisfy this hypothesis. Here is an example:
ẋ(t) = u(t), x(t) ∈ X = [0, 1]2, ‖u(t)‖ ≤ 1 and K = {0} × [0, 1]. The value function associated with the horizon
T =∞ is V ](t, x) = x1.

5. Illustrative examples. We implemented and tested the proposed methodology on three Minimal
Time Control Problems: a generalization of the Zermelo problem, a regatta problem and a generalization
of the Brockett integrator. The numerical examples in this section were processed with our Julia package
MinTimeControl.jl1. In this implementation of Algorithm 3.1, the master problem (3.6) is solved with the

1This package is available at github.com/aoustry/MinTimeControl.jl
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simplex algorithm of the commercial solver Gurobi 10.0 [17]. At each iteration, we add a maximum of 100
points to the set Yk. The separation oracle (3.5) is implemented with a random sampling scheme (with 500,000
samples at each iteration to detect violated constraints), and with the global optimization solver SCIP 8 [6], for
the certification at the last iterate. This solver is used with a relative tolerance δ = 10−4, and with a time limit
of 10, 000s. We also precise that we compute a heuristic trajectory based on the particularities of each problem;
this heuristic is not optimal, but provides an upper bound T on the minimum time, and therefore, a relevant
time horizon [0, T ]. The trajectory resulting from the heuristic is used to initialize the set Y0, in the sense that
we enforce the HJB inequality for some points of this trajectory. During the iterations of the algorithm, we
obtain functions Vθk(t, x) and we simulate the associate feedback trajectory defined by the differential inclusion
(CLV ); if the obtained trajectory reaches the target set, it gives us an upper bound. Those trajectories are also
used to enrich the set Yk. For all the numerical experiments, the regularization parameter is µ = 10−5, and we
use the tolerance ε = 10−3.

Table 1, Table 3 and Table 4 present the numerical results for three different applications. The different
columns of these tables are the following:

• “d ∈ N” is the degree of the polynomial basis used.
• “Estimated value of (Rd)” stands for the value Vθ(0, x0), where θ is the output of Algorithm 3.1, using

the sampling oracle. This estimated value of (Rd) is not an exact lower bound, since this sampling
oracle does not provide the guarantee that θ is indeed feasible in (SIP ).

• “Certified lower bound for (Rd)” stands for Vθ(0, x0)−φ̂(θ)(1+T ), where θ is as defined above and φ̂(θ) is a
guaranteed upper bound on φ(θ), the feasibility error of θ in (SIP ), computed by the global optimization
solver SCIP 8. As Vθ(t, x)+ φ̂(θ)(t−1−T ) is therefore feasible in (Rd), the value Vθ(0, x0)− φ̂(θ)(1+T )
is a guaranteed lower bound on val(Rd), and, therefore, on V ∗(0, x0).

• “Value feedback control (CLV )” is the hitting time of the best feasible control generated along the
iterations: either with the heuristic control at the first iteration, or the closed-loop controlled trajectory
defined by (CLV ) associated with V = Vθk at iteration k of Algorithm 3.1.

• “Solution time (in s)” is the total computational time of the heuristic control, of the iterations of
Algorithm 3.1 including the sampling oracle, and of the closed-loop trajectory simulation. Therefore,
this is the computational time needed to obtain the estimated value of (Rd) (second column), and the
best feasible control (fourth column).

• “Iterations number” is the total number of iterations of Algorithm 3.1.
• “Certification time (in s)” is the computational time of the global optimization solver SCIP 8, playing

the role of δ-oracle, to compute the aforementioned bound φ̂(θ), and deduce the certified lower bound
(third column).

5.1. A time-dependent Zermelo problem. We consider a time-dependent nonlinear system with n = 2
and m = 2, defined by

ẋ1(t) = u1(t) +
1

2
(1 + t) sin(πx2(t))(5.1)

ẋ2(t) = u2(t),(5.2)

with the state constraint set X = [−1, 1] × [−1, 0], the control set U = B(0, 1). This is the celebrated Zermelo
problem, but with a river flow gaining in intensity over time. Fig. 1 gives a representation of this flow. The
initial condition is x(0) = (0,−1), and the target set is K = B(0, r), for r = 0.05. The travel time associated
with the heuristic control, consisting in following a straight trajectory, is 1.261 (see Fig 2). Table 1 presents the
numerical results for different values of d. We see that the value of the linear semi-infinite program (Rd) quickly
converges as d increases: starting from d = 6, the 4 first digits of the estimated value (second column) reach
a plateau which corresponds to the value (1.100) of the best feasible trajectory we generate with our feedback
control. As regards the certified lower bound, the best value (1.092) is obtained for d = 5. For greater d, we see
that increasing d deteriorates the tightness of the best certified bound. This is due to the fact that the separation
problem becomes more difficult, with two consequences: (i) the sampling fails to detect unsatisfied constraints,
so Algorithm 3.1 stops with a solution that has a real infeasibility φ(θ) larger than ε (targeted tolerance), and
(ii) the global optimization solver called afterwards does not manage to solve the separation problem to global
optimality within the time limit (case d ∈ {7, 8}), given only a large upper bound φ̂(θ) on the true infeasibility
φ(θ). We notice that as soon as d ≥ 3, the feedback control defined by (CLV ) (see Sect. 4) yields a trajectory
that is 13% faster than the heuristic trajectory. In summary, we obtain a certified optimization gap of 0.7% for
this minimal time control problem.
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Fig. 1: Representation of the water flow in the Zermelo problem

d ∈ N Estimated
value of (Rd)

Certified
LB for (Rd)

Value feedback
control (CLV )

Solution
time (in s)

Iterations
number

Certification
time (in s)

2 0.952 0.945 1.261 2 4 1
3 1.064 1.044 1.101 12 14 12
4 1.096 1.084 1.100 22 17 1530
5 1.099 1.092 1.100 54 22 4000
6 1.100 1.059 1.100 60 18 2330
7 1.100 1.051 1.100 105 24 TL
8 1.100 0.690 1.100 215 31 TL

Table 1: Time-dependent Zermelo problem: lower and upper bounds, and computational times for various
degrees of the SIP hierarchy (Rd)

Fig. 2: Time-dependent Zermelo problem: heuristic control and feedback control (d = 6)
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In the special case of this non-polynomial controlled system, a polynomial reformulation exists, at the price
of increasing the dimension of the system to n = 4:

ẋ1(t) = u1(t) +
1

2
(1 + t) sin(πx2(t))(5.3)

ẋ2(t) = u2(t)(5.4)
ẋ3(t) = −πx4(t)u2(t)(5.5)
ẋ4(t) = πx3(t)u2(t),(5.6)

with the state constraint set X̂ = [−1, 1]× [−1, 0]× [−1, 1]× [−1, 0], the control set Û = B(0, 1), the terminal set
K̂ = B(0, r)×[−1, 1]×[−1, 0], and the initial condition x0 = (0,−1,−1, 0). The dynamics maintain the equalities
x3(t) = cos(πx2(t)) and x4(t) = sin(πx2(t)). We are therefore able to compare our approach with the sum-of-
squares (SOS) hierarchy, which consists of replacing SIP inequalities in (Rd) with SOS positivity certificates. For
each order k of the hierarchy, i.e., for a maximal degree d = 2k of the polynomial basis, this yields a semi-definite
programming problem that we solve with the solver CSDP, used with the package SumOfSquares.jl. We obtain
a polynomial V (t, x1, x2, x3, x4) that is solution of the corresponding relaxation. Based on this polynomial, we
can also generate a feedback controlled trajectory solution of the differential inclusion (CLV ). Table 2 compares

SIP hierarchy SOS hierarchy

d ∈ N
Est./Cert.

LB
Val. feedback
control (CLV )

Sol./Cert.
time (in s)

Cert.
LB

Val. feedback
control (CLV )

Sol.
time (in s)

2 0.952/0.945 1.261 2/1 0.533 1.261 ≤ 1
4 1.096/1.084 1.101 22/1530 1.064 1.105 1
6 1.100/1.059 1.100 60/2330 1.099 1.100 12
8 1.100/0.690 1.100 215/TL 1.100 1.100 190

Table 2: Time-dependent Zermelo problem: comparing the SIP and the SOS approaches

the performance of the SIP and the SOS approaches. We see that for low-degree polynomials (d ≤ 4), the semi-
infinite hierarchy gives better lower bounds than the SOS hierarchy, although at a higher computational time
in the case d = 4. For d ∈ {6, 8}, the lower bound of the SOS hierarchy is tight, while only the estimated lower-
bound of the SIP hierarchy is tight: to obtain a certified lower bound, the SOS hierarchy performs better. For
these values of the degree d, this optional certification step (calling to the global optimization solver) is costly
in the proposed approach. For this first example, where the SOS hierarchy is applicable since a polynomial
reformulation of the dynamical system exists, the SIP approach is slower than the SOS hierarchy.

5.2. A regatta toy-model. We consider a time-dependent nonlinear (and non-polynomial) system with
n = 2 and m = 1, defined by

ẋ1(t) = windspeed(t) polar [u(t)] cos(u(t) + windangle(t))(5.7)
ẋ2(t) = windspeed(t) polar [u(t)] sin(u(t) + windangle(t)),(5.8)

where windspeed(t) = 2 + t, windangle(t) = π
2 (1 − 0.4t) and polar[u] = | sin( 2u

3 )|. In this model, the control
u(t) represents the relative angle between the heading of the boat and the (origin) direction of the wind. The
evolution of the wind direction over time is depicted in Fig. 3. The polar curve of this toy model of a sailing boat
is represented in Fig 4; this figure clearly shows that this model does not satisfy Assumption 1. Although the
absence of duality gap between the control problem and the LP problem (DF ) is, therefore, not guaranteed, we
see in Table 3 that if this gap exists in this case, it is low (below 1.6%). The state constraint set is X = [−1, 1]2,
and the control set U = [−π, π]. The initial condition is x(0) = (0,−1), and the target set is K = B(0, r), for
r = 0.05. The travel time associated with the heuristic control, consisting in following a straight trajectory, is
1.278 (see Fig. 5).

We see that the highest estimated value of (Rd), for d = 7 and d = 8, is 0.5% lower than the value (0.913)
of the best feasible trajectory obtained with the feedback controller for d = 6. This feedback controller yields a
trajectory which is 29% faster than the heuristic trajectory. As regards the certified lower bound, d = 4 yields
the best result (0.896), at a price of a running time of 498s for the exact oracle (SCIP 8). For the same reasons
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(a) t = 0 (b) t = 0.4 (c) t = 0.8

Fig. 3: Regatta problem: wind direction at different times

Fig. 4: Regatta problem: the polar curve of the sailing boat

d ∈ N Estimated
value of (Rd)

Certified
LB for (Rd)

Value feedback
control (CLV )

Solution
time (in s)

Iterations
number

Certification
time (in s)

2 0.834 0.829 1.278 6 6.0 2
3 0.896 0.880 0.912 16 10.0 56
4 0.904 0.896 0.915 31 13.0 498
5 0.907 0.774 0.912 52 16.0 1020
6 0.907 0.799 0.912 100 22.0 1930
7 0.908 0.691 0.912 190 29.0 7600
8 0.908 0.000 0.911 312 33.0 TL

Table 3: Regatta problem: lower and upper bounds, and computational times for various degrees of the SIP
hierarchy (Rd)

as in the previous application, a larger d does not necessarily mean a better certified lower bound obtained
within the time limit. In summary, we obtain a certified optimization gap of 1.6% for this minimal time control
problem.

5.3. A generalized Brockett integrator. For n ∈ N∗ and m = n − 1 and given a continuous mapping
q : Rn → Rm, we consider the following generalization of the Brockett integrator [29],

ẋi(t) = ui(t) ∀i ∈ {1, . . . , n− 1}(5.9)

ẋn(t) = q(x(t))>u(t).(5.10)
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Fig. 5: Regatta problem: heuristic control and feedback control (d = 6)

In particular, we study this system for n = 6, and q(x) =
(

2/(2 + x4),−x1,− cos(x1x3), exp(x2), x1x2x6

)
. The

state constraint set is X = [−1, 1]5, and the control set is U = B(0, 1). The initial condition is (x0) = 1
21, and

the target set is K = B(0, r), for r = 0.05. The travel time associated with the heuristic control is 1.377.

d ∈ N Estimated
value of (Rd)

Certified
LB for (Rd)

Value feedback
control (CLV )

Solution
time (in s)

Iterations
number

Certification
time (in s)

2 1.071 0.763 1.071 220 28 73
3 1.072 0.000 1.071 5630 133 TL
4 1.072 0.000 1.070 147400 319 TL

Table 4: Generalized Brockett integrator: lower and upper bounds, and computational times for various degrees
of the SIP hierarchy (Rd)

Since this system has a larger dimension than the other two examples, we see that the computation times
are longer for the same degree d. Already for d = 2, we obtain an estimated value of (Rd) that is within 0.1% of
the value of the feedback control (1.070). This feedback control yields an improvement of 22% over the heuristic
trajectory. Note that the estimated values of (Rd) computed by Algorithm 3.1 with the (inexact) sampling
oracle are slightly larger than the value of the best trajectory we computed: thus, these estimates are not valid
lower bounds, but only estimates of the value of the minimum time control problem. Regarding the certification
of lower bounds, the global optimization solver SCIP 8 fails to produce tight upper and lower bounds on φ(θ),
the infeasibility of the solution θ returned by Algorithm 3.1. Therefore, the resulting certified lower bounds
are not tight either. In summary, we obtain a certified optimization gap of 29% for this minimal time control
problem.

6. Discussion. We apply the dual approach in minimal time control, that consists in searching for maximal
subsolutions of the HJB equation, to generic nonlinear, even non-polynomial, controlled systems. The basis
functions used to generate these subsolutions are polynomials, that are subject to semi-infinite constraints. We
prove the theoretical convergence of the resulting hierarchy of semi-infinite linear programs, and our numerical
tests on three different systems show good convergence properties in practice. These results show that the use of
a random sampling oracle allows a good approximation of the value of the control problem. For small systems,
it is even possible to obtain tight and certified lower bounds, based on a global optimization solver. Finally,
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the numerical experiments also show that the computed subsolutions of the HJB equations help to recover
near-optimal controls in a closed-loop form. As illustrated in these numerical experiments, the advantage of
our approach based on semi-infinite programming, compared to the sum-of-squares approach, is the ability to
handle non-polynomial systems. In the numerical example where a polynomial reformulation of the system was
possible, the sum-of-squares approach was, however, faster.

A promising avenue for continuing this work is to investigate the use of a other basis of functions to search
for an approximate value function, resulting in other semi-infinite programming hierarchies with convergence
guarantees. In particular, it would be relevant to use non-differentiable functions in the basis to improve
approximation capabilities for non-differentiable value functions. Another avenue of research is to extend the
approach and theoretical results to a generic optimal control problem.
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Appendix A. Technical lemmata.

Lemma A.1. We consider a compact set Z ⊂ Rp, and the family of compact sets Zδ = {z ∈ Rp : d(z, Z) ≤ δ}
for any δ ≥ 0 and a continuous function ψ ∈ C(Rp). Then, the function Ψ(δ) = minz∈Zδ ψ(z) is continuous at
0.

Proof. First of all, we notice that the function δ 7→ minz∈Zδ ψ(z) is well-defined, since ψ is continuous and
Zδ is compact. As Zδ1 ⊂ Zδ2 for any δ1 ≤ δ2, the function Ψ is non-increasing, which proves that the following
limit exists:

lim
δ→0+

Ψ(δ) = Ψ(0+) ≤ Ψ(0).(A.1)

We take a positive sequence (δk) ∈ RN
++ such that δk → 0. Hence, Ψ(δk) → Ψ(0+) by definition of the right-

limit. For any k ∈ N, we define zk ∈ Zδk such that ψ(zk) = Ψ(δk). The sequence (δk) being bounded, we can
introduce an upper bound δ̄. Hence, any element of the sequence (zn) belongs to the compact set Zδ̄, and up
to the extraction of a subsequence, converges to a point z being such that ψ(z) = Ψ(0+) by continuity of ψ
and uniqueness of the limit. As d(zk, Z), the distance between zk and the compact set Z, is bounded above by
δk and is non-negative, it converges to 0. By continuity of the distance, we know that d(z, Z) = 0 and, thus,
Ψ(0+) = ψ(z) ≥ Ψ(0). Together with Eq. (A.1), this yields Ψ(0+) = Ψ(0).

Lemma A.2. Let Q ∈ C1(Rp) be a continuously differentiable function, with a locally Lipschitz gradient. Let
Z ⊂ Rp be a compact set. Then, there exists a constant A > 0, and a sequence of polynomials (wd(x))d∈N∗ such
that for all d ∈ N∗, wd ∈ Rd[x1, . . . , xp] and

sup
x∈Z
|wd(x)−Q(x)| ≤ A

d
(A.2)

sup
x∈Z
‖∇wd(x)−∇Q(x)‖≤ A

d
.(A.3)
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We underline that the constant A implicitly depends on p, Q and Z, but not on the polynomial wd(x), nor on
its degree d.

Proof. We introduce a constant R > 0 such that Z ⊂ B(0, R), and the function ω̃ = ω ∗ 1B(0,R+1), where ω
is the mollifier introduced in the proof of Th. 2.5. We notice that ω̃ ∈ C∞(Rp) is supported on Z̃ = B(0, R+ 2)
and constant equal to 1 over B(0, R). We define Q̃(x) = Q(x)ω̃(x), and we notice that (i) Q̃ is supported on the
compact set Z̃, which contains Z, (ii) for all x ∈ Z, Q̃(x) = Q(x) and ∇Q̃(x) = ∇Q(x). Applying [3, Th. 1] to
the function Q̃, that has a compact support, we know that there exists a constant C such that for any d ≥ 1,
there exists a polynomial wd(x) of degree at most d such that

sup
x∈Z
|wd(x)− Q̃(x)| ≤ C

d
κ(

1

d
) ≤ Cκ(

1

d
),(A.4)

sup
x∈Z
|∂i(wd − Q̃)(x)| ≤ Cκ(

1

d
)(A.5)

where κ(δ) = sup
1≤i≤p

sup
(x,y)∈Rp×Rp
|x−y|≤δ

|∂iQ̃(x)− ∂iQ̃(y)|. We define Z̃ = {x ∈ Rp : d(x, Z) ≤ 1}. Since ∂Q̃ is uniformly

null outside Z̃, and assuming that δ ≤ 1, we notice that

κ(δ) = sup
1≤i≤p

sup
x,y∈Z̃×Rp
|x−y|≤δ

|∂iQ̃(x)− ∂iQ̃(y)| = sup
1≤i≤p

sup
x,y∈Z̃×Z̃
|x−y|≤δ

|∂iQ̃(x)− ∂iQ̃(y)|.

We note that ∂iQ̃(x) = ω̃(x)∂iQ(x) +Q(x)∂iω̃(x), and therefore, |∂iQ̃(x)− ∂iQ̃(y)| = |ω̃(x)(∂iQ(x)− ∂iQ(y)) +
∂iQ(y)(ω̃(x)−ω̃(y))+Q(x)(∂iω̃(x)−∂iω̃(y))+∂iω̃(y)(Q(x)−Q(y))|. We use, then, the triangle inequality and the
facts that (i) ω̃ is C∞, therefore bounded, Lipschitz continuous, and with a Lipschitz-continuous gradient over Z̃
and (ii) Q is continuously differentiable, therefore bounded, and Lipschitz continuous over Z̃; by assumption it
has a Lipschitz continuous gradient over the compact set Z̃. We deduce that ∂iQ̃ is Lipschitz continuous over Z̃:
there exists Li > 0 such that sup

x,y∈Z̃×Z̃
|x−y|≤δ

|∂iQ̃(x)−∂iQ̃(y)| ≤ Liδ, for all δ ∈ [0, 1]. Defining L = maxi Li, we deduce

κ(δ) ≤ Lδ. Then Eq. (A.4) reads supx∈Z |wd(x)−Q̃(x)| ≤ CL
d , and Eq. (A.5) reads supx∈Z |∂i(wd−Q̃)(x)| ≤ CL

d

for all i ∈ {1, . . . , p}. We also deduce that supx∈Z‖∇wd(x) −∇Q̃(x)‖≤ CLp
d . Defining A = CLp, and noticing

that for all x ∈ Z, Q̃(x) = Q(x) and ∇Q̃(x) = ∇Q(x), one obtains the claimed statement.

Lemma A.3. Under Assumption 1 and Assumption 2, we consider an admissible trajectory (x(·), u(·)) over
[0, t1] of the minimal time control problem (2.1)-(2.4) starting from (0, x0). Then, for almost all t ∈ [0, t1],
f(t, x(t), u(t)) ∈ TX(x(t)).

Proof. We reduce to a time-invariant controlled system: we define, for any y = (t, x) ∈ Rn+1 and u ∈ Rm,

f̃(y, u) =

(
1

f(y, u)

)
, and the constant set-valued map Ũ(y) = U . The control system (f̃ , Ũ) is a Marchaud

control system [1, Def. 6.1.3], since: (i) the graph of Ũ is closed (ii) f̃ is continuous (iii) the velocity subsets
{f̃(y, u) : u ∈ Ũ(y)} are convex due to Assumption 1, and (iv) the function f has a linear growth since it is
Lipschitz continuous, and the set-valued map are bounded, thus also has a linear growth. We define the set

C = R+ ×X and notice that the control u(·) regulates a trajectory y(t) =

(
t

x(t)

)
that remains in C, therefore

according to [1, Th. 6.1.4], for all most all t ∈ [0, t1], u(t) ∈ {u ∈ Ũ(y(t)) : f̃(y(t), u(t)) ∈ TC(y(t))}. We notice
that TC(y(t)) ⊂ R× TX(x(t)), implying that f(y(t), u(t)) ∈ TX(x(t)).

Lemma A.4. For any locally Lipschitz continuous function F : Rp → R, and for any Lipschitz continuous
curve y : [0, T ]→ Rp, the function t 7→ F (y(t)) is differentiable a.e. and satisfies

min
g∈∂cF (y(t))

g>ẏ(t) ≤ d

dt
(F (y(t))) ≤ max

g∈∂cF (y(t))
g>ẏ(t),(A.6)

for almost all t ∈ [0, T ].

The particular functions F for which these three quantities are equal are called path-differentiable in [7].
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Proof. First, we notice that the functions t 7→ y(t) and t 7→ F (y(t)) are Lipschitz continuous, therefore
differentiable a.e. on [0, T ] due to the Rademacher theorem [16]. Hence, for almost all t ∈ [0, T ], both y(t) and
F (y(t)) are differentiable at t. We consider such a t, and we show that (A.6) holds for this particular t, which
we prove the Lemma. Since y is differentiable at t, r(h) = y(t+ h)− y(t)− hẏ(t) is in oh→0(h) .

Since s 7→ F (y(s)) is differentiable at t, the following holds

d

dt
(F (y(t))) = lim

h→0,h>0

F (y(t+ h))− F (y(t))

h
(A.7)

= lim
h→0,h>0

F (y(t) + hẏ(t) + r(h))− F (y(t))

h
(A.8)

Since r(h) = oh→0(h) and F is locally Lipschitz, we know that lim
h→0,h>0

F (y(t))−F (y(t)+r(h))
h = 0. Summing this

with Eq. (A.8), we deduce that

d

dt
(F (y(t))) = lim

h→0,h>0

F (y(t) + r(h) + hẏ(t))− F (y(t) + r(h))

h
(A.9)

≤ lim sup
y′→y(t)
h→0,h>0

F (y′ + hẏ(t))− F (y′)

h
= F ◦(y(t), ẏ(t)),(A.10)

where F ◦(y; v) = lim sup
y′→y

h→0,h>0

F (y′+hv)−F (y′)
h is the F ◦(y;h) Clarke’s directional derivative at y ∈ Rp in the direction

v ∈ Rp. The inequality follows from the fact that y(t) + r(h)→ y(t). By property of the Clarke subdifferential
[12], we also know that F ◦(y; v) = maxg∈∂cF (y) g

>v. Hence, in particular,

d

dt
(F (y(t))) ≤ max

g∈∂cF (y(t))
g>ẏ(t).(A.11)

The reasoning that proved Eq. (A.11) is also applicable to −F , that is also locally Lipschitz, and such that
s 7→ (−F )(s) is differentiable at t. Therefore,

d

dt
(−F (y(t))) ≤ max

g∈∂c(−F )(y(t))
g>ẏ(t).(A.12)

As ∂c(−F )(y(t)) = −∂cF (y(t)) by property of the Clarke subdifferential, we deduce that

− d

dt
(F (y(t))) ≤ max

g∈∂cF (y(t))
−g>ẏ(t) = − min

g∈∂cF (y(t))
g>ẏ(t),(A.13)

and therefore d
dt (F (y(t))) ≥ ming∈∂cF (y(t)) g

>ẏ(t).

22


	Introduction
	Motivation and related works
	Contribution
	Mathematical notation

	Problem statement and Linear Programming formulations
	Definition of the minimal time control problem
	Hamilton-Jacobi-Bellman equation and subsolutions
	Infinite dimensional Linear Programming formulations

	Convex semi-infinite programming to compute near-optimal subsolutions
	A hierarchy of linear semi-infinite programs
	Regularization and solution of the semi-infinite programs

	Feedback control based on approximate value functions
	Controller design and existence of trajectories
	Performance of the feedback controller depending on the value function approximation error
	A sufficient regularity condition for the existence of near-optimal controllers based on polynomials

	Illustrative examples
	A time-dependent Zermelo problem
	A regatta toy-model
	A generalized Brockett integrator

	Discussion
	References
	Appendix A. Technical lemmata

