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The simulation of strongly correlated quantum impurity models is a significant challenge in modern condensed
matter physics that has multiple important applications. Thus far, the most successful methods for approaching
this challenge involve Monte Carlo techniques that accurately and reliably sample perturbative expansions to
any order. However, the cost of obtaining high precision through these methods is high. Recently, tensor train
decomposition techniques have been developed as an alternative to Monte Carlo integration. In this study, we
apply these techniques to the single-impurity Anderson model at equilibrium by calculating the systematic
expansion in power of the hybridization of the impurity with the bath. We demonstrate the performance of
the method in a paradigmatic application, examining the first-order phase transition on the infinite-dimensional
Bethe lattice, which can be mapped to an impurity model through dynamical mean field theory. Our results
indicate that using tensor train decomposition schemes allows the calculation of finite-temperature Green’s
functions and thermodynamic observables with unprecedented accuracy. The methodology holds promise for
future applications to frustrated multiorbital systems, using a combination of partially summed series with other
techniques pioneered in diagrammatic and continuous time quantum Monte Carlo.

DOI: 10.1103/PhysRevB.107.245135

I. INTRODUCTION

The solution of strongly correlated quantum impurity mod-
els is one of the central tasks of condensed matter physics.
Quantum impurity models describe the physics of an interact-
ing “impurity” or “quantum dot” coupled to a large, typically
infinite, number of noninteracting “bath” or “lead” degrees of
freedom. Quantum impurity models were initially developed
to describe the physics of magnetic impurities embedded in
a nonmagnetic host [1], but have since been adapted to de-
scribe quantum dots and molecular junctions [2], as well as
atoms and molecules adsorbed on surfaces [3,4]. Importantly,
they also appear as auxiliary models in quantum embedding
techniques such as dynamical mean field theory (DMFT) and
self-energy embedding theory [5–8], which typically require
the calculation of a finite-temperature Green’s function in the
strongly correlated regime.

A reliable description of correlated systems requires meth-
ods that are numerically exact, in the sense that errors can be
made arbitrarily small as a function of a control parameter.
Among such methods, the continuous time quantum Monte
Carlo (CT-QMC) impurity solvers [9–12], which are based
on the stochastic sampling of a perturbative expansion to
all orders, have become ubiquitous in cluster [13] and real-
materials DMFT applications [7]. Numerous variants [14–21],
improvements, and open source implementations [22–30]
exist.

CT-QMC methods provide exact results within Monte
Carlo confidence intervals. In particular, they do not require a
discretization of bath degrees of freedom, like exact diagonal-
ization methods [31–33], or of the time degrees of freedom,
like Hirsch and Fye [34] or lattice Monte Carlo methods
[35]. However, they suffer from the following two limitations:
(1) Away from high-symmetry points, “sign problems” may
cause the computational cost to grow exponentially as a
function of system size, inverse temperature, or interaction
strength, limiting calculations (with a few exceptions [20,21])
in practice to systems with almost diagonal interactions
and/or hybridizations, and (2) thermodynamic quantities such
as the partition function and free energy are, in standard im-
plementations, only available up to an unknown normalization
constant [36].

The standard framework of CT-QMC and, more generally,
of “diagrammatic” [37–39] Monte Carlo methods is based
on a perturbative series expansion that expresses observables
of a quantum system in terms of an infinite series of high-
dimensional integrals. This series is then summed to all orders
in a stochastic sampling process, employing a Monte Carlo
sampling procedure [12] that performs a random walk in dia-
gram space. For a given number of samples ns, this procedure
produces unbiased stochastic estimates with errors that de-
crease rather slowly as ∼1/

√
ns. Notably, quasi-Monte-Carlo

methods can substantially accelerate this to ∼1/ns in at least
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some cases [40,41]. In the context of correlated quantum
transport, some of us [42] have recently shown that in the
calculation of many high-dimensional integrals of the pertur-
bative series expansion, it may be advantageous to replace
Monte Carlo integration by a decomposition of the integrand
into a product of low-dimensional tensors, which can then be
integrated separately [43]. The method is controlled in the
sense that the exact result is recovered as the tensor rank
increases.

The decomposition of tensors into approximate low-rank
forms without needing to evaluate all their elements is based
on tensor cross-interpolation (TCI) methods [44,45]. The cor-
responding approximation of a high-dimensional tensor by
the product of a sequence of low-rank tensors is known as a
“tensor train” in the applied mathematics and computer sci-
ence literature [46]. Tensor trains are also known as matrix
product states (MPS) pioneered in the density matrix renor-
malization group (DMRG) and related methods [47,48].

In this paper, we adapt the tensor train approach of
Núñez-Fernández et al. [42] to equilibrium imaginary-time
quantum impurity problems. We benchmark the impurity
solver for the analytically solvable noninteracting limit and
demonstrate its accuracy for the single-site DMFT problem
of a Bethe lattice in the infinite coordination number limit,
where the DMFT is exact and the self-consistency condition
becomes particularly simple [6]. We compute the Green’s
function (GF) to high accuracy, investigate convergence with
respect to the parameters that control the accuracy, and show-
case that the tensor train methodology is often substantially
more precise than quantum Monte Carlo for a given amount
of computer time. In addition, we use the tensor train approach
to compute the partition function and the impurity free energy.
Unlike in CT-QMC, where normalization with respect to low
order with quantum Wang-Landau [12,36] or normalization
with respect to a hypervolume [18,49] is needed, thermody-
namic quantities are directly accessible in the tensor train
decomposition scheme. We then demonstrate the usefulness
of our results at the example of the first-order Mott metal-to-
insulator transition.

The paper proceeds as follows. Section II introduces the
hybridization expansion and gives an overview of the tensor
train methodology, describing the decomposition for different
observables, as well as computational details. Section III illus-
trates results of the GF for the noninteracting and the DMFT
case, and shows results for the free energy. Section IV presents
conclusions.

II. METHOD

This section introduces the methodology used in this work.
The system and the hybridization expansion are presented in
Sec. II A. The details of the tensor train representation and its
calculation are reviewed in Sec. II B. Details on how these two
approaches are combined are presented in Sec. II C.

A. Hybridization expansion formalism

We study a quantum impurity model described by the
Hamiltonian H = HI + HB + HIB ≡ H0 + HIB, consisting of
an interacting impurity HI, a noninteracting bath HB, and the

impurity-bath coupling or hybridization HIB. For the single-
site Anderson impurity model,

HI = ε0(n↑ + n↓) + Un↑n↓, (1a)

HB =
∑
σk

εkc†
kσ

ckσ , (1b)

HIB =
∑
kσ

(Vkσ d†
σ ckσ + H.c.), (1c)

where ε0 denotes the onsite energy of the impurity and U is the
Coulomb interaction between two electrons of opposite spin. k
enumerates the (potentially infinite number of) bath states, εk

is the dispersion of the noninteracting bath, and Vkσ represents
the coupling strength between the impurity and bath state k.
The creation and annihilation operators associated with spin
orbital σ of the impurity are given by d (†)

σ , the operators c(†)
kσ

denote the corresponding bath operators associated with state
k, while nσ = d†

σ dσ .
The main observables of interest for this work are the

partition function, which grants access to thermodynamic
properties of the system, and the Green’s function (GF), which
is of particular interest for quantum embedding schemes. The
partition function is given by

Z = Tr{e−βH }, (2)

where β denotes the inverse temperature and Tr{. . . } is the
trace over the impurity and bath degrees of freedom. We
define the imaginary-time GF for electrons of spin σ as

Gσ (τ ) = −〈Tτ dσ (τ )d†
σ (0)〉 , (3)

where 〈. . .〉 denotes the expectation value with respect to the
Hamiltonian H , Tτ is the time-ordering operator, and dσ (τ ) =
eτH dσ e−τH .

In the hybridization expansion formalism, Eqs. (2) and (3)
are expanded in orders of the impurity-bath coupling HIB [10].
This hybridization expansion is one of the standard techniques
underlying Monte Carlo quantum impurity solvers [12] and
provides the framework for many approximate and numeri-
cally exact methods [10,14–18,20,50–53].

Expanding Eq. (2) in the impurity-bath coupling yields

Z =
+∞∑
k=0

∫ β

0
dτ1

∫ β

τ1

dτ2· · ·
∫ β

τk−1

dτk 〈HIB(τk ) . . . HIB(τ1)〉H0
,

(4)

with H0 = HI + HB, HIB(τ ) = eH0τ HIBe−H0τ . 〈. . .〉H0
denotes

the expectation value with respect to H0. Inserting the explicit
expression for the impurity-bath coupling from Eq. (1c) and
defining the time-ordered simplex Sβ

0 as the region of integra-
tion with 0 � τ1 � τ2 � · · · � τk � β, the partition function
can be reexpressed as

Z =
∞∑

k=0

∫
Sβ

0

dτ1 . . . dτk

∑
σ1...σk

z(k)
σ1...σk

(τ1, . . . , τk ) (5)

with

z(k)
σ1...σk

(τ1, . . . , τk ) =
∑

φ1...φk

det �
〈
dφk

σk
(τk ) · · · dφ1

σ1
(τ1)

〉
HI

. (6)

245135-2



TENSOR TRAIN CONTINUOUS TIME SOLVER FOR … PHYSICAL REVIEW B 107, 245135 (2023)

Here, σi ∈ {↑,↓} are spin indices and φi ∈ {−,+} are used to
sum over all combinations of creation and annihilation oper-
ators with d−

σi
≡ dσi and d+

σi
≡ d†

σi
. The influence of the bath

on the impurity is encoded in the hybridization function �(τ ).
The hybridization function can either be calculated explicitly
for a given bath model, which is done for studies on quantum
dots or molecular systems where �(τ ) = −〈Tτ aσ (τ )a†

σ (0)〉
with aσ = ∑

k Vkσ ckσ , or determined by a self-consistency
condition. The latter scenario appears in quantum embedding
schemes like DMFT. Given a hybridization function �(τ ) and
invoking particle-hole symmetry, the hybridization matrix �

entering Eq. (6) is

�i j =
{
�(τi − τ j ) if σi = σ j and φi �= φ j,

0 otherwise. (7)

The hybridization expansion expressions for the GF can be
obtained in a similar fashion [10,12], and assumes the form

Gσ (τ ) =
∞∑

k=0

∫
Sβ

0

dτ1 . . . dτk

∑
σ1...σk

g(k)
σσ1...σk

(τ, τ1, τ2, . . . , τk ).

(8)
Here,

g(k)
σσ1...σk

(τ, τ1, . . . , τk )

= − 1

Z

∑
φ1...φk

det �
〈
dφk

σk
(τk ) . . . dφm

σm
(τm)dσ (τ )dφn

σn
(τn) . . .

× dφ1
σ1

(τ1)d†
σ

〉
HI

(9)

and τm � τ � τn. While the main difference between the in-
tegrands z(k)

σ1...σk
and g(k)

σσ1...σk
are the creation and annihilation

operators at 0 and τ , the additional operators further restrict
the combinations of spin and creation and annihilation opera-
tors that give a nonzero contribution.

Equations (6) and (9) contain sums over all possible cre-
ation and annihilation operator combinations φi, which leads
to an exponential number of possible combinations of opera-
tors. In the special case of density-density interactions, there
is only a single nonzero contribution with alternating creation
and annihilation operators for time-ordered arguments. This
simplification in the density-density case is analogous to the
simplification to the “segment” picture in CT-QMC [10,12].

The hybridization expansion presented here represents a
bare expansion scheme. A variety of related partial summa-
tion schemes have also been successful [17,18,20,52,54,55].

Equations (5) and (8) describe an infinite series of terms
in a series expansion, where a contribution at order k consists
of a k-dimensional integral. For finite systems at finite tem-
perature, this series is convergent [9,10]. However, since the
largest contributions to the series typically come from orders
near β〈HIB〉 [15], contributions at increasingly high orders are
expected when the temperature is lowered. Traditionally, the
expressions in Eqs. (5) and (8) are evaluated by Monte Carlo
techniques, whereby the integrands z(k)

σ1...σk
and g(k)

σσ1...σk
can be

interpreted in terms of Feynman diagrams, which are then
combined in a determinant and summed over in a statistical
manner [10].

B. Tensor train decomposition and TCI

In order to calculate observables such as the partition
function or the GF within the hybridization expansion, the
high-dimensional integrals in Eqs. (5) and (8) need to be
evaluated. Traditionally, these integrals are calculated using
Monte Carlo techniques [9,10], which converge as ∼1/

√
ns

for a given number of stochastic samples ns. The tensor train
methodology offers an alternative approach that has potential
to converge faster than Monte Carlo. In the following, we
summarize the principles underlying the tensor train repre-
sentation and refer the reader to the applied mathematics
literature for mathematical proofs [43,45,46]. The implemen-
tation of the tensor-fitting component of this work follows the
paper of Núñez-Fernández et al. [42].

To motivate the construction of a tensor train representation
for a given integrand, we first consider the general task of
integrating a high-dimensional function f (τ1, τ2, . . . , τk ) over
all its coordinates,

I =
∫

τ∈[0,β]k

dτ1dτ2 . . . dτk f (τ1, τ2, . . . , τk ), (10)

which is similar (though not yet equivalent) to evaluating
Eqs. (5) and (8). If the integration variables are separable and
independent, i.e., f (τ1, τ2, . . . , τk ) = f1(τ1) . . . fk (τk ), the in-
tegral can be reexpressed as k one-dimensional integrals,

I =
[∫ β

0
dτ1 f1(τ1)

]
. . .

[∫ β

0
dτk fk (τk )

]
, (11)

which can be evaluated independently with standard quadra-
ture rules. Assuming that the arguments τi, with 1 � i � k,
are each represented on a quadrature grid with nτ points, the
complexity of evaluating Eq. (10) is reduced from nk

τ to knτ

for Eq. (11), a substantial improvement, especially for large
values of k.

The tensor train representation can be viewed as a gen-
eralization of this special case. While an arbitrary function
f (k)(τ1, τ2, . . . , τk ) might not be separable in its arguments,
we aim to construct an approximation

f (k)(τ1, τ2, . . . , τk ) � A1(τ1)A2(τ2) . . . Ak (τk ), (12)

where the Ai(τi ) are matrices of dimension ri−1 × ri for 1 <

i < k with r1 = rk = 1 and matrix multiplication between
the Ai(τi ) is implicit in this notation. This representation is
schematically visualized in Fig. 1(a). We note that selecting
r1 = rk = 1 is just one among several options available, and
alternative approaches such as the tensor ring structure have
demonstrated their advantages in other applications [48]. As
the decomposition in Eq. (12) has the same temporal structure
as Eq. (11), it allows for the same simplification when evaluat-
ing the integral, the only difference being that the components
are matrix-valued functions of τi. In the discretized case where
the τi are on a grid, Ai(τi ) can be interpreted as a tensor rather
than a matrix-valued function, for which the above statements
also hold. We refer to a representation of the form in Eq. (12)
as a tensor train representation.

A tensor train representation (or approximation) is said
to be of rank r if the matrices (or tensors in the discretized
case) in Eq. (12) are of dimension r × r (or r × nτ × r).
The construction of low-rank tensor representations has been
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FIG. 1. (a) Visualization of the tensor train representation of a
function f (k)(τ1, τ2, . . . , τk ) according to Eq. (12) for k = 7. Each
block labeled Ai with 1 � i � k is either a matrix-valued function of
τi, or a tensor in case that the τi are discretized on a grid. Horizontal
lines between blocks imply matrix multiplication, vertical lines de-
note the dependence on τi. (b) Depiction of Eq. (13), where the pivot
matrix is used to decompose a two-dimensional function into a tensor
train. (c) Visualization of the iterative scheme used to approximate a
multidimensional integrand by a tensor train.

studied extensively [44–46,56,57]. Here, we use an extension
by Dolgov and Savostyanov [43] of the algorithmic ideas
of Oseledets and Tyrtyshnikov [46], which are based on the
so-called cross interpolation [58], and which is applicable to
matrices and tensors. The basic idea is that a set of points
(τ1, τ2, . . . , τk ), which are called pivots, defines an approx-
imation for the function f (k) at all possible values of the
times. The approximation requires evaluating the function at
the pivots themselves, and at all possible values of a certain
coordinate, with other coordinates held constant. Essentially,
evaluation is performed on sets of one-dimensional (1D) lines
in the high-dimensional hypercube of all coordinates, which
cross through pivots.

To gain some intuition, it is useful to first consider the
special case of matrices, i.e., k = 2. Let us assume that one
knows the values in a matrix only at a certain subset of its rows
and columns, defined by a set of pivot coordinates where they
cross. It is possible to obtain an interpolation scheme based on

this partial information. For a function f (2)(τ1, τ2), evaluating
f (2) at the set of pivots τ1 j and τ2 j with 1 � j � r with the
total number of pivots r, one can construct the pivot matrix
P whose entries are given by Pj j′ = f (2)(τ1 j, τ2 j′ ). Using the
inverse of the pivot matrix, one obtains the cross interpolation
of the original function,

f (2)(τ1, τ2) �
r∑

j, j′=1

f (2)(τ1, τ2 j )[P
−1] j j′ f (2)(τ1 j′ , τ2), (13)

which can be visualized in tensor network form as in Fig. 1(b).
Equation (13) represents an interpolation of f (2)(τ1, τ2) in
the sense that it is exact if τ1 (or τ2) belongs to the set τ1 j

(or τ2 j). Moreover, if f (2) is of rank r, i.e., it can be ex-
pressed as f (2)(τ1, τ2) = ∑r

j, j′=1 f1 j (τ1) f2 j′ (τ2) then Eq. (13)
becomes exact when one uses r pivots provided that P remains
invertible.

Generally, a given approximation of this type can be sys-
tematically improved by sequentially introducing more pivots
into it. However, this rapidly becomes costly, and not all new
pivots provide the same amount of information. While an op-
timal procedure remains unknown, there are well-established
heuristic algorithms for systematically finding and incorpo-
rating pivots into the approximation in such a way that
convergence occurs rapidly [59,60]. In this work we have
used the “maximum volume” principle, in particular the rook
pivoting procedure described by [43]. In this procedure, we
already have r pivot points τ1 j and τ2 j with 1 � j � r, and
wish to find a pair of new points τ1,r+1 and τ2,r+1 to add
to these sets, as shown in Fig. 1(c). We select this new pair
by searching for a point that maximizes the approximation
error. Because the TCI is an interpolation, the error at this
pivot decreases to zero once it is included in the tensor train.
The search is done by the so-called row-column alternating
algorithm [43,58], which starts with a random point τ1, and
evaluates the interpolation error for each possible value of τ2.
We then fix the value of τ2 to be the value that maximizes
the error, and evaluate the interpolation error for all possible
values of τ1 and select the point that maximizes the error. This
iterative procedure continues until a fixed point is found, cor-
responding to a dominant pivot in its own row and columns.
Compared to checking errors for each element of the matrix,
this heuristic search has complexity O(nτ ), instead of O(n2

τ ),
which substantially improves the efficiency for large number
of τ points. We have found that this procedure manages to
construct nonsingular pivot matrices that represent the inte-
grand with a reasonable number of function calls.

After establishing the TCI for a function of two variables,
we outline the extension to functions with multiple discrete
variables f (k)(τ1, τ2, . . . , τk ). The approximation is initialized
by considering a single pivot, so that we have pivot matrices
of size one [see top row of Fig. 1(c)]. We then perform a
search along the first two dimensions, τ1 and τ2, for the next
pivot to be added; all other coordinates are held constant at the
value of the original pivot. The chosen pivot is used to enlarge
the leftmost pivot matrix to 2 × 2 [second row of Fig. 1(c)].
In a manner reminiscent of the density matrix renormaliza-
tion group algorithm, we subsequently sweep to the right,
repeating this procedure by starting from existing pivots and
modifying coordinates locally, until all pivot matrices are of
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FIG. 2. Illustration of the mapping between the hypercube (a) and the simplex in two dimensions, using χ (x) = x (b) and χ (x) = x2 (c).
Each intersection of lines in (a) is mapped into an intersection in (b) and (c).

rank 2 [third row of Fig. 1(c)]. This is followed by another
sweep to the left, resulting in rank-3 pivot matrices. This
procedure repeats until the pivot matrices have reached an
initially specified maximum rank [Fig. 1(c), bottom column]
[45,46].

For multidimensional continuous variables {τ1, . . . , τk},
we choose a set of collocation points for each τi, such that the
multivariate function is discretized into a multidimensional
tensor and the discrete algorithm above can be applied.

C. Applying the tensor train approximation to expressions
from the hybridization expansion

The efficiency of a tensor train approximation for a given
integration task depends on whether an accurate approxima-
tion for an integrand can be found for low rank r. In the
following, we describe some of the technical aspects of our
implementation of the tensor decomposition scheme to the
hybridization expansion. We outline the main aspects for the
partition function, and then discuss the specific aspects that
are needed to apply the method to the GF.

1. Mapping the hypercube to the simplex

The expressions from the hybridization expansion frame-
work require the integration over the simplex Sβ

0 [see Eq. (5)].
This is a consequence of the time ordering. However, the
TCI algorithm is defined on the hypercube. Simply extending
the integral beyond the time-ordered region would introduce
discontinuities that prevent an accurate low-rank tensor train
approximation.

The change of variable proposed in Ref. [42], when ap-
plied to imaginary-time problems, extends the hybridization
function �(τ ) over the discontinuities at τ = 0 and τ = β

and is therefore also not suitable. Instead, we use a change
of variable in this work that maps the original simplex Sβ

0 to
the hypercube [0, 1]k .

Let τi denote the variables within the simplex and vi the
corresponding variables in the hypercube with 1 � i � k. The
mapping h between the hypercube and the simplex used in this
work is

τ1 = h(v1) = χ (v1) · β, (14a)

τ j = h(v j ) = τ j−1 + χ (v j ) · (β − τ j−1), (14b)

with 2 � j � k and χ any differentiable monotonous func-
tion that maps the interval [0,1] onto itself. A simple choice
of χ is the identity χ (x) = x but a different choice of χ , such
as χ (x) = x2, may facilitate the TCI.

The two different mappings are visualized in Fig. 2.
Figure 2(a) shows a uniform partitioning of the hypercube,
which is mapped to the simplex by χ (x) = x in Fig. 2(b), and
by χ (x) = x2 in Fig. 2(c).

2. Change of variables

To proceed, we calculate the Jacobian of the change of
variable defined by Eqs. (14a) and (14b). The Jacobian matrix
Ji j = ∂τi/∂v j is upper triangular so that its determinant is
given by the product of its diagonal elements,

det J (v1, . . . , vk ) = βχ ′(v1) ·
k∏

j=2

χ ′(v j )[β − h(v j−1)].

(15)

While it is in principle possible to apply TCI separately to the
Jacobian and the integrand z̃(k)

σ1...σk
(v1, . . . , vk ), we choose to

apply TCI directly on their product, i.e., we apply the tensor
train approximation to

z̄(k)
σ1...σk

(v1, . . . , vk ) = z̃(k)
σ1...σk

(v1, . . . , vk )| det J (v1, . . . , vk )|.
(16)

This approach proved to be the most efficient within the scope
of this work since the factorization of Eq. (16) by a tensor
train allows for a direct calculation of the integral using one-
dimensional quadrature rules.

The function χ that enters Eq. (16) through Eqs. (14a),
(14b), and (15) controls two important aspects that influence
the quality of low-rank tensor train approximations. First, it
influences the spacing of the pivot points that are used within
the tensor train decomposition. For example, the identity for
χ in Eqs. (14a) and (14b) shifts potential pivot points away
from 0 and closer to β, which implies a bunching of pivot
points close to β. This can be compensated for by a suitable
choice of χ . Second, as χ enters the integrands, it can be
used to “warp” the integrand, i.e., reshape it into a func-
tion that is easier to integrate. The approach of “warping”
the integrand was also used for facilitating integration using
quasi-Monte-Carlo methods [40], and was used in Ref. [42],
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where changing to a representation in terms of relative time ar-
guments rather than absolute ones was necessary to construct
a tensor train approximation. For the results presented in this
work, we use χ (vi ) = v2

i .
To illustrate the above method, we consider a simple ex-

ample here. Let �(t ) = t (t − 1) and consider the integral

Iex =
∫ 1

0
dτ3

∫ τ3

0
dτ2

∫ τ2

0
dτ1e−(τ3−τ2 )e−2(τ2−τ1 )e−τ1

× �(τ3 − τ1)�(τ2). (17)

This integral has a structure similar to the functions in the hy-
bridization expansion. It can be evaluated analytically on the
simplex Iex = 13

4 − 63
4 e−2 − 91

30 e−1 ≈ 2.568 32 × 10−3. Using
the transformation in Eqs. (14) and (15) with β = 1, the
integral can be calculated with the tensor train algorithm de-
scribed in the previous section [61], which would produce the
result given above with an error of less than 10−5 within 10
iterations.

3. Summation over spin indices

Equation (5) features a sum over spin indices σi. The num-
ber of spin combinations that need to be considered grows
exponentially with the hybridization order k, which can render
the calculation of higher orders in the hybridization expansion
unfeasible. We have considered two different approaches for
incorporating this aspect into the tensor train methodology.

The first approach is to use the sum over all spin com-
binations for the tensor train decomposition explicitly, that
is applying the TCI algorithm on

∑
σ1...σk

z̄(k)
σ1...σk

(v1, . . . , vk ).
As this approach effectively averages over all spin combi-
nations, which smooths to some extent the function that is
approximated, we found that this method produces good ap-
proximations for relatively low tensor ranks. However, as the
evaluation of the function that is approximated by the tensor
train requires to explicitly perform the sum over all spin com-
binations which grows exponentially with the hybridization
order, this approach becomes prohibitively expensive for high
hybridization orders. As such, we deem this approach only
feasible for high temperature and for systems that converge
within hybridization orders of k � 15.

The second approach is to use the tensor train approxi-
mation not only for the arguments vi, but also for the spin
arguments σi. The sum over the spin indices is then performed
along with the integration over the simplex. On a technical
level, we achieve this by introducing a surrogate variable wi ∈
[−1, 1] with vi = |wi| and σi =↑ if wi � 0 and vi = |wi| and
σi =↓ if wi < 0. Approximating z̄(k)(w1, . . . ,wk ) by a tensor
train and integrating over the variables wi corresponds to
summing over all spin indices and integrating over the original
simplex. This approach overcomes the necessity to explicitly
account for an exponential number of spin combinations and
is therefore suitable for high hybridization orders. However, as
the function that is being approximated in this case contains
more information, the tensor rank that is required to obtain
a certain accuracy increases as compared to the previous
approach.

4. Decomposition schemes for the GF

The τ dependence of the GF is the result of the operator dσ

placed at time τ , which is the main difference between the par-
tition function and the GF. When performing the τi integrals in
Eq. (8), this implies that the integrand g(k)

σσ1...σk
(τ, τ1, . . . , τk )

needs to consider configurations that have a variable num-
ber of up to k creation and annihilation operators to the left
or to the right of τ . When creation or annihilation opera-
tors move across τ , where the operator dσ (τ ) is located, the
integrand drops to zero and a discontinuity occurs. Tensor
train approximations converge slowly in the presence of such
discontinuities. We therefore rewrite the integration over the
simplex in Eq. (8) as

Gσ (τ ) =
∞∑

k=0

k∑
l=0

∫
Sτ

0

dτ1 . . . dτl

∫
Sβ

τ

dτl+1 . . . dτk

×
∑

σ1...σk

g(k)
σσ1...σk

(τ, τ1, τ2, . . . , τk ), (18)

which fixes the number of creation and annihilation operators
to the right and to the left of τ to l and k − l , respectively,
thus circumventing the emergence of discontinuities. Here, Sτ

0
and Sβ

τ are the time-ordered simplices between 0 and τ and
between τ and β, respectively, with 0 � τ1 � · · · � τl � τ

and τ � τl+1 � · · · � τk � β.
To represent the τ dependence of the GF, we have explored

two possible approaches. In the first one, we calculate the GF
at every value of τ . This approach scales linearly with the
number τ points. In the second one, we employ the tensor train
approach to also interpolate the τ dependence. On a technical
level, this is done by adding τ as a parameter to the function
that is approximated by a tensor train. Generally, this requires
a higher-rank tensor approximation for comparable accuracy,
whereby the actual increase in numerical effort depends on the
details of the problem and the representation used for τ . We
chose the second method for the calculations reported below,
where we find that we need about twice the rank to obtain
results of comparable accuracy.

5. Numerical stability and current limitations

While the tensor train methodology is generally a powerful
tool to obtain highly accurate results, we encountered cases
where our implementation of the approach became unstable.

Unsurprisingly, we observed that the tensor train method
fails to provide accurate results whenever it is applied to
functions that are discontinuous. The issue can be avoided by
ensuring that this case is not encountered for the observable
of interest.

Second, we observed that the tensor train approach
described in this work may become unstable for high hy-
bridization orders, k � 30, while at the same time assessing
convergence for these high orders becomes challenging.
These issues are likely caused by the selection of pivots. As
only a fraction of the vast parameter space can be probed for
high-dimensional functions, pivots might be chosen in such a
way that they do not provide a good representation of the func-
tion that is being interpolated. Moreover, the CI scheme relies
on the inversion of the pivot matrix. At high orders, where
the function approximated is essentially zero for extended
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regimes of the parameter space, picking near-singular pivots
for the CI scheme may result in an imprecise tensor train ap-
proximation. Further investigation of these numerical aspects
will likely resolve the issue.

III. RESULTS

In this section, we present results for the single-impurity
Anderson impurity model as described by Eqs. (1a)–(1c).
The influence of the bath on the impurity is encoded in the
hybridization function �(τ ).

We benchmark our method for the exactly solvable case of
a noninteracting impurity in Sec. III A, which we use to assess
the accuracy that can be obtained by the present method. In
Sec. III B, we showcase the performance of the methodology
for the paradigmatic metal-to-insulator transition observed in
the infinite-dimensional Bethe lattice. In particular, we show
that the method not only provides accurate and noise-free
results for the GF, but grants direct access to thermodynamic
properties. We illustrate this with the metal-to-insulator tran-
sition.

A. Noninteracting limit

We showcase the performance our method for the case
of a noninteracting Anderson impurity model U = ε0 = 0,
which is also known as the resonant level model. The system
is analytically solvable (see, e.g., [62,63]), which allows us
to benchmark the precision of the results obtained from a
tensor train approximation of different ranks. Nevertheless,
it is a challenging benchmark for hybridization expansion
approaches as it performs an expansion around the “atomic”
limit of an isolated impurity [10].

We consider an impurity coupled to a bath whose dis-
persion εk has a semielliptical form with bandwidth 4t ;
the associated density of states is D(ω) = 1

πt2

√
4t2 − ω2 for

−2t � ω � 2t and the hybridization function is given by
�(τ ) = − ∫

dω D(ω) e−τω

1+e−βω . This system presents a paradig-
matic case studied in single-site DMFT, as it corresponds
to an impurity embedded in an infinite-dimensional Bethe
lattice [6]. Figure 3(a) shows the convergence of the GF of
the tensor train formalism described in this work to the exact
result as a function of expansion order at inverse temperature
β = 10/t . “Exact” denotes the analytically known result. As
is evident, the exact result is recovered (within the accuracy of
this plot) as the expansion is increased beyond a hybridization
expansion order k ∼ 10.

In order to further assess the accuracy, we consider the
deviation of the GF at β/2, i.e., in the middle of the interval.
The left panel of Fig. 3(b) shows this deviation, as a function
of expansion order, for different tensor decomposition ranks.
We see that a maximum precision of 10−4 can be reached for
a decomposition rank of 30. Adding contributions at higher
order does not make the result more precise, indicating that it
is the tensor rank, rather than the truncation of the expansion
at a given order, that limits this precision. This is corroborated
by the curves for rank 60, rank 120, and rank 240, which
systematically increase the precision of the GF to an accuracy
of 10−7. Higher accuracy is reached by a combination of
increasing diagram order and increasing tensor rank; higher-

FIG. 3. Noninteracting impurity coupled to a semielliptic bath
with bandwidth of 4t at temperature β = 10/t . (a) Contribution to
GF from terms up to hybridization orders indicated by the color.
(b) Deviation of G(β/2) from the analytic result as a function of
perturbative orders for a set of representative tensor ranks (left
panel), and as a function of tensor rank for a set for representative
perturbative orders (right panel).

order hybridization contributions require higher ranks to be
accurately approximated by a decomposition.

The right panel of Fig. 3(b) illustrates the same behavior
as a function of tensor rank, evaluating contributions at up to
hybridization order 10, 20, and 30. The gray dashed line indi-
cates a convergence ∼1/rank with respect to the tensor rank.
In particular, it shows that the method converges faster than
1/rank for higher orders. It is evident that while contributions
up to order 10 are well described by an approximation tensor
train of rank less than 50, higher-order contributions require
substantially higher tensor ranks.

In practice, these results suggest a scheme where tensor
train approximations for a fixed hybridization are performed
for gradually increasing tensor ranks, until the integral values
no longer change as a function of tensor rank. Note that it is
difficult with existing CT-QMC techniques to reach a relative
accuracy beyond 10−5; the tensor train methodology is there-
fore promising for obtaining high-precision data that could be
used, for example, in analytic continuation [64].

B. Dynamical mean-field theory and free energy

In the following, we present results for interacting impurity
models. The purpose of this section is twofold: First, we
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FIG. 4. DMFT GF for representative interaction strengths U at
inverse temperature β = 20/t . The dashed lines represent results
obtained by hybridization expansion CT-QMC [10,26,73] (measured
in imaginary time as described in [10]). The full lines show results
calculated within the tensor train approach. The tensor rank neces-
sary for obtaining accurate results depends on interaction strength
and ranges from 90 in the insulating regime to 200 in the metallic
regime. Both results agree within their respective errors; differences
between the two methods are visible at large U due to the logarithmic
scale.

demonstrate the performance of our method for interacting
system and its capability to generate results that are compat-
ible with findings that are obtained using CT-QMC. Second,
we show that our method grants direct access to thermody-
namic observables, which are not straightforwardly available
in standard CT-QMC methods.

For scope of this section, we study the paradig-
matic example of the metal-to-insulator transition in an
infinite-dimensional Bethe lattice as described within DMFT
[5,65–70]. In its single-site formulation, DMFT approximates
the momentum-dependent self-energy of an extended lattice
problem by a local self-energy, and then provides a solution
for the auxiliary impurity problem with a dynamically ad-
justed, self-consistently determined bath [5,6]. For the infinite
coordination-number Bethe lattice, the self-energy is local and
the methodology becomes exact [5,6,71,72]. Below a critical
temperature of β ∼ 15/t , the paramagnetic version of the
model is known to have a first-order Mott metal-to-insulator
transition between a metallic state at weak interaction and an
insulating state at large interaction, with an extended coexis-
tence regime [5,65–70].

We first study results for the GF obtained at different
electron-electron interaction strength U at temperature β =
20/t . The GF for representative values of U is depicted in
Fig. 4, as calculated by both standard CT-QMC and the tensor
train approach. Both methods agree within their respective
errors. For U � 5t , the spectral weight A(ω = 0) ∼ βG(β/2)
becomes strongly suppressed, indicating the opening of the
Mott gap and the qualitative difference between metallic and
insulating solutions. We emphasize that both methods sample
the same diagrammatic perturbation expansion [10], either by
performing a stochastic random walk in diagram space or by
calculating a tensor train approximation to the integrand at
different orders. Figure 4 demonstrates that the tensor train

approach can provide results that are compatible with findings
obtained within CT-QMC schemes, and therefore establishes
tensor train based schemes as an alternative to Monte Carlo
based impurity solvers. As is evident from the data, the tensor
train method does not suffer from stochastic noise. While it
can generally be much more precise as compared to CT-QMC
methods at similar computational cost, there are numerical
aspects that influence the precision of the tensor train result.
In particular, when decomposing the integrands for high hy-
bridization orders where the parameter space is vast, we found
that the quality of the tensor train approximation can become
sensitive to the details of the pivots that are chosen. This is
especially the case when the integrand is essentially zero, or
when only a small part of the parameter space contributes
to the integral (see Sec. II C for more details). These cases
require a careful analysis of the results obtained by the tensor
train method, which in practice limits the feasibility of our
current implementation of higher precision results for high
hybridization orders. The situation is not unlike the one with
ergodicity issues in Monte Carlo, where the choice of an initial
state or of a few early moves may prevent the simulation
from exploring the entirety of phase space. Further investi-
gations, in particular with respect to how pivots are picked,
how the inversion of the pivot matrix is performed, and what
variables are used to represent the integrand at a specific
hybridization order, are left for future work. We now focus
on the thermodynamic properties of the system at the metal-
to-insulator transition. The first-order phase transition and the
coexistence regime between metallic and insulating solutions
in the single-site DMFT has been investigated in great detail
[68–70,74–77].

Thermodynamic quantities are directly accessible from
the tensor train formalism since the partition function can
be obtained using Eq. (5). This is in contrast to CT-QMC,
where diagrams are sampled with the probability that they
contribute to the partition function, but an overall partition
function normalization factor is typically not accessible (see
Ref. [36] and Ref. [12] Sec. X E on quantum Wang-Landau
algorithms for sampling this normalization in “bare” expan-
sions and Ref. [18] for normalizing to the hypervolume of
the time integral in renormalized/inchworm perturbation the-
ory), and in contrast to the Hirsch-Fye algorithm [34], where
thermodynamic integration was used to delineate the phase
boundary [70].

Figure 5 shows the impurity free energy Fimp =
− log(Z )/β, as a function of interaction strength U for three
representative temperatures, calculated directly from the par-
tition function as given in Eq. (5) using the tensor train
methodology. The impurity free energy is closely related
to the lattice free energy Flattice = Fimp + ∑

σ

∫ β

0 �2(τ )/t2dτ

[78,79]. We perform the underlying DMFT calculation start-
ing from two different reference systems: (i) the metallic
system at small U where we successively increase the interac-
tion strength and (ii) the insulating system at large U where we
successively decrease the interaction strength. Below the criti-
cal temperature of β ∼ 15/t , we find two coexisting solutions
with differing free energy. This implies a coexistence regime
where both metallic and insulating solutions can be stabilized,
the extent of which increases with decreasing temperature.
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FIG. 5. Impurity free energy Fimp = − log(Z )/β, which includes the contribution from both spins, as a function of interaction strength
U . The three panels correspond to three representative temperatures. The metallic phase is found for small U , while large values of U
correspond to the insulating phase. The two branches represent the DMFT results starting from the system in the metallic phase and
successively increasing the interaction strength (indicated by the markers �), and DMFT results starting from the system in the insulating
phase and successively increasing the interaction strength (indicated by the markers �), respectively. For intermediate values of U ∼ 4.8t , the
two branches separate, indicating the existence of two coexisting phases. Upon comparing results for different fixed ranks, we estimate our
relative error to be below 2 × 10−3.

IV. CONCLUSION

In conclusion, we presented a method for solving strongly
correlated equilibrium quantum impurity problems by ex-
pressing the terms in a diagrammatic series expansion by
an approximate tensor train form, so that integration over
internal degrees of freedom becomes tractable. We tested
the method on a typical problem in the field: the single-
site Anderson impurity model, as it appears in the context
of dynamical mean-field theory. Since the method is based
on the hybridization expansion underlying commonly used
CT-QMC algorithms, much of the knowledge and experience
is directly transferable. We showed that CT-QMC and tensor
train methods lead to consistent results. However, the tensor
train results were more precise than CT-QMC results for the
problems studied here, and do not suffer from any meaningful
level of stochastic noise. We were able to converge the tensor
train approximation in all cases shown here to a level of
accuracy that is very costly to achieve in CT-QMC. Moreover,
we showed that in contrast to CT-QMC approaches, the tensor
train methodology allows for direct access to the partition
function and thermodynamic properties. While we find that
the current methodology does have limitations (such as, in
certain cases, the selection of near-singular pivots for the
tensor cross interpolation that may lead to imprecise tensor
train approximations), we believe that further research into the
numerics of tensor train approximations will overcome these
issues.

Our work has demonstrated the significant potential of
tensor train methods as solvers for equilibrium quantum im-
purity problems. We are confident that further advancements
and applications will expand the parameter space of impurity
problems that can be reliably solved. One notable advantage
of tensor train methods is their ability to address regimes
that are traditionally difficult for QMC-based methods. These
regimes include problems affected by the “sign problem” that
often restricts the applicability of QMC methods. Examples
of such problems encompass systems away from equilibrium
[16,18,80–82], lattice models away from half-filling,

multiorbital impurity systems with frustrations, complex
interactions, and general off-diagonal hybridizations
[14,15,20,21]. We anticipate that tensor train methods
will prove to be valuable tools for investigating such
multiorbital systems. Nevertheless, since we employed a
hybridization expansion [14], the overall computational cost
scales exponentially with the number of impurity orbitals.

Tensor train methods also hold promise when applied
to partial summation techniques, including both low-order
schemes like the noncrossing approximation and its exten-
sions [83–89], as well as numerically exact “bold” method-
ologies [17,52–54,90,91] including the “inchworm” scheme
[18,20,92,93], interaction expansion series [9,11] such as
equilibrium and bold-line nonequilibrium methods, as well
as other types of “diagrammatic” and “continuous time” for-
malisms that are traditionally evaluated using Monte Carlo
methods [12,55,94,95]. These formulations often rely on low-
order expressions or significantly reduce the hybridization
orders that need to be considered. If our finding that the
low-order contributions in the hybridization expansion can
be effectively represented by tensors of order 10 translates
to partial summation schemes, it would imply that tensor
train methods could yield results within minutes to hours on
a standard desktop computer. The potential to significantly
accelerate these calculations ultimately enhances their acces-
sibility and applicability in various research contexts.
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