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Abstract

Bounded Variable Elimination (BVE) is an impor-
tant Boolean formula simplification technique in
which the variable ordering is crucial. We define
a new variable ordering based on variable activ-
ity, called ESA (variable Elimination Scheduled
by Activity), for in-processing BVE in Conflict-
Driven Clause Learning (CDCL) SAT solvers, and
incorporate it into several state-of-the-art CDCL
SAT solvers. Experimental results show that the
new ESA ordering consistently makes these solvers
solve more instances on the benchmark set includ-
ing all the 5675 instances used in the Crafted, Ap-
plication and Main tracks of all SAT Competitions
up to 2022. In particular, one of these solvers
with ESA, Kissat MAB ESA, won the Anniversary
track of the SAT Competition 2022. The behaviour
of ESA and the reason of its effectiveness are also
analyzed.

1 Introduction
The propositional satisfiability (SAT) problem in Conjunc-
tive Normal Form (CNF) is the first problem shown to be
NP-Complete [Cook, 1971]. Because of its expressive power
and the progress made in SAT solving, modern Conflict-
Driven Clause Learning (CDCL) [Silva and Sakallah, 1999;
Moskewicz et al., 2001] SAT solvers are widely used to solve
real-world application problems nowadays. Since these prob-
lems are often of huge size, CNF formula simplification is an
important element in the SAT solvers.

The CNF formula simplification techniques include vari-
ants of Bounded Variable Elimination (BVE) [Eén and Biere,
2005], addition or elimination of redundant clauses [Järvisalo
et al., 2010], elimination of redundant literals in a clause
(clause vivification) [Luo et al., 2017; Li et al., 2020], de-
tection of subsumed clauses [Eén and Biere, 2005], self-
subsuming resolution (or subsuming resolvent [Ostrowski et
al., 2002]), equivalence reasoning, and so on, and suitable
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combinations of them [Järvisalo et al., 2012]. These tech-
niques can be applied to a CNF formula in a pre-processing,
or in an in-processing interleaved with the CDCL search.

This paper focuses on in-processing BVE. Although BVE
is an important pre- and in-processing technique in state-of-
the-art SAT solvers, it is quite special: While other formula
simplification techniques such as clause vivification, self-
subsuming resolution and equivalence reasoning usually pro-
duce a formula smaller and easier to solve, BVE can produce
a formula harder to solve [Reeves and Heule, 2021], depend-
ing on the subset of variables eliminated.

The state-of-the-art SAT solvers usually fix a variable or-
dering, which, together with some bounds on how much the
formula is allowed to grow by eliminating a variable, im-
plicitly decides the subset of variables eliminated, because
eliminating a variable can increase the number of clauses in
which other variables occur, possibly preventing other vari-
ables from being eliminated subject to the bounds. In order
to eliminate as many variables as possible without exceeding
the bounds, usual variable orderings are based on the number
of clauses in which a variable occurs positively or negatively,
in such a way that the variable with the smallest number of oc-
currences is eliminated first and the number of occurrences of
other variables grows more slowly. In an in-processing BVE,
the drawback of such an ordering is that it does not exploit
the information learnt during the search.

In this paper, we propose a new variable ordering called
ESA (variable Elimination Scheduled by Activity) for in-
processing BVE based on variable activities measured ac-
cording to their participation in recent conflicts. The ESA or-
dering is inspired from the fact that unrestricted resolution is
exponentially stronger than regular resolution by allowing the
variables to be resolved on many times [Huang and Yu, 1987;
Goerdt, 1993], and from the intuition that the variables with
frequent participation in conflicts should be protected from
being eliminated to preserve the power of resolution in the
CDCL search by allowing to resolve on them when needed.

We implemented the new ESA variable ordering in
Kissat MAB [Cherif et al., 2021b], the winner of the Main
track of SAT Competition 2021, and won the Anniversary
track of the SAT Competition 2022 [Li et al., 2022]. In this
paper, we additionally implement it in the best two solvers of



the Main track of the SAT Competition 2022. As these win-
ners are all based on Kissat [Biere et al., 2020], we also im-
plement ESA in the non-Kissat solver Cadical [Biere, 2017;
Biere, 2018] which uses fewer decision heuristics but per-
forms in-processing BVE more frequently than the three
Kissat based solvers. Experimental results on all the 5675
different instances which have been used in the Application,
Crafted, and Main tracks of all SAT Competitions up to 2022
show that the new ordering ESA consistently allows the base
solver to solve more instances.

We note a prevailing opinion in SAT solving: simpler is
better! For example, there is a hack track in SAT competi-
tions since 2009 to identify the actual causes of improvement,
in which a competitor must improve an existing solver with
changes limited to 1000 characters. ESA is a simple tech-
nique in this context. Its effectiveness suggests that exploiting
the difference between regular resolution and general resolu-
tion could be a promising direction to improve SAT solvers.

The structure of this paper is as follows. Section 2 presents
the preliminaries. Section 3 reviews the application of BVE
in modern SAT solvers. Section 4 defines the new variable
ordering ESA for in-processing BVE. Section 5 empirically
evaluates and analyzes ESA, providing an explanation of its
effectiveness. Section 6 concludes.

2 Preliminaries
Given a set of propositional variables V , a literal is either a
variable x ∈ V or its negation ¬x, a clause c is a disjunction
of literals (represented by a set of literals), and a CNF formula
F is a conjunction of clauses (represented by a set of clauses).

A truth assignment is a mapping from V to {0, 1}, where 0
represents the truth value false and 1 represents the truth value
true. A truth assignment to the variables occurring in a CNF
formula F satisfies literal x (¬x) if variable x is assigned 1
(0), satisfies a clause if it satisfies at least one literal in the
clause, and satisfies F if it satisfies all its clauses. When a
variable is assigned 1 or 0, we also say that the literals x and
¬x are assigned, and are satisfied or falsified according to the
value. An empty, unit and binary clause contains 0, 1 and 2
non-assigned literals, respectively, other literals, if any, being
falsified. An empty clause cannot be satisfied and represents
a conflict. A tautology is a clause containing both x and ¬x
and is always satisfied. A clause c1 subsumes another clause
c2 if every literal of c1 also occurs in c2.

The SAT problem is to find an assignment satisfying all
clauses in a CNF formula F , or prove that such an assign-
ment does not exist. In the former case, F is said to be satisfi-
able, and in the latter case, F is said to be unsatisfiable. Two
formulas are satisfiability equivalent if both formulas are sat-
isfiable or both are unsatisfiable.

Given two clauses c = {x, a1, ..., an} and c′ =
{¬x, b1, ..., bm} in F , the resolution rule, by resolv-
ing c and c′ on x, derives a new clause c

⊗
x c

′ =
{a1, ..., an, b1, ..., bm}, called resolvent of c and c′. It is well-
known that F is unsatisfiable if and only if there is a sequence
of clauses c1, c2, . . . , ck, such that ck is the empty clause
and each ci (1 ≤ i ≤ k) is a resolvent of two clauses in
F ∪{c1, . . . , ci−1} [Robinson, 1965]. Given such a sequence

of clauses, we can construct a binary resolution tree as fol-
lows: (1) every tree node is a clause in F ∪ {c1, . . . , ck}; (2)
the root is ck; (3) every non-leaf node ci has two children in
F ∪ {c1, . . . , ci−1} whose resolvent is ci; and (4) every leaf
node is a clause in F . The resolution is said to be regular if
no variable is resolved on more than once in any path from
the root to a leaf in the resolution tree.

Given a CNF formula F , Fx (F¬x) denotes the set of
all clauses in F containing literal x (¬x). The resolu-
tion rule can be lifted to Fx and F¬x to derive the set
of clauses Fx

⊗
x F¬x = {c1

⊗
x c2 | c1 ∈ Fx, c2 ∈

F¬x, c1
⊗

x c2 is not a tautology}, called the resolvent set
of Fx and F¬x.

In order to find a solution satisfying every clause in F or
prove that F is unsatisfiable, the state-of-the-art SAT solvers
apply the Conflict-Driven Clause Learning (CDCL) search.
If F contains a unit clause l, CDCL executes unit propaga-
tion (UP): satisfy l (by assigning an appropriate truth value
to its variable) and all the clauses containing l, and falsify
¬l, possibly resulting in new unit clauses or empty clauses.
Unit propagation continues until there is no unit clause in F
or an empty clause (i.e. a conflict) is produced. If UP finishes
without producing a conflict, a new literal is picked using a
decision heuristic and is satisfied by assigning an appropriate
truth value to its variable (i.e., a decision is made), and UP
is executed again. The number of decisions made so far is
called the current level. If all variables are assigned without
producing a conflict, a solution of F is found. If a conflict
is produced, a conflict analysis is performed to derive a new
clause by applying a sequence of resolution steps from the
empty clause. The new clause is called a learnt clause.

Algorithm 1 depicts such a conflict analysis. The pro-
cess to derive the learnt clause cl from the conflict is the
so-called conflict-driven clause learning (CDCL). Then, the
solver backtracks to the second highest level in cl (i.e., can-
cels all decisions made after the second highest level and the
induced assignments), because cl becomes a unit clause in
that level (i.e., all literals but one remain falsified after the
backtracking), and the search continues from that level. We
say that variables involved in the conflict analysis participate
in the conflict, including the variables resolved on in Algo-
rithm 1 and the variables in the learnt clause cl, The partici-
pation of a variable x in conflicts is said activity of x.

Algorithm 1: Analyse(cl, d), conflict analysis using
1UIP schema

Input: cl: an empty (or falsified) clause containing all
its falsified literals,
d: the level in which cl is falsified

Output: cl: a falsified clause containing exactly one
literal falsified in level d

begin
while cl contains at least two literals in level d do

l← the most recently assigned literal in cl;
let r = {¬l, a1, . . . , ak} be the unit clause

falsifying l (a1, . . . , ak are all falsified);
cl← resolving cl and r on the variable of l;



From time to time, a CDCL solver cancels all its decisions,
together with all assignments induced by them, and restarts.
Such a CDCL search is shown to be equivalent to general (or
unrestricted) resolution under a few assumptions [Beame et
al., 2003], which is exponentially stronger than regular res-
olution [Goerdt, 1993]. Before performing some restarts, a
formula simplification procedure can be executed, such as
clause vivification [Li et al., 2020] and BVE. This is called
in-processing simplification. We refer to [Biere et al., 2021]
for more details about CDCL solvers.

3 Review of Variable Elimination in Modern
SAT Solvers

The well-known DP procedure [Davis and Putnam, 1960]
solves a CNF formula F by eliminating variables one by
one: to eliminate a variable x from F , remove Fx ∪ F¬x

from F and add the resolvent set Fx

⊗
x F¬x to F . The

obtained formula is satisfiability equivalent to F . Note that
Fx

⊗
x F¬x does not contain x, nor any tautology. The reso-

lution in the DP procedure is regular because when it derives
an empty clause, a regular resolution tree can be constructed
by tracing back the history of the empty clause. It is shown
in [Rish and Dechter, 2000] that the DP procedure is very
efficient for problems with low width, and that the advan-
tages of DP and backtracking tree search can be combined
using Bounded Variable Elimination (BVE). Inspired from
this property, BVE was used as a pre-processing simplifica-
tion technique in SAT solvers around twenty years ago [Sub-
barayan and Pradhan, 2004].

Example 1. Let Fx={{x, a1, a2}, {x, a3}, {x,¬b1,¬b3}}
and F¬x={{¬x, b1, b2}, {¬x, b3}} in F , eliminating x con-
sists in replacing Fx ∪ F¬x in F by Fx

⊗
x F¬x =

{{a1, a2, b1, b2}, {a1, a2, b3}, {a3, b1, b2}, {a3, b3}}.
Variable elimination, as a simplification technique in a SAT

solver, should be used carefully for four reasons: (1) Elimi-
nating a variable x from F can increase the number of clauses
in F by up to |Fx

⊗
x F¬x|− |Fx|− |F¬x|. So, repeating this

procedure without limit can result in an exponential increase
in the number of clauses. (2) The resolvent of two clauses can
be longer than the two clauses. (3) After x is eliminated, it
cannot be resolved on anymore, hurting the power of clause
learning in the sequel. (4) when a variable is eliminated in an
in-processing, all learnt clauses containing it are lost.

Variable elimination implemented in state-of-the-art SAT
solvers usually only considers the first two reasons, by setting
a bound denoted clauseNbGrowthLimit on |Fx

⊗
x F¬x| −

|Fx|−|F¬x| and/or a bound denoted resolventLengthLimit for
the produced resolvents: x is not eliminated if |Fx

⊗
x F¬x|−

|Fx| − |F¬x| > clauseNbGrowthLimit or any resolvent
in Fx

⊗
x F¬x contains more than resolventLengthLimit lit-

erals. The variables are checked in a prefixed ordering and
those satisfying the two bounds are eliminated one by one.
Different variable orderings can lead to eliminating different
subsets of variables, as illustrated in Example 2.

Example 2. Assume that {x, y,A1}, {¬x, y,A2}, {¬y,A3},
{¬y,A4} and {¬y,A5} are all the clauses containing x and
y in a CNF formula F , where A1, A2, A3, A4 and A5 are

disjoint subsets of literals, and clauseNbGrowthLimit = 1.
If we eliminate x first, all the clauses containing y in F are
{y,A1∪A2}, {¬y,A3}, {¬y,A4} and {¬y,A5}. Then y can
also be eliminated successfully without violating clauseN-
bGrowthLimit.

However, if we eliminate y first, all clauses containing
x in F are {x,A1 ∪ A3}, {x,A1 ∪ A4}, {x,A1 ∪ A5},
{¬x,A2 ∪ A3}, {¬x,A2 ∪ A4} and {¬x,A2 ∪ A5}. Then,
|Fx

⊗
x F¬x| − |Fx| − |F¬x| > clauseNbGrowthLimit. So, x

cannot be eliminated after eliminating y.
We review below some representative variable elimination

procedures implemented in recent SAT solvers.
NiVER (Non-increasing Variable Elimination Resolu-

tion) [Subbarayan and Pradhan, 2004] is a pre-processor for
eliminating variables before solving F by a CDCL solver.
It implements the bounds clauseNbGrowthLimit and resol-
ventLengthLimit using one constraint: the total number of lit-
erals in F should not increase when eliminating a variable x.
In other words, x is eliminated only if the total number of lit-
erals in {F \ {Fx ∪F¬x}}∪ {Fx

⊗
x F¬x} does not exceeds

the total number of literals in F . Variables in F are checked
in their natural integer order and eliminated one by one if the
above condition is met. This process iterates until no variable
can be removed.

MiniSAT 2.2.0 [Eén and Biere, 2005] eliminates variables
with clauseNbGrowthLimit = 0 in a pre-processing. The
incremental variable elimination [Nabeshima et al., 2015]
improves the BVE of MiniSAT 2.2.0 by relaxing clauseN-
bGrowthLimit gradually in iterative applications of BVE. In
the first round, clauseNbGrowthLimit = 0. Then, it takes
value 8, 16, . . . in the following rounds, respectively. In each
round, the variables are checked and eliminated in increasing
order of their |Fx| × |F¬x|. A variable x is not eliminated
if |Fx

⊗
x F¬x| − |Fx| − |F¬x| > clauseNbGrowthLimit

or any resolvent in Fx

⊗
x F¬x contains more than resol-

ventLengthLimit(=20 by default) literals.
Unlike NiVER and MiniSAT, Kissat [Biere et al., 2020]

implements in-processing BVE to eliminate variables period-
ically (with increasing intervals) as the search proceeds. In
each execution of BVE, variables are checked and eliminated
in increasing order of |Fx|×|F¬x|+|Fx|+|F¬x| subject to the
two bounds clauseNbGrowthLimit and resolventLengthLimit.
As each in-processing BVE should be executed quickly, the
clauseNbGrowthLimit bound is set to 0 and, then, if no vari-
able can be eliminated in an execution, it is increased from 0
to 1, or multiplied by 2 in the next call to BVE, without ex-
ceeding 16. The initial resolventLengthLimit is set to 100 and
increases gradually. In addition, a variable x is not eliminated
if |Fx| > 0 and |F¬x| > 0, and max(|Fx|, |F¬x|) > occlim,
where occlim is initialized to 1000 and gradually increases.
Finally, BVE stops if the total number of resolvents generated
so far in this execution exceeds a limit.

The BVE procedure of MiniSAT and Kissat could be
sketched in Algorithm 2, where F contains the original
clauses in the input formula (irredundant clauses in the termi-
nology of Kissat), eventually vivified, after removing those
clauses already satisfied, and L contains the clauses learnt
so far in the CDCL search (redundant clauses in the ter-
minology of Kissat), which is empty in a pre-processing.



Algorithm 2: BVE(F,L,O, growth, length), a
generic BVE procedure for CDCL solvers

Input: F : a CNF formula not containing learnt
clauses, L: a set of learnt clauses, O: a variable
ordering, growth: clauseNbGrowthLimit, length:
resolventLengthLimit
Output: F ∪ L: a simplified CNF formula
begin

V ← list of variables in F sorted in ordering O;
while V is not empty do

x← the first variable in V ;
Remove x from V ;
if |Fx

⊗
x F¬x| − |Fx| − |F¬x| ≤ growth and

no resolvent in Fx

⊗
x F¬x contains more

than length literals then
F ← {F \ {Fx ∪ F¬x}} ∪ {Fx

⊗
x F¬x};

for each variable y in Fx

⊗
x F¬x do

if y is not in V then
insert y into V and sort V in O;

L← L \ {c|c ∈ L, x ∈ c or ¬x ∈ c};
Remove subsumed clauses from F ∪ L;

return F ∪ L;

O is the increasing order of |Fx| × |F¬x| in MiniSAT and
|Fx| × |F¬x|+ |Fx|+ |F¬x| in Kissat, respectively.

Note that eliminating a variable x can change |Fy| and
|F¬y| of a variable y. Consequently, if y was checked before
x, but was not eliminated because of the clauseNbGrowth-
Limit and resolventLengthLimit bounds, it is inserted into V
to be checked again if |Fy| or |F¬y| is decreased by the elimi-
nation of x. Note that when x is eliminated, all learnt clauses
containing x or ¬x are lost.

4 ESA: Variable Elimination Scheduled by
Activity

It is well-known that the variables in a CNF formula are
not equally important for solving it. In this section, we de-
fine a new variable ordering called ESA (variable Elimina-
tion Scheduled by Activity) to eliminate first the variables of
smaller importance, which can reinforce and prevent the vari-
ables of greater importance from being eliminated by increas-
ing the number of clauses containing them. We first describe
the principle of ESA, and then its implementation in Cadical
and three Kissat based solvers.

4.1 The Principle of ESA
Since CDCL under a few assumptions is shown to be equiv-
alent to general (or unrestricted) resolution and BVE belongs
to a process based on regular resolution, a CDCL solver im-
plementing BVE could be thought as hybridizing or switch-
ing between unrestricted resolution and regular resolution.
Recall that unrestricted resolution is exponentially stronger
than regular resolution by allowing to resolve on the same
variables several times in any path of a resolution tree. So,
in theory, BVE could hurt the power of CDCL, because the

learnt clauses containing the eliminated variables are lost and
the eliminated variables cannot be resolved on anymore.

In practice, however, not all variables need to be resolved
on several times to produce a short resolution proof when
solving a large CNF formula. Indeed, we observe that a state-
of-the-art CDCL solver could never need to resolve on a sub-
set of variables when solving some CNF formulas: these vari-
ables never participate in any conflict nor in any learnt clause.

But what are the variables a state-of-the-art CDCL solver
will resolve on several times? The answer is probably those
variables participating frequently in recent conflicts, i.e., the
variables with high activities. There are two reasons: (1) the
solver usually selects the next decision variable among these
variables; (2) they have tight relations with recently learnt
clauses, because these learnt clauses contain them or have
been obtained by resolving on them. Consequently, these
variables have a high probability to participate in future con-
flicts to be resolved on during the conflict analysis.

Therefore, we define the ESA ordering to be the increasing
order of the activities of the variables in recent conflicts. In
practice, a decision heuristic in a state-of-the-art solver usu-
ally already quantifies these activities as a score. So, the ESA
ordering is obtained by sorting the variables in the increas-
ing order of their score induced by the decision heuristic. In
the case where the solver switches between several decision
heuristics, the score used to sort the variables is given by the
current heuristic when BVE is called.

When there is no decision heuristic that can effectively
quantify the participation of a variable in recent conflicts (e.g.
in a pre-processing), the ESA ordering is the increasing order
of the value |Fx| × |F¬x| in MiniSAT and |Fx| × |F¬x| +
|Fx|+ |F¬x| in Kissat.

We implement the ESA ordering in Algorithm 2, so that
the low activity variables satisfying the two bounds clauseN-
bGrowthLimit and resolventLengthLimit are eliminated first,
which may reinforce the high activity variables by increasing
the number of clauses they occur in, possibly preventing them
from being eliminated.

Note that if the number of clauses in which a high activity
variable x occurs is not increased enough by the elimination
of the low activity variables, x is still eliminated if it satisfies
the bounds. So, the ESA ordering is a soft (or indirect) pro-
tection of the high activity variables, which is different from
a hard protection (or direct) that, e.g., forbids the elimination
of any variable with an activity higher than a threshold. Note
that such a threshold probably should be instance-dependent
and deserves future study.

4.2 Implementation of ESA in Cadical and Kissat
Based Solvers

Cadical [Biere, 2018] is the CDCL solver that won the UN-
SAT Main track of the SAT Competition 2018. We use ver-
sion 1.4.1, which is the specified version for the Hack track
of the SAT Competition 2022. It switches between focused
and stable modes. The decision heuristics VMTF (Variable
Move-to-Front) [Biere and Fröhlich, 2015] and VSIDS (Vari-
able State Independent Decaying Sum) [Moskewicz et al.,
2001] are used to select decision literals in focused mode
and stable mode, respectively. The VMTF heuristic gives the



highest score to the variables participating in the most recent
conflict, breaking ties using their (non-)participation in the
second most recent conflict, the remaining ties being broken
using their (non-)participation in the third most recent con-
flict, etc.... The VSIDS heuristic initializes the score of every
variable to 0. Let inc be a real such that 0 < inc < 1. The
VSIDS score s of a variable participating in the conflict num-
ber i is updated by s← s+ (1/inc)i.

The interval between two calls to BVE in Cadical is mea-
sured in the number of conflicts, which grows in O(n), where
n is the number of calls to BVE so far.

Cadical ESA is Cadical except that BVE is called with the
ESA ordering in the stable mode where VSIDS is used as
decision heuristic. In other words, the variables are sorted in
the increasing order of their VSIDS score in the BVEs called
during the stable mode. In the focused mode where VMTF is
used as decision heuristic, the original increasing ordering of
|Fx| × |F¬x|+ |Fx|+ |F¬x| remains unchanged in BVE.

Kissat is originally an optimized C version of Cadical by
the same author with some changes to data structures. As it
is improved, its difference with Cadical becomes bigger and
bigger, especially after other authors add new solving tech-
niques to it. We implemented ESA in the in-processing BVE
of Kissat MAB (KM for short), the winner of the Main track
in the SAT Competition 2021; Kissat MAB HyWalk [Zheng
et al., 2022] (KM HW for short) and Kissat Inc [Chen et al.,
2022] (K Inc for short), the best two solvers in the Main track
of the SAT Competition 2022.

The three Kissat based solvers switch between focused
mode, in which the VMTF decision heuristic is used, and sta-
ble mode, in which the solvers switch further between two
decision heuristics VSIDS and CHB(Conflict History-based
Branching) [Liang et al., 2016] to select decision literals, by
means of MAB (Multi-Armed Bandit) borrowed from rein-
forcement learning [Cherif et al., 2021a], which is different
from Cadical that uses only VSIDS in stable mode.

The CHB score q(x) of a variable x is initialized to 0. Af-
ter a unit propagation, q(x) is updated, for each variable x
assigned in this unit propagation, using the following Expo-
nential Recency Weighted Average (ERWA) function, where
0 < α < 1 is a parameter and r(x) is a reward:

q(x)← (1− α)× q(x) + α× r(x) (1)
Reward r(x) is defined as follows:

r(x) = multiplier/(i− lastConflict(x) + 1) (2)

where i is the number of conflicts so far, lastConflict(x)
is the last conflict number in which x participated, and
multiplier is 1 if the unit propagation that just terminated
produces a conflict, otherwise it is 0.9.

The variables participating in recent conflicts are favored
for two reasons: (1) multiplier is greater for these variables,
(2) (i− lastConflict(x) + 1) is smaller.

The interval between two calls to BVE in the three Kissat
based solvers is also measured in the number of conflicts,
which grows in O(n ∗ log2(n)), where n is the number of
calls to BVE so far. In addition, some planned BVEs are can-
celed if there are too many clauses. So, BVE is executed less
frequently in the Kissat based solvers than in Cadical.

Solver Solved Avg(s) PAR2
Cadical 4222 443 2890
Cadical ESA 4230 441 2875
Kissat MAB HyWalk 4252 388 2798
Kissat MAB HyWalk ESA 4269 410 2786
Kissat Inc 4282 410 2764
Kissat Inc ESA 4291 405 2745
Kissat MAB 4283 415 2767
Kissat MAB ESA 4302 420 2738

Table 1: Results of Solvers with and without ESA

KM ESA (KM HW ESA, K Inc ESA) is KM (KM HW,
K Inc) except that BVE is called with the ESA ordering in
the stable mode. When the BVE procedure is called at the
moment VSIDS (CHB) is used as decision heuristic, the ESA
ordering is the increasing order of the VSIDS (CHB) score.

As in Cadical, when the three Kissat based solvers are in
the focused mode where VMTF is used as decision heuristic,
the original variable ordering by the value |Fx| × |F¬x| +
|Fx|+|F¬x| remains unchanged in BVE. In other words, ESA
does not use the VMTF score to sort the variables in BVE.

Note that ESA cannot be implemented in MiniSAT based
solvers such as Glucose [Simon and Audemard, 2009] and
MergeSat [Manthey, 2021], because these solvers do not im-
plement in-processing BVE.

5 Experimental Results
We first show the effectiveness of ESA on the set of the 5355
instances of the Anniversary track in the SAT Competition
2022, augmented with the 320 instances from the Main track
in the SAT Competition 2022 that were not included in the
Anniversary track. In other words, the benchmark set in-
cludes all instances used in the Application, Crafted, and
Main tracks of all SAT Competitions up to 2022, a total of
5675 distinct instances, so that the results can give a global
performance evaluation. All experiments were run with Intel
Xeon CPUs E5-2680@2.40GHz under Linux with 31GB of
memory. The time limit for solving each instance is 5000s for
each solver, as in the SAT Competition.

Then we conduct experiments to analyze the behavior of
ESA and the reasons of its effectiveness.

5.1 Effectiveness of the ESA Procedure
Table 1 gives the number of instances solved by Cadical, KM,
KM HW, K Inc and their versions with ESA, the average
time to solve these solved instances and the PAR2 score (com-
puted as in SAT competitions as the average solving time of
all the 5675 instances, the solving time of an unsolved in-
stance counted as 2×timeout, i.e. 10000s). As can be seen, a
solver with ESA consistently solves more instances than the
base solver without ESA. Recall that the only difference be-
tween each solver with ESA and its baseline without ESA is
the variable ordering used in BVE, which indicates the effec-
tiveness and the robustness of ESA, as these results show the
compatibility of ESA with different techniques implemented
in KM, KM HW, K Inc and Cadical. It is worth noting that
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Figure 1: Cactus plots of different solvers. Each point (N , T ) in
a curve indicates the number N of instances solved within T secs
by the corresponding solver. Recall that the frequence of BVE and
decision heuristics are different in Cadical and KM.

KM ESA and Cadical ESA participated in the SAT Compe-
tition 2022: KM ESA won the Anniversary track, and Cadi-
cal ESA solved more instances than all other variants of Cad-
ical in the Anniversary track of the competition.

More specifically, KM ESA solves 57(38) instances
more(less) than its baseline KM, among which 2,2,2,3 and
4 more instances in families Ptn, tseitingrid, fphp, preimage
and hcp, respectively; and 2 and 2 fewer instances in LABS
and mchess, respectively. The difference does not exceed 1
on other families of instances. No significant difference is
observed between sat and unsat instances.

Figure 1 gives the cactus plots of Cadical ESA, KM ESA
and their baselines, showing that Cadical ESA solves more
instances than Cadical at most points, and KM ESA solves
more instances than KM with any timeout.

Note that KM and Cadical are already highly optimized
and it is extremely hard to make them solve even one more
instance. As a matter of fact, the best two solvers in the Main
track of the SAT Competition 2022, namely, KM HW and
K Inc, solve exactly the same number of instances in that
track. Only a few seconds in solving time allowed to dis-
tinguish them in the main track. Our results show that ESA
would allow them to win more clearly.

Table 2 further confirms the effectiveness of ESA by com-
paring KM and KM ESA with the following variants:

Kissat MAB NE (KM NE for short), it is KM with BVE
disabled (i.e., no elimination);

Kissat MAB ESRall (KM ESRall), it is KM, but variables
are checked and eliminated in a random ordering in BVE
both in focused and stable mode;

Kissat MAB ESN (KM ESN), it is KM, but the variables
are sorted for BVE in the natural integer ordering in sta-
ble mode and in the increasing order of |Fx| × |F¬x| +
|Fx|+ |F¬x| in focused mode;

Kissat MAB ESNall (KM ESNall), it is KM, but the vari-
ables are sorted for BVE in the natural integer ordering
in both focused and stable modes;

Solver Solved Avg(s) PAR2
Kissat MAB NE 4202 460 2936
Kissat MAB ESRall 4262 415 2802
Kissat MAB ESNall 4275 406 2773
Kissat MAB ESN 4277 419 2780
Kissat MAB 4283 415 2767
Kissat MAB ESAfull 4287 426 2768
Kissat MAB Bin 4296 423 2750
Kissat MAB ESA 4302 420 2738

Table 2: Results of Variant Solvers

Kissat MAB Bin (KM Bin), it is KM, but when a variable x
is eliminated, let L2

x (L2
¬x) denote the set of binary learnt

clauses containing x (¬x), add L2
x

⊗
x L

2
¬x into L after

removing all learnt clauses containing x or ¬x from L.
Kissat MAB ESAfull (KM ESAfull), it is KM ESA, but

when BVE is called in focused mode where VMTF is
used as decision heuristic, the variables are sorted in the
increasing ordering of their VMTF score in BVE instead
of |Fx| × |F¬x|+ |Fx|+ |F¬x|.

A number of observations can be made from Table 2.
• In-processing BVE is effective, because KM solves 81

instances more than KM NE.
• The natural integer ordering is better than the random

ordering, but is worse than the |Fx|×|F¬x|+|Fx|+|F¬x|
ordering, because KM solves 6 (8) instances more than
KM ESN (KM ESNall).

• By keeping a part of resolution results so far, KM Bin
is significantly better than KM, but it does not reach the
performance of KM ESA. Indeed, the impact of an elim-
inated high activity variable x could be divided into two
phases by the moment t it is eliminated. KM Bin catches
up a part of the impact of x before t, but loses its impact
after t because it is eliminated. KM ESA can have all its
impact before and after t, because KM ESA probably
would not eliminate it.

• The VMTF score is not suitable to sort the variables
in BVE, because KM ESAfull is significantly worse
than KM ESA. It appears that not all effective decision
heuristics in a CDCL solver are also effective to sort the
variables in BVE, and only those decision heuristics re-
flecting accurately the activity of a variable in all recent
conflicts are suitable to sort variables in BVE, which is
not the case for VMTF.

5.2 Analyzing the Behaviour of ESA
In the Anniversary track of the SAT Competition 2022,
KM ESA solved 16 instances more than KM (named
Kissat MAB UCB in the results) from a total of 5355 in-
stances: KM ESA solved 62 instances that KM did not solve
(ESA Solved), and KM solved 46 instances that KM ESA did
not solve (MAB Solved). Figure 2 (left) compares the num-
ber of variables eliminated by the first BVE of the two solvers
when solving these 108 instances. Since the two solvers have
exactly the same behavior and follow the same search trajec-
tory until the first BVE, the unique reason for the difference
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Figure 2: Scatter plot of the number of eliminated variables (left), and scatter plot of the number of learnt clauses lost per variable (right) by
the 1st BVE of Kissat MAB ESA and Kissat MAB.

in the first BVE is the variable ordering in BVE. It is clear
that the ESA ordering eliminates fewer variables in the first
BVE than the original variable ordering in MAB.

When a variable is eliminated in an in-processing, the
learnt clauses containing this variable are lost. Figure 2
(right) compares the average number of lost learnt clauses
per variable in KM ESA and KM in the first BVE. KM ESA
loses fewer learnt clauses than KM when eliminating vari-
ables, which might partly explain the effectiveness of ESA.

Assume that KM ESA (KM) calls k1 (k2) times BVE in
total for solving an instance and k = min(k1, k2). The above
and below plots in Figure 3 compare respectively the average
number of eliminated variables per BVE call, and the average
number of lost learnt clauses per variable in these k BVE.
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Figure 3: Scatter plot of the average number of eliminated variables
per BVE call (above), and scatter plot of the average number of
learnt clauses removed per variable among the first k BVE calls (be-
low).

Although KM eliminates more variables in the first BVE,
Figure 3 (above) shows that KM and KM ESA eliminate
roughly the same average number of variables per BVE call,
meaning that KM ESA eliminates more variables in the sub-

sequent BVEs. This is reasonable for ESA, because it is
probable that the important variables are not yet fully iden-
tified before the first BVE, so that it is better that the first
BVE does not eliminate too many variables, and leave more
variables to eliminate in subsequent BVEs for which the im-
portant variables are better recognized with their activities.
Figure 3 (below), together with Figure 2 (right) and the good
results of KM Bin, suggests that one reason for which KM
fails to solve an ESA solved instance might be that KM lost
too many learnt clauses per eliminated variable.

6 Conclusions
While in-processing BVE is very useful in solving SAT, it
currently has two drawbacks: (1) when a variable is elim-
inated, all learnt clauses containing it are also removed, so
that a part of the results in the CDCL search so far is lost;
(2) an eliminated variable cannot be resolved on anymore in
the subsequent CDCL search, hurting the power of resolution
in CDCL. In this paper we propose a new variable ordering,
called ESA (variable Elimination Scheduled by Activity), to
remedy the above two drawbacks. In practice, the ESA order-
ing is obtained by using the decision heuristic of the solver
that is able to reflect accurately the participation of the vari-
ables in recent conflicts. Consequently, the low activity vari-
ables satisfying the bounds are eliminated first in BVE, pro-
viding a soft protection to the high activity variables.

The ESA ordering is implemented in Cadical and three
winning solvers based on Kissat which call in-processing
BVE differently and implement different decision heuristics
and other techniques. Experimental results show that ESA
consistently allows these solvers to solve more instances in
the set of all the 5675 Crafted, Application and Main track
instances of all SAT Competitions up to 2022, demonstrating
the effectiveness and robustness of ESA. An empirical anal-
ysis is carried out to analyze the reasons of the effectiveness
and robustness of ESA.

The principle behind ESA (i.e., high activity variables
should be protected and reinforced) could be used in the fu-
ture to improve other solving techniques in a CDCL solver.
For example, a CDCL solver has to periodically remove a
subset of learnt clauses. A heuristic could be defined to pre-
vent removing the learnt clauses not containing any low ac-
tivity variable.
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[Biere and Fröhlich, 2015] Armin Biere and Andreas
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ESA and Kissat MAB ESA in 2022 SAT competition. In
Proc. of SAT Competition 2022 – Solver and Benchmark
Descriptions, pages 33–34. University of Helsinki, 2022.

[Liang et al., 2016] Jia Hui Liang, Vijay Ganesh, Pascal
Poupart, and Krzysztof Czarnecki. Exponential recency
weighted average branching heuristic for SAT solvers. In
Proceedings of the 30th AAAI Conference on Artificial In-
telligence, AAAI, pages 3434–3440, 2016.

[Luo et al., 2017] Mao Luo, Chu-Min Li, Fan Xiao, Felip
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