
HAL Id: hal-04145340
https://hal.science/hal-04145340

Submitted on 29 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hybrid Learning with New Value Function for the
Maximum Common Induced Subgraph Problem

Yanli Liu, Jiming Zhao, Chu-Min Li, Hua Jiang, Kun He

To cite this version:
Yanli Liu, Jiming Zhao, Chu-Min Li, Hua Jiang, Kun He. Hybrid Learning with New Value Function
for the Maximum Common Induced Subgraph Problem. aaai2023, 2023, Washington, United States.
pp.4044-4051, �10.1609/aaai.v37i4.25519�. �hal-04145340�

https://hal.science/hal-04145340
https://hal.archives-ouvertes.fr

Hybrid Learning with New Value Function for the Maximum
Common Induced Subgraph Problem

Yanli Liu1, Jiming Zhao1, Chu-Min Li2*, Hua Jiang3, Kun He4

1School of Science, Wuhan University of Science and Technology, China
2MIS, Université de Picardie Jules Verne, France

3Engineering Research Center of Cyberspace & School of Software, Yunnan University, China
4School of Computer Science and Technology, Huazhong University of Science and Technology, China

{yanlil2008, jmzhao}@wust.edu.cn, chu-min.li@u-picardie.fr
huajiang@ynu.edu.cn, brooklet60@hust.edu.cn

Abstract

Maximum Common Induced Subgraph (MCIS) is an impor-
tant NP-hard problem with wide real-world applications. An
efficient class of MCIS algorithms uses Branch-and-Bound
(BnB), consisting in successively selecting vertices to match
and pruning when it is discovered that a solution better than
the best solution found so far does not exist. The method of
selecting the vertices to match is essential for the performance
of BnB. In this paper, we propose a new value function and
a hybrid selection strategy used in reinforcement learning to
define a new vertex selection method, and propose a new BnB
algorithm, called McSplitDAL, for MCIS. Extensive experi-
ments show that McSplitDAL significantly improves the cur-
rent best BnB algorithms, McSplit+LL and McSplit+RL. An
empirical analysis is also performed to illustrate why the new
value function and the hybrid selection strategy are effective.

Introduction
Graphs have gained increasing attention in recent decades
due to their natural expression in representing numer-
ous real-world problems. Given two graphs Gp(Vp, Ep)
and Gt(Vt, Et), the Maximum Common Induced Subgraph
(MCIS) problem is to find an induced subgraph G′

p of Gp

and an induced subgraph G′
t of Gt, such that G′

p and G′
t

are isomorphic and have the maximum number of vertices.
MCIS allows to evaluate the similarity of two graphs and has
broad applications in many domains, such as graph database
systems (Yan, Yu, and Han 2005), biochemistry (Bonnici
et al. 2013; Larsen and Baumbach 2017), malware detec-
tion (Park, Reeves, and Stamp 2013; Sun et al. 2021), chem-
informatics (Raymond and Willett 2002; Antelo-Collado
et al. 2020; Schmidt et al. 2021), computer vision (Solnon
et al. 2015), communication networks (Nirmala, Sulochana,
and Rethnasamy 2016), etc. There are also many MCIS vari-
ant problems, such as the Maximum Common Connected
Induced Subgraph (MCCIS) problem and the Subgraph Iso-
morphic (SI) problem.

MCIS is NP-hard and thus computationally challenging.
Despite its NP-hardness, many methods have been devel-
oped to solve MCIS, including exact and inexact algorithms.

*Corresponding author.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

An important class of exact methods exploits the powerful
Branch-and-Bound (BnB) framework (Raymond and Wil-
lett 2002; McCreesh, Prosser, and Trimble 2017; Liu et al.
2020; Zhou et al. 2022) to travel the whole search tree and
try to match each vertex of Gp with each vertex of Gt (i.e.,
branching) to find the best matches. The key to design an
efficient BnB algorithm is to reduce the search space, us-
ing techniques such as effective branching heuristic (Englert
and Kovács 2015; Zhou et al. 2022) and powerful constraint
filtering (Solnon et al. 2015; McCreesh et al. 2016; Mc-
Creesh, Prosser, and Trimble 2017; Schmidt et al. 2021).
When exact solutions are not required, one can use inex-
act algorithms to find approximate solutions of acceptable
quality without exhausting the search space. These inexact
methods include meta-heuristics (Rutgers et al. 2010; Choi,
Yoon, and Moon 2012) and spectra methods (Bai, Hancock,
and Wilson 2009). Recently, classification technologies of
machine learning (Zanfir and Sminchisescu 2018; Bai et al.
2021) are also adopted to solve MCIS.

Some state-of-the-art BnB algorithms combine the advan-
tages of both search and reinforcement learning techniques
to improve their branching methods to efficiently reduce the
search space. Based on the BnB algorithm framework, Mc-
Split (McCreesh, Prosser, and Trimble 2017) uses a partition
method to satisfy the isomorphic constraint and a branching
heuristic based on the obtained partition and vertex degree to
minimize the search tree size. McSplit+RL (Liu et al. 2020)
explores the vertex pair selection policy based on reinforce-
ment learning with a value function for each vertex so that
it can reach a leaf node of search tree as early as possible.
McSplit+LL (Zhou et al. 2022) further proposes a long-short
memory and leaf vertex union match to improve the perfor-
mance of a BnB MCIS algorithm.

We observe that the learning policies in McSplit+RL and
McSplit+LL only concentrate on the reduction of upper
bound due to a branching. They only reward branching ver-
tices of input graphs with upper bound reduction and select
a new branching vertices in the decreasing order of their ac-
cumulative rewards, that make the algorithm to branch only
on a small set of vertices so as to waste time on local optima.

To remedy these limitations, we propose a new value
function, namely Domain Action Learning (DAL), for eval-
uating each branching, that considers both upper bound re-

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

4044

duction and real graph simplification due to a branching ac-
tion. We further propose a hybrid vertex selection strategy
based on different value functions to guide the search. In
fact, the best branching selected by different value functions
is usually different. Branching alternatively according to two
value functions allows to effectively diversify the search.

Based on the above new value function and the hybrid
vertex selection strategy, we propose a new BnB algorithm,
termed McSplitDAL, on top of McSplit (McCreesh, Prosser,
and Trimble 2017). Experiments are conducted to evaluate
McSplitDAL on 24,761 instances derived from diverse ap-
plications. The experimental results show that McSplitDAL
significantly outperforms McSplit+RL and McSplit+LL that
are already highly efficient. We also conduct empirical anal-
ysis and provide insight on why the proposed algorithm is
effective.

This paper is organized as follows. Section 2 gives some
basic graph definitions and related concepts used in this pa-
per. Section 3 reviews existing BnB algorithms and learning
methods for MCIS. Section 4 describes our new value func-
tion and hybrid vertex selection policy, followed by our Mc-
SplitDAL algorithm. Section 5 presents the empirical results
and analysis. Section 6 concludes.

Preliminaries
Consider a simple, undirected and unlabelled graph G =
(V,E), where V is the set of vertices, E ⊆ V × V is the set
of edges. Two vertices u and v are adjacent (or neighbors)
if (u, v) ∈ E. The degree of a vertex v is the number of
its adjacent vertices. A subgraph of G induced by a vertex
subset V ′ ⊆ V is defined by G[V ′] = (V ′, E′), where E′ =
{(u, v) ∈ E|u, v ∈ V ′}.

Given a graph Gp = (Vp, Ep) (named pattern graph)
and a graph Gt = (Vt, Et) (named target graph), if there
exist an induced subgraph G′

p = (V ′
p , E

′
p) of Gp, an in-

duced subgraph G′
t = (V ′

t , E
′
t) of Gt, and a bijection

ϕ : V ′
p → V ′

t , such that any v and v′ of V ′
p are adjacent

in Gp if and only if ϕ(v) and ϕ(v′) of V ′
t are adjacent in

Gt, then G′
p or G′

t is called an induced common subgraph
of Gp and Gt. In this case, we say that v and ϕ(v) are
matched and (v, ϕ(v)) is a match. The Maximum Common
Induced Subgraph (MCIS) problem is to find a common in-
duced subgraph of Gp and Gt with the maximum number
of vertices. Let V ′

p = {v1, v2, . . . , v|V ′
p |}, a feasible solu-

tion of MCIS can be represented as a set of matched pairs
{(v1, w1), (v2, w2), . . . , (v|V ′

p |, w|V ′
p |)}, where wj = ϕ(vj))

for j ∈ {1, ..., |V ′
p |}.

A variant of MCIS called the Maximum Common Con-
nected Induced Subgraph (MCCIS) problem requires that
the maximum common induced subgraph is connected. An-
other variant called Subgraph Isomorphism (SI) requires
V ′
p = Vp.
A common induced subgraph G′

p is maximal if it can-
not be extended to a larger common induced graph. If a fea-
sible solution {(v1, w1), (v2, w2), . . . , (v|V ′

p |, w|V ′
p |)} is not

maximal, it induces a nonempty set of s vertex subset pairs
Ev = {(V1p, V1t), . . . , (Vsp, Vst)}, called an environment
of MCIS, where for 1 ≤ i ≤ s, Vip (Vit) ⊆ Vp (Vt) and for

Figure 1: An illustration of an environment of MCIS and
its related concepts. A non-maximal common induced sub-
graph {(0, a), (1, b)} induces a set of vertex subset pairs Ev
= { (⟨3⟩, ⟨d⟩), (⟨4, 2⟩, ⟨f⟩), (⟨5⟩, ⟨c, e⟩) }, in which the ver-
tex subset pair (⟨4, 2⟩, ⟨f⟩) is labelled ‘10’, because vertices
4 and 2 are all adjacent to 0 and f is adjacent to a, while 4
and 2 are all non-adjacent to 1 and f is non-adjacent to b.
Other labels in the graphs are interpreted similarly. Vertices
with the same color (or the same label) are in the same do-
main. Note that there is no vertex labelled with ‘00‘ in Gp,
so that vertices labelled with ‘00’ in Gt cannot be matched
with any vertex in Gp. In fact, this Ev can provide at most 3
additional matches.

any i′ ̸= i, Vi′p (Vi′t) ∩ Vip (Vit) = ∅, with the following
property (McCreesh, Prosser, and Trimble 2017):

• For any 1 ≤ i ≤ s and any 1 ≤ j ≤ |V ′
p |, either all

vertices in Vip are adjacent to vj and all vertices in Vit

are adjacent to wj , or all vertices in Vip are non-adjacent
to vj and all vertices in Vit are non-adjacent to wj .

As illustrated in Figure 1, if Vip and Vit are not empty
for some 1 ≤ i ≤ s, choosing any vertex v in Vip and w
in Vit allows to extend the induced common subgraph by
this vertex pair. Clearly, Ev can be defined to be {(Vp, Vt)}
when the common induced subgraph is empty.

For any 1 ≤ i ≤ s and any 1 ≤ j ≤ |V ′
p |, since all

vertices in Vip and in Vit have the same (non-)adjacency to
vj and wj , we can use a bit 1 (0) to say that all vertices in
Vip or Vit are (non-)adjacent to vj or wj , respectively. So, a
vertex subset pair (Vip, Vit) can be labelled using a |V ′

p |-bit
string, in which the jth bit indicates whether vertices in Vip

and Vit are adjacent to vj and wj (McCreesh, Prosser, and
Trimble 2017).

If for some 1 ≤ i1 < i2 ≤ s, the pairs (Vi1p, Vi1t) and
(Vi2p, Vi2t) have the same label, then they should be com-
bined into one pair. Any pair (Vip, Vit) in which Vip or Vit

is empty is removed from Ev. So, we assume the pairs in
Ev cannot have the same labels and that there exists no pair
such that one of its sets of vertices is empty.

Consequently, for any 1 ≤ i1 < i2 ≤ s, any vertex v
in Vi1p (Vi2p) cannot be matched with any vertex w in Vi2t

(Vi1t) such that G′
p = Gp[{v1, . . . , v|V ′

p |}] extended with
v and G′

t = Gt[{w1, . . . , w|V ′
p |}] extended with w remain

isomorphic, because there is a j (1 ≤ j ≤ |V ′
p |) such that v

4045

is adjacent to vj , but w is not adjacent to wj , or vice versa.
Thus, the sum

∑
(Vip,Vit)∈Ev min(|Vip|, |Vit|) provides an

upper bound of the number of vertices that can be added
into the common induced subgraph G′

p and G′
t.

In this paper, each labelled pair (Vip, Vit) is called a do-
main, because it specifies two sets of vertices that can be
matched, and Ev is called an environment in which a BnB
MCIS algorithm works.

Search for MCIS and Learning Policy
This section first presents a state-of-the-art BnB search
framework as shown in Algorithm 1, which allows an ex-
ploration of search space and enforces the isomorphism con-
straint. Thus, it serves as the backbone of McSplit+RL (Liu
et al. 2020), McSplit+LL (Zhou et al. 2022) and our Mc-
SplitDAL. Then, we review representative learning policies
that tell a BnB algorithm how to select a branching pair.

Branch and Bound for MCIS
To simplify the description, we suppose that two input
graphs are undirected and unlabelled, and search methods
can be easily extended to other kinds of graphs (McCreesh
et al. 2016).

Given a pattern graph Gp and a target graph Gt, the BnB
algorithm MCIS depicted in Algorithm 1 works with an en-
vironment Ev (i.e., a set of domains), a policy πv to select a
vertex in Gp, a policy πw to select a vertex w in Gt to match
with v, a current growing solution curSol, and the best so-
lution MaxSol found so far. At the beginning, curSol and
MaxSol are both empty, and Ev = {(Vp, Vt)} contains
only one domain, meaning that every vertex in Vp is a can-
didate to match every vertex in Vt.

MCIS first estimates an upper bound on the number of
matches that can be found with the current Ev. If the UB is
not larger than the size of the best solution MaxSol found
so far, the algorithm prunes this branch and backtracks (Line
1– 4). Otherwise, the algorithm selects a new vertex pair
(v, w) such that v ∈ Vp and w ∈ Vt to match using pol-
icy πv and πw respectively. As a consequence of matching v
with w, (v, w) is added into curSol, and each domain in Ev
is split into two domains D1 (D2): domain in which each
vertex of Vp is (non-)adjacent to v and each vertex of Vt is
(non-)adjacent to w (Line 10–14). Domains with at least one
empty vertex subset are removed. Afterwards, the algorithm
runs recursively on the new domains (Line 15). After finish-
ing the search of the subtree rooted at (v, w), the algorithm
tries to match v with other vertices in Vt (Line 16) selected
using policy πw. Then, it removes v from Ev and runs recur-
sively. At last, the optimal solution is returned (Line 18–20).

The policies πv and πw are both based on a selectD(·)
function that returns a domain from Ev, in which v and w
are selected. (McCreesh, Prosser, and Trimble 2017) pro-
vide a selectD(·) function, by defining the size of a do-
main (Vip, Vit) to be max(|Vip|, |Vit|) and returning the do-
main with the smallest size from Ev, with ties broken by the
largest vertex degree in Vip. This function is used in Algo-
rithm 1.

Algorithm 1: MCIS(Ev, πv, πw, curSol,MaxSol)

Input: a domain set Ev; policies πv and πw for selecting
the matching pair (v, w); the current solution curSol and
the best solution found so far MaxSol
Output: MaxSol

1: UB ← |curSol| +
∑

(Vip,Vit)∈Ev min(|Vip|, |Vit|)
2: if UB ≤ |MaxSol| then
3: return MaxSol
4: end if
5: (Vip, Vit)← selectD(Ev)
6: v ← selectV (Vip, πv)
7: for k in range(|Vit|) do
8: w ← selectW (Vit, πw)
9: Vit ← Vit \{w}

10: curSol ← curSol ∪ {(v, w)}
11: if |curSol| > |MaxSol| then
12: MaxSol← curSol
13: end if
14: Ev′ ← a new domain set obtained by splitting do-

mains in Ev
15: MaxSol←MCIS(Ev′, πv, πw, curSol,MaxSol)
16: curSol ← curSol\{(v, w)}
17: end for
18: Ev′ ← a new domain set by removing v from Ev
19: MaxSol←MCIS(Ev′, πv, πw, curSol,MaxSol)
20: return MaxSol

Related Learning Policy
In a BnB algorithm for MCIS, the branching heuristic to se-
lect v and w to match is crucial to reduce the size of the
search tree. Early heuristics mainly rely on the properties of
input graphs (Solnon et al. 2015; Englert and Kovács 2015;
Bonnici and Giugno 2017; McCreesh, Prosser, and Trimble
2017) and focus on selecting v, while w is selected in turn
to be matched with v in their natural order or the decreasing
degree order. For instance, the degree heuristic first matches
the vertex with the highest degree (Solnon et al. 2015). The
degree-weighted-domains heuristic is to select a vertex with
the greatest degree in the smallest domain (Boussemart et al.
2004). The neighbourhood heuristic selects a vertex that is a
neighbor of the current partial order of matched pairs (Cibej
and Mihelic 2014). McSplit (McCreesh, Prosser, and Trim-
ble 2017) first selects a domain in Ev with the smallest
max(|Vip|, |Vit|) value, and then the vertex v (w) with the
greatest degree in Vip (Vit).

Recent heuristics use reinforcement learning to improve
the branching heuristic of McSplit. They regard the BnB al-
gorithm as an agent having a goal of reaching a search tree
leaf as soon as possible. An action of the agent is to match a
vertex v in Vp with a vertex w in Vt. A value function is de-
fined based on a reward given to each performed action, then
reinforcement learning is used to recognize the best action
to choose at each step based on the accumulative rewards of
each action received in the past. So, the key issue here is how
to define a reward and a value function, and how to exploit
them to select an action.

McSplit+RL (Liu et al. 2020) defines the reward of match-

4046

ing (v, w) to be the upper bound reduction produced by the
matching. Then, both v and w receive this reward. The pol-
icy πv selects v with the highest accumulative rewards in
the smallest domain (i.e., a domain with the smallest size as
defined in McSplit) and w is selected in the same domain
in the decreasing order of their accumulative rewards, to be
matched with v in turn.

As can be seen in Algorithm 1, the algorithm reaches a
leaf when UB ≤ |MaxSol|. Therefore, picking a vertex
with the greatest accumulated reductions of upper bound can
help McSplit+RL reach a leaf quickly. We refer the policies
of McSplit+RL to select v and w to match by RL.

McSplit+LL (Zhou et al. 2022) further reduces the size
of the search tree with Long-Short Memory (LSM) and
Leaf vertex Union Match (LUM) techniques, which em-
ploys the same matching reward as McSplit+RL. But Mc-
Split+LL manages the vertex value differently from Mc-
Split+RL. Specifically, LSM records the accumulative re-
wards of each vertex in Gp, and the accumulative rewards
of each vertex pair (vi, wj) matched in the past. At each
step, it picks the vertex v in Gp with the greatest accumu-
lative rewards in the smallest domain, as McSplit+RL does,
then picks a vertex w in Gt in the same domain such that
the vertex pair (v, w) has the greatest accumulative rewards
among {(v, w1,), (v, w2), . . . , (v, w|Vt|). LUM is to simul-
taneously match the leaf neighbors of v to the leaf neighbors
of w after matching (v, w). The leaf neighbor of a vertex is
its neighbor with degree 1.

We observe that there are two limitations in the above
learning policies. First, the reward for a matching action is
only defined by its effect on upper bound. However, consider
two possible matches (v, w) and (v′, w′). The graph simpli-
fication due to these two matches can be very different, even
if they give the same upper bound reduction. Second, these
policies tend to produce a kind of “Matthew effect”1: the
vertices with high accumulated rewards will be chosen again
and again upon backtracking, and get their accumulated re-
wards higher, while the vertices with low accumulated re-
wards have little chance to be chosen and their accumulated
rewards stay low. The Matthew effect can make the algo-
rithm mainly branch on a small subset of vertices, so that
the search wastes more time and is less efficient.

In the next section, we will propose a new value function
based on a new reward definition, and a new hybrid vertex
selection strategy to overcome these two limitations.

Proposed Method
In this section, we define a new reward to an action of match-
ing a vertex v in Gp and a vertex w in Gt, in order to re-
flect more accurately the consequence of the action, further
obtain a new vertex selection policy. We then propose a hy-
brid strategy combining the new vertex selection policy with
RL, the policy of McSplit+RL, allowing to overcome the
Matthew effect of a single policy.

Note that the tabular method in reinforcement learning is
not directly applicable to BnB MCIS algorithms, because

1See https://en.wikipedia.org/wiki/Matthew effect

(I) Ev = {(⟨2, 3⟩, ⟨b, c, d⟩), (⟨1, 4, 5, 6, 7⟩, ⟨e, g, f⟩)}, in-
duced by {(0, a)}

(II) Ev′ = {(⟨2⟩, ⟨d⟩), (⟨3⟩, ⟨b, c⟩), (⟨4, 6, 7⟩, ⟨f⟩), (⟨5⟩,
⟨g⟩)}, induced by {(0, a), (1, e)}

(III) Ev′′ = {(⟨2⟩, ⟨c⟩), (⟨1, 4, 5, 6, 7⟩, ⟨e, g, f⟩)}, induced
by {(0, a), (3, b)}

Figure 2: An example of modifying environment by a match,
where Ev = {(⟨2, 3⟩, ⟨b, c, d⟩), (⟨1, 4, 5, 6, 7⟩, ⟨e, g, f⟩)} is
induced by matching vertex 0 with vertex a. Then it trans-
forms into a new domain set containing simpler subgraphs
by matching vertex 1 with vertex e than by matching vertex
3 with vertex b. The vertices with the same color are in the
same domain.

there are too many states and actions to store, and approxi-
mate functions needs lots of computation to fit state value or
action value for MCIS.

New Value Function
A BnB algrithm as specified in Algorithm 1 works with a set
Ev = {(V1p, V1t), . . . , (Vsp, Vst)} of domains, where each
vertex subset pair (Vip, Vit) (1 ≤ i ≤ s) is a domain. We

4047

say that Ev is the environment that the learning agent stays.
Each environment induces an upper bound of the number
of matches that can be added into the current growing solu-
tion. An action matching a vertex v and a vertex w changes
the current environment. The changed environment induces
a new upper bound. The difference between the old upper
bound and the new one is used as the reward to the action
(v, w) in McSplitRL and McSplitLL. We argue that this re-
ward is not accurate enough for an action, because two ac-
tions inducing the same upper bound reduction can result in
different domains. Figure 2 gives an illustrative example.

Example 1 Figure 2 shows two graphs Gp and Gt, Vp

= {0, 1, 2, 3, 4, 5, 6, 7}, Vt = {a, b, c, d, e, f, g}. The vertex
pair (0,a) has been first matched, so that the current Ev
= {(⟨2, 3⟩, ⟨b, c, d⟩), (⟨1, 4, 5, 6, 7⟩, ⟨e, g, f⟩)}, that can at
most provide 2 + 3 = 5 vertex pairs to extend current so-
lution {(0, a)} . Thus, the current upper bound is 5.

If the second matching is (1, e), Ev will be modified into
Ev′ = {(⟨2⟩, ⟨d⟩), (⟨3⟩, ⟨b, c⟩), (⟨4, 6, 7⟩, ⟨f⟩), (⟨5⟩, ⟨g⟩)}.
The upper bound induced by Ev′ is 4 and |Ev′| = 4.

If the branching strategy picks (3, b) instead of (1, e)
as the second matching, Ev will be modified into Ev′′ =
{(⟨2⟩, ⟨c⟩), (⟨1, 4, 5, 6, 7⟩, ⟨e, g, f⟩)}. The upper bound in-
duced by Ev′′ is 4 and |Ev′′| = 2.

The two matches (1, e) and (3, b) induce the same upper
bound reduction. However, the environment change from Ev
to Ev′ induced by the matching (1, e) is clearly more impor-
tant than the change from Ev to Ev′′ induced by the match-
ing (3, b), because the domains in Ev are split into more
new domains, meaning that the problem is more simplified
by the branching on (1, e). We use the number of domains in
Ev′ or Ev′′ to measure the environment change. Intuitively,
the more the environment changes, the more the subproblem
is easier to solve.

Based on the above observation, we propose a new reward
defined in Equation 1, where Ev′ is the environment modi-
fied from Ev by the match (v, w).

R(v, w) =
∑

(Vip,Vit)∈Ev

min(|Vip|, |Vit|)−

∑
(V ′

ip,V
′
it)∈Ev′

min(|V ′
ip|, |V ′

it|) + |Ev′|
(1)

Equation 1 uses both the upper bound reduction and the
number of domains contained in the new environment Ev′

to reward an action (v, w). A new value function called Do-
main and Action Learning (DAL) is defined by Equation 2
and Equation 3.

DAL(v)← DAL(v) +R(v, w) (2)

DAL(v, w)← DAL(v, w) +R(v, w) (3)

The DAL value function considers both the upper bound
reduction and the number of domains contained in the new
environment Ev′. A greater upper bound reduction presum-
ably allows to prune the search earlier. A greater number

of domains in Ev′ presumably implies a subproblem easier
to solve. Our purpose is to combine the two advantages to
speed up the search.

A new vertex selection policy is thus defined using the
DAL value function, which gives the score DAL(v) for each
vertex v in Vp and the score DAL(v, w) for each match
(v, w), all initialized to 0. Then at each step, after selecting
the smallest domain (Vip, Vit) from the current environment
Ev in Algorithm 1 (Line 5), Equation 2 is used to select
a vertex v in Vip with the highest DAL(v), and Equation
3 is used to select a vertex w in Vit such that DAL(v, w)
is maximum. After matching v with w, R(v, w) defined in
Equation 1 is added into DAL(v) and DAL(v, w).

As in McSplitLL, if DAL(v) and DAL(v, w) reach Tv

and Tvw, respectively, where Tv and Tvw are two param-
eters as in McSplitLL, all vertex values in DAL(v) and
DAL(v, w) decay to a half.

Hybrid Branching Policy
As is explained in the previous section, the current vertex
selection policies based on reinforcement learning can suffer
from the Matthew effect, so does the new vertex selection
policy based on the DAL value function.

In order to overcome the Matthew effect, we propose to
hybrid the RL policy of McSplitRL and the DAL policy de-
fined in this paper. Concretely, let Π ∈ {RL,DAL} de-
note the current policy, and be initialized to be RL. Every
time v or w is selected using Π, a counter NbApp is in-
cremented by 1. When NbApp reaches a fixed threshold
MaxNbApp, it is reset to 0, and Π is changed to another
policy in {RL,DAL}. An exception happens when a better
solution is found. In this case, NbApp is reset to 0, and the
same policy continues to be used.

Note that the vertices with the highest value DAL or RL
are usually different. The hybrid branching policy allows
to branch on different vertices, thus diversifying the search
while keeping good quality branchings.

Experiments
The proposed algorithm McSplitDAL is implemented in
C++ on top of McSplit and compiled using g++. We conduct
experiments to evaluate the new algorithm and the proposed
strategies. All experiments were performed on Intel Xeon
CPUs E5-2680 v4@2.40 G under Linux with 4G memory.

The three parameters Tv , Tvw and MaxNbApp are set to
105, 109, 2×min(|Vp|, |Vt|), respectively.

Benchmarks
The benchmark datasets 2 include 24,761 instances, which
are divided into two sets.
• Biochemical reactions (Gay et al. 2014): including 136

directed unlabelled bipartite graphs. The number of vertices
varies from 9 to 386. All graphs describe the biochemical
reaction networks. This dataset provides 9316 instances by
pairing any two graphs (including 136 self-match pairs).

2Available at http://liris.cnrs.fr/csolnon/SIP.html

4048

• Large SI instances (Damiand et al. 2011; Solnon et al.
2015; Hoffmann, McCreesh, and Reilly 2017; McCreesh,
Prosser, and Trimble 2017; Liu et al. 2020; Zhou et al. 2022):
including 15,445 instances generated from the real-world
problems or random models, such as segmented images,
modelling 3D objects, and scale-free networks. Specifically,
this instance set contains: 6,278 Images-CVIU11, 1225 LV,
3,430 LargerLV, 24 Image-PR15, 1170 SI, 100 Scalefree,
3018 Meshes-CVIU11 and 200 phase. The number of ver-
tices varies from 22 to 6,671.

The time limit for each instance in the experiments is 1800
seconds.

Solvers
We compare the new algorithm McSplitDAL with two state-
of-the-art BnB algorithms: McSplit+LL (Zhou et al. 2022)
and McSplit+RL (Liu et al. 2020). To better understand the
proposed policies, four variants of these algorithms are also
included in the experiments.
•McSplitDAL: our implementation of Algorithm 1 on top

of McSplit (McCreesh, Prosser, and Trimble 2017) with the
new value function DAL and the hybrid vertex selection pol-
icy Π ∈ {RL,DAL}.
• McSplit+RL (Liu et al. 2020): An implementation of

the Algorithm 1 on top of McSplit with the value function
RL, which significantly improves McSplit.
•McSplit+LL (Zhou et al. 2022): An implementation of

the Algorithm 1 on top of McSplit with the LSM and LUM
techniques.
• McSplitRLD: a variant of McSplitRL using the new

DAL value function instead of the RL policy.
• McSplitLLD: a variant of McSplit+LL using the new

DAL value function instead of its own policy.
• McSplitDAL+rand: A variant of McSplitDAL, which

applies one of two branching policies {RL,DAL} in ran-
dom at each branch node, instead of applying each policy
MaxNbApp times alternatively.
• McSplitDAL+depth: A variant of McSplitDAL, which

changes the policy according to the depth of the search
tree, instead of applying each policy MaxNbApp times
alternatively. Concretely, let Maxdep = min(|Vp|, |Vt|).
When the tree depth is in range of [1, 1

4Maxdep] and
[12Maxdep, 3

4Maxdep], McSplitDAL+depth uses RL pol-
icy. Otherwise, it uses DAL policy.

Comparison of Performance
The first experiment compares the general performance of
McSplit+RL, McSplit+LL and McSplitDAL on the bench-
marks, excluding the too easy instances that can be solved
by all the compared solvers within 10 seconds and the too
hard instances that cannot be solved by any compared solver
within the time limit to make the comparison clearer. The
average runtimes of McSplit+RL, McSplit+LL and McSplit-
DAL on the excluded easy instances are 0.59s, 0.58s and
0.54s, respectively.

Figure 3 shows the cumulative numbers of solved
instances by the compared three solvers over the re-
maining 2,229 instances. McSplitDAL solves 292 (437)

Figure 3: Cumulative numbers of instances solved by Mc-
Split+RL, McSplit+LL and McSplitDAL on the 2,229 MCIS
instances.

Figure 4: Cumulative plots of McSplit+RL, McSplit+LL and
McSplitDAL on recursive calls for proving the optimality of
the found solution.

more instances than McSplit+LL (McSplit+RL). In other
words, McSplitDAL solves 16.3% more instances than Mc-
Split+LL. Note that McSplitDAL, McSplit+LL and Mc-
Split+RL all share the same implementation of Algorithm
1 and the unique difference between McSplitDAL and Mc-
Split+LL is the branching heuristic, while the difference be-
tween McSplit+LL and McSplit+RL includes the branching
heuristic and the LUM technique. However, the performance
improvement of McSplitDAL w.r.t. McSplit+LL is greater
than the performance improvement of McSplit+LL w.r.t.
McSplit+RL. Considering the high performance of baseline
algorithms and the NP-hardness of MCIS, the results show
that new value function DAL and hybrid branching strategy
are very effective for BnB MCIS algorithms.

Further Analysis
The search process of an exact MCIS algorithm can be di-
vided into two phases: find an optimal solution (Finding
time) and prove it is optimal (Proving time). Total time of
solving an instance is the sum of finding time and proving
time. The experimental results in Figure 3 explain partially
why the hybrid learning policy based on the new value func-
tion improves the McSplit+LL and McSplit+RL for MCIS.

4049

Figure 5: Cumulative numbers of instances solved by
McSplit+RL, McSplit+LL, McSplitRLD, McSplitLLD and
McSplitDAL on 2,361 MCIS instances.

Figure 6: Cumulative numbers of solved instances by Mc-
SplitDAL, McSplitDAL+rand and McSplitDAL+depth on
2,277 MCIS instances.

For a BnB MCIS algorithm, it is easier to reach the prun-
ing condition if the optimal solution is found earlier. Figure
3 shows that McSplitDAL generally finds optimal solutions
earlier than McSplit+LL and McSplit+RL, due to the effec-
tiveness of the new value function DAL and the hybrid vertex
selection strategy.

Figure 4 shows the number of recursive calls of McSplit-
DAL, McSplit+LL and McSplit+RL for proving the opti-
mality of the found solution on the same instances as in
Figure 3. The number of recursive calls of McSplitDAL is
clearly the smallest, suggesting that the new value function
DAL and the hybrid vertex selection policy in McSplitDAL
allows better branching and is also efficient to overcome
Matthew effect of a single policy, so that McSplitDAL di-
versifies better search than McSplit+RL and McSplit+LL,
and significantly reduces the number of recursive calls.

Ablation Study
To further access the effectiveness of the proposed value
function, we compare the performance of McSplit+RL with
McSplitRLD, the performance of McSplit+LL with Mc-
SplitLLD, and with the performance of McSplitDAL. The
results are showed in Figure 5 (after excluding the too easy
instances solved by all the 5 solvers within 10s).

Recall that the only difference of McSplit+RL (Mc-
Split+LL) and McSplitRLD (McSplitLLD) is the value
function, for McSplitRLD and McSplitLLD do not employ
the hybrid vertex selection strategy. As Figure 5 shows,
McSplitLLD (McSplitRLD) solves 154 (138) more in-
stances than McSplit+LL (McSplit+RL). In other words,
McSplitLLD (McSplitRLD) solves 8.4% (8.2%) more in-
stances than McSplit+LL (McSplit+RL). So, the results in
Figure 5 show that the new value function DAL is indeed
more effective for MCIS, because DAL considers both upper
bound reduction and environment changes, while the poli-
cies in McSplit+LL and McSplit+RL only consider upper
bound reduction.

Note that McSplitDAL solves 138 (299) more instances
than McSplitLLD (McSplitRLD), thanks to the hybrid ver-
tex selection strategy (cf. Figure 3). For 2087 medium in-
stances solved by McSplitDAL in Figure 3, there are 1847
instances that use DAL policy more times than RL policy in
the search process.

The hyper-parameter MaxNbApp in the switching policy
conditions is important to McSplitDAL. We leverage Mc-
SplitDAL, McSplitDAL+rand and McSplitDAL+depth to
evaluate the hybrid policy. Figure 6 shows the comparison of
performance of the three solvers over 2,277 instances (after
excluding the too easy instances and the too hard instances
w.r.t. the three compared algorithms as before). The com-
parison shows that McSplitDAL has the best performance,
solving 121 and 286 more instances than McSplitDAL+rand
and McSplitDAL+depth, respectively. The goal of MCIS al-
gorithm is to find an optimal solution which size is at most
min(|Vp|, |Vt|). Experimental results show the switch con-
dition related to the optimal solution size have a better per-
formance than random choice and fixed tree depth.

Conclusion
In this paper, we propose a new value function and a hybrid
branching strategy in a Branch-and-Bound (BnB) algorithm
based on reinforcement learning for the Maximum Common
Induced Subgraph (MCIS) problem. The new value func-
tion considers both upper bound reduction and environment
change to reward an action of matching two vertices. It al-
lows to select vertices to better simplify the graphs. The hy-
brid branching strategy guides the search by employing al-
ternatively two different branching heuristics to diversify the
search and find optimal solutions earlier. We implement the
new approaches into a BnB algorithm called McSplitDAL.
Extensive experimental results show that the proposed meth-
ods significantly improve the efficiency of the BnB MCIS
algorithm.

In the future, we will continue to study the interplay of the
search and the learning, and try machine learning to design a
scheme for policy selecting. These methods solving Mathew
effect can be applied to solve other NP-hard problems.

Acknowledgements
This work is partially funded by the French Agence Na-
tionale de la Recherche, reference ANR-19-CHIA-0013-01,
the National Natural Science Foundation of China (Grants

4050

U22B2017, 62162066), the Scientific Research Program of
Hubei Provincial Department of Education for Youth (Grant
Q20211111), the Open Research Fund of Hubei Society for
Industrial and Applied Mathematics (Grant 2022003), and
supported by the Matrics platform of Université de Picardie
Jules Verne.

References
Antelo-Collado, A.; Carrasco-Velar, R.; Garcı́a-Pedrajas,
N.; and Garcı́a, G. C. 2020. Maximum common property: a
new approach for molecular similarity. J. Cheminformatics,
12(1): 61.
Bai, X.; Hancock, E. R.; and Wilson, R. C. 2009. A genera-
tive model for graph matching and embedding. Comput. Vis.
Image Underst., 113(7): 777–789.
Bai, Y.; Xu, D.; Sun, Y.; and Wang, W. 2021. GLSearch:
Maximum Common Subgraph Detection via Learning to
Search. In Proceedings of the 38th International Confer-
ence on Machine Learning, ICML 2021, Virtual Event, vol-
ume 139, 588–598. PMLR.
Bonnici, V.; and Giugno, R. 2017. On the Variable Ordering
in Subgraph Isomorphism Algorithms. IEEE ACM Trans.
Comput. Biol. Bioinform., 14(1): 193–203.
Bonnici, V.; Giugno, R.; Pulvirenti, A.; Shasha, D. E.; and
Ferro, A. 2013. A subgraph isomorphism algorithm and its
application to biochemical data. BMC Bioinform., 14(S-7):
S13.
Boussemart, F.; Hemery, F.; Lecoutre, C.; and Sais, L. 2004.
Boosting Systematic Search by Weighting Constraints. In
Proceedings of the 16th Eureopean Conference on Artificial
Intelligence, ECAI 2004, Valencia, 146–150. IOS Press.
Choi, J.; Yoon, Y.; and Moon, B. R. 2012. An efficient
genetic algorithm for subgraph isomorphism. In Genetic
and Evolutionary Computation Conference, GECCO 2012,
Philadelphia, PA, 361–368. ACM.
Cibej, U.; and Mihelic, J. 2014. Search Strategies for Sub-
graph Isomorphism Algorithms. In Applied Algorithms -
First International Conference, ICAA 2014, Kolkata, vol-
ume 8321, 77–88. Springer.
Damiand, G.; Solnon, C.; de la Higuera, C.; Janodet, J.; and
Samuel, É. 2011. Polynomial algorithms for subisomor-
phism of nD open combinatorial maps. Comput. Vis. Image
Underst., 115(7): 996–1010.
Englert, P.; and Kovács, P. 2015. Efficient Heuristics for
Maximum Common Substructure Search. J. Chem. Inf.
Model., 55(5): 941–955.
Gay, S.; Fages, F.; Martinez, T.; Soliman, S.; and Solnon,
C. 2014. On the subgraph epimorphism problem. Discret.
Appl. Math., 162: 214–228.
Hoffmann, R.; McCreesh, C.; and Reilly, C. 2017. Be-
tween Subgraph Isomorphism and Maximum Common Sub-
graph. In Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence, AAAI 2017, California, 3907–
3914. AAAI Press.
Larsen, S. J.; and Baumbach, J. 2017. CytoMCS: A Mul-
tiple Maximum Common Subgraph Detection Tool for Cy-
toscape. J. Integr. Bioinform., 14(2).

Liu, Y.; Li, C.; Jiang, H.; and He, K. 2020. A Learning
Based Branch and Bound for Maximum Common Subgraph
Related Problems. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, New York, 2392–2399.
AAAI Press.
McCreesh, C.; Ndiaye, S. N.; Prosser, P.; and Solnon, C.
2016. Clique and Constraint Models for Maximum Com-
mon (Connected) Subgraph Problems. In Principles and
Practice of Constraint Programming the 22nd International
Conference, CP 2016, Toulouse, volume 9892, 350–368.
Springer.
McCreesh, C.; Prosser, P.; and Trimble, J. 2017. A Partition-
ing Algorithm for Maximum Common Subgraph Problems.
In Proceedings of the Twenty-Sixth International Joint Con-
ference on Artificial Intelligence, IJCAI 2017, Melbourne,
Australia, 712–719. ijcai.org.
Nirmala, P.; Sulochana, L. R.; and Rethnasamy, N. 2016.
Vertex cover-based binary tree algorithm to detect all max-
imum common induced subgraphs in large communication
networks. Knowl. Inf. Syst., 48(1): 229–252.
Park, Y. H.; Reeves, D. S.; and Stamp, M. 2013. Deriving
common malware behavior through graph clustering. Com-
put. Secur., 39: 419–430.
Raymond, J. W.; and Willett, P. 2002. Maximum common
subgraph isomorphism algorithms for the matching of chem-
ical structures. J. Comput. Aided Mol. Des., 16(7): 521–533.
Rutgers, J. H.; Wolkotte, P. T.; Hölzenspies, P. K. F.; Kuper,
J.; and Smit, G. J. M. 2010. An Approximate Maximum
Common Subgraph Algorithm for Large Digital Circuits. In
13th Euromicro Conference on Digital System Design, Ar-
chitectures, Methods and Tools, DSD 2010, Lille, 699–705.
IEEE Computer Society.
Schmidt, R.; Krull, F.; Heinzke, A. L.; and Rarey, M.
2021. Disconnected Maximum Common Substructures un-
der Constraints. J. Chem. Inf. Model., 61(1): 167–178.
Solnon, C.; Damiand, G.; de la Higuera, C.; and Janodet,
J. 2015. On the complexity of submap isomorphism and
maximum common submap problems. Pattern Recognit.,
48(2): 302–316.
Sun, Y.; Bashir, A. K.; Tariq, U.; and Xiao, F. 2021. Effec-
tive malware detection scheme based on classified behavior
graph in IIoT. Ad Hoc Networks, 120: 102558.
Yan, X.; Yu, P. S.; and Han, J. 2005. Substructure Similarity
Search in Graph Databases. In Proceedings of the ACM SIG-
MOD International Conference on Management of Data,
Baltimore, SIGMOD 2005, Maryland, 766–777. ACM.
Zanfir, A.; and Sminchisescu, C. 2018. Deep Learning of
Graph Matching. In 2018 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2018, Salt Lake City,
2684–2693. IEEE Computer Society.
Zhou, J.; He, K.; Zheng, J.; Li, C.; and Liu, Y. 2022. A
Strengthened Branch and Bound Algorithm for the Max-
imum Common (Connected) Subgraph Problem. In Pro-
ceedings of the Thirty-First International Joint Conference
on Artificial Intelligence, IJCAI 2022, Vienna, 1908–1914.
ijcai.org.

4051

