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Multi-PGS enhances polygenic prediction by
combining 937 polygenic scores

Clara Albiñana 1,2 , Zhihong Zhu2, Andrew J. Schork1,3,4, Andrés Ingason1,3,
Hugues Aschard 5, Isabell Brikell1,6,7, Cynthia M. Bulik 7,8,9,
Liselotte V. Petersen1,2, Esben Agerbo1,2, Jakob Grove 1,6,10,11,
Merete Nordentoft1,12, David M. Hougaard 1,13, Thomas Werge 1,3,14,
Anders D. Børglum 1,6,10, Preben Bo Mortensen 1,2, John J. McGrath 2,15,16,
BenjaminM.Neale 17,18, FlorianPrivé 1,2,20&Bjarni J. Vilhjálmsson 1,2,11,19,20

The predictive performance of polygenic scores (PGS) is largely dependent on
the number of samples available to train the PGS. Increasing the sample size
for a specific phenotype is expensive and takes time, but this sample size can
be effectively increased by using genetically correlated phenotypes. We pro-
pose a framework to generate multi-PGS from thousands of publicly available
genome-wide association studies (GWAS) with no need to individually select
the most relevant ones. In this study, the multi-PGS framework increases
prediction accuracy over single PGS for all included psychiatric disorders and
other available outcomes, with prediction R2 increases of up to 9-fold for
attention-deficit/hyperactivity disorder compared to a single PGS. We also
generate multi-PGS for phenotypes without an existing GWAS and for case-
case predictions. We benchmark the multi-PGS framework against other
methods and highlight its potential application to new emerging biobanks.

Although polygenic scores (PGS) have high potential for clinical use1–3,
they are currently underpowered for many applications regarding
disease prediction and risk stratification. The predictive performance
of PGS is largely determined by four factors: the sample size of the
GWAS used for training the score, the proportion of causal variants

and the heritability of the phenotype, as well as heterogeneity between
GWAS and target samples, including differences in genetic ancestry4–6.
Increasing the number of samples for a phenotype is costly and takes
time, but a possible alternative is to use genetically correlated phe-
notypes to increase the effective sample size at no cost1,7–14. Previously
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proposed predictionmethods usingmultiple PGS have either required
individual-level genotype and phenotype validation data for each PGS
in the model7,11, or the inclusion of multiple PGS for the same GWAS
summary statistics file corresponding to different p-value thresholds
or proportions of causal variants15 (i.e. the PGS model hyper-para-
meters). For the latter, the number of included PGS can become very
large (e.g. 10 for each GWAS summary statistic number), which
increases the number of validation samples required to fit the model
and limits the number of PGS that can be included in practice.

Recent advances in PGSmethods allow us to generate scores for a
phenotype without requiring validation data to tune the hyper-
parameters16–20. This development has two major implications in the
context of prediction using multiple PGS. First, individual-level geno-
type validation data for each of the correlated phenotypes included in
the prediction model is no longer necessary because selecting the
best-performing hyper-parameters is no longer needed. Second, PGS
for any genetically correlated phenotype, even those not available in
the target data, can now be included easily in the same prediction
model, which significantly expands the set of phenotypes one can
study. Therefore, as only one PGS per phenotype needs to be included
in the prediction model, the only practical limitation is effectively the
number of individual-level samples available for the desired pheno-
type, which is constantly growing for biobank data.

In this work, we propose and evaluate amulti-PGS framework that
leverages these key PGS developments to construct more powerful
and generalisable prediction models. These multi-PGS models can be
trained on thousands of different PGS such as for health outcomes,
body measurements, and behavioral phenotypes which are not
necessarily genetically correlated with the outcome. Multiple PGS and
covariates can be combined using either a linear model (lasso pena-
lized regression) or a nonlinear model (XGBoost21) into a multi-PGS
model. This model is then evaluated in an independent dataset in
terms of the prediction accuracy of themulti-PGS.We apply ourmulti-
PGS framework to the Lundbeck Foundation Initiative for Integrative

Psychiatric Research (iPSYCH)22,23, one of the largest datasets on the
genetics of major psychiatric disorders. These disorders are geneti-
cally correlated with many other psychiatric and neurological dis-
orders as well as other behavioral phenotypes24,25, which are precisely
the circumstances under which the proposed multi-PGS might boost
the polygenic prediction accuracy. We benchmark the multi-PGS
against each phenotype’s respective single PGS prediction and com-
pare it with an existing PGS method that meta-analyzes multiple PGSs
using GWAS summary statistics, wMT-SBLUP8. Although the iPSYCH
cohort has been designed around psychiatric disorders, the study
individuals canbe linked to theNational Danish Registers22,23, making it
possible to generate multi-PGS for any phenotype captured in these
registers. We demonstrate that multi-PGS improves prediction accu-
racy results for a range of different diseases, subtypes and phenotypes
for which no GWAS summary statistics currently exist (e.g., birth
measurements and case-case classification). Our goal is to showcase
our multi-PGS framework and its potential advantage to be applied to
new emerging biobank data.

Results
Overview of method
Here we summarize the framework used for generating the proposed
multi-PGS. This framework consists of three steps (Fig. 1). In Step 1
“Build PGS Library”, a large, agnostic library of PGS is generated by
running LDpred2-auto16 on publicly available GWAS summary sta-
tistics (GWAS Catalog26, GWAS ATLAS27, PGC28 etc.). In Step 2 “Train
Multi-PGS Models”, the PGS library is standardized (i.e., mean 0 and
variance 1) and used to develop multi-PGS prediction models for a
target outcome using both a linear model (lasso penalized regres-
sion) and a non-linear model (boosted gradient trees, XGBoost).
These models include sex, age and 20 first PCs as covariates for
training. Finally in Step 3 “Evaluate models”, the multi-PGS models
are projected into the test data, evaluated in terms of prediction
accuracy and benchmarked against single PGS and another

Fig. 1 | Overview of the multi-PGS framework. The framework consists of
3 sequential steps: Step 1) Build PGS Library. Construct an agnostic library of single-
GWAS PGSs from publicly-available GWAS summary statistic resources. Step 2)
Train Multi-PGS Models. Fivefold cross validation training of multi-PGS models

using the PGS library from Step 1 and target outcome. Step 3) The resulting multi-
PGS models from Step 2 were benchmarked in terms of prediction accuracy and
risk stratification.
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multivariate PGS method (wMT-SBLUP8). We used 5-fold cross-vali-
dation to alternate between Step 2 and Step 3 to get out-of-sample
prediction accuracy estimates.

Using the proposed multi-PGS framework, we generated a library
of 937 PGS models (described in detail in Supplementary Methods)
and projected it into the genotypes of individuals in iPSYCH. We then
trained multi-PGS models for 6 major psychiatric disorders: attention-
deficit/hyperactivity disorder (ADHD), affective disorder (AFF), anor-
exia nervosa (AN), autism spectrum disorder (ASD), bipolar disorder
(BD) and schizophrenia (SCZ). We focus the first part of the results
section on these 6 psychiatric disorders and extend the multi-PGS
application to other 62 ICD10 code disease definitions, continuous
phenotypes and case-case classification in the last result section.

Linear and non-linear combinations of PGS give comparable
prediction results
We first studied risk prediction models that combine covariates (sex,
age and first 20 PCs) and the 937 PGS using linear models (lasso
penalized regression; multiPGS_lasso) and non-linearmodels (boosted
gradient trees: multiPGS_XGBoost) to predict 6 major psychiatric dis-
orders: ADHD, AFF, AN, ASD, BD and SCZ.We used amodel including a
single PGS for the largest available GWAS for each psychiatric disorder
as the standard reference (ST3). In terms of variance explained, the
multi-PGS increased the mean R2 4-fold on average over the single
GWAS PGS for all disorders, with up to 9-fold improvement for ADHD
and ASD (Fig. 2A), from 0.8 to 7.5 and from 0.2 to 2, respectively.
Compared to themiddle risk score quintiles, the topmulti-PGSquintile

generally increased the log odds ratio over the single GWAS
PGS (Fig. 2B).

In terms of which multi-PGS performed better at combining the
variables, the results appear to be disorder specific. For ADHD, ASD
and BD the lasso multi-PGS increased the mean prediction R2 over the
XGBoost multi-PGS. On the contrary, for AFF and AN the XGBoost
multi-PGS increased the mean prediction R2 over lasso multi-PGS. For
SCZ, there was no difference in variance explained by the two PGS.

We further investigated if the increase in prediction of the
XGBoost multi-PGS over lasso multi-PGS was driven by the nonlinear
combination of covariates alone, and if it was independent from the
PGS combination. In practice, we obtained an XGBoost risk score for
the covariates and fitted it as an additional variable in the lassomodel,
together with the 937 PGS. Themean variance explained by this mixed
multi-PGS was comparable to the lasso multi-PGS for ADHD, ASD, BD
and SCZ, while it was comparable to the mean variance explained by
the XGBoost multi-PGS for AFF and AN. This demonstrated that the
non-linear combination was only beneficial at the covariate level and
not at the PGS-level.

Less pronounced differences were observed in terms of the
mean area under the curve (AUC) prediction (SF5), indicating that
both models are similar in terms of classification. In terms of
quintile odds ratio, the lasso multi-PGS was generally the best at
separating the top 20% to the middle quintile, even for the models
where the maximum mean variance was explained by the XGBoost
multi-PGS (Fig. 2B). Since the two multi-PGS provided relatively
similar results, we continued further analyses on the psychiatric
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Fig. 2 | Performance of the different risk scores including covariates. Compar-
ison between the per-disorder attention-deficit/hyperactivity disorder (ADHD),
affective disorder (AFF), anorexia nervosa (AN), autism spectrum disorder (ASD),
bipolar disorder (BD) and schizophrenia (SCZ) single GWASPGS (specific details on
SD2) and the multi-PGS trainedwith 937 PGS in terms of A liability adjusted R2 and
B log odds ratios of the top risk score quintile compared to the middle risk score
quintiles. Allmodels included sex, age andfirst 20PCs as covariates for training and
calculating the risk score on the test set in a fivefold cross-validation scheme. The
MultiPGS_lasso and MultiPGS_xgboost were trained with lasso regression and
XGBoost respectively, using the 937 PGS and the covariates as explanatory

variables. The MultiPGS_lassoPGS_xgboostCOV was generated with lasso regres-
sion, combining the 937 PGS and the predicted values of an XGBoost model that
includedonly the covariates. 95%confidence intervals were calculated from 10,000
bootstrap samples of themean adjusted R2or logOR, where the adjusted R2 was the
variance explained by the full model after accounting for the variance explained by
a logistic regression covariates-only model as R2adjusted = (R2full - R2cov)/(1 −
R2cov). Prevalencesused for the liability are shownbeneath eachdisorder label and
case-control ratios are available on SD2. All association logOR for all quintiles are
available in SF6.
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disorders considering only the lasso multi-PGS, as weights from
linear models are more interpretable.

Comparison between single PGS and multi-PGS predictors
Next, we investigated which of the 937 PGS in the multi-PGS model
were theones contributing themost to increasing prediction accuracy.
First, we identified the number of non-zero PGS selected by the lasso

model, which ranged from 10 to 154 for the 6 psychiatric disorders
(Fig. 3, non-zero PGS number inside the multi-PGS_lasso bar plot). All
non-zero mean weighted PGS are available at SF7-SF12. While ADHD
and ASD had over 100 PGS included, BD had only 10. This could
express the larger amount of genetically-correlated phenotypes in the
PGS library with ADHD and ASD compared to BD, but could also be a
reflection of the training sample size. The larger the training sample
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Fig. 3 | Comparison between single-phenotype and multi-phenotype PGS
(multi-PGS and wMT-SBLUP). Mean liability adjusted R2 estimates between
attention-deficit/hyperactivity disorder (ADHD), affective disorder (AFF), anorexia
nervosa (AN), autism spectrum disorder (ASD), bipolar disorder (BD) and schizo-
phrenia (SCZ) and multi-phenotype predictors (colored bars, multiPGS_lasso,
multiPGS_lasso_s, wMT-SBLUP) or single-phenotype PGS (grayscale bars, single
LDpred2-auto PGS). The 5 single-phenotype PGSs shown were selected based on

the top ranking absolute lasso weights. The adjusted R2 estimates are the mean of
the fivefold cross-validation training-testing subsets. CI were calculated from 10k
bootstrap samples of the mean. The numbers inside each multi-phenotype pre-
dictor correspond to the number PGS included in each model. Both the simplified
multi-PGS (multiPGS_lasso_s) and wMT-SBLUP predictors were calculated by
keeping the top PGS with an absolute lasso weights >0.01 from the full multi-PGS,
including the top 5 shown in the figure.
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size, the larger the power to identify genetically correlatedphenotypes
in the PGS library through lasso regression.However, weights were
generally very small, with few PGSwith an absolute lasso weight larger
than 0.01 (Fig. 3, number of PGS with absolute weight larger than 0.01
inside the multi-PGS_lasso_s and wMT-SBLUP bar plots). Among the
top 5-weighted PGS for each psychiatric disorder, we always identified
the PGS from the PGC GWAS excluding iPSYCH samples for all
disorders.

For affective disorder, three depression PGS were selected, two
from the PGC29,30 (taggedMDD-PGC2 andMDDHoward) and one from
a UK Biobank GWAS on depressive symptoms31 (tagged Depressive
symptoms). These results confirm that non-overlapping signals from
multiple GWAS of similar phenotypes can be combined to increase
prediction accuracy. Interestingly, the PGS from the PGC GWAS
excluding iPSYCH samples ranked 5th for ADHD. This study had only
4225 cases, similarly to the ASD study, with 5305 cases. The iPSYCH
individuals were excluded from the PGC ADHD and ASD studies.

We compared the prediction accuracy of a multi-PGS with all
non-zero weights to a simplified lasso multi-PGS that included only
PGS with an absolute lasso weight larger than 0.01, multi-PGS_lasso_s
(Fig. 3, number of included PGS in the figure), showing very similar
mean R2. Prediction estimates for the top 5 PGSs in each model
ranked by their lasso weights are also shown in Fig. 3, with the top
PGS generally contributing to half of the prediction accuracy of the
multi-PGS.

By using the lasso regressionas a feature selectionalgorithm (only
selecting the ones with large weights), it was feasible to compare the
prediction accuracy to another prediction method using multiple

PGSs, wMT-SBLUP8, as this method estimates weights for all PGS in the
prediction. ThePGSweights inwMT-SBLUPare calculated as a function
of the GWAS summary statistics’ sample size, SNP-heritability and
genetic correlation (SF12 contains an overview of these parameters for
the top 10 PGSs in each model). The simplified multi-PGS showed
consistently higher mean R2 than wMT-SBLUP, even though they both
contained the same number of PGS.

Combining hundreds of external PGS increases prediction over
training only on the individual-level data
One of the potential issues of comparing single-PGS to multi-PGS
methods is the use of individual-level data for training in multi-PGS,
given that for some analyzed disorders the number of cases is larger in
iPSYCH than in the rest of the PGC cohorts (ST3). Here, we compared
the prediction accuracy of single-PGS (based on GWAS summary sta-
tistics) and multi-PGS (based on both GWAS summary statistics and
individual-level data) to a best linear unbiased predictor (BLUP) PGS
(based on individual-level data). We used fivefold cross validation for
deriving both the multi-PGS and BLUP PGS, so that the reported
adjusted R2 are out-of-sample estimates. The resulting comparison
showed that the prediction accuracy of multi-PGS outperformed both
single-PGS and BLUP PGS predictions, indicating that the accuracy
gained from multi-PGS was not only based on sample size but on the
use of a large and diverse set of 937 PGS (Fig. 4A). As shown
previously32, the BLUP PGS vs. single GWAS PGS varied in the relative
proportion of variance explained according to the psychiatric dis-
order, as they are largely dependent on the training sample sizes and
genetic correlation. We observed these large differences also in terms
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SD2), the per-disorder BLUP PGS and the multi-PGS in terms of A liability adjusted
R2 and B log odd ratios of the top quintile compared to the middle quintile. The
multiPGS_lasso_excluding_single_GWAS represents the PGS where the specific sin-
gle GWAS PGS was removed from the set of 937 PGS. All models were adjusted for

sex, age and first 20 PCs. The adjusted liability R2 shows the mean of the fivefold
cross-validation training-testing subsets. CI were calculated from 10k bootstrap
samples of the mean adjusted R2 or logOR, where the adjusted R2 was the variance
explainedby the fullmodel after accounting for the varianceexplainedby a logistic-
regression covariates-only model as R2_adjusted = (R2_full − R2_cov)/(1 − R2_cov).
Prevalences used for the liability are shown beneath each disorder label and case-
control ratios are available on SD2. All association OR for all quintiles are available
in SF14.
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of logOR of the PGS quintiles separating the top to themiddle quintile
of the sample (Fig. 4B).

Next, we further explored the capacity of ourmulti-PGS to predict
outcomes for which there are no available external GWAS summary
statistics. This question is inspired by a scenario where the studied
outcome could benefit from PGS analyses, but there is still no GWAS
for that outcome.We tested this by simulating a scenario where the six
analyzed psychiatric disorders did not have external PGC GWAS. In
practice this meant removing each time the disorder’s PGS from the
PGS library, resulting in a PGS library of 936 scores. For affective dis-
order (AFF), we removed the two depression PGS from the library. The
difference in mean prediction R2 was not significantly different
between both multi-PGS (using either 937 or 936 PGS) for any psy-
chiatric disorders (Fig. 4A). Moreover, the multi-PGS that did not
contain the disorder’s external PGS was not significantly worse at
separating the risk quintiles in terms of log OR (Fig. 4B). These results
indicate that it is possible to generatemulti-PGS for a specific outcome
without the need of a GWAS for that same phenotype, given that the
PGS library contains scores for genetically correlated outcomes.

Generating multi-PGS from register-based phenotypes
Finally, we extended the multi-PGS results to other phenotypes
defined in the Danish National Registers in the overlapping samples
with iPSYCH to showcase its potential to generate polygenic scores in a
biobank framework. First, we selected 62 ICD10 codes from theDanish
Psychiatric Central Research Register33 with at least 500 diagnosed
cases and compared the prediction performance of the multi-PGS
lasso to the multi-PGS XGBoost. Similarly to the results for the main 6
psychiatric disorders, the mean prediction R2 for both multi-PGS was
on average the same, but ultimately depended on the disorder (SF13).
We emphasize that both these phenotypes all nested within the psy-
chiatric disorder cases and population cohort of iPSYCH case-cohort
design (ST4).

To expand the comparison to external data, we selected 15 phe-
notypes from four different categories; (a) other ICD10 codes with
available GWAS summary statistics, (b) other ICD10 codes with not
known available GWAS summary statistics / disorder sub-phenotypes,
(c) continuous phenotypes from the Medical Birth Register34 and (d)
case−case predictions. For the last category, we explored two example
pairs of disorderswith a highdegreeof comorbidity. First, we excluded
the cases with both disorders and re-codified each single disorder case
as 0 or 1.

In this casewe compared the prediction accuracyof themulti-PGS
against a single-PGS, the top weighted PGS as outputted from the
multi-PGS lasso (ST5).

The results varied greatly for each phenotype, but there were
large increases in prediction accuracy of the multi-PGS for most phe-
notypes (Fig. 5). The multi-PGS for the disorder pair ASD/ADHD
showed the largest prediction R2 of all examinedmulti-PGS, explaining
12% of the variation. On the other side of the spectrum, the multi-PGS
for outcomes such as APGAR score, gestational age or BD/MDD
showednull R2. Note that the PGS labeledMDDHoward30 is selected as
the top lassoweighted PGS formultiple outcomes (Fig. 5). This canbea
reflection of the sampling strategy in iPSYCH, where individuals diag-
nosed with ADHD, AN, AFF, ASD, SCZ and BD were over-sampled
compared to the population. The secondary phenotypes’ cases shown
in Fig. 5 have a large overlap with affective disorder diagnoses (ST4).

Discussion
Here we have proposed a multi-PGS framework derived from nearly
one thousand GWAS summary statistics for different phenotypes, and
showed that it increased the accuracy of PGS for psychiatric disorders.
Multi-PGS explained a larger proportion of the SNP-heritability (a
fourfold increase on average for the main psychiatric disorders over a
PGS trained on the target outcome only) and stratified the population

in more distinct risk groups than single-phenotype PGS. The disorder
with the largest increase in prediction accuracy from multi-PGS was
ADHD, with a ninefold increased prediction R2over the single PGS
(corresponding to ~40% of the SNP h2f35). This is mostly due to the
inclusion of various behavioral PGS in our library (educational attain-
ment, smoking status, etc.) with very large sample sizes and large
genetic correlation with ADHD.

While the compared linearmulti-PGS (lasso) and non-linearmulti-
PGS (XGBoost) resulted in similar prediction accuracies, the improved
performance of the non-linear models for affective disorder and
anorexia nervosa was due to the presence of non-linear covariate
interactions between sex and age, as previously reported36. We
therefore focused the analyses on the lassomulti-PGS, as those results
have easier interpretability.

We benchmarked our multi-PGS prediction results against a PGS
trained on external GWAS summary statistics for each of the six major
psychiatric disorders respectively. The multi-PGS always resulted in a
more accurate prediction, even when the phenotype itself was not
included in the PGS library. When benchmarked against wMT-SBLUP8,
another PGSmethod trained on GWAS summary statistics for multiple
phenotypes, themulti-PGS also resulted in amore accurate prediction.
The improvement in prediction accuracy is likely due to the fact that
while wMT-SBLUP bases its weights on the genetic correlation to the
external GWAS summary statistics for each phenotype, multi-PGS is
trained directly on the individual-level samples, allowing multi-PGS to
better tailor the weights to the cohort. Interestingly, themulti-PGS still
obtained much more accurate predictions by combining hundreds of
external PGS. This result suggests that as both the number of genome-
wide association studies and their sample size grows, training multi-
PGS will become more feasible.

Finally, we showcased how multi-PGS can be used to train pre-
dictors for any phenotype of interest, as long as one has sufficient
individual-level genetic data available with the phenotype of interest.
The multiPGS predictors do not require PGS for the target phenotype
of interest to be available in the PGS library used. This application is
particularly interesting for sub-phenotype analyses within diseases,
whereGWAS summary statistics are not generally available for the sub-
phenotypes. We demonstrated in practice how these multi-PGS could
be generated for various psychiatric sub-diagnoses e.g. different
ICD10 subcodes within Autism Spectrum Disorder (ICD10 F8). Similar
multi-PGS method could also be applied to other sub-phenotypes of
psychiatric disorders like psychosis within bipolar disorder, as defined
in Hasseris et al.37. Another exciting application we explored is the
case-caseprediction,wheremulti-PGSmodels canbe trained for highly
comorbid disorders. In this last category, we highlight the relatively
high prediction accuracy of our predictor of ADHD cases from a pool
of ADHD-ASD cases.

This study and the multi-PGS approach has several limitations.
First, as we performed a fivefold cross-validation in the iPSYCH (indi-
vidual-level) datawhen training and testing themulti-PGS, it is possible
that some of the prediction accuracy gain is due to overfitting. How-
ever, the multi-PGS also resulted in multiple null predictions despite
having large training sample sizes (APGAR score and gestational age)
suggesting that overfitting is small. To further avoid overfitting we
restricted the analyses to a set of unrelated individuals of European
ancestry to control for population structure. Second, controlling for
sample overlap between external and internal data, which can lead to
overfitting38, becomes both difficult and important when considering
thousandsofGWAS summary statistics.We addressed thismanuallyby
checking the GWAS summary statistics, but an automatization of this
step (e.g. using bivariate LDSC39) could help streamline this procedure.
Third, the resulting multi-PGS is potentially predicting a subset of
individuals in the case group enriched or comorbid with a phenotype
with large genetic correlation to the PGS phenotypes, but not the
disorder itself. Therefore, although multi-PGS can improve prediction
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accuracy, it should not be used to estimate genetic correlations or
study genetic overlap. Fourth, wehave not exploredwhether including
a PRS trained on individual-level data could improve the prediction
further, as suggested by a previous study32. Fifth, wehave not explored
how generalisable the multi-PGS are across different ancestry groups,
but we expect the R2 prediction accuracy to decay with genetic dis-
tance between training and testing, as previously shown for PGS6,40.
However, as more individuals of non-European ancestry are included
in GWAS, themulti-PGS based on the resulting summary statisticsmay
be able to improve cross-ancestry prediction.

The samemulti-PGS framework could be applied to other types of
biological data summary statistics, like GWAS for brain or cardiac
images41,42, gene expression43, and/or protein levels44. Combining

different types of data into a multi-PGS could potentially improve or
quantify the importance for prediction of the different data types. The
framework can also make use of published PGS variant weights (e.g.
from the PGS catalog45) instead of deriving the PGS from the GWAS
summary statistics.

In this study, by leveraging nearly a thousand external PGS, we
show how we can increase the polygenic prediction further without
the need to genotype more individuals of a specific phenotype. We
think this multi-PGS framework has a lot of potential for new
emerging biobanks or register-based genetic cohorts to generate
PGS for every available phecode or defined phenotype in their
system, both because of the ever growing set of publicly available
GWAS summary statistics and, as they are new, these biobanks do

45
Age first had sexual intercourse

33
MDD Howard

42
MDD Howard

42
Childhood−onset asthma

17
MDD Howard

17
MDD Howard

38
ASD

1
Positive affect

102
Educational attainment (EA)

33
Trauma exposure

21
Birth weight

178
Educational attainment (EA)

4
BD PGC3

d) Case−case predictions

c) Continuous phenotypes from the MBR

b) Outcomes with no available GWAS

a) Other outcomes with available GWAS

0.00 0.05 0.10

R5 Febrile Seizures

K4 Hernia

J45−46 Asthma

F60 Specific personality disorders

F40−43 Anxiety disorders

F10−19 Substance abuse disorders

F84.9 Pervasive developmental disorder

F84.5 Asperger's syndrome

F84.1 Atypical autism

F84.0 Childhood autism

Gestational age

Birth weight

APGAR score 5min

BD/MDD

ADHD/ASD

Adjusted R2

PGS PGS_single_GWAS MultiPGS_lasso

Fig. 5 | Examples of the prediction accuracy of multi-PGS vs. top predictive
single-GWAS-PGS on register-based phenotypes. Comparison between a per-
phenotype singleGWASPGS (the top-rankedPGSwith largestweight from the lasso
multi-PGS model on each outcome, details on SD4) and the multi-PGS trained with
937 PGS in terms of adjusted R2. The set of outcomes includes a other outcomes
with available GWAS, b outcomes with no available GWAS, c continuous pheno-
types from theMBR and d Case−case predictions. All models included sex, age and

first 20 PCs for training the different PGS weights and calculating the risk score on
the test set in a fivefold cross-validation scheme. CI were calculated from 10,000
bootstrap samples of themean adjusted R2, where the adjusted R2 was the variance
explained by the full model after accounting for the variance explainedby a logistic
regression covariates-onlymodel as R2adjusted = (R2full − R2cov)/(1 − R2cov). The
number next to the multiPGS bar indicates the number of non-zero lasso mean
weights for the 5 cross-validation subsets.
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not have the issue of sample overlap with the external GWAS sum-
mary statistics used.

Methods
The study was approved by the local scientific ethics committees and
institutional review boards. The iPSYCH study was approved by the
Scientific Ethics Committee in the Central Denmark Region (case no. 1-
10-72-287-12) and the Danish Data Protection Agency. In accordance
with Danish legislation, the Danish Scientific Ethics Committee has, for
this study, waived the need for specific informed consent in biome-
dical research based on existing biobanks.

PGS library construction
A detailed description of the PGS library construction and file filtering
process is provided as Supplementary Methods and all code used will
be available. A number of resourceswere used to obtain an initial list of
GWAS summary statistics for generating the PGS library. The majority
of the GWAS summary statistics were downloaded from publicly
available databases (GWAS Catalog26, GWAS Atlas27, the Psychiatric
Genomics Consortium Website (https://www.med.unc.edu/pgc). For
the specific PGC GWAS summary statistics where iPSYCH was used in
the discovery dataset, we used in-house GWAS results where these
samples were excluded from the calculation. The GWAS files were
specifically selected to be based on European ancestry individuals, to
not be overly redundant (only the latest GWAS for each same pheno-
type) and to not contain iPSYCH samples. From an original list of 6206
files (ST1), this filtering resulted in 1377 files to download.

We developed a pipeline for downloading, parsing, reformatting
and doing a quality control filter on the list of files. We created a GWAS
summary statistic column-name library (SF1) to ease file parsing, and
after re-formatting and removing corrupted files, this step resulted in
1005 files. We restricted the number of SNPs to the overlap of the
iPSYCH imputed variants with the HapMap3 variants and the LD
reference provided by LDpred2, resulting in a maximum of 1,053,299
SNPs per GWAS summary statistics file. Filtering SNPs with a large
discrepancy in standard deviation between the genotyped/imputed
data and theGWAS summary statistics can increase the robustness and
prediction accuracy of PGS46. For each file, we created a QC plot for
visual inspection of the QC SNP filtering (Example in SF2). The set of
952 GWAS summary statistics that passed QC and kept over 200,000
SNPs were used to derive PGS with LDpred2-auto16.

Polygenic score weights were derived using LDpred2-auto, a
method within the LDpred2 framework16 that does not require a vali-
dation dataset to fit the hyperparameters (SNP-h2; SNP-based herit-
ability estimate and p; proportion of causal SNPs), but these are fitted
as part of the Gibbs sampler instead. We used the provided European-
ancestry independent LD blocks as reference panel46. For each GWAS
summary statistics file, LDpred2-auto was run with 30 Gibbs sampler
chains, 800 burn-in iterations and 400 iterations. The SNP-h2 initial
value was set to the LD score regression estimate47 from the GWAS
summary statistics after. Each of the chains was initialized with a dif-
ferent prior for the proportion of causal variants: [1e-4, 0.9] in log scale
(example plot for a chain in SF3). Chains were filtered according to the
recommendation in the LDpred2 tutorial, and effect sizes of chains
kept were averaged. After running LDpred2-auto on the QC’d file set
and post-processing, we were left with 937 PGS. This constitutes the
final PGS library and all information on its GWAS summary statistics
meta-data, number of SNPs per file on each step, number of chains on
the final PGS and estimates of SNP-h2 and p can be found in SD1. A plot
comparing the LDSC and LDpred2-auto SNP-h2 estimates can be
found at SF4.

iPSYCH data
Genotypes and imputation. The iPSYCH 2015 case-cohort sample is a
genotyped dataset from neonatal dried blood spots (DBS) nested

within the entire Danish population born between 1981 and 2008,
including 1,657,449 persons22,23. After genotyping and sample quality
control, it includes 92,765 individuals diagnosed with a major psy-
chiatric disorder i.e. attention-deficit/hyperactivity disorder (ADHD),
affective disorder (AFF), autism (ASD), schizophrenia (SCZ) and bipo-
lar disorder (BD). We also included the anorexia nervosa (AN; ANGI-
DK) samples from the AnorexiaNervosaGenetics Initiative (ANGI)48, as
they were samples within the same framework as iPSYCH 2015. The
dataset also includes 42,912 individuals randomly sampled from the
same birth cohort, making it representative of the general Danish
population. The genotype data was imputed using the Haplotype
Reference Consortium (HRC)49 as the reference panel and following
the RICOPILI pipeline50. After removing SNPs with minor allele fre-
quency (MAF) < 0.01 and Hardy-Weinberg p value < 10-6, we restricted
to the HapMap3 variants in the LDpred2 LD reference panel, resulting
in 1,053,299 SNPs.

Principal components & relatedness. We performed principal com-
ponent analysis (PCA) following Privé et al.51 and obtained 20 PCs. The
process has already been described in Albiñana et al.32. Using the set of
20 PCs, we defined genetically homogeneous individuals as having
<4.5 log distance units to the multidimensional center of the 20 PCs
(calculated using the function dist_ogk from the R package
bigutilsr51,52). We also computed the KING-relatedness robust coeffi-
cient of the sample and excluded the second of each pair with >3rd
degree relatedness.We identified a set of 108,031 unrelated genetically
homogeneous individuals (Danish-European ancestry), which we used
for all subsequent analyses.

List of phenotypes and ICD10 codes. We used phenotypes from the
Danish Psychiatric Central Research Register33 with register data
available until December 2016. Except for the category of all psychia-
tric disorders (ICD10, F-chapter), all categories of diagnosis are given a
variable name starting with a letter and followed by four digits. The
first letter is the chapter of disease in the ICD10 system and the first
number is the ICD10 diagnosis. The other 3 numbers are not infor-
mative of ICD10 diagnosis. We also used 3 continuous phenotypes
from the Danish Medical Birth Register34: apgar5 (Apgar score, 5min
after birth), fvagt (birth weight in grams) and gest_age (gestational age
in completed weeks). All used phenotypes, sample sizes andmetadata
are available at SD3-SD4.

Multi-PGS models
We used the library of 937 PGS to train multi-phenotype predictors
(multi-PGS) using two different algorithms (1) L1 penalized regression
(lasso) as implemented in the R package glmnet53 and (2) tree gradient
boosting as implemented in the XGBoost (eXtremeGradient Boosting)
algorithm in the R package xgboost21. For both models, we trained a
basemodel using only the covariates (sex, birth year and 20 PCs) and a
full model using the covariates plus the 937 standarized LDpred2-auto
PGS. For the base model, we used the glm function with the option
family = “logistic”. For lasso, we used the function cv.glmnet from the
glmnet R package with the options alpha = 0 and family = “binomial”
for binary phenotypes. The covariates were not regularized by giving
themapenalty factor of 0with the option penalty.factor,while the rest
of the PGS were given a penalty factor of 1. For XGBoost, we used the
xgboost function from the xgboost R package with options eta = 0.01
and nrounds = 10. We used objective = “binary:logistic” for binary
phenotypes and objective = “reg:squarederror” for continuous
variables.

BLUP PGS
We computed an internal best linear unbiased prediction (BLUP) PGS
trained on the individual-level data. We obtained the per-SNP predic-
tion betas with BOLT-LMM54,55 (using the flag –predBetasFile) on the

Article https://doi.org/10.1038/s41467-023-40330-w

Nature Communications |         (2023) 14:4702 8

https://www.med.unc.edu/pgc


set of 1,118,443 HM3 SNPs on iPSYCH. Depending on the polygenicity
of the phenotype, BOLT-LMM computes a mixture-of-Gaussians prior
or a single-Gaussian BOLT-LMM-inf model, equivalent to best linear
unbiased prediction (BLUP). In the case of psychiatric disorders, our
results show that BOLT-LMM-inf is always the model selected and
therefore we refer to the BOLT-LMM PGS as BLUP PGS.

Evaluation of prediction accuracy
For each phenotype, we used a fivefold cross-validation scheme to
obtain out-of-sample prediction accuracy estimates. Thepredictionwas
evaluated by (1) adjusted variance explained in the liability scale. We
used population prevalences specified in SD2 to convert the variance
explained in a linear regression to the liability scale56. The adjusted R2

was defined as the variance explainedby the fullmodel after accounting
for the variance explained by the base model as R2_adjusted = (R2_full -
R2_cov)/(1 − R2_cov). (2) Odds ratio (OR) of the 5th quintile to the
middle quintile. All ORwere calculated from a logistic regressionmodel
based on the PGS percentiles, sex, birth year and first 20PCs.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The multi-PGS lasso weights generated in this study have been
deposited in the figshare database (https://doi.org/10.6084/m9.
figshare.23597019.v1). The iPSYCH and Danish ANGI data are avail-
able under restricted access as the data are protected by Danish leg-
islation, access can be obtained after approval by the iPSYCH Data
Access Committee and can only be accessed on the secured Danish
server GenomeDK (https://genome.au.dk). For data access and corre-
spondence, please contact C.A. (albinanaclara@gmail.com) or B.J.V.
(bjv.ncrr@au.dk). The PGS library metadata generated in this study is
provided in the Supplementary Information/Source Data file. The
GWAS summary statistics data used in this study are available in the
GWASCatalog database (https://www.ebi.ac.uk/gwas/, downloaded on
09/09/2020), GWAS Atlas UKB2 data freeze v20191115 (https://atlas.
ctglab.nl/) and PGC downloads (https://www.med.unc.edu/pgc/
download-results/).

Code availability
All code used in this project is available in GitHub https://github.com/
ClaraAlbi/paper_multiPGS57.
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