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Abstract

This paper introduces the formalism required to analyze a certain class of stochastic
control problems that involve a super diffusion as the underlying controlled system. To
establish the existence of these processes, we show that they are weak scaling limits of
controlled branching processes. By proving their uniqueness in law, we can establish
a dynamic programming principle for our stochastic control problem. This lays the
groundwork for a PDE characterization of the associated value function, which is based
on the concept of derivations in the space of finite positive measures. We also establish
a verification theorem. To illustrate this approach, we focus on an exponential-type
value function and show how a regular solution to a finite-dimensional HJB equation
can be used to construct a smooth solution to the HJB equation in the space of finite
measures.

MSC Classification- 93E20, 49L20, 49L12, 60J70, 35K10, 35Q93, 60H30
Keywords— Stochastic control, superprocesses, Hamilton-Jacobi-Bellman equation, dynamic
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1 Introduction

The goal of population dynamics scaling limits is to provide a simpler method for modelling large
populations. When particles have the ability to divide into more particles, we refer to them as
branching particle systems. These systems are called branching diffusions when their movement
through space follows a diffusion process.

Branching diffusions belong to a class of measure-valued processes that have received significant
attention over the past thirty years. A good introduction to this topic can be found in [11]. The
class of branching diffusions, as well as their scaling limits known as superprocesses, have been
extensively studied in [35, 39, 18], among others. The purpose of this article is to introduce and
examine the controlled counterpart of these processes, namely the controlled superprocesses.

Branching diffusions are discrete particle systems that underlie superprocesses, and there have
been several studies on their controlled versions. This was first conducted in [46] and further de-
veloped in [32]. Along the same lines as the latter paper, [9] generalized this setting to controlled
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branching parameters and provided solutions to the problem using the branching property tech-
nique. This successful strategy involves emulating the symmetry of the problem to reduce it to a
finite-dimensional optimization problem.

In particular, [9] and [32] focused on a cost of the same form. This is defined considering the
product on all the particles alive at the terminal time of a continuous positive function taking values
in the unit interval. Its associated value function can be seen as a cylindrical function of exponential
type, which allows for the minimization of a global functional to be split into an optimization over
the individual particles. Additionally, the fact that the coefficients are autonomous, meaning they
only depend on the control and the position of each particle, translates the optimization into
solving a finite-dimensional problem. This idea was later used in [25] to address the stochastic
target problem over branching particle systems. We will utilize this technique, in the final part of
the article, to provide a class of control problems for which the solution can be explicitly computed.

The concept of breaking the coupling between individual actions and global population be-
haviour has already appeared in the stochastic control literature. In particular, it is central to
Mean Field Games (MFG) and Mean Field Control (MFC) problems. In this framework, the opti-
mization problem for a large population is related to the control of a single participant interacting
with the limit of the empirical measure of identical copies of itself. This is proven to converge
to an interaction between a process and its law, satisfying a fixed point criterion. References for
this topic can be found in [29, 4, 6, 7]. The existence of the controlled McKean-Vlasov dynamics
is established as a weak limit of the law of interacting particle systems. In the MFC setting, for
example, [27, 28, 8] use the relaxed control approach introduced in [13, 22] to show this limiting
results. A similar weak reasoning method is used in [41], where the optimal stopping problem is
generalized to the mean field setting using a control stopping strategy.

We aim to adopt a similar strategy for defining, weakly, the controlled limiting dynamics.
Specifically, we utilize recent advancements in the analysis of controlled branching diffusions de-
scribed in [33], which employs a relaxed setting that allows for a new characterization of these
processes as weak controls. This weak control representation enables us to focus on the laws of
these processes associated with starting condition, control, and martingale problem. By fixing the
first two elements and manipulating the martingale problem, we prove that controlled superpro-
cesses arise as a rescaling of branching processes, thereby establishing their existence. To achieve
this, we extend the Aldous criterion presented in [11, 35, 39, 18] for convergence to superprocesses
to a controlled setting. Furthermore, we generalize the martingale problem to a class of functionals
that are convergence-determining in the space of càdlàg paths on finite measures and then use the
ideas of [40], as detailed in [18, 33], to establish uniqueness in law through the duality method.

Once existence and uniqueness have been shown, we focus on the related control problem and
we adopt the Dynamic Programming Principle (DPP) approach. The DPP is a powerful tool for
solving control problems and we achieve it applying the methods described in [16, 17]. It has been
shown (see, e.g., [45]) that the DPP leads to a characterization of the problem through a nonlinear
Hamilton-Jacobi-Bellmann (HJB) equation. In our setting, the HJB needs to be defined the space
of finite measures. In the literature, PDEs on space of measures have already been investigated.
In fact, MFG and MFC literature pushed the development of differential calculus in the space of
probability measures to this tackle this problem.

This approach leads to a verification theorem, which provides the necessary conditions for
proving the optimality of a controlling strategy. This is achieved by showing that the value function
of the control problem is a (viscosity) solution of this equation. This point of view has been
explored in several works, including those focused on Markovian controls [36], open-loop controls
[1], Markovian and non-Markovian frameworks [12], closed-loop controls [44], and McKean-Vlasov
mixed regular-singular control problems [21]. An example of a study that combines the branching
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diffusion framework with the mean-field approach is presented in [10], where the authors introduce
scaling limits that differ from the dynamics of superprocesses.

These techniques have then been extended to study dynamics on finite measures, as in [30].
In latter article, the author studies backward Kolmogorov equations associated with stochastic
filtering, entending the differential calculus developed for probability measures to general finite
measures. Such an extension is presented introducing flat derivative and Lions’ derivative with the
same strategy of [5]. In the latter paper, the flat derivative is defined as a directional derivative,
while the Lions’ derivative is obtained as the derivation of the flat derivative with respect to the
space component. This is done since the approach used by Lions in [29] cannot be employed in this
new setting, as there is no lifting of the space of finite measures to that of L2 random variables.
Theoretical studies of the intrinsic properties of these differential operators can be found in [38],
where intrinsic and extrinsic differentiations are introduced and shown to coincide with the notions
of flat derivative and Lions’ derivative in this context.

We adopt the differential calculus developed in [30], taking advantage of its density results to
extend the martingale problem used to introduce these processes. This generalization is possible
since the space of finite measures is homeomorphic to a subset of the product between probability
measures and the real line when far from the measure zero. This allows, in particular, to use the
lifting technique by renormalizing the measures whenever we are not close to this critical measure.

We will employ the generalized martingale problem on functions with sufficient differentiability
relative to the measure. With this method, we provide the HJB equation and a verification theorem.
Remarkably, the resulting Dynamic Programming Equation (DPE) features a second-order flat
derivative. To the best of our knowledge, such a term has not seen before in a DPE. This reveals
a remarkable symmetry with the controlled diffusions, where a second-order operator appears
in the PDE that describes the dynamics. This second-order operator, taken with respect to the
measure, differs from what is observed in the literature, where just the first and second order Lions’
derivatives of the value function are involved. Establishing the regularity of the value function poses
a challenging problem in the context of solving non-linear PDEs, particularly for functions defined
in measures. This question as well as the investigation of viscosity solution to our DPE is left for
future research.

The paper is organized as follows: In Section 2, we introduce the model setup as well as the
controlled superprocesses as a solution to a martingale problem. We prove their uniqueness in
law and existence as a weak limit of rescaled branching processes in Subsection 2.2. In particular,
the latter is done with the use of the martingale problem for rescaled branching diffusions. We
then show its convergences to a solution to the martingale problem defining the controlled super-
processes. We also establish a non-explosion bound, with respect to the metric metrizing weak*
topology. In Section 3, we present the control problem of interest and prove its measurability
property and the DPP. In Section 4, we derive the HJB equation satisfied by the value function
of the control problem. To this purpose, we introduce a differential calculus in the space of finite
measure and generalize the initial martingale problem using the density of cylindrical functions in
the space of regular functions on finite measures. Finally, in Subsection 4.4, we derive the Dynamic
Programming equation and prove a verification theorem. We conclude the paper by providing a
regular solution to the optimization problem.
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2 Controlled superprocesses

2.1 Model setup and definitions

For a Polish space (E, d) with B(E) its Borelian σ-field, we write Cb(E) (resp. C0(E)) for the
subset of the continuous functions that are bounded (resp. that vanish at infinity), and M(E)
(resp. P(E)) for the set of Borel positive finite measures (resp. probability measures) on E. We
equip M(E) with weak* topology, i.e., the weakest topology that makes continuous the maps
M(E) ∋ λ 7→

∫
E φ(x)λ(dx) for any φ ∈ Cb(Rd). We denote ⟨φ, λ⟩ =

∫
E φ(x)λ(dx) for λ ∈ M(E)

and φ ∈ Cb(E).
A family F ⊆ Cb(E) is said to be separating if, whenever ⟨φ, λ⟩ = ⟨φ, λ′⟩ for all φ ∈ F , and

some λ, λ′ ∈M(E), we necessarily have λ = λ′. Since E is Polish, from the Portmanteau theorem
(see, e.g., [40, Theorem 1.1.1]), the set of uniformly continuous functions, for any metric equivalent
to d, is separating. From Tychonoff’s embedding theorem (see, e.g., [43, Theorem 17.8]), Cb(E) is
also separable. Therefore, there exists a countable and separating family FE = {φk, k ∈ N} subset
of Cb(E) such that the function E ∋ x 7→ 1 belongs to FE and ||φk||∞ := supE |φk| ≤ 1 for all
k ∈ N. We use this setting to define the following distance

dE(λ, λ
′) =

∑
φk∈FE

1

2k
∣∣⟨φk, λ⟩ − ⟨φk, λ

′⟩
∣∣ ,

for λ, λ′ ∈M(E). As in [40, Theorem 1.1.2], this distance dE induces onM(E) the weak* topology.
Whenever E = Rd, we adjust this metric to take into account useful differential properties. Let
FRd be taken as a subset of C2

b (Rd), the set of real functions with bounded, continuous derivatives
over Rd up to order two. We can take this set as separating since C2 is dense in C0 for local
uniform convergence (application of [20, Theorem 8.14]). We define the distance

dRd(λ, λ′) =
∑

φk∈FRd

1

2kqk

∣∣⟨φk, λ⟩ − ⟨φk, λ
′⟩
∣∣ , (2.1)

with qk = max{1, ||Dφk||∞, ||D2φk||∞}, and D and D2 denote gradient and Hessian.

Atomic measures We write N n[E] for the space of atomic measures in E where each atom
has a mass multiple of 1/n, i.e.,

N n[E] :=

{
ki
n

∑
i∈V

δxi : ki ∈ N, xi ∈ E for i ∈ V, V ⊆ N, |V | <∞

}
,

where |V | is the cardinal of the set V . For n ≥ 1, N n[E] is a weakly* closed subset of M(E). If E
is a Polish space, e.g. a Euclidean space, ∪n∈NN n[E] is dense in M(E). First, the result is shown
for probability measures. For the fundamental theorem of simulation (cf [34, Theorem 1.2]), there
exists a Borel function φλ : [0, 1] → E, for any λ ∈ P(E), such that λ = Leb

[0,1]
◦ φ−1

λ , where

Leb
[0,1]

◦ φ−1
λ denotes the image measure by φ−1

λ of the Lebesgue measure on the unit interval.

With Glivenko–Cantelli theorem (cf [34, Theorem 4.1]) we approximate the Lebesgue measure on
the unit interval by probability measures λn ∈ N n[E]. We get the final result decomposing each
finite measure λ as a probability measure times its total mass λ([0, 1]) and using for the latter the
approximation ⌊nλ(E)⌋/n, where ⌊·⌋ denotes the integer part of a real number.
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State space Fix a finite time horizon T > 0. Let Dd = D([0, T ];M
(
Rd
)
) be the set of càdlàg

functions (right continuous with left limits) from [0, T ] to M
(
Rd
)
. We endow this space with Sko-

rohod metric dDd associated with the metric dRd , which makes it complete (see, e.g., [3, Theorem
14.2]). For P ∈ P(Dd), Pt ∈ P(M

(
Rd
)
) denotes the time-t marginal of P, i.e., the image of P under

the map Dd ∋ µ 7→ µt ∈M
(
Rd
)
. Denote Dn,d = D([0, T ];N n[Rd]), a closed subset of Dd.

We consider the canonical space Dd, with µ its canonical process, and Fµ = {Fµ
s }s the filtration

generated by µ. Let a compact subset A of Rm representing the set of actions, and A the set of{
B(Rd)⊗Fs

}
s
-predictable processes from [0, T ]× Rd to A. Finally, for a given P ∈ P(Dd) and a

stopping time τ , we denote
(
Pω, ω ∈ Dd

)
a regular condtional probability distribution of P given

Fτ (see, e.g., [40, Chapter 1.1]).

Definition We consider the following assumptions. We are given dimensions d, d′ ∈ N and the
following bounded continuous functions

(b, σ, γ) : Rd ×M
(
Rd
)
×A → Rd × Rd×d′ × R+.

Suppose b and σ are Lipschitz uniformly in a, i.e., there exist L > 0 such that∣∣b(x, λ, a)− b(x′, λ′, a)
∣∣+ ∣∣σ(x, λ, a)− σ(x′, λ′, a)

∣∣ ≤ L
(
|x− x′|+ dRd(λ, λ′)

)
,

for any x, x′ ∈ Rd, λ, λ′ ∈M
(
Rd
)
, and a ∈ A.

In [33], various equivalent descriptions for branching particle systems are presented. Among
these, we opt to use the formalism of weak controls as it involves less cumbersome notation.
We adopt the same perspective to establish a definition for controlled superprocesses, which will
subsequently facilitate the proof of their existence as a weak limit of the aforementioned branching
processes.

Let L be the generator defined by

Lφ(x, λ, a) = b(x, λ, a)⊤Dφ(x) +
1

2
Tr
(
σσ⊤(x, λ, a)D2φ(x)

)
,

for φ ∈ C2
b (Rd) Let also L be the generator defined by

LFφ(x, λ, a) = F ′(⟨φ, λ⟩)Lφ(x, λ, a) + 1

2
F ′′(⟨φ, λ⟩)γ(x, λ, a)φ2(x),

where Fφ denotes the the cylindrical function Fφ = F (⟨φ, ·⟩), for F ∈ C2
b (R) and φ ∈ C2

b (Rd) For
simplicity, we write F ′

φ(λ) for F
′(⟨φ, λ⟩) and F ′′

φ(λ) for F
′′(⟨φ, λ⟩).

We can now define the controlled superprocess.

Definition 2.1. Fix (t, λ) ∈ [0, T ] ×M
(
Rd
)
. We say that (P, α) ∈ P(Dd) × A is a Controlled

superprocess, and we denote (P, α) ∈ R(t,λ), if P(µt = λ) = 1 and the process

M
Fφ
s = Fφ(µs)−

∫ s

t

∫
Rd

LFφ(x, µu, αu(x))µu(dx)du (2.2)

is a (P,F)-martingale with quadratic variation

[
MFφ

]
s
=

∫ s

t

(
F ′
φ(µu)

)2 ∫
Rd

γ(x, µu, αu(x))φ
2(x)µu(dx)du (2.3)

for any F ∈ C2
b (R), φ ∈ C2

b (Rd), and s ≥ t.
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2.2 Existence and uniqueness

We first focus on the uniqueness in law for the controlled superprocesses. Using Doob’s functional
representation theorem (see, e.g., [23, Lemma 1.13]), we remark that a

{
B(Rd)⊗Fs

}
s
-predictable

process α from [0, T ]× Rd to A boils down to be a predictable map a such that

a : [0, T ]× Rd ×Dd → A (2.4)(
s, x, (µu)u∈[0,T ]

)
7→ a

(
s, x, (µu)u∈[0,s]

)
= αs(x). (2.5)

As [33, Section 4], we generalize the martingale problem (2.2) to a domain that characterizes
the law of processes in [0, T ]×Dd. To do so, we first introduce the domain of cylindrical functions
D ⊆ C0([0, T ]×Dd) as the set of F(f1,...,fp) : [0, T ]×Dd → R of the form

F(f1,...,fp)(s,x) = F
(
⟨f1(s ∧ t1, ·),xs∧t1⟩, . . . , ⟨fp(s ∧ tp, ·),xs∧tp⟩

)
, (s,x) ∈ R+ ×Dd, (2.6)

for some p ≥ 1, t1, . . . , tp ∈ [0, T ], F ∈ C2
b (Rp), and f1, . . . , fp ∈ C1,2

b ([0, T ] × Rd). For f ∈
C1,2
b ([0, T ]× Rd) , we use the notation Lf(s, x, λ, a) = Lf(s, ·)(x, λ, a). For a measurable function

β : [0, T ]× Rd → A, we then define the operator Lβ on D by

LβF(f1,...,fp)(s,x) = DF
(
⟨f1(s ∧ t1, ·),xs∧t1⟩, . . . , ⟨fp(s ∧ tp, ·),xs∧tp⟩

)⊤
Lβf(s,x)

+
1

2
Tr
(〈

Sβf(Sβf)⊤(s, ·),xs

〉
D2F

(
⟨f1(s ∧ t1, ·),xs∧t1⟩, . . . , ⟨fp(s ∧ tp, ·),xs∧tp⟩

))
with t0 = 0, where

Lβf(s,x) :=

 1s≤t1

∫
Rd ∂tf1(s, x) + Lf1(s, x,xs, β(s, x))xs(dx)

...
1s≤tp

∫
Rd ∂tfp(s, x) + Lfp(s, x,xs, β(s, x))xs(dx)

 ,

Sβf(s, x,x) :=

 1s≤t1f1(s, x)
√
γ(x,xs, β(s, x))
...

1s≤tpfp(s, x)
√
γ(x,xs, β(s, x))

 ,

for (s, x,x) ∈ [0, T ] × Rd × Dd. Following the language of [19], we call the graph of D the full
generator G, with

G := {(g,L·g) : g ∈ D} . (2.7)

We define the domain DT ⊆ C0(M
(
Rd
)
) of the functions

F(f1,...,fp)(λ) = F (⟨f1, λ⟩, . . . , ⟨fp, λ⟩) , λ ∈M(Rd), (2.8)

for some p ≥ 1, F ∈ C2
b (Rp), and f1, . . . , fp ∈ C1,2

b ([0, T ]×Rd). These functions are embedded in D
when we consider functions as in (2.6) such that fi does not depend on s and ti = T , for i = 1, . . . , p.
Therefore, with abuse of notation, we say that L acts on DT with the obvious adjustments.

Considering the canonical process µ ∈ Dd, we have that, if (P, α) ∈ R(t,λ) the process

M̄h
s := h(µs∧·)−

∫ s

t
Lαh(µu∧·)du, t ≤ u ≤ T, (2.9)
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is a (P,F)-martingale with quadratic variation equal to[
M̄h
]
s

:=

∫ s

t
Tr
(〈

Sαf(Sαf)⊤(s, ·), µs
〉

(2.10)

DF (DF )⊤
(
⟨f1(s ∧ t1, ·), µs∧t1⟩, . . . , ⟨fp(s ∧ tp, ·), µs∧tp⟩

) )
du,

for any h = F(f1,...,fp) ∈ D. Therefore, we can finally prove uniqueness in law for the controlled
superprocesses as follows.

Proposition 2.1. Fix (t, λ) ∈ [0, T ]×M
(
Rd
)
and α ∈ A. There exists at most one Pt,λ,α ∈ P(Dd)

such that (Pt,λ,α, α) ∈ R(t,λ).

Proof. The proof is based on [33, Proposition 4.5] and [33, Theorem 4.1], whose proofs are the
same as in our setting with respect to the operator L.

We can now consider the existence proble. Existence of solutions to martingale problems is
usually proven as a weak limit of solutions to well-posed problems. Superprocesses, in particular,
arise as scaling limits of branching particle systems (see, e.g., [11, 18, 39]).

For n ∈ N, let Ln be the generator defined on the cylindrical functions Fφ = F (⟨φ, ·⟩), for
F ∈ C2

b (R) and φ ∈ C2
b (Rd), as

LnFφ(x, λ, a) = F ′(⟨φ, λ⟩)Lφ(x, λ, a) + 1

2n
F ′′(⟨φ, λ⟩) |Dφ(x)σ(x, λ, a)|2 (2.11)

+γ(x, λ, a)n2
(
F

(
⟨φ, λ⟩ − 1

n
φ(x)

)
1

2
+ F

(
⟨φ, λ⟩+ 1

n
φ(x)

)
1

2
− Fφ (λ)

)
.

Definition 2.2. Fix (t, λn) ∈ [0, T ] × N n[Rd]. We say that (P, α) ∈ P(Dd) × A is a n-rescaled
branching diffusion, and we denote (P, α) ∈ Rn

(t,λ), if P(µt = λn) = 1 and the process

M
Fφ,n
s = Fφ(µs)−

∫ s

t

∫
Rd

LnFφ(x, µu, αu(x))µu(dx)du (2.12)

is a (P,F)-martingale with quadratic variation

[
MFφ,n

]
s

=

∫ s

t

(
F ′
φ(µu)

)2 ∫
Rd

(
1

n
|Dφ(x)σ(x, µu, αu(x))|2 + (2.13)

γ(x, µu, αu(x))φ
2(x)

)
µu(dx)du

for any F ∈ C2
b (R), φ ∈ C2

b (Rd), and s ≥ t.

Proposition 2.2. Fix n ≥ 1 and (t, λn) ∈ [0, T ] × N n[Rd]. For α ∈ A, there exists a Pt,λn,α;n ∈
P(Dd) such that (Pt,λn,α;n, α) ∈ Rn

(t,λn)
.

Proof. Fix a α ∈ A. For n = 1, the existence of Pt,λ1,α;1 ∈ P(Dd) such that (Pt,λ1,α;1, α) ∈ R1
(t,λ1),

for any (t, λ1) ∈ [0, T ]×N 1[Rd], is discussed in [33, Section 4]. This is done for general horizons T >
0. Existence of Pt,λn,α;n ∈ P(Dd) such that (Pt,λn,α;n, α) ∈ Rn

(t,λn)
, for any (t, λn) ∈ [0, T ]×N n[Rd]

stems from this. We denote R̄S
(t,λ1) the set of 1-rescaled branching diffusions defined in the interval

[0, S], for S > 0. For n ∈ N, we define, on the interval [0, nT ], the control αn such that

αn
s = αs/n, for s ∈ [0, nT ].
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Fix (t, λn) ∈ [0, T ]×N n[Rd]. From the previous result, we have the existence of Pn,1 ∈ P(D([0, nT ];M
(
Rd
)
))

such that (Pn,1, αn) ∈ R̄nT
(nt,nλn)

. Define the map Rn such that

Rn : D([0, T ];N n[Rd]) → D([0, nT ];N 1[Rd])

(µs)s∈[0,T ] 7→
(
nµs/n

)
s∈[0,nT ]

.

As in [11, 18, 39], we have that Pt,λn,α;n := Pn,1◦(Rn)−1 ∈ P(Dd) is such that (Pn, α) ∈ Rn
(t,λn)

.

Now we have all the ingredients to give existence for controlled superprocesses.

Proposition 2.3. Fix (t, λ) ∈ [0, T ]×M
(
Rd
)
. For α ∈ A, there exists a unique P ∈ P(Dd) such

that (P, α) ∈ R(t,λ).

Proof. Fix a
{
B(Rd)⊗Fs

}
s
-predictable process α from [0, T ] × Rd to A. Consider a sequence

(λn)n∈N such that λn → λ weakly* and λn ∈ N n[Rd]. From Proposition 2.2, there exists Pn ∈
P(Dd) such that (Pn, α) ∈ Rn

(t,λn)
. Our goal is to show (Pn)n∈N converges weakly to some P ∈

P(Dd) and that (P, α) ∈ R(t,λ).
We define the projection πφ as

πφ :M
(
Rd
)
∋ λ 7→ ⟨φ, λ⟩ ∈ R

for any f ∈ C0(Rd). Clearly, the weak* topology is the weakest topology for which the mappings
πφk

are continuous, for {φk}k≥1 dense in C0(Rd). Moreover, under Pn, for the semimartingale
⟨φk, µ·⟩, we define the predictable finite variation process as V n

· (φ) and the increasing process of
the martingale part as In· (φ) for k ≥ 1. From equations (2.12) and (2.13), we have

V n
s (φk) =

∫ s

t

∫
Rd

Lφk(x, µu, αu(x))µu(dx)du, (2.14)

Ins (φk) =

∫ s

t

∫
Rd

(
1

n
|Dφk(x)σ(x, µu, αu(x))|2 + γ(x, µu, αu(x))φ

2
k(x)

)
µu(dx)du. (2.15)

We can now verify conditions (i) and (ii) of [39, Theorem 2.3] to prove that {Pn}n is tight. This
means proving that

(i)
(
Pn ◦ π−1

φk

)
n≥1

is tight for k ≥ 1;

(ii) V n
s (φk) and I

n
s (φk) satisfy the following condition of Aldous for any k ≥ 1: for each stopping

time τ we can find a sequence δn such that δn → 0 as n→ ∞ and such that

lim sup
n

EPn
[∣∣V n

τ+δn(φ)− V n
τ (φ)

∣∣] = 0, lim sup
n

EPn
[∣∣Inτ+δn(φ)− Inτ (φ)

∣∣] = 0. (2.16)

From (2.12), we have that ⟨1, µ·⟩ is a Pn-martingale for any n ≥ 1. Therefore, for any n ≥ 1,

Pn

(
sup

s∈[t,T ]
⟨1, µs⟩ > K

)
≤ 1

K
EPn

[⟨1, µt⟩] =
1

K
⟨1, λn⟩.

Since limn⟨1, λn⟩ = ⟨1, λ⟩, we obtain that supn Pn
(
sups∈[t,T ]⟨1, µs⟩ > K

)
tends to 0 when K tends

to infinity.
(
Pn ◦ π−1

φk

)
n≥1

is also tight for k ≥ 1, since each function of C0(Rd) is bounded.

Therefore, (i) is satisfied.
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Fix φ ∈ {1} ∪ {φk : k ≥ 1}, a stopping time τ taking values in [t, T ], and δn > 0. Using (2.14)
and (2.15), we have

EPn
[∣∣V n

τ+δn(φ)− V n
τ (φ)

∣∣] ≤ EPn

[∫ τ+δn

τ

∫
Rd

|Lφ(x, µu, αu(x))|µu(dx)du
]

≤ δnEPn [⟨1, µτ ⟩] ||Lφ||∞ = δn⟨1, λn⟩||Lφ||∞,

where the last equality comes from the martingale property. By the same arguments, we also have

EPn
[∣∣Inτ+δn(φ)− Inτ (φ)

∣∣]
= EPn

[∫ τ+δn

τ

∫
Rd

(
1

n
|Dφ(x)σ(x, µu, αu(x))|2 + γ(x, µu, αu(x))φ

2(x)

)
µu(dx)du

]
≤ δn⟨1, λn⟩

(
||Dφσ||2∞ + 2γ̄||φ||2∞

)
.

Therefore, if limn δn = 0, we get (2.16), which gives that (Pn)n≥1 is tight in Dd.

To conclude, we take a sequence (Pn)n≥1 converging to a probability measure P ∈ P(Dd)
and prove that (P, α) ∈ R(t,λ). To do that, we focus on the convergence of Ln. For (x, ν, a) ∈
Rd ×M

(
Rd
)
, the third term in the expression of Ln in (2.11) is equal to

Wn(x, ν, a) = γ(x, ν, a)n2
(
F

(
⟨φ, ν⟩ − 1

n
φ(x)

)
1

2
+ F

(
⟨φ, ν⟩+ 1

n
φ(x)

)
1

2
− F (⟨φ, ν⟩)

)
.

Using Taylor’s development with Lagrange reminder, we have

Wn(x, ν, a) = γ(x, ν, a)
F ′′ (⟨φ, ν⟩+ zn1 ) + F ′′ (⟨φ, ν⟩+ zn2 )

2
,

with zn1 (resp. zn2 ) a point in {h⟨φ, ν⟩+(1−h)φ(x)/n : h ∈ [0, 1]} (resp. {h⟨φ, ν⟩− (1−h)φ(x)/n :
h ∈ [0, 1]}). Since γ is bounded, we have W (x, ν, a) = limnWn(x, ν, a) = F ′′

φ(ν)γ(x, ν, a)φ
2(x) for

any (x, ν, a). We can now prove that Fφ(µ·)−
∫ ·
t

∫
Rd LFφ(x, µu, αu(x))µu(dx)du is a P-martingale,

i.e., for each stopping time τ taking value in [t, T ],

EP
[
Fφ(µτ )− Fφ(µt)−

∫ τ

t

∫
Rd

LFφ(x, µu, αu(x))µu(dx)du

]
= 0.

We have

lim
n

EPn [Fφ(µτ )− Fφ(µt)] = EP [Fφ(µτ )− Fφ(µt)] ,

and

EP
[∫ τ

t

∫
Rd

LFφ(x, µu, αu(x))µu(dx)du

]
− EPn

[∫ τ

t

∫
Rd

LnFφ(x, µu, αu(x))µu(dx)du

]
= EP

[∫ τ

t

∫
Rd

LFφ(x, µu, αu(x))µu(dx)du

]
− EPn

[∫ τ

t

∫
Rd

LFφ(x, µu, αu(x))µu(dx)du

]
+ EPn

[∫ τ

t

∫
Rd

(L − Ln)Fφ(x, µu, αu(x))µu(dx)du

]
.
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The last term on the right side satisfies∣∣∣∣EPn

[∫ τ

t

∫
Rd

(L − Ln)Fφ(x, µu, αu(x))µu(dx)du

]∣∣∣∣
=

∣∣∣∣EPn

[ ∫ τ

t

∫
Rd

(
1

2n
F ′′(⟨φ, µu⟩) |Dφ(x)σ(x, µu, αu(x))|2 +W (x, µu, αu(x))−Wn(x, µu, αu(x))

)
µu(dx)du

]∣∣∣∣ ≤ C

n
(1 + T ⟨1, λn⟩),

for a constant C which depends only on F ′′
φ , σ,Dφ, γ, φ. Hence,

lim
n

EPn

[
Fφ(µτ )− Fφ(µt)−

∫ τ

t

∫
Rd

LnFφ(x, µu, αu(x))µu(dx)du

]
= EP

[
Fφ(µτ )− Fφ(µt)−

∫ τ

t

∫
Rd

LFφ(x, µu, αu(x))µu(dx)du

]
= 0.

Remark 2.1. It can be observed that the proof of the aforementioned result relies on either a
compact control space or bounded coefficients. In the case of unbounded action space and linear
dependence on the control in the coefficients, an integrability bound similar to the following must
be established

EP
[∫ T

0

∫
Rd

|αu(x)|µu(dx)du
]
<∞.

Applying this condition to the rescaled problem does not guarantee its retrieval in the limit.

2.3 Moment estimates

Before defining the control problem and proving it is well posed, we need to provide moment
estimates for these processes. To do that, as in [33], we give the representation of the controlled
superprocesses as Stochastic Differential Equations. This makes use of martingale measures, in
extensions of the original space, and lets us apply the general theory of semimartingales in a more
general setting. Relevant definitions and results on these objects are concisely summarised in [15]
(see, e.g., [42] for a monograph on the subject). We recall briefly their definition.

Definition 2.3. Let (G,G) be a Lusin space with its σ-algebra, and (Ω,F ,P,F = {Fs}s) a filtered
space satisfying the usual condition, where we define P the predictable σ-field. A process M on
Ω× [0, T ]× G is called martingale measure on G if

(i) M0(E) = 0 a.s. for any E ∈ G;

(ii) Mt is a σ-finite, L2(Ω)-valued measure for all t ∈ [0, T ];

(iii) (Mt(E))t∈[0,T ] is an F-martingale for any E ∈ G.

We say that M is orthogonal if the product Mt(E)Mt(E
′) is a martingale for any two disjoint

sets E,E′ ∈ G. We also say, on one hand, that it is continuous if (Mt(E))t≥0 is continuous,
purely discontinuous, on the other hand, if (Mt(E))t≥0 is a purely discontinuous martingale for
any E ∈ G.
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Proposition 2.4. Let (P, (αs)s) ∈ R(t,λ). There exists an extension
(
Ω̂ = Dd×Ω̃, F̂ = Fµ

T⊗F̃ , P̂ =

P⊗ P̃,
{
F̂s = Fµ

s ⊗ F̃s

}
s

)
of
(
Dd,Fµ

T ,P,F
µ
)
, where we naturally extend µ and α, that satisfies the

following properties.

1. (Ω̂, F̂ , F̂, P̂) is a filtered probability space supporting a continuous F̂-martingale measures M
on Ω̂× [0, T ]× B(Rd), with intensity measure µu(dx)du.

2. P̂ ◦X−1
t = λ.

3. We have that

⟨f, µs⟩ = ⟨f, µt⟩ +

∫ s

t

∫
Rd

Lf(x, µu, αu(x))µu(dx)du (2.17)

+

∫ s

t

∫
Rd

√
γ(x, µu, αu(x))f(x)M(dx, du) .

for all f ∈ C∞
b (Rd) and all s ∈ [t, T ].

Proof. The representation of these processes is grounded in representation theorems for continuous
martingale measures. We follow [31] and [33, Proposition 3.2] applying their construction here.

We can now prove the non-explosion of these processes, which will imply the well-posedness of
the optimization problem.

Proposition 2.5. Fix (t, λ) ∈ [0, T ] × M
(
Rd
)
and p ∈ [1, 2]. There exists a constant C ≥ 0,

depending only on T, and the coefficient of the parameters, such that

EP

[
sup

u∈[t,T ]
dRd(µu,O)

p

]
≤ CdRd(λ,O)p, (2.18)

for any (P, (αs)s) ∈ R(t,λ).

Proof. Fix (P, (αs)s) ∈ R(t,λ). We recall that dRd(µu,O) =
∑

φk∈FRd
1

2kqk
|⟨φk, µu⟩|, for any u ∈

[t, T ]. We define the stopping times τN as

τN = inf {u ≥ t : ⟨1, µu⟩ ≥ N} ,

and denote µNs := µτN∧s, for N ≥ 1. Proposition 2.4 implies that there exists an extension of Ω
where µ can be satisfies (2.17) on the stochastic interval [t, τN ]. Such SDE is driven by MN , a
orthogonal continuous martingale measure in [0, T ]×Rd, with the intensity measure µs(dx)1s≤τNds.
Applying (2.17) to φk, we have

⟨φk, µ
N
s ⟩ = ⟨φk, λ⟩ +

∫ s

t

∫
Rd

Lφk(x, µr, αr(x))µr(dx)1r≤τNdr +

+

∫ s

t

∫
Rd

√
γ(x, µr, αr(x))φk(x)MN (dx, dr).
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for s ≥ t, and k ∈ N. Applying Young’s inequality, there is a constant C (which may change from
line to line) such that

EP

[
sup

s∈[t,T ]
|⟨φk, µ

N
s ⟩|p

]
≤ C|⟨φk, λ⟩|p

+CEP

[
sup

s∈[t,T ]

∣∣∣∣∣
∫ s

t

∫
Rd

Lφk(x, µr, αr(x))µr(dx)1r≤τNdr

∣∣∣∣∣
p]

+CEP

[
sup

s∈[t,T ]

∣∣∣∣∫ s

t

∫
Rd

√
γ(x, µr, αr(x))φk(x)MN (dx, dr)

∣∣∣∣p
]
.

Recalling qk = max{1, ||Dφk||∞, ||D2φk||∞}, we have

EP

[
sup

s∈[t,T ]
|⟨φk, µ

N
s ⟩|p

]
≤ C|⟨φk, λ⟩|p + CqpkE

P

[
sup

s∈[t,T ]

(∫ s

t
|⟨φk, µ

N
u ⟩|du

)p
]

+CqpkE
P
[∫ T

t
⟨1, µNu ⟩pdu

]
+CEP

[
sup

s∈[t,T ]

∣∣∣∣∫ s

t

∫
Rd

√
γ(x, µr, αr(x))φk(x)MN (dx, dr)

∣∣∣∣p
]
.

From Jensen’s and Burkholder-Davis-Gundy’s inequalities (see, e.g., cite[Chapter VII, Theorem
92]Dellacherie:Meyer:B), and recalling that ||φk||∞ ≤ 1, we get

EP

[
sup

s∈[t,T ]
|⟨φk, µ

N
s ⟩|p

]
≤ C|⟨φk, λ⟩|p + CqpkE

P
[∫ T

t
|⟨φk, µ

N
u ⟩|pdu

]
+ CqpkE

P
[∫ T

t
⟨1, µNu ⟩pdu

]

≤ Cqpk|⟨φk, λ⟩|p + CqpkE
P

[∫ T

t
sup

s∈[t,u]
|⟨φk, X

N
s ⟩|pdu

]

+ CqpkE
P

[∫ T

t
sup

s∈[t,u]
⟨1, XN

s ⟩pdu

]
.

Finally, multiplying by
(

1
2kqk

)p
, summing over k ∈ N and applying the monotone convergence

theorem, in addition to the fact that function equal to 1 is in FRd , we have

EP

[
sup

u∈[t,T ]
dRd(XN

u ,O)
p

]
≤ CdRd(λ,O) + CEP

[∫ T

t
sup

s∈[t,u]
dRd(XN

s ,O)
pdu

]
.

Using Gronwall’s lemma, we conclude that EP
[
supu∈[t,T ] dRd(XN

u ,O)
p
]
≤ CdRd(λ,O)p for any

N ≥ 1. Applying Fatou’s lemma, we obtain (2.18).

3 The control problem

We are given two continuous functions ψ : Rd×M
(
Rd
)
×A→ R and Ψ :M

(
Rd
)
→ R. We assume

that there exists C > 0 such that

|ψ(x, λ, a)| ≤ C (1 + dRd(λ,O)) , |Ψ(λ)| ≤ C
(
1 + dRd(λ,O)2

)
(3.19)
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for (x, λ, a) ∈ Rd ×M
(
Rd
)
×A with O the measure 0.

Let J and v be respectively the cost and the value functions, defined as

J(t, λ, α) = EPt,λ,α

[∫ T

t

∫
Rd

ψ(x, µs, αs(x))µs(dx)ds+Ψ(µT )

]
, (3.20)

v(t, λ) = inf
α∈A

J(t, λ, α), (3.21)

for (t, λ) ∈ [0, T ] ×M
(
Rd
)
, and α ∈ A. From Proposition 2.5, the cost function J is finite for

any control α ∈ A. Moreover, using (3.19), J is uniformly bounded from below, therefore the
optimization problem that defines v is well-posed.

3.1 Weak formulation

Before establishing the Dynamic Programming Principle (DPP), we give a new description of the
control problem (3.20)-(3.21). As described in [33, Section 5], we interpret the control set as a
subset of finite measures. This is the so-called weak formulation, introduced in [14], and it allows
for dealing with the control space and its topology more flexibly.

Consider [0, T ] × Rd × A equipped with the σ-algebra B([0, T ]) ⊗ B(Rd) ⊗ B(A). Let ALeb ⊆
M([0, T ]×Rd×A) be the set of measures, whose projection on [0, T ] is the Lebesgue measure. Each
α ∈ ALeb can be identified with its disintegration (see, e.g., [24, Corollary 1.26, Chapter 1]). In
particular, we have ᾱ(ds, dx, da) = dsys(dx)ᾱs(x, da), for a process (ys(dx))s (resp. (ᾱs(x, da))s)
taking values in the set of functions from [0, T ] (resp. [0, T ]× Rd) to M

(
Rd
)
(resp. M(A)).

We denote Ω̄ := Dd × ALeb. On Ω̄, let (µ, β) be the projection maps (or canonical processes),

and Fµ,β =
{
Fµ,β
s

}
s
the filtration generated by these maps, i.e.,

Fµ,β
s = σ

(
µs(B), β([0, r]×B′ × C), for s, r ∈ [0, T ], B,B′ ∈ B(Rd), C ∈ B(A)

)
.

Moreover, define the following map

πA : Dd ×A → ALeb

(x, α) 7→ dsxs(dx)δαs(x)(da).

Definition 3.4. Fix (t, λ) ∈ [0, T ]×N [Rd]. We say that P ∈ P(Ω̄) is a weak control rule, and we
denote P ∈ C(t,λ), if P(µt = λ) = 1, there exists αP ∈ A such that P

(
πA
(
µ, αP) = β

)
= 1, and the

process

M
Fφ
s = Fφ(µs)−

∫ s

t

∫
Rd×A

LFφ(x, µu, a)βs(x, da)µu(dx)du

is a
(
P,Fµ,β

)
-martingale with quadratic variation[
MFφ

]
s
=

∫ s

t

(
F ′
φ(µu)

)2 ∫
Rd×A

γ(x, µu, a)βs(x, da)φ
2(x)µu(dx)du

for any F ∈ C2
b (R), φ ∈ C2

b (Rd), and s ≥ t.

It is clear that each element of C(t,λ) can be identified to an element of R(t,λ), and viceversa.

With abuse of notation, we write J(t, λ,P) for P ∈ C(t,λ) to denote J(t, λ, αP). With this description,
we have

v(t, λ) = inf
α∈A

J(t, λ, α) = inf
P∈C(t,λ)

J(t, λ,P).
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In this framework, we can consider the notion of conditioning as well as concatenation on Ω̄.
For (t, w̄) ∈ [0, T ]× Ω̄, we denote

Pt
w̄ := {ω̄ : µt(ω̄) = µt(w̄)} ,

Pt,w̄ :=
{
ω̄ : (µs,Ms(ϕ)) (ω̄) = (µs,Ms(ϕ)) (w̄), for s ∈ [0, t], ϕ ∈ Cb

(
[0, T ]× Rd ×A

)}
,

where

Ms(ϕ) :=

∫ s

0

∫
Rd×A

ϕ(s, x, a)β(ds, dx, da).

Then, for all ω̄ ∈ Pt
w̄, we define the concatenated path w̄ ⊗t ω̄ by

(µs,Ms(ϕ)) (w̄ ⊗t ω̄) =

{
(µs,Ms(ϕ)) (w̄), for s ∈ [0, t),

(µs,Ms(ϕ)−Mt(ϕ)) (ω̄) + (µs,Mt(ϕ)) (w̄), for s ∈ [t, T ],

for all ϕ ∈ Cb

(
[0, T ]× Rd ×A

)
.

Fix P ∈ P(Ω̄), and τ a Fµ,β-stopping time. From [45, Proposition 1.9, Chapter 1], there is a

family of regular conditional probability distribution (r.c.p.d.) (Pω̄)ω̄∈Ω̄ w.r.t. Fµ,β
τ such that the

Fµ,β
τ -measurable probability kernel (Pω̄)ω̄∈Ω̄ satisfies

Pω̄

(
Pτ(ω̄),ω̄

)
= 1 for P− a.e. ω̄ ∈ Ω̄.

On the other hand, take a probability measure P defined on
(
Ω̄,Fµ,β

τ

)
and a family of probability

measures (Qω̄)ω̄∈Ω̄ such that ω̄ 7→ Qω̄ is Fµ,β
τ -measurable and

Qω̄

(
P

τ(ω̄)
ω̄

)
= 1 for P− a.e. ω̄ ∈ Ω̄.

There is a unique concatenated probability measure that we denote P⊗τ Q· defined by

P⊗τ Q·(C) :=

∫
Ω̄
P(dw̄)

∫
Ω̄
1C
(
w̄ ⊗τ(w̄) ω̄

)
Qw̄(dω̄) for C ∈ Fµ,β

T .

3.2 Measurable selection and DPP

This weak formulation has the advantage to simplify the proof of the DPP. We follow the path
detailed in [16] and [17], which clarify [2, Chapter 7] in the context of stochastic control theory,
generalizing it to our setting. In particular, to reach the DPP, as in [16, Theorem 4.10] and [17,
Theorem 3.1], we need to show that the setting so far presented satisfies [17, Assumption 2.2],
which in our setting reads as follows.

It is clear that the full generator G as defined in (2.7) is countably generated. Combining
Proposition 2.3 with the weak formulation description, C(t,λ) is nonempty for all (t, λ) ∈ [0, T ] ×
M
(
Rd
)
. Fix (t, λ) ∈ [0, T ] ×M

(
Rd
)
, P ∈ C(t,λ) and τ a Fµ,β-stopping time taking value in [t, T ].

Using [17, Lemma 3.2] and [17, Lemma 3.3], we obtained

– Stability by conditioning : There is a family of r.c.p.d. (Pω̄)ω̄∈Ω̄ w.r.t. Fµ,β
τ such that Pω̄ ∈

C(τ(ω̄),µ(ω̄)) for P-a.e. ω̄ ∈ Ω̄.

– Stability by concatenation: Let (Qω̄)ω̄∈Ω̄ be a probability kernel from Fµ,β
τ into

(
Ω̄,Fµ,β

T

)
such that ω̄ 7→ Qω̄ is Fµ,β

τ -measurable, and Qω̄ ∈ C(τ(ω̄),µ(ω̄)) for P-a.e. ω̄ ∈ Ω̄. Then,
P⊗τ Q· ∈ C(t,λ).
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These two conditions are those of [17, Assumption 2.2]. This allows to prove the following
DPP.

Theorem 3.1. We have

v(t, λ) = inf
P∈C(t,λ)

EP
[∫ τ

t

∫
Rd×A

ψ(x, µs, a)βs(x, da)µs(dx)ds+ v(τ, µτ )

]
(3.22)

= inf
α∈A

EPt,λ,α

[∫ τ

t

∫
Rd

ψ(x, µs, αs(x))µs(dx)ds+ v(τ, µτ )

]
,

for any (t, λ) ∈ [0, T ]×M
(
Rd
)
, and τ stopping time taking value in [t, T ].

Proof. Fix (t, λ) ∈ [0, T ]×M
(
Rd
)
, and τ to be a stopping time taking values in [t, T ]. We have that

the cost function (3.20) is continuous, thus a fortiori upper semi-analytic. Following the stability

by conditioning, for any P ∈ C(t,λ), there is (Pω̄)ω̄∈Ω̄ a family of r.c.p.d. w.r.t. Fµ,β
τ such that

Pω̄ ∈ C(τ(ω̄),µ(ω̄)) for P-a.e. ω̄ ∈ Ω̄. Therefore, we get

J
(
τ(ω̄), µτ(ω̄)(ω̄),Pω̄

)
= EPω̄

[∫ T

τ

∫
Rd×A

ψ(x, µs, a)βs(x, da)µs(dx)ds+Ψ(µT )

]
, for P− a.e. ω̄ ∈ Ω̄.

Since, by definition, v(τ(ω̄), µτ(ω̄)(ω̄)) ≤ J
(
τ(ω̄), µτ(ω̄)(ω̄),Pω̄

)
, it follows from the tower property

of conditional expectations that

J(t, λ,P) =

∫
Ω̄

(
J(τ(ω̄), µτ(ω̄)(ω̄),Pω̄) +

∫ τ

t

∫
Rd×A

ψ(x, µs, a)βs(x, da)µs(dx)ds

)
P(dω̄)

≥ EP
[
v(τ, µτ ) +

∫ τ

t

∫
Rd×A

ψ(x, µs, a)βs(x, da)µs(dx)ds

]
.

which provides v(t, λ) ≥ inf
P∈C(t,λ)

EP
[∫ τ

t

∫
Rd×A

ψ(x, µs, a)βs(x, da)µs(dx)ds+ v(τ, µτ )

]
by the arbi-

trariness of P.
We now turn to the reverse inequality. Fix some arbitrary P ∈ C(t,λ) and ε > 0. Consider the

set Cε
(t′,λ′) defined as follows

Cε
(t′,λ′) :=

{
Q ∈ C(t′,λ′) : v(t

′, λ′) + ε ≥ J(t′, λ′,Q)
}
, for (t′, λ′) ∈ [0, T ]×M

(
Rd
)
.

From the [16, Proposition 2.21], there exists a family of probability (Qε
ω̄)ω̄∈Ω̄ from Fµ,β

τ into(
Ω̄,Fµ,β

T

)
such that ω̄ 7→ Qε

ω̄ is Fµ,β
τ -measurable, and Qε

ω̄ ∈ Cε
(τ(ω̄),µ(ω̄)) for P-a.e. ω̄ ∈ Ω̄. Then,

P⊗τ Qε
· ∈ C(t,λ) by the stability by concatenation condition. This implies that

J(t, λ,P⊗τ Qε
· ) = EP⊗τQε

·

[∫ T

t

∫
Rd×A

ψ(x, µs, a)βs(x, da)µs(dx)ds+Ψ(µT )

]
=

∫ (∫ τ(ω̄)

t

∫
Rd×A

ψ(x, µs, a)βs(x, da)µs(dx)ds

+ EQε
ω̄

[∫ T

τ

∫
Rd×A

ψ(x, µs, a)βs(x, da)µs(dx)ds+Ψ(µT )

])
P(dω̄)

= EP

[∫ τ(ω̄)

t

∫
Rd×A

ψ(x, µs, a)βs(x, da)µs(dx)ds+ J
(
τ(ω̄), µτ(ω̄)(ω̄),Qε

ω̄

)]

≤ EP
[∫ τ

t

∫
Rd×A

ψ(x, µs, a)βs(x, da)µs(dx)ds+ v (τ, µτ )

]
+ ε.
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From the arbitrariness of P ∈ C(t,λ) and ε > 0, we obtain the inequality

v(t, λ) ≤ inf
P∈C(t,λ)

EP
[∫ τ

t

∫
Rd×A

ψ(x, µs, a)βs(x, da)µs(dx)ds+ v(τ, µτ )

]
.

4 Dynamic Programming Equation

The DPP opens the way to the characterization of the value function as a (viscosity) solution
to nonlinear PDE. This approach links the (optimal) controlled dynamics of the processes under
analysis in a ”weak” way. This means that we are interested in the behaviour of s 7→ u(µs) for a
certain class of test functions u.

For this purpose, first, we need to analyse the differential property of the space of finite measure.
There exists a growing literature about differential calculus in the space of probability measures.
This is due to the development of the mean field games theory. The two main objects discussed in
this context are the linear functional derivative (also called flat derivative or extrinsic derivative)
and the L-derivative (also called intrinsic derivative). The first is defined directly in P(Rd), while
the second relies on the lifting on a Hilbert space. It is found that one is the spatial gradient of
the previous one, coinciding with the notion of derivative of [29]. Therefore, sometimes this is the
definition used for the L-derivatives, like in [37]. Detailed discussions of this topic can be found
for example in [6, 5, 37].

Readjusting these concepts to M
(
Rd
)
, we present the same two notions, as introduced also in

[30]. A survey on how these notions of derivatives intertwine is [38], where their properties are
studied in a more general setting.

4.1 Differential properties

Definition 4.5 (Linear derivative). A function u : M
(
Rd
)
→ R is said to have linear derivative

if it is continuous, bounded and if there exists a function

δλu :M
(
Rd
)
× Rd ∋ (λ, x) 7→ δλu(λ, x) ∈ R,

that is bounded, and continuous for the product topology, such that

u(λ)− u(λ′) =

∫ 1

0

∫
Rd

δλu
(
tλ+ (1− t)λ′, x

)
(λ− λ′) (dx) dt,

for λ, λ′ ∈M
(
Rd
)
. We call C1(M

(
Rd
)
) the class of functions from M

(
Rd
)
to R that are differen-

tiable in linear functional sense.

Notice that δλu is uniquely defined up to a constant. We take∫
Rd

δλu(λ, x)λ(dx) = 0

as a convention in this paper. Moreover, second-order derivatives are introduced for u ∈ C1(M
(
Rd
)
)

imposing that λ 7→ δλu(λ, x) is differentiable in linear functional sense for every x and that
(λ, x, y) 7→ δ2λu(λ, x, y) is bounded and continuous. We call C2(M

(
Rd
)
) this class of functions.

Finite positive measures could not rely on lifting procedure. For this reason, the notion of
intrinsic derivative is introduced deriving with respect to the x component the flat derivative, as
done in [5, Definition 2.2].
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Definition 4.6 (Intrinsic derivative). Fix u ∈ C1(M
(
Rd
)
). If δλu is of class C1 with respect to

the second variable, the intrinsic derivative Dλu :M
(
Rd
)
× Rd → R is

Dλu(λ, x) = ∂xδλu(λ, x).

We denote with C1,1(M
(
Rd
)
) this class of functions.

Deriving with respect to the measure or the space component are two different operations. We
denote Ck,ℓ(M

(
Rd
)
) with k ∈ N to be the collection of functions u that are differentiable k times

with respect to the measure and such that the k-th derivative with respect to the measure is ℓ-th
times continuously differentiable with respect to its spatial components.

Remark 4.2. As in [30, Example 2.9], we have that DT ⊆ C2,2(M
(
Rd
)
), where DT is the domain

of cylindrical functions as in (2.8). In particular, it holds that

δλh(λ, x) = DF (⟨f1, λ⟩, . . . , ⟨fp, λ⟩)⊤ f(x),

δ2λh(λ, x, y) = f(y)⊤DF 2 (⟨f1, λ⟩, . . . , ⟨fp, λ⟩) f(x),
Dλh(λ, x) = DF (⟨f1, λ⟩, . . . , ⟨fp, λ⟩)⊤Df(x),

with f(x) := (f1, . . . , fp) (x)
⊤, and Df(x) = (Df1, . . . , Dfp) (x)

⊤, for h = F(f1,...,fp) ∈ DT .

4.2 Density properties

To get the Dynamic Programming Equation associated with the value function v we first need to
generalize the martingale problem (2.2). As in [21] and [30], to do this we first restrict ourselves
in a compact space, prove the density of DT in C2,2(M

(
Rd
)
) and conclude with a localization

argument.
First, we restrict the space we work into a compact set. This is done to apply the Stone-

Weierstrass theorem and prove the density of cylindrical functions. Consider the set of compact
rectangles

{
KN := [−N,N ]d

}
N≥1

⊆ Rd. For every k,N ∈ N, we define the

Mk(Rd) :=

{
λ ∈M

(
Rd
)
: λ(Rd) ∈

[
1

k
, k

]}
,

Kk
N :=

{
λ ∈Mk(Rd) : supp(λ) ⊆ KN

}
.

These sets are non-empty. In particular, Kk
N is compact for the weak* topology for any k,N ∈ N.

Indeed, this space is homeomorphic to Kk,1
N ×

[
1
k , k
]
with Kk,1

N := Kk
N ∩P(Rd) with the homeomor-

phism

H :M
(
Rd
)
\{O} → P(Rd)× R+

λ 7→
(

1

λ(Rd)
λ, λ(Rd)

)
.

The set Kk,1
N is weakly* precompact, using Prokhorov’s theorem (see e.g. [3, Theorem 1.6.1]), and

is closed as any limit point of the sequence in Kk,1
N also has support contained in KN . Therefore,

Kk
N is compact as homeomorphic to the product of two compact sets.

Given λ ∈Mk(Rd), we denote with ρNµ the measure such that dρNλ
dλ = ρN , with ρN a positive

and smooth cut-off function equal to 1 in KN and identically zero outside KN+1. We observe that
ρNλ is always in Kk

N+1. Thus, we set

uN (λ) := u(ρNλ), for λ ∈Mk(Rd), N ≥ 1. (4.23)
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With these notations, we give [30, Lemma 3.3] that proves the first approximation theorem for
functions on Mk(Rd).

Lemma 4.1. Fix k ≥ 1 and u ∈ C2,2(Mk(Rd)). Let
{
uN
}
N≥1

be the sequence defined by

(4.23). Then, for every λ ∈ Mk(Rd), uN (λ) → u(λ) as n → ∞ and
{
δλu

N
}
N≥1

,
{
δ2λu

N
}
N≥1

,{
Dλu

N
}
N≥1

, and
{
∂xDλu

N
}
N≥1

pointwise converge to the respective derivatives of u. Moreover,

||uN ||∞ ≤ ||u||∞, and there exists C > 0 independent of u, N , and k such that

||δλuN ||∞ ≤ ||δλu||∞,
||δ2λuN ||∞ ≤ ||δ2λu||∞,
||Dλu

N ||∞ ≤ C (||Dλu||∞ + ||δλu||∞) ,

||∂xDλu
N ||∞ ≤ C (||Dλu||∞ + ||δλu||∞ + ||∂xDλu||∞) .

This result allows us to approximate functions in C2,2(Mk(Rd)) with functions in C2,2(Kk
N ),

for k,N ∈ N. We can now adapt [30, Lemma 3.4] showing that the domain of cylindrical functions
DT is dense in C2,2(Kk

N ).

Lemma 4.2. Fix k ≥ 1 and N ≥ 1. Let u be in C2,2(Kk
N ). There exists a sequence of cylin-

drical functions {un}n≥1 ⊆ DT such that un(λ) → u(λ) as n → ∞ and {δλun}n≥1,
{
δ2λun

}
n≥1

,

{Dλun}n≥1, and {∂xDλun}n≥1 converge pointwise to the respective derivatives of u for any λ ∈ Kk
N .

Moreover, ||un||∞ ≤ ||u||∞, and the same holds for the derivatives, up to a multiplicative constant
independent of u, N and k.

Since Kk
N is compact in M

(
Rd
)
, the previous lemma proves

||un − u||
C2,2

b (M
(
Rd
)
)
→ 0, as n→ ∞,

where

||u||
C2,2

b (M
(
Rd
)
)
:= sup

λ∈Kk
N ,x,y∈KN

{
|u(λ)|+ |δλu(λ, x)|+ |δ2λu(λ, x, y)|+ |Dλu(λ, x)| (4.24)

+|∂xDλu(λ, x)|
}
,

for u in C2,2(M
(
Rd
)
) which is bounded with bounded derivatives. A stronger norm could be used

by adding in the supremum also the terms depending on ∂xδ
2
λu and D2

λu as in [30]. For our scope,
norm (4.24) is enough to generalize the martingale problem (2.2).

Remark 4.3. A different approach could have been taken to prove that DT is dense in C2,2(Kk
N ).

As proven in [21], this domain separates points in Kk
N and vanishes at no point, therefore using

Stone-Weierstrass theorem, it is dense in the C0(Kk
N ) with the topology of the strong convergence.

Then, using the definition for the Linear derivative and the intrinsic derivative, the convergences
of the different derivatives could be established, as in [21, Lemma 3.12].

4.3 Generalized martingale problem

We define the operator L on u ∈ C2,2
b (M

(
Rd
)
) by

Lu(λ, x, a) = b(x, λ, a)⊤Dλu(λ, x) +
1

2
Tr
(
σσ⊤(x, λ, a)∂xDλu(λ, x)

)
+
1

2
γ(x, λ, a)δ2λu(µ, x, x)

for (x, λ, a) ∈ Rd ×M
(
Rd
)
×A.
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Proposition 4.6. For (t, λ) ∈ [0, T ]×M
(
Rd
)
and α ∈ A, the following are equivalent:

(i)
(
Pt,λ,α, α

)
∈ R(t,λ);

(ii) the process

Mu
s = u(µs)−

∫ s

t

∫
Rd

Lu(x, µu, αu(x))µu(dx)du (4.25)

is a (P,F)-martingale with quadratic variation

[Mu]s =

∫ s

t
γ(x, µu, αu(x)) |δλu(µu, x)|2 µu(dx)du (4.26)

for any u ∈ C2,2
b (Rd), and s ≥ t.

Proof. (ii) =⇒ (i): From Remark 4.2, Fφ ∈ C2,2
b (Rd) for any F ∈ C2

b (R) and φ ∈ C2
b (Rd) and

equations (4.25) and (4.26) becomes (2.2) and (2.3) for u = Fφ.
(i) =⇒ (ii): If λ = O, it is clear that Mu is constant in time, thus a martingale with a null

quadratic variation. Consider a starting condition (t, λ), with ⟨1, λ⟩ > 0, a control α ∈ A and the
sequence of stopping times {τk}k≥1 as

τk := inf {s ≥ t : ⟨1, µs⟩ > k} ∧ inf

{
s ≥ t : ⟨1, µs⟩ <

1

k

}
.

Defining µk· := µ·∧τk , for ⟨1, λ⟩ ∈ [1/k, k], we have that under P(t,λ,α), this process lives in Mk(Rd)
by construction. Thus, applying Lemma 4.1 and Lemma 4.2, there exists a sequence un ∈ DT such
that un → u as n → ∞ pointwise as well as their derivatives and there exists C > 0 such that
||un||C2,2

b (M
(
Rd
)
)
≤ C||u||

C2,2
b (M

(
Rd
)
)
.

Remark 4.2 shows how derivatives operate on cylindrical functions. Looking at (2.9) and (2.10),
we see that for h ∈ DT equations (4.25) and (4.26) are satisfied if applied to µk. We prove now
that u(µk· ) −

∫ ·
t

∫
Rd Lu(x, µu, αu(x))µu(dx)du is a P(t,λ,α)-martingale, i.e.,, for each stopping time

θ in [t, T ],

EP(t,λ,α)

[
u(µkθ)− u(λ)−

∫ θ

t

∫
Rd

Lu(x, µku, αu(x))µ
k
u(dx)du

]
= 0.

Since (4.25) is satisfied for h ∈ DT , and from the bounds on the derivatives and on the coefficients
b, σ and γ, we can apply the Dominated Convergence Theorem and obtain

0 = lim
n

EP(t,λ,α)

[
un

(
µkθ

)
− un(λ)−

∫ θ

t

∫
Rd

Lun

(
x, µku, αu(x)

)
µku(dx)du

]
= EP(t,λ,α)

[
u
(
µkθ

)
− u(λ)−

∫ θ

t

∫
Rd

Lu
(
x, µku, αu(x)

)
µku(dx)du

]
.

By definition of the quadratic variation and (4.26) applied to un ∈ DT , we have for n ∈ N that

EP(t,λ,α)

[(
un

(
µks

)
− un(λ)−

∫ s

t

∫
Rd

Lun

(
x, µku, αu(x)

)
µku(dx)du

)2
]

= EP(t,λ,α)

[∫ s

t
γ
(
x, µku, αu(x)

) ∣∣∣δλun (µku, x)∣∣∣2 µku(dx)du] (4.27)

Therefore, we apply again Dominated Convergence Theorem and obtain (4.27) with respect to u.
Finally, we can remove the localization using Dominated Convergence Theorem since u ∈

C2,2
b (Rd) and the bound (2.18).
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4.4 HJB Equation

We are ready to introduce the HJB equation associated with this control problem. Looking at
(4.25), define an operator H on Rd ×M

(
Rd
)
×A× Rd × Rd×d × R such that

H(x, λ, a, p,M, r) = b(x, λ, a)⊤p+
1

2
Tr
(
σσ⊤(x, λ, a)M

)
+

1

2
γ(x, λ, a)r + ψ(x, λ, a) (4.28)

Then, if the value function (3.21) is sufficiently smooth, generalizing Proposition 4.6 to function
depending in time and measure yields the following HJB equation

∂tv(t, λ) +
∫
Rd infa∈AH

(
x, λ, a,Dλv(t, λ, x),

∂xDλv(t, λ, x), δ
2
λv(t, λ, x, x)

)
λ(dx) = 0

v(T, λ) = Ψ(λ)

The form of this HJB equation looks like the one for mean field control (see, e.g., [21], [36], [1],
[12], [44]), where the infimum (or the supremum if maximizing) is taken inside the integral. The
major differences here are that we consider the space of finite measures and not only probability
measures and that the second-order flat derivative is explicitly involved in the Hamiltonian.

We have the following result in the regular case.

Theorem 4.2 (Verification Theorem). Let V : [0, T ] × M
(
Rd
)

→ R be a function living in

C
1,(2,2)
b ([0, T )×M

(
Rd
)
) ∩ C0([0, T ]×M

(
Rd
)
).

(i) Suppose that V satisfies
∂tV (t, λ) +

∫
Rd infa∈AH

(
x, λ, a,DλV (t, λ, x),

∂xDλV (t, λ, x), δ2λV (t, λ, x, x)
)
λ(dx) ≤ 0

V (T, λ) ≤ Ψ(λ).

(4.29)

Then V (t, λ) ≤ v(t, λ) for any (t, λ) ∈ [0, T ]×M
(
Rd
)
, with v as in (3.21).

(ii) Moreover, suppose that V satisfies (4.29) with equality and there exists a continuous function
â(t, x, λ) for (t, x, λ) ∈ [0, T )× Rd ×M

(
Rd
)
, valued in A such that

â(t, x, λ) ∈ argmin
a∈A

H
(
x, λ, a,Dλv(t, λ, x), ∂xDλv(t, λ, x), δ

2
λv(t, λ, x, x)

)
. (4.30)

Suppose also that the corresponding control α∗ = {α∗
s(x) := â(s, x, µs), s ∈ [t, T )} ∈ A. Then

V = v, with v as in (3.21), and α∗ is an optimal Markovian control.

Proof. (i) Since V ∈ C
1,(2,2)
b ([0, T )×M

(
Rd
)
), we have for all (t, λ) ∈ [0, T )×M

(
Rd
)
, and α ∈ A,

by (4.25), the process

V (s, µs)− V (t, λ)−
∫ s

t
∂tV (u, µu) +

∫
Rd

LV (u, x, µu, αu(x))µu(dx)du

is a martingale under Pt,λ,α. By taking the expectation, we get

EPt,λ,α
[V (s, µs)] = V (t, λ) + EPt,λ,α

[∫ s

t
∂tV (u, µu) +

∫
Rd

LV (u, x, µu, αu(x))µu(dx)du

]
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Since w satisfies (4.29), we have

∂tV (u, µu) +

∫
Rd

LV (u, x, µu, αu(x)) + ψ(x, µu, αu(x))µu(dx) ≤ 0, Pt,λ,α − a.s.

for any α ∈ A. Therefore,

EPt,λ,α
[V (s, µs)] ≤ V (t, λ)− EPt,λ,α

[∫ s

t

∫
Rd

ψ(x, µu, αu(x))µu(dx)du

]
, Pt,λ,α − a.s.

for any α ∈ A. Since V is continuous on [0, T ]×M
(
Rd
)
, we obtain by the dominated convergence

theorem and by (4.29)

EPt,λ,α
[Ψ(µT )] ≤ V (t, λ)− EPt,λ,α

[∫ T

t

∫
Rd

ψ(x, µu, αu(x))µu(dx)du

]
, Pt,λ,α − a.s.

for any α ∈ A. From the arbitrariness of the control, we deduce that V (t, λ) ≤ v(t, λ), for all
(t, λ) ∈ [0, T ]×M

(
Rd
)
.

(ii) By (4.25),

EPt,λ,α
[V (s, µs)] = V (t, λ) + EPt,λ,α

[∫ s

t
∂tV (u, µu) +

∫
Rd

LV (u, x, µu, αu(x))µu(dx)du

]
By definition of â(t, x, λ), we have

∂tV (t, λ) +

∫
Rd

LV (t, λ, x, â(t, x, λ)) + ψ(x, λ, â(t, x, λ))λ(dx) = 0,

and so

EPt,λ,α∗
[V (s, µs)] = V (t, λ)− EPt,λ,α

[∫ s

t

∫
Rd

ψ(x, λ, α∗
u(x, µu))µu(dx)du

]
.

By sending s to T , we then obtain

V (t, λ) = EPt,λ,α∗
[
Ψ(µT ) +

∫ T

t

∫
Rd

ψ(x, λ, α∗
u(x, µu))µu(dx)du

]
= J(t, λ, α∗),

which shows that V (t, λ) = J(t, λ, α∗) ≥ v(t, λ). Therefore, V = v and α∗ is an optimal Markovian
control.

4.5 Example of regular solution

For the following part of the paper, we suppose that there is no dependence on the measure for b, σ,
and γ. With abuse of notation, we denote b(x, a) (resp. σ(x, a), γ(x, a)) instead of b(x, λ, a) (resp.
σ(x, λ, a), γ(x, λ, a)). Fix h ∈ Cb(Rd) with h(x) ≥ 0 for any x ∈ Rd, and let Ψ(λ) := exp (−⟨h, λ⟩)
and ψ = 0. Therefore, the cost function J writes as

J(t, λ, α) = EPt,λ,α
[exp(−⟨h, µT ⟩)] , (4.31)

for (t, λ) ∈ [0, T ]×M
(
Rd
)
, and α ∈ A.

The following assumption will ensure that there exists a smooth solution to the HJB equation
(4.28) associated with this cost function.
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Assumption A1. Assume that the following conditions hold:

(i) h ∈ C3
b (Rd);

(ii)
(
b, σ, γ

)
(·, a) ∈ C2(Rd) for any a ∈ A, and b, σ, and γ and their partial derivatives are

bounded on Rd ×A;

(iii) there exists Cσ > 0 such that

σσ⊤(x, a) ≥ CσId, for (x, a) ∈ Rd ×A.

Proposition 4.7. Under Assumption A1, there exists a function w ∈ C1,2
b ([0, T ]× Rd), such that−∂tw(t, x)− supa∈A

{
b(x, a)⊤Dw(t, x) +

1

2
Tr
(
σσ⊤(x, a)D2w(t, x)

)
− 1

2
γ(x, a)w(t, x)2

}
= 0

w(T, x) = h(x).
(4.32)

Moreover, we have

v(t, λ) = exp (⟨w(t, ·), λ⟩)

for any (t, λ) ∈ [0, T ]×M
(
Rd
)
, with v as in (3.21).

Proof. Our goal is to determine the function w using [26, Theorem 6.4.4], which guarantees the
existence of smooth solutions for a certain category of fully nonlinear partial differential equations.
First, we need to modify (4.32) to fall into this class. If w satisfies (4.32), we see that the function
w̃(t, x) := e−tw(t, x) satisfies the following nonlinear PDE

−∂tw̃(t, x)− supa∈A

{
b(x, a)⊤Dw̃(t, x) +

1

2
Tr
(
σσ⊤(x, a)D2w̃(t, x)

)
− 1

2γ(x, a)e
tw̃(t, x)2 + w̃(t, x)

}
= 0

w̃(T, x) = e−Th(x).

(4.33)

Let Cγ > 0 be a constant such that

γ(x, a) ≥ Cγ , for all (x, a) ∈ Rd ×A.

Without loss of generalities, we can take Cγ to be such that
CγeT

4 > 1. This means that

1

2
γ(x, a)etM2

0 −M0 ≤
Cγe

T

2
M2

0 −M0 ≤ −δ0,
1

2
γ(x, a)etM2

0 +M0 ≥M0 ≥ δ0,

for all (x, a) ∈ Rd × A, with M0 := 4
CγeT

> 0 and δ0 := M2
0 . Combining these inequalities

with Assumption A1, the property that equation (4.33) belongs to the class of [26, Theorem
6.4.4] follows from [26, Example 6.1.8]. Therefore, this theorem ensures that there exists w̃ ∈
C1,2
b ([0, T ] × Rd) solution to (4.33). Thus, w(t, x) := etw̃(t, x) is a bounded solution of (4.32)

belonging to C1,2
b ([0, T ]× Rd).
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We conclude this proposition by applying Theorem 4.2. Define V (t, λ) := exp (⟨w(t, ·), λ⟩).
Using the terminal condition of w, we see that V (t, λ) = Ψ(λ). Moreover, (4.28) in this setting
writes as

exp (⟨w(t, ·), λ⟩)
∫
Rd

(
− ∂tw(t, x)− sup

a∈A

{
b(x, a)⊤Dw(t, x) +

1

2
Tr
(
σσ⊤(x, a)D2w(t, x)

)
−1

2
γ(x, a)w(t, x)2

})
λ(dx) = 0.

It is now clear that V satisfies (4.28) since w satisfies (4.32). Moreover, the optimal control â,
defined as in (4.30), is the point that reaches the maximum over a compact set of a continuous
function. This means that â can be chosen continuously, thus predictably. Therefore, its associated
optimal control belongs to A. We can now apply Theorem 4.2 and conclude.

Remark 4.4. When we are not under Assumption A1, (4.32) can be solved in a viscosity sense.
In particular, one can follow [9, Section 5] to prove a comparison principle and an approximation
procedure to give a solution in a viscosity sense to this equation. This translates directly to (4.28)
and is a way to entail viscosity properties reducing the dimensionality.

5 Conclusion

This research centres on controlled superprocesses, which is, to the best of our knowledge, a novel
category of processes. The first part of our study is devoted to introducing the formalism, which
we present in a weak form through a controlled martingale problem. Following the definition, we
prove their existence and uniqueness in law. Uniqueness uses the same method as in [33], where
the initial martingale problem is generalized to define càdlàg processes with values in M

(
Rd
)
.

Subsequently, we employ the duality method to establish that there exists at most one probability
satisfying the martingale problem once control and starting condition are fixed. In the second part,
we prove the existence of these processes as weak limits of rescaled branching processes. Thus,
we introduce this new class of processes, whose existence has been proved in [33]. We prove the
weak limit using the Aldous criterion (see, e.g., [11, 18, 39]), while adapting these ideas to this new
setting. We notice that there are several choices for the branching parameters to build the class of
superprocesses as limit points. We refer to [11, 35, 18, 39] for more details.

Once we establish the non-explosion property with respect to the chosen distance that metricizes
weak* topology, we introduce the control problem. We define a weak formulation for controlled
superprocesses as in [33]. This allows to extend the methods in [16, 17] to this setting and prove
the DPP.

In the final section, we derived an HJB equation on the space of measures. Adopting the
differential calculus developed in [30], we generalized the original martingale problem to a larger
class of functions. This enabled us to derive the HJB equation and provide a verification theorem.
Finally, we used this result to introduce a class of solvable problems. Utilizing the branching
property technique, we translated the problem on finite measures to a finite-dimensional nonlinear
PDE, reducing the dimensionality. We solved the latter using results from [26], and, with the help
of the verification theorem, we provide an explicit description of the value function.
Acknowledgements. I gratefully acknowledge my PhD supervisors Idris Kharroubi for supervis-
ing this work.
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