Ozgur Ercetin
email: oercetin@sabanciuinv.edu

Sama Habibi
email: samahabibi@sabanciuniv.edu

Yardstick Competition Regulation for Incentive Mechanisms in Federated Learning: Balancing Cost Optimization and Fairness

Keywords: FL, incentive mechanism, yardstick, dynamic pricing

Federated learning (FL) is a global machine-learning model that is trained using several participating nodes, where data is kept private. In this paper, we propose a cost-effective dynamic joint load balancing and pricing algorithm (CELBP) for heterogeneous workers that utilizes the Yardstick Competition Regulation (YCR) to encourage workers to disclose their costs honestly and provide incentives based on relative contributions. In the dynamic case, we aim to minimize the total cost of the server, considering the positive value of subtasks assigned to workers and their limited full load, and a new cost function for workers that accounts for their efficiency level and total communication and computation time required to complete assigned tasks. We show that CELBP outperforms other schemes in terms of accuracy and training time while reducing the server's total cost, using experiments with the MNIST and CIFAR-10 datasets. Additionally, we show that using the proposed online algorithms improves accuracy and reduces latency when compared to other algorithms mentioned in the paper.

I. INTRODUCTION

With increasing computational loads, it's important to store data locally and transfer computation to the edge [START_REF] Li | Federated learning: Challenges, methods, and future directions[END_REF]. Federated Learning (FL) trains a global machine learning model using private data from multiple nodes [START_REF] Mcmahan | Communication-efficient learning of deep networks from decentralized data[END_REF]. However, participation in training incurs costs for nodes, such as computational and communication costs, who aim to maximize profits while paying for computational and communication expenses [START_REF] Ding | Incentive mechanism design for federated learning with multi-dimensional private information[END_REF], [START_REF] Tran | Federated learning over wireless networks: Optimization model design and analysis[END_REF].

Incentive mechanisms, such as regulatory policies, are used to encourage nodes to improve efficiency in achieving desired goals. Incentive regulation has been the subject of research and debate in the economics literature, and various techniques have been used to design incentive mechanisms for FL, including Stackelberg game, auction, contract theory, Shapley value, blockchain, and reinforcement learning [START_REF] Wang | Optimizing federated learning on non-iid data with reinforcement learning[END_REF]- [START_REF] Zeng | Fmore: An incentive scheme of multi-dimensional auction for federated learning in mec[END_REF]. However, the most effective approach depends on the incentive mechanism's This work is supported in part by Tübitak grant number 119E353. goals, and it is essential to evaluate each approach's potential benefits and drawbacks before selecting the appropriate technique.

Another key area of focus in optimizing FL operations is allocating tasks among worker nodes. The slowest worker node, known as a "straggler," can greatly affect the speed of model updates, and load balancing techniques are used to optimize workload allocation among qualified workers for improved efficiency [START_REF] Devine | New challenges in dynamic load balancing[END_REF]- [START_REF] Chen | Accelerating distributed learning in non-dedicated environments[END_REF].

To address the challenges posed by heterogeneous workers, we propose a dynamic framework that implements the Yardstick Competition Regulation (YCR) [START_REF] Shleifer | A theory of yardstick competition[END_REF] to encourage workers to disclose their costs honestly and provide incentives based on relative contributions. Our experiments show that this significantly reduces the total cost of the server. Additionally, we propose an optimization problem for the server that minimizes the total cost, considering the positive value of subtasks assigned to workers and their limited full load, and a new cost function for workers that accounts for their efficiency level and total communication and computation time required to complete the assigned subtasks.

We introduce CELBP, a new online algorithm for heterogeneous workers that uses YCR for cost-effective load balancing and pricing. We show that CELBP outperforms other schemes in terms of accuracy and training time while reducing the server's total cost, using experiments with the MNIST and CIFAR-10 datasets. Furthermore, we propose SB-CELBP, a new cost-effective online algorithm that addresses the fairness challenge of incentive mechanisms for heterogeneous workers. SB-CELBP computes the prices based on each worker's coalition with the accuracy of the global model, eliminating the dependency of the worker's price on its revealed cost by applying YCR. We show that SB-CELBP reduces the total cost of the server while increasing the efficiency by pricing the first workers that reach the target accuracy chosen by an MAB algorithm based on their USB1 scores.

Section II presents the background and main assumptions, while section III presents the formulation of worker and server operations in sections III-A and III-B, respectively. Section IV introduces the proposed approach, including the optimization problems for workers in both static and dynamic cases in sections IV-A and IV-B, and for the server in the dynamic case using CELBP and SB-CELBP algorithms in sections V-A and V-B. Section V-C analyzes the dynamic regret, and section VI evaluates the system performance. Finally, section VII provides a summary.

II. BACKGROUND AND MAIN ASSUMPTIONS

A. Yardstick Competition Regulation

Worker costs are correlated as they perform tasks under similar conditions, allowing the server to set performance standards and reward high performers while punishing low performers. Yardstick Competition Regulation (YCR) employs a pricing rule where the reward for worker i, R i , is the average cost of other workers excluding i [START_REF] Shleifer | A theory of yardstick competition[END_REF]. This incentivizes truthful cost reporting and ties prices to relative contributions, enhancing overall efficiency.

To apply YCR in FL, several requirements must be met. Firstly, workers should not be altruistic and should not have an individual interest in improving computation efficiency. Secondly, the server must be able to measure worker performance in terms of time and cost to complete a task. Thirdly, workers should have private information about their capabilities and preferences. Finally, a third party should be able to easily verify the delay per round and associated costs of the workers [START_REF] Canoy | Yardstick competition: Theory, design, and practice[END_REF]. Since agents have private information unknown to the regulator, the regulator can improve efficiency only by setting a score and relating it to the monetary rewards that incentivize each agent to improve its efficiency [START_REF] Bisceglia | On the dynamic optimality of yardstick regulation[END_REF].

B. User selection models

Let the server has a task with size Q bits and aims to divide it into subtasks. q (t) i denotes the size of subtasks in bits that are allocated to the worker i in round t, where

N i=1 q (t) i = Q.
In the static scenario, the server determines subtasks for each worker based on a linear function of price, where the price is determined by the YCR pricing rule.

q i (R i) = Q -αR i R i ∈ (0, R) 0 R i ≥ R , for i = 1, . . . , N, (1)
where R is a finite positive price and denotes the maximum value of the possible price proposed by the workers so that the server can allocate subtasks to the workers. In the dynamic scenario, the server aims to assign subtasks to workers based on a load balancing scheme explained in Section IV-B. Then, the price for each worker is determined using the Yardstick pricing rule stated in [START_REF] Wang | Optimizing federated learning on non-iid data with reinforcement learning[END_REF].

III. WORKER AND SERVER OPERATION A. Cost and Reward of Workers

In this work, we follow the profit model described in [START_REF] Bisceglia | On the dynamic optimality of yardstick regulation[END_REF]. The profit function of a worker is as follows:

π (t) i = R (t) i -C (t) i (ϵ i) q (t) i R (t) i (2)
Note that we define ϵ i as the efficiency level of worker i, which measures how effectively the worker computes and returns the result to the server. Specifically, ϵ i is a unitless quantity that represents the number of bits of data that worker i can process per joule of energy consumed. We define the cost of worker i as:

C (t) i = β i e -ϵi/T total i , (3)
where β i ≥ 0 is a constant value representative of worker i, and T total i refers to the total computation time for the allocated subtasks and the communication time to send the result back to the controller node at round t. Note that this cost function captures the trade-offs between the energy costs of computation and communication, as well as the efficiency levels of the workers. First, the exponential term e -ϵi/T total i captures a direct relationship between cost and completion time. Higher completion time results in higher cost due to increased energy consumption. Second, the efficiency level ϵ i in the denominator represents an inverse relationship with cost, where higher efficiency leads to faster completion and lower energy consumption. Third, the cost function indirectly captures the effects of computation and communication resources through the completion time T total i and efficiency level ϵ i . Finally, the constant value β i ≥ 0 is a worker-specific characteristic accounting for hardware, energy consumption patterns, and other factors. It helps to ensure a precise representation of costs in the FL system. The task completion time is the sum of computation time T comp i and transmission delay of the results

T trans i . T comp i is ciq (t) i (R (t) i) Pi
, and T trans i is bi ri , where b i , c i , and r i denote the size of the subtask in bits transferred from worker i to the server, the number of CPU cycles required to compute the allocated subtasks, and the transmission rate, respectively. In this work, we consider two scenarios, i.e., static and dynamic resource allocation. In the dynamic case, unlike the static case, the server determines different prices for each worker in each iteration of the model update. In this case, the level of efficiency can change, and our aim is to minimize the total cost of the controller node by properly load balancing and determining the price using the Yardstick pricing rule.

B. Server cost

The cost of the server in FL is the sum of payments made to the workers for the completion of subtasks assigned in all iterations. Let N ′ denote the set of eligible workers who participate in FL at time t ∈ [0, T], where | N ′ |≤ N . Then, the total cost of the server is given by the following equation:

C total = T t=0 i∈N ′ R (t) i q (t) i (R (t) i), (4) 2 where R
(t) i and q

(t) i (R (t)
i) denote the payment per unit of subtask for worker i and the number of subtasks assigned to worker i in time t ∈ [0, T], respectively. The objective is to minimize the total cost of the server with respect to the proposed pricing method by efficiently allocating subtasks to the workers.

The Yardstick pricing rule specifies the payment per unit of subtask for each worker. It is defined as follows:

R (t) i = 1 N ′ -1 i̸ =j C (t) j (ϵ j), (5)
where C

(t) j (ϵ j) is the cost function of worker j at time t, as defined in Equation (3), and ϵ j represents the efficiency level of worker j. The yardstick pricing rule ensures that workers are truthful about their costs, as the payment per unit of subtask is determined by the average cost of the other workers.

IV. PROBLEM FORMULATION FOR STATIC AND DYNAMIC SCENARIOS A. Static Case

This work assumes that workers are selfish and aim to maximize their profits. To achieve this, we seek a unique optimal solution that maximizes (2).

Lemma 1. The function given in (2) is concave if the following constraint is satisfied:

[C ′(t) i q ′(t) i (R (t) i)] 2 + [2q ′(t) i (R (t) i) + (R (t) i -C (t) i)q ′′(t) i (R (t) i)]C ′′(t) i q (t) i (R (t) i) < 0. (6)
To see the proofs of Lemma 1, please refer to Appendix A. Note that a superscript (′) denotes the partial derivative of a parameter with respect to time. Given Lemma 1, we can determine the maximum value of the reward that satisfies the concavity of the workers' profit function in the static case, presented in Lemma 2.

Lemma 2. In the static case, the maximum value of the price R (t) i that satisfies the concavity of the workers' profit function is given by R

(t) i < R upper(t) i := Q-αC (t) i α . Moreover, if α < min i∈N ′ Q 3C (t) i
, then there exists an inner point solution that maximizes the profits of the workers, and the optimal price for worker

i is R * (t) i = Q+αC (t) i 2α .
For proof of Lemma2 please refer to APPENDIX B.

B. Dynamic Case

Since the loads assigned to workers change in each iteration in the dynamic case, we cannot use [START_REF] Liu | Fedcoin: A peer-to-peer payment system for federated learning[END_REF] to find the optimal reward that maximizes worker profit. However, we can still determine the participation of workers based on their profit values. In other words, workers with positive profit values will participate in the process. Lemma 3. Worker i, for i = 1, 2, . . . , N participates in federation if q

(t) i (R (t) i) > 1 R (t) i -C (t) i
, with the reward given

to worker i is R (t) i = 1 N -1 i̸ =j C (t) j (ϵ j).
For the proof, please refer to APPENDIX C.

V. INCENTIVE MECHANISM IN THE DYNAMIC CASE

In this section, we aim to minimize the overall cost of the server by effectively distributing the workload among the workers and implementing an appropriate incentive mechanism.

A. Cost Efficient Dynamic Joint Load Balancing and Pricing Algorithm (CELBP)

The cost function for the server is nonconvex and nondecreasing, as it is determined by the average marginal costs. This implies that the local cost for each worker is also nonconvex with respect to the decision variable, represented by q i . To minimize the server's overall cost, we propose an algorithm that employs dynamic load balancing and Yardstick pricing.

This optimization problem can be formulated as:

min qi T t=0 i∈N ′ R (t) i q (t) i (R (t) i) subject to i∈N ′ q (t) i (R (t) i) = Q, ∀t ∈ T q (t) i (R (t) i) ≥ 0, ∀i ∈ N ′ , ∀t ∈ T (7)
The proposed mechanism aims to reduce the number of subtasks assigned to the worker with the highest cost value and redistribute them among other workers with lower cost values. This approach leads to a decrease in costs for the participating workers, resulting in a reduction of the prices determined for all workers, and ultimately lowering the server's total cost in each round.

As mentioned earlier, the prices for workers are determined using the Yardstick pricing rule, which is based on their average marginal costs. This pricing mechanism ensures that the cost for each worker is reduced, ultimately minimizing the server's overall cost throughout the optimization process. Lemma 4. The maximum acceptable workload that the worker i can handle in round t is obtained as:

q(t) i (R (t) i) = arg max q(t) i (R (t) i) C (t) i ≤ max i (C (t) i) = -ϵ i P i c i ln maxi (C (t) i) βi - P i T trans i c i
For proof please refer to APPENDIX D. Cost Efficient Dynamic Joint Load Balancing and Pricing Algorithm (CELBP) aims to solve the optimization problem in [START_REF] Richardson | Rewarding high-quality data via influence functions[END_REF] by iteratively redistributing subtasks among workers to minimize the server's total cost. While the algorithm does not guarantee an optimal solution, it provides a practical approach to tackle the problem. The pseudocode for this algorithm is provided in Algorithm 1.

Initially, the algorithm sets the number of rounds (T) and the step size. During the initialization phase, the controller node randomly assigns subtasks to all workers, who then compute their costs using Equation (3). These costs are sent to the controller, which calculates incentives for each worker using the Yardstick rule [START_REF] Wang | Optimizing federated learning on non-iid data with reinforcement learning[END_REF]. Workers subsequently compute their profit using Equation (2) and decide whether to participate in task completion. The main algorithm process occurs over T rounds. In each round, the server identifies the worker with the highest cost and sends the step size and worker information to all workers. Workers then update their subtask acceptance values and send them to the controller node. The controller node calculates the number of subtasks assigned to the worker with the highest cost and communicates this to the worker. All workers then recalculate their costs based on the updated subtasks and send the updated subtask values and costs to the controller node, which recomputes the price for each worker and the total cost using the given equations. The server updates the step size and sends it to the workers for the next round. This process continues for T rounds, aiming to lower the costs of participating workers, reduce the determined prices for all workers, and ultimately decrease the server's total cost in each round.

During round t, all workers except the one with the highest cost determine

q(t) i (R (t)
i) using (4) and update their subtask assignment using Equation [START_REF] Sarikaya | Motivating workers in federated learning: A stackelberg game perspective[END_REF]. The term

q(t) i (R (t) i) -q (t) i (R (t)
i) represents the maximum additional subtasks worker i can accept from the worker with the highest cost (worker h) without becoming the worker with the highest cost themselves.

q (t+1) i (R (t+1) i) = q (t) i (R (t) i) -α (t) (q (t) i (R (t) i) - q(t) i (R (t) i)). (8)
The server calculates the total additional subtasks all workers can handle in round t and computes the new load to be assigned to worker h using Equation [START_REF] Hu | Trading data for learning: Incentive mechanism for on-device federated learning[END_REF].

q (t+1) h (R (t+1) h) = i∈N ′ q (0) i (R (0) i) - i̸ =h q (t+1) i (R (t+1) i) = q (t) h (R (t) h) -α (t) i̸ =h (q (t) i (R (t) i) -q (t) i (R (t) i)) (9)
This new load is then sent to worker h. The step size α in round t is updated by the server using Equation [START_REF] Zeng | Fmore: An incentive scheme of multi-dimensional auction for federated learning in mec[END_REF].

α (t+1) ≤ min α (t) , q (t+1) h (R (t+1) h) (N ′ -2) i∈N ′ q (0) i (R (0) i) + q (t+1) h (R (t+1) h) (10) In (9), we must ensure q (t+1) h (R (t+1) i) ≥ 0 for i ̸ = h. Since q(t) i (R (t) i) ≥ q (t) i (R (t)
i), we will always have q

(t+1) i (R (t+1) i) ≥ q (t) i (R (t)
i) ≥ 0. Thus, the second constraint of our optimization problem [START_REF] Richardson | Rewarding high-quality data via influence functions[END_REF] is satisfied for all i and t.

B. Shapley Based fair Cost Efficient dynamic joint Load Balancing and Pricing algorithm (SB-CELBP)

In CELBP, the pricing mechanism does not explicitly consider the unique contributions of each worker. As a result, Algorithm 1 Cost Efficient Dynamic Joint Load Balancing and Pricing Algorithm (CELBP).

Input: Number of Rounds, T ; Step size, α (0) . Initialization: At t = 0, do:

1: for i = 1 to N do 2:
Controller node randomly assigns subtasks, workers compute costs, send costs to server, server determines prices using Yardstick rule.

3:

Workers calculate profit, decide to participate if positive, and receive subtasks and prices from controller node.

for i = 1 to |N ′ | do 9:
Controller identifies worker with highest cost (h), sends step size and h to all workers. 10:

if (i ̸ = h) then 11: Workers compute q(t) i (R (t)
i), update subtasks using [START_REF] Sarikaya | Motivating workers in federated learning: A stackelberg game perspective[END_REF], and send to controller. Controller computes subtasks for h using (9), sends to h. Workers compute updated costs, send costs and subtasks to controller, controller computes prices and sends to workers. Server updates α (t+1) using [START_REF] Zeng | Fmore: An incentive scheme of multi-dimensional auction for federated learning in mec[END_REF], sends to workers. 19: end for some workers may receive disproportionately high or low rewards compared to their actual contributions to the global model. This discrepancy may lead to imbalanced incentives and ultimately impact worker participation and overall system performance. To remedy this, SB-CELBP utilizes the Shapley value, a concept from cooperative game theory, to measure each worker's marginal contribution to the global model's accuracy. By calculating the Shapley value of each worker and integrating it into the pricing mechanism, SB-CELBP ensures that the rewards are allocated fairly, based on each worker's actual contribution. This fair pricing mechanism can encourage more workers to participate in the training process, enhance their overall satisfaction, and improve the performance and stability of the federated learning system.

In this work we consider a pricing mechanism that takes into account each worker's Shapley value, which is based on their marginal contribution to the global model's accuracy. A worker's marginal contribution is evaluated by measuring the improvement in model accuracy when they participate in the training process. Due to space constraints, we outline the process of SB-CELBP instead of providing its pseudocode. After training the model with their newly allocated subtasks, the controller node calculates the participating workers' Shapley values as follows:

SV (t) i = 1 |N ′ |! π(A) [acc (t) π(A ∪ i) -acc (t) π(A)] (11)
Here, SV (t) i represents worker i's Shapley value at round t, reflecting their marginal contribution to the model's overall accuracy trained on the federated dataset. |N ′ | is the number of workers in the coalition, A is a coalition of workers, and π(A) denotes all possible permutations of workers in coalition A. Let acc (t) π(A ∪ i) be the accuracy of the model trained on data contributed by the coalition A augmented with worker i's data under permutation π at round t.

In this work, we use Upper Confidence Bound1 (UCB1) [START_REF] Auer | Finite-time analysis of the multiarmed bandit problem[END_REF], a heuristic algorithm employed in Multi-Armed Bandit problems (MAB) [START_REF] Li | An optimal online method of selecting source policies for reinforcement learning[END_REF], to identify the best-performing workers [START_REF] Li | An optimal online method of selecting source policies for reinforcement learning[END_REF]. UCB1 estimates worker performance using a probabilistic model and balances exploration and exploitation based on a confidence bound that considers uncertainty in the estimates. The objective is to select workers with higher cooperation to enhance the accuracy of the global model.

After computing the Shapley values of the workers, the controller node checks if the workers have contributed data. If so, the controller node calculates the UCB1 scores of all the workers as follows.

UCB1(i) = SV (k) i T (i) + 2. ln(k) T (i) (12)
Here UCB1(i) represents worker i's Upper Confidence Bound. T (i) is the number of times worker i has been selected so far, SV

(k) i
is the Shapley value obtained from worker i so far, k is the total number of rounds completed so far. The first term SV (k) i T (i) represents the average profit obtained from worker i, and the second term 2. ln(k) T (i) represents the level of uncertainty in the estimate. The term ln(k) represents the natural logarithm of k, and a constant 2 is selected to balance exploration and exploitation. After computing UCB1 scores, the controller node selects the worker with the highest UCB1 score and updates its batch size by adding 1 to the previous value. Workers at the top of the descending UCB1 score list, whose coalition reaches the target accuracy (average Shapley values of the workers), are assigned prices. The assigned workers calculate their costs based on the updated batch sizes and subtasks and send the cost values to the controller node. The controller node then determines their prices using [START_REF] Su | Adaptive load balancing for parallel gnn training[END_REF] and sends the corresponding prices to them.

R (t) i =   1 N ′ -1 i̸ =j C (t) j (ϵ j)   • 1 + SV (t) i SV (t) ave) (13)
SV (t)
ave in (13) represents the average Shapley value of all participating workers at round t.

Finally, the controller node computes the total cost using equation (4), and updates α (t+1) using equation [START_REF] Zeng | Fmore: An incentive scheme of multi-dimensional auction for federated learning in mec[END_REF].

C. Dynamic Regret Analysis

In this section, we examine the performance of our proposed algorithms, CELBP and SB-CELBP, by obtaining an upper bound on their dynamic regret. The dynamic regret analysis measures the algorithms' effectiveness in adapting to changes in the problem setting over time. Our optimization problem aims to minimize the total cost of the server for all workers over the time horizon T. This can be interpreted as minimizing the accumulated cost for the worker with the highest cost at each time step.

To clarify, we can express our objective as follows:

min q (t) t∈T max i∈N ′ q (t) i R (t) i R (t) i subject to N ′ i=1 q (t) i R (t) i = Q, ∀t ∈ T q (t) i (R (t) i) ≥ 0, ∀i ∈ N ′ , ∀t ∈ T (14)
Here, our goal is to minimize the sum of the maximum cost among all workers N ′ for each time step t ∈ T . This objective is subject to two constraints: (1) the total workload assigned to workers must be equal to Q for each time step, and (2) the allocated workload for each worker must be non-negative at all time steps.

By analyzing the dynamic regret, we can assess how well our proposed algorithms adapt to the changing conditions of the optimization problem over time. This analysis is crucial for understanding the effectiveness of the algorithms in dynamic and uncertain environments commonly encountered in realworld distributed learning systems.

If

f (t) (q (t)) = max i∈N ′ q (t) i (R (t) i)R (t)
i , the dynamic regret on time horizon T is written as:

Reg d T = t∈T f (t) (q (t)) - t∈T f (t) (q * (t)) (15)
Theorem 5. Given the optimization problem defined in [START_REF] Richardson | Rewarding high-quality data via influence functions[END_REF], the dynamic regret Reg d T for the sequence of allocated subtasks q (t) determined by the CELBP is upper-bounded as follows:

Reg d T ≤ T L 2 1 α (T) + P T α (T) + T t=1 N -1 2 + N α (t) 2 , (16
)
where L is Lipschitz constant, α (t) are step sizes, N is the number of workers, and P T is the path length of the dynamic minimizer. For proof please refer to APPENDIX E.

VI. NUMERICAL RESULTS

In this section, we present the numerical results to evaluate the performance of CELBP and SB-CELBP algorithms, demonstrating their effectiveness in achieving the following objectives: (i) reducing the total payment of the server for the completion of the training of an FL model, and (ii) attaining the target accuracy in the shortest possible time. We compare the performance of our proposed algorithms with several benchmark algorithms to illustrate their advantages. The parameters used in our simulations are listed in Table I. We consider a federated learning scenario involving N = 8 heterogeneous workers with varying communication and computation capabilities. The workers have different efficiency levels, which, for simplicity, remain constant over time. The workers train the LeNet-5 model, which includes 30 convolutional layers, 15 max pool layers, 13 convolutional layers, and six max pool layers arranged sequentially, with a flattening layer and two fully connected layers of size 120 and 84.

Our experiments employ two datasets: MNIST and CIFAR10.

The MNIST dataset comprises 60,000 handwritten images of size 28x28 pixels, while the CIFAR10 dataset contains 60,000 images of size 32x32 pixels, distributed across 10 classes.

In the following, we discuss the outcomes of our numerical experiments and compare the performance of CELBP and SB-CELBP with benchmark algorithms. We evaluate the performance of our Cost-Effective Dynamic Joint Load Balancing and Pricing algorithm (CELBP) by comparing it with the following benchmark algorithms:

• Linear Task Assignment and No Price Regulation (It is referred to as "linearly task dividing based on proposed prices" in legends of plots): The server allocates the number of subtasks inversely proportional to the prices offered by eligible workers. Consequently, the server All algorithms are initialized with the same workload division. However, they may not involve the same number of workers. The CELBP algorithm guarantees positive profits for workers to complete the assigned subtask, so workers with negative profits do not participate in task completion. As a result, this algorithm employs fewer workers than the others.

A. Training Latency Comparison:

Figures 1 and2 compare the training latency using MNIST and CIFAR10 datasets, respectively, over the number of rounds T . According to the figures, CELBP accelerates the training time per round by up to 215%, 53%, and 15% for MNIST, and up to 200%, 78%, and 43% for CIFAR10 compared to the Linear Task Dividing (static case), Online Load Balancing, and Equal Task Dividing algorithms, respectively. The Linear Task Dividing algorithm (static case) has poor latency because it lacks load-balancing, potentially overburdening the straggler workers. Both CELBP and Online Load Balancing consider worker costs, but Online Load Balancing requires more rounds and may lead to longer training periods as workers only have access to workload rate, not precise data sampling index as a result of using some data samples multiple times.

B. Aggregated Training Time Comparison:

Figures 3 and4 compare the aggregated training time for the various algorithms during training rounds using the MNIST and CIFAR10 datasets, respectively. The linear task-dividing algorithm has the worst latency in both datasets, followed by the equal task-dividing algorithm in CIFAR10 due to the lack of online load balancing. CELBP and Online Load Balancing have a minor latency difference that increases over rounds. CELBP outperforms linear task dividing, Online Load Balancing, and equal task dividing algorithms by 123%, 24%, and 18% in MNIST, and reduces the aggregated wall-clock training time by up to 95%, 53%, and 28% in CIFAR10 compared to linear task division, equal task division, and Online Load Balancing only algorithms, respectively. respectively.

C. Server Cost Comparison:

Figure 5 compares the total cost of the server across different algorithms. The linear task-dividing algorithm incurs the highest cost due to inefficient pricing, where prices are determined based on the workers' proposed prices. Although Equal Task Dividing uses the Yardstick pricing rule and divides the load equally, assigning the load to less efficient workers raises the total cost. CELBP reduces the server's cost by up to 20% and 100% compared to Equal and Linear Task Dividing, respectively, by adaptively shifting the load from the highest-priced worker to others, considering their potential, and using Yardstick pricing. As Distributed Online Load Balancing does not have a pricing mechanism, it is not plotted in this figure.

D. Training Accuracy Comparison:

Our primary goals in developing CELBP were to reduce the server's cost and expedite the training process. Figures 6 and7 demonstrate that CELBP improves overall average accuracy over time. In MNIST, CELBP reduces training time by 200% compared to Linear Task Division and by 25% compared to other algorithms at 60% accuracy. As illustrated in Figure 7, this improvement is even more significant in the CIFAR10 dataset and CELBP outperforms other algorithms by achieving 32% accuracy.

E. SB-CELBP Performance Evaluation:

Figure 8 presents our experiment results on SB-CELBP's effectiveness in reducing the controller node's total cost compared to CELBP. SB-CELBP achieves this by giving prices only to the first workers that reach the target accuracy resulting in fewer workers receiving prices and significant cost reduction for the controller node. Both algorithms initially experience a cost drop due to load balancing, which reassigns subtasks from the highest-cost worker to others starting from the first iteration. Figure 9 shows that SB-CELBP also reduces workers' training time by updating the batch size of the worker with the highest UCB1 score. However, the server's computational overhead in SB-CELBP is at least 120% higher than in CELBP due to additional computations required for Shapley value and UCB1 score calculations.

In conclusion, our proposed adaptive balancing and pricing strategies effectively reduce the server's total cost while improving accuracy and training speed over iteration cycles and wall clock time. This shows that our CELBP and SB-CELBP algorithms successfully achieve their objectives of minimizing cost and accelerating training, outperforming existing benchmark algorithms in terms of latency, cost-efficiency, and accuracy.

VII. CONCLUSIONS

Federated learning has garnered significant interest in the realm of incentive mechanism design to motivate computing nodes. This paper investigates both static and dynamic scenarios for incentive design by the novel application of the Yardstick Competition regulation that helps align worker incentives and promote cost-efficient task completion. In the static case, worker nodes are assigned subtasks based on a linear function of their proposed prices. In the dynamic setting, we introduce the CELBP and SB-CELBP algorithms.

CELBP aims to minimize the server's total cost by dynamically allocating subtasks to participating workers, efficiently balancing the workload, reducing the subtasks assigned to the highest-cost worker, and setting prices for worker nodes using the yardstick pricing rule. To tackle the fairness challenge, we propose SB-CELBP, which balances the workload effectively, reduces the subtasks of the highest-cost worker, and determines prices based on Shapley values. The yardstick pricing rule is employed for the first workers with the highest UCB1 scores who contribute to achieving the global model's target accuracy through their coalition.

Our simulation results demonstrate that the proposed online algorithms, CELBP and SB-CELBP, significantly reduce the server's total cost in comparison to other algorithms discussed in this paper. Furthermore, our online algorithms enhance accuracy and decrease latency when compared to alternative approaches. Overall, the proposed adaptive balancing and pricing strategies offer effective and efficient solutions to cost optimization and fairness in federated learning systems.

APPENDIX A PROOF OF LEMMA 1

To simplify the notation, the superscript (t) is removed in this proof.

To be more precise, we consider a total energy cost for computation and transmission, denoted by ψ i (ξ i), in addition to C i (ϵ i), which is obtained as follows:

ψ i (ξ i ((P i)) = γ(κ i c i P 2 i + p i T trans i). (17)
Here, κ i is a constant that depends on the architecture of the chip, c i denotes the number of CPU cycles required for each worker to complete the assigned task, p i is the transmission power, P i refers to the CPU cycles allocated to worker i to complete the task, and γ refers to the price of units of energy investment.

In the dynamic case, the efficiency level is assumed to change over time, where the derivative of the efficiency level with respect to time is defined as follows:

εi (t) = -δ i ϵ i (t) + θ i ξ i (t), (18)
Here δ i ∈ (0, 1) is the depreciation rate of worker i. The amount of energy spent by worker i to compute the allocated sub-task and transmit the result back to the master node is denoted by ξ i (t). The value of θ is constant for each worker node and θ ≥ 0.

Using the discrete Hamiltonian function for the optimal control problem, the problem is written as follows:

(19) H(R i , ξ i (P i), ϵ i , λ) = [R i -C i (ϵ i)]q i (R i) -ψ i (ξ i (P i)) + λ(-δϵ i + θξ i (P i)).
The Hamiltonian is concave with respect to variables when its Hessian matrix is negative definite.

∇ 2 H =     ∂ 2 H ∂Ri 2 ∂ 2 H ∂Ri ∂ξi(Pi) ∂ 2 H ∂Ri ∂ϵi ∂ 2 H ∂ξi(Pi) ∂Ri ∂ 2 H ∂ξi(Pi) 2 ∂ 2 H ∂ξi(Pi) ∂ϵi ∂ 2 H ∂ϵi ∂Ri ∂ 2 H ∂ϵi ∂ξi(Pi) ∂ 2 H ∂ϵi 2     ∇ 2 H =     2q ′ i (R i) +[R i -C i (ϵ i)]q ′′ i (R i) 0 -C ′ i (ϵ i)q ′ i (R i) 0 -ψ ′′ i (ξ i (P i) 0 -C ′ i (ϵ i)q ′ i (R i) 0 -C ′′ i (ϵ i)q i (R i)    
If all the coefficients of the characteristic polynomial are positive, this matrix is negative definite, i.e.,

ψ ′′ i (ξ i (P i) -[2q ′ i (R i) + [R i -C i (ϵ i)]q ′′ i (R i)] + C ′′ i (ϵ i)q i (R i) > 0, (20)
(21) -ψ ′′ i (ξ i (P i))[2q ′ i (R i) + [R i -C i (ϵ i)]q ′′ i (R i) -C ′′ i (ϵ i)q i (R i)] > [C ′ i (ϵ i)q ′ i (R i)] 2 +[2q ′ i (R i)+[R i -C i (ϵ i)]q ′′ i (R i)][C ′′ i (ϵ i)q i (R i)], (22)
ψ ′′ i (ξ i (P i))[[C ′ i (ϵ i)q ′ i (R i)] 2 + [2q ′ i (R i) + [R i -C i (ϵ i)]q ′′ i (R i)][C ′′ i (ϵ i)q i (R i)]] < 0,
By knowing ψ ′′ i (ξ i (P i)) is positive values, we obtain:

(23) [C ′ i (ϵ i)q ′ i (R i)] 2 + [2q ′ i (R i) + [R i -C i (ϵ i)]q ′′ i (R i)][C ′′ i (ϵ i)q i (R i)] < 0. APPENDIX B PROOF OF LEMMA 2 By substituting q (t) i (R (t) i) = Q -αR (t) i , and C (t) i (ϵ i) = β i e - ϵ i T total i in (6): αβ T total i e - ϵ i T total i 2 -α β T total i 2 • e - ϵ i T total i (Q-αR (t) i) < 0 αC (t) i (ϵ i) T total i 2 - αC (t) i (ϵ i) T total i 2 (Q -αR (t) i) < 0 Q -αC (t) i (ϵ i) α > R (t) i (24)
(24) determines the upper bound of the price that satisfies the concavity of the profit function of the workers. We can rewrite the profit optimization problem taking into account the upper bound of the price.

max Ri π (t) i = (R (t) i -C i (ϵ)) (t) q (t) i (R (t) i) -ψ (t) i (ξ i (P i)) (25)
subject to: R

t) i < Q -αC (t) i (ϵ i) α . (
Since the optimization problem is convex, the KKT conditions are necessary and sufficient. By defining the Lagrangian function as

L(R (t) i , λ) = π (t) i -λ R (t) i - Q -αC (t) i (ϵ i) α , (26)
where λ denotes Lagrangian multiplayer. The first necessary KKT conditions state that:

∂L(R (t) i , λ) R (t) i = 0. (27)
Solving (27) we will have:

Q -2αR (t) i + αC (t) i (ϵ) -λ = 0 (28) λ = Q -2αR (t) i + αC (t) i (ϵ) (29)
The remaining KKT conditions are as follows.

λ(R

(t) i - Q -αC (t) i (ϵ i) α) = 0, (30)
λ ≥ 0, (31)
R (t) i > 0, (32)
R (t) i < Q -αC (t) i (ϵ i) α . (33)
We consider two cases where λ = 0 and λ ̸ = 0. Assuming that λ = 0 is true and solving (29), R

t) i = Q+αC (t) i (ϵi) 2α (
is obtained and should satisfy (33). Thus, it is obtained as follows:

Q + αC (t) i (ϵ) 2α < Q -αC (t) i (ϵ) α α < Q 3C (t) i (ϵ) . (34)
To satisfy (33), the value of α should therefore be positive:

0 < α < Q 3C (t) i (ϵ) . (35)
Assuming that the second case (λ ̸ = 0) is true, we will have:

R (t) i = Q -αC (t) i (ϵ) α (36)
which does not satisfy the condition (33). Therefore, λ = 0 is the true assumption.

APPENDIX C PROOF OF LEMMA 3

A worker participates in the federation if the worker's profit is positive.

π (t) i =(R (t) i -C (t) i)q (t) i (R (t) i) > 0. q (t) i (R (t) i) > 1 R (t) i -C (t) i R (t) i = 1 N -1 i̸ =j C (t) j (ϵj) . (37
) APPENDIX D PROOF OF LEMMA 4 Ĉ(t) i ≤ max (C (t) i)
Using equation (3) we will have the following: THEOREM 5 In (16) q * (t) is the instantaneous minimizer of problem [START_REF] Shleifer | A theory of yardstick competition[END_REF] and F is its feasible set. Dynamic regret depends on the path length that measures how dynamically the system environment changes over time and is obtained as follows.

βe - ϵ i T total i ≤ max (C (t) i) T total i ≤ - ϵ i ln(max(C (t) i) βi) T trans i + T comp i ≤ - ϵ i ln(max(C (t) i) βi) T trans i + c i .q i P i ≤ - ϵ i ln(max(C (t) i) βi) q i ≤ -ϵ i .P i c i ln(max(C (t) i) βi) - P i .T trans i c i q(t) i = -ϵ i .P i c i ln(max(C (t) i) βi) - P i .T trans i c i APPENDIX E PROOF OF
P T = T t=2
||q * (t-1) -q * (t) || 2 (38)

Now we aim to derive the dynamic regret bound of our proposed algorithm. With the updating rule of q (t+1) i = q (t) i -α (t) (q (t) i -q(t) i), we have: -2αW (t)T (q (t) -q * (t)) (39)

||q (t+1) -q * (
Here

W (t) i = q (t) i - q(t) i i ̸ = h -j̸ =h (q (t) j - q(t) j) i = h
is the maximum workload that worker i in round t can accept and

W (t) = [W (t) 1 , . . . , W (t)
N] To simplify (39) we need some additional derivations as follows.

i̸ =h (q (t) i -q(t) i)(q

(t) i -q * (t) i) = i̸ =h q (t) i - q(t) i + q * (t) i 2 2 - q(t) i -q * (t) i 2 2 ≥ - i̸ =h (q (t) i -q * (t) i) 2 2 ≥ - N -1 4 (40)
Also from (40) we have W (t)T (q (t) -q * (t)) = i̸ =h (q

(t) i - q(t) i)(q (t) i -q * (t) i) -(q (t) h -q * (t) h) i̸ =h (q (t) i - q(t) i) ≥ - N -1 4 + (q (t) h -q * (t) h) i̸ =h (q (t) i -q (t) i) (41)
Since for any round t and any feasible solution q t , f

h (q (t) h) = f (t) (q (t)) ≥ f (t) (q * (t)) = max j∈N f (t) j (q * (t) j

) ≥ f (t)

h (q * (t) h) (42)
and since f (t) i (.) is a nondecreasing function, we will have q(t)

i ≥ q (t)

i and q(t) i ≥ q * (t) i . Since i∈N q t i = Q we will have i̸ =h (q

(t) i -q (t) i) ≥ i̸ =h (q * (t) i -q (t) i) = (Q -q * (t) h) -(Q -q (t) h) = q (t) h -q * (t) h (43)
Thus by substituting (43) in (41) we will have

W (t)T (q t -q * (t)) ≥ - N -1 4 + (q * (t) h -q (t) h) 2 (44)
Now using the Lipschitz inequality, which is a commonly used assumption and states |f (t) i (q 1) -f (t) i (q 2)|≤ L|q 1q 2 | ∀i, we will have

(q * (t) h -q (t) h) 2 ≥ f (t) h (q (t) h) -f (t) h (q * (t) h) L 2 ≥ f (t) h (q (t) h) -f (t) h * (q * (t) h *) L 2 ≥
f (t) (q (t)) -f (t) (q * (t)) L 2 (45) where h * = arg max i∈N f (t) i (q * (t) i

) denotes the worker with the highest cost in round t with the instantaneous optimal solution q * (t) i

.

f (t) h (q (t) h)-f (t) h (q * (t) h) L 2 ≥ f (t) h (q (t) h)-f (t) h * (q * (t) h *) L 2 in (45) holds since f (t) h (q * (t) h) ≤ f * (t)
h (q * (t) h *). Thus, we also have N -1 4 + W (t)T (q t -q * (t)) ≥ [f (t) (q (t)) -f (t) (q * (t)) L] 2 (46) Now by summing up the right-hand side of the (46) over t, and from (39) we will have

1 L 2 T t=1
(f (t) (q (t)) -f (t) (q * (t))) 2 ≤ T t=1 W (t)T (q (t) -q * (t)) + N -1 4 q (1)T q * (1) α (1) + q (t)T q (t+1) α (T) + T t=2 (q (t)T q * (t-1) α (t-1) -q (t)T q * (t) α (t)) +

≤ T t=1 1 2α (t) (||q (t) -q * (t) || 2 -||q (t+1) -q * (t) || 2) + T t=1 N -1 2 + N α (t) 2 = ||q (
T t=1 N -1 2 + N α (t) 2 ≤ ||q (1) || 2 2α (1)
+ q (t)T q (t+1) 2α (T) + 1 α (T) T t=2 (q * (t-1) -q * (t)) T q (t)

+ T t=1 N -1 2 + N α (t) 2 ≤ 1 α (T) + P T α (T) + T t=1 N -1 2 + N α (t) 2 (47)
As the inequality 1 T t q (t) ≤ 1 T t (q (t)) 2 holds for any q (t) we also have

Reg d T = T t=1 f (t) (q (t)) -f (t) (q * (t)) ≤ T T t=1
(f (t) (q (t)) -f (t) (q * (t)))

2 ≤ T L 2 (1 α (T) + P T α (T) + T t=1 N -1 2 + N α (t)
2)

(48)

4 :

 4 Controller node computes its total cost C (0) T otal . 5: end for 6: Out put: N ′ and C (0) T otal . Main Process: Perform the following steps for T rounds.7: for t = 0 to T do 8:

16 :

 16 Controller computes total cost.

 algorithm Equally task dividing with Yardstick rule Linearly task dividing based on proposed prices Online algorithm with different cost function

Figure 1 :

 1 Figure 1: Per round latency in milliseconds (MNIST data set)

Figure 2 :

 2 Figure 2: Per round latency in milliseconds (CIFAR10 data set)

Figure 3 :

 3 Figure 3: Aggregated wall-clock training time in milliseconds per round (MNIST data set)

Figure 4 :

 4 Figure 4: Aggregated wall-clock training time in milliseconds per round (CI-FAR10 data set)

Figure 5 :

 5 Figure 5: Total cost of the server

Figure 6 :

 6 Figure 6: Aggregated average accuracy versus wall-clock time in milliseconds (MNIST data set)

Figure 7 :Figure 8 :Figure 9 :

 789 Figure 7: Aggregated average accuracy versus wall clock time in milliseconds (CIFAR10 data set)

 -1))||q (t) || 2 -

Table I :

 I Values of the Parameters in Numerical Experiments

		0.6		Our proposed online algorithm Equally task dividing with Yardstick rule
				Linearly task dividing based on proposed prices
		0.5		Online algorithm with different cost function
	Average accuracy	0.2 0.3 0.4						
		0.1						
		0.0						
		0	500	1000	1500 time	2000	2500	3000	3500
									Parameter	Symbol	Value
									Total number of subtasks	Q	50000
									Number of workers	N	8
									Efficiency level of worker	ϵ i	Random ∈ (0,10)
									Constant value of the cost function	β i	Random ∈ (500,1000)
									Bandwidth	B	3 kHz
									Maximum transmit power	p i h i	28 dBm
									Noise power density	N 0	10 -6 W/Hz
									Signal to interference plus noise ratio Maximum time duration to	SINR c i P i	22 dB 15 ms
									compute 1 unit sub-task
									Maximum time duration to	b i r i	5 ms
									transmit the result
									assigns more subtasks to workers with lower suggested
									prices to minimize its overall cost.
									• Equal Task Assignment and Yardstick Pricing: In this
									algorithm, the server's total load is evenly distributed
									among workers, and each worker receives a reward based
									on the Yardstick pricing rule.

• Online Load Balancing without Pricing (referred to as the Online algorithm with a distinct cost function): This algorithm dynamically balances the workers' load in task completion time and dynamically shifts the straggler

 t) || 2 = ||q (t) -q * (t) -α (t) W (t) ||

	2

2 = ||q (t) -q * (t) || 2 + (α (t)) 2 ||W (t) ||