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The Short Time Fourier Transform (STFT) of white noise present well-known properties regarding the distribution of its zeroes. In this letter, we propose a method to locate them beyond the usual time-frequency grid, in order to gain a better understanding on the underlying point process. To do so, we use a recent method based on off-the-grid sparse analysis, that aim at finding the best set of atomic shape forming the STFT modulus. We also improve it by ensuring the resulting combination of atoms minimizes a criterion based on the theoretical behavior of the set of zeros. Numerical experiments support our approach and show, with respect to discrete methods, an improved statistical power for the detection of signals in white noise.

I. INTRODUCTION

The zeros of the Short-Time Fourier Transform (STFT) of white noise present a well-known structure which has been the topic of several studies, see e.g. [START_REF] Flandrin | Time-frequency filtering based on spectrogram zeros[END_REF], [START_REF] Flandrin | Explorations in time-frequency analysis[END_REF], [START_REF] Bardenet | On the zeros of the spectrogram of white noise[END_REF], [START_REF] Bardenet | Time-frequency transforms of white noises and gaussian analytic functions[END_REF], [START_REF] Luis | Efficient computation of the zeros of the bargmann transform under additive white noise[END_REF], offering a promising statistical tool for filtering, detection or reconstruction of signal in presence of white noise. In this letter, we aim at providing an off-the-grid framework for the retrieval of their position beyond the sampling grid of the STFT.

A. Zeros of the STFT

The STFT of a signal x ∈ L 2 (R) is:

S γ x(τ, f ) = R x(t)γ(t -τ )e -2iπf t dt; (1) 
where τ ∈ R and f ∈ R * locate the STFT in time and frequency, and γ is an observation window. Assuming here and in the following that γ(t) is a Gaussian circular window, the STFT of (real or complex) white noise is equivalent to a planar Gaussian Analytic Function (GAF) [START_REF] Bardenet | On the zeros of the spectrogram of white noise[END_REF]. So the zeros of the STFT coincide with the zeros of a GAF, whose theoretical properties are known [START_REF] Ben Hough | Zeros of Gaussian analytic functions and determinantal point processes[END_REF], [START_REF] Feldheim | Zeroes of gaussian analytic functions with translationinvariant distribution[END_REF]. Numerically, the STFT is computed on a grid, so the zeros are only available from this discretization. In the literature, two methods retrieve the set of zeros from the STFT:

• In [START_REF] Bardenet | On the zeros of the spectrogram of white noise[END_REF], [START_REF] Flandrin | Time-frequency filtering based on spectrogram zeros[END_REF], the authors search for local minima among 8-pixels neighborhoods. We refer to it as the Local Neighborhood (LN) methods afterwards.

• In [START_REF] Luis | Efficient computation of the zeros of the bargmann transform under additive white noise[END_REF], the authors introduced the Adaptive Minimal grid Neighbors (AMN) method which is proven to reach the accurate zero set, with a precision depending of the grid spacing. Up to our knowledge, there is no method that allows to provide a gridless zero set recovery. Submitted on March 24, 2022. JBC, AM, BC and AD are within IRIMAS, UR 7499, Université de Haute-Alsace, Mulhouse, France. Contact: jean-baptiste.courbot@uha.fr.

B. Off-the-grid sparse analysis

Sparse analysis aims at decomposing an observation y ∈ R P , P ∈ N into elementary atoms, typically assuming:

y = N n=1 G(z n , σ n , w n ) + ϵ. ( 2 
)
where G is the atomic shape to consider, z n locates the n-th spike, σ n its width, and w n its weight. Sparse analysis aims at finding, from a given y, the best values for the (z n , σ n , w n ) together with their number. Generally speaking, limiting the search space to a grid has known limitations, notably regarding the stability of the methods when refining the search grid [START_REF] Duval | Exact support recovery for sparse spikes deconvolution[END_REF]. More recent approaches [START_REF] De | Exact reconstruction using beurling minimal extrapolation[END_REF], [START_REF] Bredies | Inverse problems in spaces of measures[END_REF], [START_REF] Emmanuel | Towards a mathematical theory of super-resolution[END_REF] have recast the problem in a continuous fashion. In this framework, each atom is described by a weighted Dirac mass locating its parameters in the space of measures:

y = Φµ + ϵ (3) 
where µ = N n=1 w n δ zn,σn and Φ : M(D) → R P embeds G, and ϵ is a perturbation term. We assume that (z n , σ n , w n ) ∈ D, and that M(D) is the Radon space of measure over D, so that µ ∈ M(D).

This kind of approach, besides the more precise formulation of the problem, also offers recovery guarantees under mild conditions [START_REF] Denoyelle | The sliding frank-wolfe algorithm and its application to super-resolution microscopy[END_REF], yielding for instance the Sliding Frank-Wolfe (SFW) algorithm. For practical considerations, the choice of the regularization parameter is also of importance. Based on analogous discrete-valued problems [START_REF] Michael R Osborne | A new approach to variable selection in least squares problems[END_REF], we proposed in [START_REF] Courbot | A fast homotopy algorithm for gridless sparse recovery[END_REF] an homotopy method that allow to replace this choice by a noise-related criterion.

C. Methodology

In this letter, our aim is to take the sparse off-the-grid approach to locate, in a continuous setting, the zeros of the STFT of white noise. To simplify the discussion regarding the symmetry w.r.t. the real axis in the real-valued case, we assume that the white noise is complex. In the following, we note S the STFT of a white Gaussian noise.

We address at first the problem modeling in Section II-A, before moving to algorithmic considerations in Section II-B. Then, we will present numerical results validating the approach in Section III.

II. FINDING OFF-THE-GRID ZEROS

A. Observation model and problem

STFT topology near the zeros. We aim at finding the localization of the zeros of the STFT over a continuous domain, modeling zeros as atomic shapes. To do so, we need to account Fig. 1: Averaged radial profile in the vicinity of zeros, as determined by the discrete LN method [START_REF] Bardenet | On the zeros of the spectrogram of white noise[END_REF]. In color are superimposed possible atomic shape fit γ 0 -e(z) (Eq. ( 5)). r = |z -z 0 | depicts the distance in the complex plane from the zeros z 0 , and the average was obtained on 10 3 zeros.

for the shape of the STFT modulus |S| in the vicinity of zeros.

While the location of the zeros has been the topic of many studies [START_REF] Flandrin | Time-frequency filtering based on spectrogram zeros[END_REF], [START_REF] Bardenet | On the zeros of the spectrogram of white noise[END_REF], [START_REF] Luis | Efficient computation of the zeros of the bargmann transform under additive white noise[END_REF], to our knowledge only a few studies address the question of the vicinity of the zeros in white noise STFT. From [START_REF] Flandrin | Explorations in time-frequency analysis[END_REF]Chap.15] and originally from [START_REF] Toda | Phase retrieval problem in quantum chaos and its relation to the origin of irreversibility i[END_REF], we have that the analytic STFT admits a Weierstrass-Hadamard factorization from its corresponding Bargmann transform. At any point z = τ + if ∈ C:

S(z) = e -|z| 2 4 z m e P2(z) n 1 - z z n exp z z n + z 2 2z 2 n ; (4) 
where m≥0, P 2 (z) = C 0 + C 1 z + C 2 z 2 and z n locates the n-th zero of the STFT in the complex plane. This factorisation is sometimes called the Husimi representation of the STFT of white noise. However, such decomposition is not helpful to recover the STFT from the positions of the zero only. Indeed, m, C 0 , C 1 and C 2 are unknown, and the product involves possibly infinitely-many terms. The only available approximation so far, from [START_REF] Flandrin | Explorations in time-frequency analysis[END_REF]Chap.15], is that

|S(z)| ∝ |z -z n | when z → z n .
Then, we adopt an empirical approach to choose an atomic shape that will represent the STFT in the vicinity of zeros. We consider for now elementary shape of the form:

e(z) = exp(- 1 2 |z -z n | d σ d ); (5) 
with d = 1 (Laplace kernel), d = 2 (Gaussian) or d = 3/2 (Generalized Gaussian).
In Fig. 1 we depicts the average topology of the modulus of the STFT in the neighborhood of zeros, superimposed by various kernel fit. From this kind of observation we can not determine what would be the "best shape", so numerical experiments considering these three options will allow, in Section III, to determine the best choice in terms of spike location. Observation model. The average value of the STFT of white noise is its power spectrum density γ 0 (see [START_REF] Flandrin | Explorations in time-frequency analysis[END_REF]Section 13.2] and Fig. 1). In order to handle positive spikes, we make make the following convenience transformation: y = 1 -|S|/γ 0 . This does not modify the reasoning developed afterwards. So henceforth, we consider values of y above zero as indicating a potential spike, and ignore y below zero in order to avoid fitting regions without interest for spike location. Then, we model y as in (2) [START_REF] Bardenet | On the zeros of the spectrogram of white noise[END_REF], where µ locates each zero in the time-frequency plane.

In usual image-processing problems ϵ encodes an additive noise originating from the data formation. In our context there is no observation noise, but an unknown discrepancy term between the spike mixture and the actual STFT.

Inference. Finding µ from y can be made by forming the following Beurling LASSO (or BLASSO, see [START_REF] Azais | Spike detection from inaccurate samplings[END_REF]) problem:

arg min µ∈M(D) C λ (µ) = arg min µ∈M(D) ∥y -Φµ∥ 2 2 + λ|µ| TV . (P λ )
λ is a regularization parameter to set, and the operator |•| TV encodes the total variation of measures, so |µ| TV = N n=1 |w n |. This operator is analog, in our problem, to a ℓ 1 norm.

B. Algorithms

Finding zeros with SFW. For a given λ, solving (P λ ) is feasible using the Sliding Frank-Wolfe (SFW) algorithm [START_REF] Denoyelle | The sliding frank-wolfe algorithm and its application to super-resolution microscopy[END_REF]. Starting from an initial guess, SFW repeats at each iteration k the following:

• Compute the approximate certificate η [k] : D → R as: η [k] = 1 λ Φ ⊤ (y -Φµ [k] ). (6) 
• Add a new atom to the support, maximizing η [k] .

• Adjust only the weights {w n }, minimizing C λ from (P λ ).

• Adjust each parameter {θ n , w n } minimizing C λ . Then, SFW stops when ∥η [k] ∥ ∞ < 1. Theoretical foundations of SFW as well as implementation details can be found in [START_REF] Denoyelle | The sliding frank-wolfe algorithm and its application to super-resolution microscopy[END_REF].

Homotopy algorithm. Finding the good λ for a given (P λ ) is not obvious. To circumvent this problem, we consider developing an homotopy algorithm as in [START_REF] Courbot | A fast homotopy algorithm for gridless sparse recovery[END_REF]. However, the latter relied on a simple noise-related criterion that allowed practitioners to set some "target" residual variance. As mentioned, such criterion is not helpful in the context of the STFT.

Instead, we propose to make use of the theoretical knowledge of the behavior of the zeros within STFT of white noise. In particular, the theoretical pair correlation function g 0 (r) is known [START_REF] Bardenet | On the zeros of the spectrogram of white noise[END_REF], [START_REF] Flandrin | Explorations in time-frequency analysis[END_REF] (see Fig. 3). This functions depicts the likeliness that a pair of points occurs, depending on the distance r between them. g 0 (r) < 1 indicates a repulsive range, g 0 (r) > 1 distances are more likely to occurs, while g 0 (r) ≃ 1 indicates independence, as in a Poisson process (constant g 0 (r) = 1).

Based on g 0 , we propose a ℓ g criterion measuring the cost of a point set z seen through the theoretical g 0 . Let us denote P(µ) the set of pair of atoms within µ. Then

ℓ g (µ) = 1 Card(P(µ)) (i,j)∈P(µ) -log(g 0 (|z i -z j |)). (7)
The intuition behind this choice is that as λ decreases, ℓ g (µ) attains a unique minimum. Indeed, for a decreasing sequence λ 1 > λ 2 > . . . λ k , the corresponding solutions µ 1 , µ 2 , . . . , µ k contains more and more atoms. Because the estimation happens within a bounded space, increasing the number of atoms also increase the density, implying that on average g 0 will be evaluated at a shorter range. This postulate seems difficult to prove: and |µ| TV respectively in (P λ )), and the ℓ g criterion (Eq. ( 7)) over 15 steps of the homotopy algorithm (Alg. 1), without stopping criterion for the purpose of illustration. Each color represent a different step and the stars depicts the average values per step. Note that the left graph depicts the typical piecewise-linear Pareto frontier describing the ℓ 2 / ℓ 1 tradeoff when λ decreases.

• Analytically, there is no explicit link between the pairwise point distance and the regularization parameter, so deriving ℓ g (µ) w.r.t. λ is not obvious. • The averaging operation is not interchangeable with g 0 . However, this postulate appears to be numerically valid, as shown in Fig. 2. These results allow to state that on average, the ℓ g criterion attains a unique minimum over the course of the homotopy algorithm, when applied on the modulus of STFT of white noise.

Starting from the zero set of a pixel-based method (as [START_REF] Bardenet | On the zeros of the spectrogram of white noise[END_REF], [START_REF] Luis | Efficient computation of the zeros of the bargmann transform under additive white noise[END_REF]), this allows to design a homotopy algorithm that repetitively decreases λ, solves (P λ ), compute ℓ g and stops when it has attained a minimum. Formally, this implies that the homotopy algorithm solves:

arg min µ λ ∈M(D)
ℓ g (µ λ ) subject to: µ λ is a solution to (P λ ) [START_REF] De | Exact reconstruction using beurling minimal extrapolation[END_REF] The homotopy method we propose is formalized in Alg 1, and the Python code is available at github.com/courbot/ sparse-OTG-zeros-STFT. Note that the update rule for λ ensures that in the next homotopy step, a new atom will be added because the SFW stopping criterion will not be met anymore (see [START_REF] Courbot | A fast homotopy algorithm for gridless sparse recovery[END_REF]). Note also that the boosted SFW introduced in [START_REF] Courbot | A fast homotopy algorithm for gridless sparse recovery[END_REF] to accelerate the appending of atoms is not relevant for the purpose of this paper, as the starting value of the homotopy algorithm already contains most of the atoms of the solution.

III. NUMERICAL EXPERIMENTS A. Functional and summary statistics

Point process realizations can be summarized, and compared, by summary statistics that describe their behavior with a real number. To do so, it is common (as in [START_REF] Bardenet | On the zeros of the spectrogram of white noise[END_REF]) to rely on some function of the inter-point distance r, as the pair correlation function g(r), or the Ripley K-function [START_REF] Loosmore | Statistical inference using the g or k point pattern spatial statistics[END_REF] and its variancestabilized version L, expressed as:

K(r) = 2π r 0 tg(t)dt and L(r) = K(r)/π; (9) 
or the empty space function F : until arg min

F (r) = p Card(z ∩ B(r)) ≥ 1 ; (10 
1≤i≤t {ℓ g (µ [i] )} ̸ = µ [t]
Set (µ [t-1] ) as the solution. End of the algorithm. Fig. 3: Estimated g(r) and L(r) -r statistics averaged over 100 realizations of STFT of complex white noise (plain lines) and their theoretical counterpart g 0 (r) and L 0 (r) -r (dotted).

with B(r) defining any ball of radius r within the domain of interest.

Following again [START_REF] Bardenet | On the zeros of the spectrogram of white noise[END_REF], we use two summary statistics over L, using L 0 as a known reference:

T L 2 = rmax rmin |L(r) -L 0 (r)| 2 dr (11) 
T L ∞ = sup rmin<r<rmax |L(r) -L 0 (r)| (12) 
Similar definitions holds for T F 2 and T F ∞ , with the peculiarity that F 0 is not known analytically (see e.g. [START_REF] Pascal | A covariant, discrete time-frequency representation tailored for zero-based signal detection[END_REF]); so it is replaced by its numerical average from experiments on white noise.

Usually one sets r min to 0 and study the behavior of the summary statistics with respect to the value of r max .

B. Experimental variations

Average estimations of g(r) and L(r) -r are given in Fig. 3, and the corresponding summary statistics are reported in Table I. This allows to determine that a Laplace kernel (i.e. d = 1 in Eq. ( 5)) is better suited to the problem than its alternatives. Besides, for the latter we observe on average lower T L 2 and T L ∞ values than with the discrete methods [START_REF] Bardenet | On the zeros of the spectrogram of white noise[END_REF], [START_REF] Luis | Efficient computation of the zeros of the bargmann transform under additive white noise[END_REF]. This suggest a better adequation of the H-SFW solutions with the GAF theoretical model. Then, we evaluate the methods in their success to detect correctly that a signal contains more than noise, that is we test the null hypothesis H 0 : "y contains only white Gaussian Fig. 4: STFT modulus for a white noise (left) and a white noise plus a chirp signal (right) with SNR = 12.5. The estimated zeros locations for LN [START_REF] Bardenet | On the zeros of the spectrogram of white noise[END_REF], AMN [START_REF] Luis | Efficient computation of the zeros of the bargmann transform under additive white noise[END_REF] and H-SFW (this paper) are superimposed.

noise" against its alternative. For simplicity, we focus on signal containing white Gaussian noise plus a chirp signal. To do so we rely on a Monte Carlo envelope test [START_REF] Baddeley | On tests of spatial pattern based on simulation envelopes[END_REF], following:

• set a target radius r max > 0 and r min = 0.

• compute K realizations of white noise as well as one realization of a noisy chirp signal. • for each, compute the associated point set either by LN, AMN, or the H-SFW method proposed in this paper. An example of result is given in Fig. 4. • For each point set compute the summary statistics T L 2 , T F 2 and T F ∞ , T F ∞ .

• for each summary statistic of a tested signal, if it is above the k-th greatest statistic of the white noise, we reject H 0 . Typically, setting K = 99 and k = 5, the significance level is α = k/(K + 1) = 0.05. We can repeat the experiment several times and estimate the frequency at which H 0 is rejected when it is false: we can estimate empirically the power β of the test. We also repeat the experiment by:

• changing the target r max • changing r max together with the SNR. The latter is defined as A 2 /2σ 2 , A being the chirp maximum amplitude, and σ 2 the noise variance. Fig. 5 and 6 respectively report the results for these two points.

C. Results and discussion

From Figures 4, 5 and 6 we can make the following observations:

• The F functional statistic yields in most cases a higher detection power, generalizing the result shown in [START_REF] Bardenet | On the zeros of the spectrogram of white noise[END_REF]. • The T 2 summary statistic yields slightly better results than its T ∞ counterpart, improving the maximum power by 5%. • Overall, at any SNR, a higher power is attainable using the H-SFW method introduced in this letter, with a 6% gain in maximum power.

Besides, the inspection of T L 2 and T L ∞ , and examples as in Fig. 4, suggest that the H-SFW approach may uncover large deviations from the reference at close range (r max < 0.5). We believe this is due to two phenomena: 1) a better (subpixel) location of the zeros; and 2) larger model discrepancies in the presence of signal.

IV. CONCLUSION

This letter allowed us to introduce how off-the-grid sparse approaches can be used, and adapted, for the problem of zero localization in the STFT of white noise. Numerical experiments shown that the resulting point process better fit the theroretical GAF properties, and that we obtained an improved power for the detection test based on the zero pattern. Future works will consider the generalization to other transform (e.g. corresponding to non-planar GAF), adapted to the use of nonisotropic functional statistics. We will also consider how this method can help to use zeros as signal's features, as in [START_REF] Rougé | Generalizable features for anonymizing motion signals based on the zeros of the short-time fourier transform[END_REF].
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 2 Fig. 2: Numerical values taken by the ℓ 2 and ℓ 1 norms (∥y -Φµ∥ 22 and |µ| TV respectively in (P λ )), and the ℓ g criterion (Eq. (7)) over 15 steps of the homotopy algorithm (Alg. 1), without stopping criterion for the purpose of illustration. Each color represent a different step and the stars depicts the average values per step. Note that the left graph depicts the typical piecewise-linear Pareto frontier describing the ℓ 2 / ℓ 1 tradeoff when λ decreases.
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 5 Fig. 5: Average empirical power of Monte Carlo envelope test, measured at SNR = 12.5, for the three considered methods using T 2 (left) or T ∞ over the L function (dashed) or the F function (plain).
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 6 Fig. 6: Powers of the T F 2 and T F ∞ Monte Carlo envelope test depending on the SNR and the choice of r max . The middle line of each plot (SNR=12.5) can be found in plain in Fig. 5. The colormap ranges from 0 (dark) to 1 (light).
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  Algorithm 1 Homotopy algorithm for zero location Require: y,Φ Ensure: Estimation of µ * , solution to[START_REF] De | Exact reconstruction using beurling minimal extrapolation[END_REF].Initialization: µ [0] as found by a pixel-based method[START_REF] Bardenet | On the zeros of the spectrogram of white noise[END_REF],[START_REF] Luis | Efficient computation of the zeros of the bargmann transform under additive white noise[END_REF], andλ 0 = ∥Φ T y∥ ∞ . repeat (iterationt) 1. Starting from µ [t-1] , solve (P λt ) using the SFW algorithm to obtain µ [t] . 2. Compute ℓ g (µ [t] ) from (3). 3. Compute max D η [t] by local ascent. 4. Update λ t+1 =

	λt max η [t]
	1+c

TABLE I :

 I Averaged summary statistics of L over 100 realization of white noise at r max = 2, considering two discrete methods and 3 kernels for H-SFW.

	LN AMN H-SFW