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Sparse off-the-grid computation of the zeros of STFT
Jean-Baptiste Courbot, Ali Moukadem, Bruno Colicchio, Alain Dieterlen

Abstract—The Short Time Fourier Transform (STFT) of white
noise present well-known properties regarding the distribution
of its zeroes. In this letter, we propose a method to locate them
beyond the usual time-frequency grid, in order to gain a better
understanding on the underlying point process. To do so, we use
a recent method based on off-the-grid sparse analysis, that aim at
finding the best set of atomic shape forming the STFT modulus.
We also improve it by ensuring the resulting combination of atoms
minimizes a criterion based on the theoretical behavior of the
set of zeros. Numerical experiments support our approach and
show, with respect to discrete methods, an improved statistical
power for the detection of signals in white noise.

Index Terms—Zeros of the STFT, off-the-grid sparse analysis,
point process

I. INTRODUCTION

The zeros of the Short-Time Fourier Transform (STFT) of
white noise present a well-known structure which has been
the topic of several studies, see e.g. [13], [14], [3], [4], [11],
offering a promising statistical tool for filtering, detection or
reconstruction of signal in presence of white noise. In this letter,
we aim at providing an off-the-grid framework for the retrieval
of their position beyond the sampling grid of the STFT.

A. Zeros of the STFT

The STFT of a signal x ∈ L2(R) is:

Sγx(τ, f) =

∫
R
x(t)γ(t− τ)e−2iπftdt; (1)

where τ ∈ R and f ∈ R∗ locate the STFT in time and
frequency, and γ is an observation window. Assuming here
and in the following that γ(t) is a Gaussian circular window,
the STFT of (real or complex) white noise is equivalent to a
planar Gaussian Analytic Function (GAF) [3]. So the zeros of
the STFT coincide with the zeros of a GAF, whose theoretical
properties are known [15], [12].

Numerically, the STFT is computed on a grid, so the zeros
are only available from this discretization. In the literature, two
methods retrieve the set of zeros from the STFT:

• In [3], [13], the authors search for local minima among
8-pixels neighborhoods. We refer to it as the Local
Neighborhood (LN) methods afterwards.

• In [11], the authors introduced the Adaptive Minimal grid
Neighbors (AMN) method which is proven to reach the
accurate zero set, with a precision depending of the grid
spacing.

Up to our knowledge, there is no method that allows to provide
a gridless zero set recovery.
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B. Off-the-grid sparse analysis

Sparse analysis aims at decomposing an observation y ∈ RP ,
P ∈ N into elementary atoms, typically assuming:

y =

N∑
n=1

G(zn, σn, wn) + ϵ. (2)

where G is the atomic shape to consider, zn locates the n-th
spike, σn its width, and wn its weight. Sparse analysis aims at
finding, from a given y, the best values for the (zn, σn, wn)
together with their number.

Generally speaking, limiting the search space to a grid
has known limitations, notably regarding the stability of the
methods when refining the search grid [10]. More recent
approaches [8], [5], [6] have recast the problem in a continuous
fashion. In this framework, each atom is described by a
weighted Dirac mass locating its parameters in the space of
measures:

y = Φµ+ ϵ (3)

where µ =
∑N

n=1 wnδzn,σn and Φ : M(D) 7→ RP embeds G,
and ϵ is a perturbation term. We assume that (zn, σn, wn) ∈ D,
and that M(D) is the Radon space of measure over D, so that
µ ∈ M(D).

This kind of approach, besides the more precise formulation
of the problem, also offers recovery guarantees under mild
conditions [9], yielding for instance the Sliding Frank-Wolfe
(SFW) algorithm. For practical considerations, the choice of
the regularization parameter is also of importance. Based on
analogous discrete-valued problems [17], we proposed in [7]
an homotopy method that allow to replace this choice by a
noise-related criterion.

C. Methodology

In this letter, our aim is to take the sparse off-the-grid
approach to locate, in a continuous setting, the zeros of the
STFT of white noise. To simplify the discussion regarding
the symmetry w.r.t. the real axis in the real-valued case, we
assume that the white noise is complex. In the following, we
note S the STFT of a white Gaussian noise.

We address at first the problem modeling in Section II-A,
before moving to algorithmic considerations in Section II-B.
Then, we will present numerical results validating the approach
in Section III.

II. FINDING OFF-THE-GRID ZEROS

A. Observation model and problem

STFT topology near the zeros. We aim at finding the
localization of the zeros of the STFT over a continuous domain,
modeling zeros as atomic shapes. To do so, we need to account
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Fig. 1: Averaged radial profile in the vicinity of zeros, as
determined by the discrete LN method [3]. In color are
superimposed possible atomic shape fit γ0 − e(z) (Eq. (5)).
r = |z− z0| depicts the distance in the complex plane from
the zeros z0, and the average was obtained on 103 zeros.

for the shape of the STFT modulus |S| in the vicinity of zeros.
While the location of the zeros has been the topic of many
studies [13], [3], [11], to our knowledge only a few studies
address the question of the vicinity of the zeros in white
noise STFT. From [14, Chap.15] and originally from [20], we
have that the analytic STFT admits a Weierstrass-Hadamard
factorization from its corresponding Bargmann transform. At
any point z = τ + if ∈ C:

S(z) = e−
|z|2
4 zmeP2(z)

∏
n

(
1− z

zn

)
exp

(
z

zn
+

z2

2z2n

)
;

(4)

where m≥0, P2(z) = C0 + C1z + C2z
2 and zn locates the

n−th zero of the STFT in the complex plane. This factorisation
is sometimes called the Husimi representation of the STFT of
white noise. However, such decomposition is not helpful to
recover the STFT from the positions of the zero only. Indeed, m,
C0, C1 and C2 are unknown, and the product involves possibly
infinitely-many terms. The only available approximation so far,
from [14, Chap.15], is that |S(z)| ∝ |z− zn| when z → zn.

Then, we adopt an empirical approach to choose an atomic
shape that will represent the STFT in the vicinity of zeros. We
consider for now elementary shape of the form:

e(z) = exp(−1

2

|z− zn|d

σd
); (5)

with d = 1 (Laplace kernel), d = 2 (Gaussian) or d = 3/2
(Generalized Gaussian). In Fig. 1 we depicts the average
topology of the modulus of the STFT in the neighborhood
of zeros, superimposed by various kernel fit. From this kind
of observation we can not determine what would be the
“best shape”, so numerical experiments considering these three
options will allow, in Section III, to determine the best choice
in terms of spike location.

Observation model. The average value of the STFT of white
noise is its power spectrum density γ0 (see [14, Section 13.2]
and Fig. 1). In order to handle positive spikes, we make make
the following convenience transformation: y = 1 − |S|/γ0.
This does not modify the reasoning developed afterwards. So
henceforth, we consider values of y above zero as indicating a
potential spike, and ignore y below zero in order to avoid fitting
regions without interest for spike location. Then, we model y

as in (2)(3), where µ locates each zero in the time-frequency
plane.

In usual image-processing problems ϵ encodes an additive
noise originating from the data formation. In our context there
is no observation noise, but an unknown discrepancy term
between the spike mixture and the actual STFT.

Inference. Finding µ from y can be made by forming the
following Beurling LASSO (or BLASSO, see [1]) problem:

argmin
µ∈M(D)

Cλ(µ) = argmin
µ∈M(D)

∥y −Φµ∥22 + λ|µ|TV. (Pλ)

λ is a regularization parameter to set, and the operator |·|TV en-
codes the total variation of measures, so |µ|TV =

∑N
n=1 |wn|.

This operator is analog, in our problem, to a ℓ1 norm.

B. Algorithms

Finding zeros with SFW. For a given λ, solving (Pλ) is
feasible using the Sliding Frank-Wolfe (SFW) algorithm [9].
Starting from an initial guess, SFW repeats at each iteration k
the following:

• Compute the approximate certificate η[k] : D → R as:

η[k] =
1

λ
Φ⊤(y −Φµ[k]). (6)

• Add a new atom to the support, maximizing η[k].
• Adjust only the weights {wn}, minimizing Cλ from (Pλ).
• Adjust each parameter {θn, wn} minimizing Cλ.

Then, SFW stops when ∥η[k]∥∞ < 1. Theoretical foundations
of SFW as well as implementation details can be found in [9].

Homotopy algorithm. Finding the good λ for a given (Pλ) is
not obvious. To circumvent this problem, we consider develop-
ing an homotopy algorithm as in [7]. However, the latter relied
on a simple noise-related criterion that allowed practitioners
to set some “target” residual variance. As mentioned, such
criterion is not helpful in the context of the STFT.

Instead, we propose to make use of the theoretical knowledge
of the behavior of the zeros within STFT of white noise.
In particular, the theoretical pair correlation function g0(r)
is known [3], [14] (see Fig. 3). This functions depicts the
likeliness that a pair of points occurs, depending on the distance
r between them. g0(r) < 1 indicates a repulsive range, g0(r) >
1 distances are more likely to occurs, while g0(r) ≃ 1 indicates
independence, as in a Poisson process (constant g0(r) = 1).

Based on g0, we propose a ℓg criterion measuring the cost
of a point set z seen through the theoretical g0. Let us denote
P(µ) the set of pair of atoms within µ. Then

ℓg(µ) =
1

Card(P(µ))

∑
(i,j)∈P(µ)

− log(g0 (|zi − zj |)). (7)

The intuition behind this choice is that as λ decreases, ℓg(µ)
attains a unique minimum. Indeed, for a decreasing sequence
λ1 > λ2 > . . . λk, the corresponding solutions µ1,µ2, . . . ,µk

contains more and more atoms. Because the estimation happens
within a bounded space, increasing the number of atoms also
increase the density, implying that on average g0 will be
evaluated at a shorter range.
This postulate seems difficult to prove:
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Fig. 2: Numerical values taken by the ℓ2 and ℓ1 norms (∥y −
Φµ∥22 and |µ|TV respectively in (Pλ)), and the ℓg criterion
(Eq. (7)) over 15 steps of the homotopy algorithm (Alg. 1),
without stopping criterion for the purpose of illustration. Each
color represent a different step and the stars depicts the average
values per step. Note that the left graph depicts the typical
piecewise-linear Pareto frontier describing the ℓ2 / ℓ1 tradeoff
when λ decreases.

• Analytically, there is no explicit link between the pairwise
point distance and the regularization parameter, so deriving
ℓg(µ) w.r.t. λ is not obvious.

• The averaging operation is not interchangeable with g0.
However, this postulate appears to be numerically valid, as
shown in Fig. 2. These results allow to state that on average,
the ℓg criterion attains a unique minimum over the course
of the homotopy algorithm, when applied on the modulus of
STFT of white noise.

Starting from the zero set of a pixel-based method (as
[3], [11]), this allows to design a homotopy algorithm that
repetitively decreases λ, solves (Pλ), compute ℓg and stops
when it has attained a minimum. Formally, this implies that
the homotopy algorithm solves:

argmin
µλ∈M(D)

ℓg(µλ) subject to: µλ is a solution to (Pλ) (8)

The homotopy method we propose is formalized in Alg 1,
and the Python code is available at github.com/courbot/
sparse-OTG-zeros-STFT. Note that the update rule for λ
ensures that in the next homotopy step, a new atom will be
added because the SFW stopping criterion will not be met
anymore (see [7]). Note also that the boosted SFW introduced
in [7] to accelerate the appending of atoms is not relevant for
the purpose of this paper, as the starting value of the homotopy
algorithm already contains most of the atoms of the solution.

III. NUMERICAL EXPERIMENTS

A. Functional and summary statistics
Point process realizations can be summarized, and compared,

by summary statistics that describe their behavior with a real
number. To do so, it is common (as in [3]) to rely on some
function of the inter-point distance r, as the pair correlation
function g(r), or the Ripley K-function [16] and its variance-
stabilized version L, expressed as:

K(r) = 2π

∫ r

0

tg(t)dt and L(r) =
√
K(r)/π; (9)

or the empty space function F :

F (r) = p
(
Card(z ∩ B(r)) ≥ 1

)
; (10)

Algorithm 1 Homotopy algorithm for zero location

Require: y,Φ
Ensure: Estimation of µ∗, solution to (8).

Initialization: µ[0] as found by a pixel-based method [3],
[11], and λ0 = ∥ΦTy∥∞.
repeat (iteration t)

1. Starting from µ[t−1], solve (Pλt
) using the SFW

algorithm to obtain µ[t].
2. Compute ℓg(µ[t]) from (3).
3. Compute maxD η[t] by local ascent.
4. Update λt+1 =

λt max η[t]

1+c
until argmin

1≤i≤t
{ℓg(µ[i])} ≠ µ[t]

Set (µ[t−1]) as the solution. End of the algorithm.
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Fig. 3: Estimated g(r) and L(r)− r statistics averaged over
100 realizations of STFT of complex white noise (plain lines)
and their theoretical counterpart g0(r) and L0(r)− r (dotted).

with B(r) defining any ball of radius r within the domain of
interest.

Following again [3], we use two summary statistics over L,
using L0 as a known reference:

TL
2 =

√∫ rmax

rmin

|L(r)− L0(r)|2dr (11)

TL
∞ = sup

rmin<r<rmax

|L(r)− L0(r)| (12)

Similar definitions holds for TF
2 and TF

∞, with the peculiarity
that F0 is not known analytically (see e.g. [18]); so it is replaced
by its numerical average from experiments on white noise.

Usually one sets rmin to 0 and study the behavior of the
summary statistics with respect to the value of rmax.

B. Experimental variations

Average estimations of g(r) and L(r)−r are given in Fig. 3,
and the corresponding summary statistics are reported in Table I.
This allows to determine that a Laplace kernel (i.e. d = 1 in
Eq. (5)) is better suited to the problem than its alternatives.
Besides, for the latter we observe on average lower TL

2 and TL
∞

values than with the discrete methods [3], [11]. This suggest
a better adequation of the H-SFW solutions with the GAF
theoretical model.

Then, we evaluate the methods in their success to detect
correctly that a signal contains more than noise, that is we
test the null hypothesis H0: “y contains only white Gaussian

github.com/courbot/sparse-OTG-zeros-STFT
github.com/courbot/sparse-OTG-zeros-STFT
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LN [3] AMN [11] H-SFW: d = 2 d = 1.5 d = 1

TL
2 0.1768 0.1698 0.1625 0.1655 0.1616

TL
∞ 0.0588 0.0563 0.0563 0.0575 0.0550

TABLE I: Averaged summary statistics of L over 100 real-
ization of white noise at rmax = 2, considering two discrete
methods and 3 kernels for H-SFW.

LN
AMN
H-SFW

Fig. 4: STFT modulus for a white noise (left) and a white noise
plus a chirp signal (right) with SNR = 12.5. The estimated
zeros locations for LN [3], AMN [11] and H-SFW (this paper)
are superimposed.

noise” against its alternative. For simplicity, we focus on signal
containing white Gaussian noise plus a chirp signal. To do so
we rely on a Monte Carlo envelope test [2], following:

• set a target radius rmax > 0 and rmin = 0.
• compute K realizations of white noise as well as one

realization of a noisy chirp signal.
• for each, compute the associated point set either by LN,

AMN, or the H-SFW method proposed in this paper. An
example of result is given in Fig. 4.

• For each point set compute the summary statistics TL
2 ,

TF
2 and TF

∞, TF
∞.

• for each summary statistic of a tested signal, if it is above
the k-th greatest statistic of the white noise, we reject H0.

Typically, setting K = 99 and k = 5, the significance level is
α = k/(K + 1) = 0.05. We can repeat the experiment several
times and estimate the frequency at which H0 is rejected when
it is false: we can estimate empirically the power β of the test.
We also repeat the experiment by:

• changing the target rmax

• changing rmax together with the SNR. The latter is defined
as A2/2σ2, A being the chirp maximum amplitude, and
σ2 the noise variance.

Fig. 5 and 6 respectively report the results for these two points.

C. Results and discussion

From Figures 4, 5 and 6 we can make the following
observations:

• The F functional statistic yields in most cases a higher
detection power, generalizing the result shown in [3].

• The T2 summary statistic yields slightly better results than
its T∞ counterpart, improving the maximum power by
5%.
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Fig. 5: Average empirical power of Monte Carlo envelope test,
measured at SNR = 12.5, for the three considered methods
using T2 (left) or T∞ over the L function (dashed) or the F
function (plain).
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Fig. 6: Powers of the TF
2 and TF

∞ Monte Carlo envelope test
depending on the SNR and the choice of rmax. The middle
line of each plot (SNR=12.5) can be found in plain in Fig. 5.
The colormap ranges from 0 (dark) to 1 (light).

• Overall, at any SNR, a higher power is attainable using
the H-SFW method introduced in this letter, with a 6%
gain in maximum power.

Besides, the inspection of TL
2 and TL

∞, and examples as in
Fig. 4, suggest that the H-SFW approach may uncover large
deviations from the reference at close range (rmax < 0.5). We
believe this is due to two phenomena: 1) a better (subpixel)
location of the zeros; and 2) larger model discrepancies in the
presence of signal.

IV. CONCLUSION

This letter allowed us to introduce how off-the-grid sparse
approaches can be used, and adapted, for the problem of
zero localization in the STFT of white noise. Numerical
experiments shown that the resulting point process better fit the
theroretical GAF properties, and that we obtained an improved
power for the detection test based on the zero pattern. Future
works will consider the generalization to other transform (e.g.
corresponding to non-planar GAF), adapted to the use of non-
isotropic functional statistics. We will also consider how this
method can help to use zeros as signal’s features, as in [19].
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