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Abstract

We discuss the mathematical modelling of two of the main mechanisms which pushed forward the
emergence of multicellularity: phenotype divergence in cell differentiation, and between-cell coopera-
tion. In line with the atavistic theory of cancer, this disease being specific of multicellular animals, we
set special emphasis on how both mechanisms appear to be reversed, however not totally impaired,
rather hijacked, in tumour cell populations. Two settings are considered: the completely innovating,
tinkering, situation of the emergence of multicellularity in the evolution of species, which we assume
to be constrained by external pressure on the cell populations, and the completely planned - in the
body plan - situation of the physiological construction of a developing multicellular animal from the
zygote, or of bet hedging in tumours, assumed to be of clonal formation, although the body plan
is largely - but not completely - lost in its constituting cells. We show how cancer impacts these
two settings and we sketch mathematical models for them. We present here our contribution to the
question at stake with a background from biology, from mathematics, and from philosophy of science.

Keywords. Differentiation, cooperation, multicellularity, cancer disease, structured population models,
philosophy of science

1 Biological and evolutionary-developmental background

1.1 Being or not teleological: the two settings considered

Although this may seem completely trivial to state, let us emphasise that for us there is no such thing
as teleology, i.e., orientation in a given direction or towards a given goal, in the general evolution of
multicellular animals, which is constituted of a succession of haphazard strategic choices of adaptation
to changing environments in existing evolutionary units, at one stage of evolution towards an identified
next one. Such adaptations, often resulting in branchings of clades, as solutions to existential problems,
imposed by external constraints as stresses [32, 43] induced by changes in the environment, are by no
means unique, admitting that evolution proceeds by trials and errors, and by tinkering [22] from available
material to solve such problems. We proposed in [2] a mathematical scheme to model the phenotypic
divergence that may be a basis for such environmental stress-induced evolutionary steps.

Conversely, teleology is of course present in the embryonic development of multicellular animals, which,
according to Haeckel’s formula “Ontogeny recapitulates phylogeny” [16, 18], follows in each species the
evolutionary choices made at each branching step of the evolution of species, leading from the fecundated
egg (most frequent form of elementary material evolutionary unit in multicellular animals [47], those who
are subject to cancer [1, 33]) to adult animals with their completely differentiated cell types, following
the body plan [12, 30] characteristic of the species. From this holistic point of view, evolution of species
is nothing but evolution of the body plan, evolution of genes and of gene regulatory networks being
completely dependent upon this master regulator. We suggest here that understanding the cooperation
principles that have been optimised (noting that an optimisation problem may have diverse solutions) at
each developmental step may benefit from a close look at the mechanisms of the evolutionary steps that
have determined the species body plan, and we sketch mathematical ways to achieve this task.

One of the main difficulties in understanding and representing the design of the body plan is how
to introduce mechanisms of coherence (for signals) and cohesion (for tissues) that make a multicellular
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organism stable and functional, with compatibility and cooperation between tissues and organs, and we
are aware of the fact that such complete understanding still lies ahead of us. However, localised absence
of coherence between tissues of an organism by lack of control on differentiations is precisely the main
characteristic of cancer, the second and in our opinion resulting from the first one, being absence of control
on proliferation [6]. We propose that evolution of cooperation between cells, that has been identified in
tumours [11, 34, 38], is a reactivation of mechanisms present in the body plan that are still present,
although chaotic, uncontrolled and doomed to fail at the level of the organism, in tumour cells, may rely
on elementary evolutionary mechanisms that have been designed in the evolutionary past of their body
plan, so that this point should be better understood to efficiently represent cooperation in tumours.

1.2 The atavistic theory of cancer

Recently popularised by physicists Paul Davies and Charles Lineweaver, together with oncologist Mark
Vincent, the atavistic theory of cancer [13, 24, 25, 26, 44], had in fact been envisioned already in 1996
by oncologist Lucien Israel [21], and likely as early as 1914 by biologist Theodor Boveri [7], although
none of these scientists seem to have been initially aware of the works of their predecessors. It helps us
understand tumour progression and intratumoral organisation from a long-term evolutionary viewpoint.
Briefly, it relies on the ideas that 1) all cancer cells are multicellular animal cells, results of a billion
year-old evolution from unicellular organisms, and as such keep in their genomes powerful remnants
of the organismic defence and construction mechanisms borne in their body plans (even if this term
is not used by Davies and Lineweaver, they only mention their genomes); 2) tumours are results of
a regression in the development of the organism, corresponding to early, incoherent versions of “an
ancient genetic toolkit of pre-programmed behaviors”, which we may freely identify as an unachieved
evolutionary version of the species body plan, and which they name “Metazoa 1.0”. The atavistic theory
thus clearly states that a tumour is not just the result of some aberrant stochastic mutation in somatic
cells (the somatic mutation theory, SMT, recently reviewed and compared to the atavistic theory in [25]),
but that it rather follows predictable paths in such regression towards a poorly organised, incoherent
population of cells, nevertheless constituted of animal cells that are highly plastic (and thus resistant
to external therapeutic pressure by anticancer drugs), as they have the power to differentiate and de-
differentiate, and also to loosely cooperate between them in tumours. The works of David Goode and
colleagues [39, 40, 41, 42] have evidenced in cancer samples silencing of genes of multicellularity and
compatibility between expression of genes of multicellularity and of unicellularity, resulting in escaping
organismic control on cell differentiation (in other words, developing cell plasticity) and on proliferation,
tending to a widely autonomic behaviour which is a characteristic of cells in tumour tissues.

The atavistic theory of cancer is little by little, as more evidence in the study of ancient genes becomes
known and published [39, 40, 41, 42], gaining recognition among theorists of cancer biology, however still
quite limited in the field of oncology, where people question its amenability to produce innovations in the
therapeutics of cancer. Innovating theories may take a long time to reverse the argument of “authority of
tradition” [5]. The present situation may remind us, mutatis mutandis, of the way geographers received
in 1912 with much skepticism Alfred Wegener’s theory of continental drift [45], until it was completely
justified fifty years later by the theory of plate tectonics and progressively admitted by all geophysicists. A
limitation to a wider acceptance of the atavistic theory is the present lack of sufficient evidence susceptible
to convince biologists and philosophers of cancer, who prefer to keep on the “safe” side of science under
development and, at least temporarily, reject it as not sufficiently relying on facts. Indeed, when it is
mentioned in recent texts of philosophy of science - by authors who nevertheless must be commended
for at least mentioning it -, the atavistic theory of cancer is not always correctly summed up, sometimes
even presented in an off-hand way with arguments against it that show but partial understanding, as
in [37]. A mere hypothesis, really? At least a uniting one in understanding cancer, fully compatible with
the holistic point of view on evolution that we have mentioned above.

1.3 Why and how does multicellularity fail in cancer?

Cancer is thus, taking the atavistic theory of cancer for granted - although it tells us nothing about
the very origin of the disease -, the progressive result of a failed maintenance of the teleological (or
teleonomical, if one wants to explicitly exclude any intentionality, which is our position) construction of
an animal. It may be described as essentially “a deunification of the individual” [36]. In the perspective of
evolved multicellularity, it is tempting to describe - an epistemological position we assume - such material
construction at the level of genes and gene regulatory networks, initially not from the zygote, but from
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nonclonal colonies of cells (i.e., before the invention of the egg [47] and of the body plan contained in it)
in three successive steps.

At the first step, the colony level, exist only genes of the cell division cycle and cell death, likely by
quorum sensing. At the second step are introduced genes coding for transcription factors and (unregu-
lated) differentiation. At the third step appear genes coding for epigenetic regulations, the top level of
fine local regulations, that are themselves subject to central regulations in higher-level animals such as
bilaterians. Such hierarchy is remarkably found, in a reverse order, in the evolution in malignancy found
in fresh blood samples of patients with acute myelogenous leukaemia [20], which induces us to propose a
scenario for cancer progression as relying firstly on epigenetic gene alterations (which includes differen-
tiation control), secondly on alterations in differentiation, and only very late on alterations in cell cycle
regulations, which are the strongest basis of proliferation. Unfortunately so far, with the remarkable and
recent exception of the successes of immunotherapy, cancer therapies target mainly this strength [24].

1.4 A narrative of long-term evolution and cancer, freely exposed to the fire
of philosophy of science

We need not justify any given evolutionary path that led to such and such animal, and rather see paths fol-
lowed in evolution as diverse evolutionary strategies adapted to external constraints that imposed changes
on the behaviour of the actors of the evolutionary paths at stake. Let us mention here that we hold, from
our point of view, which resorts to functional, physiological and anatomical evolution, these actors, or
evolutionary units, to be the body plans [12, 30] of multicellular animals, and not the individual genes,
nor the gene regulatory networks that are mere effectors of evolutionary strategies, not determinants,
and are only secondarily affected by them, as reflected in observations. A paleoanthropological analogy
in evolution, mutatis mutandis, of such strategies at the level of divergence from a common ancestor in
the Hominin lineage between Paranthropus and early Homo, relying on different dietary choices, may be
found in [4]. Such haphazard strategical choices in long-term, Darwinian, evolution, that have become
fixed in the body plan of animal species by genetic mutations and success in species fitness, may fail in
cancer, as described in the previous section.

These firstly non determined (tinkered [22]) strategies led to epigenetic modifications (aka epimu-
tations), later to fixed mutations of the genes coding for the epigenetic enzymes that determine these
epigenetically defined strategies yielding functional body plans, that are the bases of physiology and
anatomy construction in multicellular animals. Cancer cannot change the body plan of an animal in
that of another animal, and it is certainly not a new form of life. However, by loss of organismic control
on differentiations, it can reverse a cohesive body plan in a given species to some intermediate, poorly
defined, unachieved form of the body plan of this species, yielding a collection of still very plastic cells, in
other words a tumour, or a Metazoan 1.0 in the words of the atavistic theory of cancer [13]. The causes
of such loss of control on differentiations are unknown, and the atavistic theory tells us nothing about
them. However they may consist of an abrupt change in the environmental pressure on the tissue at
stake, but also may be identified as due to a mutation in the genes responsible for epigenetic control [20].

2 Cell differentiation and phenotype divergence

2.1 Heterogeneity and plasticity with respect to what?

Cell populations, healthy and cancer, are heterogeneous w.r.t. various continuous traits under study, that
are used to describe their biological variability, such as cell size, age in the cell division cycle, expression
of genes of drug resistance, or more functional and abstract traits determining cell population fate such
as viability, fecundity, motility, plasticity, according to the biological question at stake. Plasticity [9, 10]
in a given trait is its capacity to change under the pressure of external constraints, such as drugs, and
it has long been recognised as as relying on epigenetic factors [29]. Plasticity may be considered as a
speed of evolution from one trait distribution to another one when the surrounding environment of the
cell population changes, slowly or abruptly. Such evolution may be accelerated in equations by terms of
advection (especially when abrupt changes in the environment force the cell population to adapt quickly)
and diffusion (representing uncertainty in phenotype determination).

Differentiation in cell lineages, such as the ones constituting the paths of haematopoiesis, may con-
sist either of simple maturation, following the same line towards a terminally differentiated cell type,
such as the different granulocytes (neutrophils, eosinophils, and basophils) among white blood cells,
or of branching, e.g., in haematopoiesis from pluripotent haematopoietic stem cells to myeloid versus
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lymphoid progenitors. Phenotype divergence is the biological phenomenon by which branching occurs
between precursors of terminally differentiated cell types. The first identified phenomenon relying on
phenotype divergence in evolution from unicellularity towards multicellularity was likely the separation
between germinal cells (the germen) and germen-supporting somatic cells (the soma), proposed in 1892
by August Weismann [46] and later mentioned by John Maynard Smith and Eörs Szathmáry as the first
step from unicellularity towards multicellularity, one of the major transitions in evolution [28]. Basis of
heterogeneity in cell populations within a cohesive multicellular individual, or within a tumour, pheno-
type divergence necessarily relies on phenotype plasticity, and it is the phenomenon we here tackle to
represent in phenotype-structured equations.

2.2 Long-term evolution as genetic adaptation of the body plan in animals

As mentioned in the introduction, we consider that the fundamental evolutionary unit in the great Dar-
winian evolution of animals is the body plan [12, 30], which is virtually (as it is abstract, indeed as a
plan, self-developing, written as a self-extracting archive in genetic code, its dynamic extraction occurring
continuously during the process of animal development) present in every physiologically complete nucle-
ated animal cell, starting from the zygote, i.e., the initial fecundated egg. The genes and gene regulatory
networks that materially proceed from it and serve to design and cohesively maintain the construction
of the animal when it is achieved, are its observable materialisation.

Anatomically in 3D observations, physiologically by the observation of the great functions of the
organism, and genetically by investigation the genes that have been identified (e.g., by KO experiments)
in different species to correspond to anatomic structures and physiological functions, and their expression,
we may have access to material reflections of the body plan, and thus partially reconstitute its evolution
across species. This is precisely what has been investigated about the genes at the origin of multicellularity
and their correspondence with the genes that are altered in cancer by Domazet-Lošo and Tautz [14, 15],
and later by Trigos et al. [39, 40, 41, 42] in David Goode’s team, giving rise and genetic arguments to
the atavistic theory of cancer [13, 24, 25].

2.3 A nonlocal phenotype-structured cell population model

The reaction-diffusion-advection model proposed in [2] to exemplify bet hedging as a ‘tumour strategy’
to diversify its phenotypes in response to deadly stress (e.g., by cytotoxic drugs), but also to represent
phenotypic divergence in evolution towards multicellularity, runs as follows.

Let D = Ω × [0, 1], where Ω := {C(x, y) 6 K} (a constraint between competing traits x and y) and
θ ∈ [0, 1]. The evolution with time t of a plastic cell population of density n(z, t) structured in a 3D
phenotype z = (x, y, θ), where x=viability, y=fecundity, θ=plasticity, with r(z) and d(z) growth and
death rates, is given by

∂tn+∇ ·
(
V n−A(θ)∇n

)
= (r(z)− d(z)ρ(t))n, (1)

with (V n−A(θ)∇n
)
·n = 0 for all z ∈ ∂D (n is a normal vector to ∂D), n(0, z) = n0(z) for all z ∈ D,

where Ω = {(x, y) ∈ [0, 1]2 : (x− 1)2 + (y − 1)2 > 1}, and the diffusion matrix is

A(θ) =

a11(θ) 0 0
0 a22(θ) 0
0 0 a33

 , with a11 and a22 non-decreasing functions of θ, influencing the

speed at which non-genetic epimutations occur, otherwise said, it is a representation of how the internal
plasticity trait θ affects the non-genetic instability of traits x and y, by tuning the diffusion term ∇ ·
{A(θ)∇n}; the advection term

∇ · {V (t, z)n} = ∇ · {(V1(t, z), V2(t, z), V3(t, z))n}

represents the cellular stress exerted on the population by external evolutionary pressure, i.e., by changes
in the cell population environment, here chosen as tearing apart the cell population between competing

traits x (viability) and y (fecundity); and ρ(t) =

∫
D

n(t, z)dz stands for the total mass of individuals in

the cell population at time t.
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The existence and uniqueness of solutions is obtained in finite time in a constructive way by using
the compactness of a sequence of numerical solutions, which are the result of the algorithms used to
discretise the model. Simulations may be obtained with instances of the functions used in the equations.
For instance, to obtain phenotypic divergence (which we take as the basis of both bet hedging in cancer
and of emergence of multicellularity in evolution), we consider over the domain D = Ω× [0, 1] an initial
density given by

n0(z) = a1{f(z)<1}e
− 1

1−f(z) ,

with f(z) = ‖z−z0‖2
(0.025)2 , where z0 = (0.25, 0.25, 0.5) and ‖ · ‖ is the euclidean norm. We choose the value of

a in such a way that ρ0 =
∫
D
n0(z) = 1.

We set the growth rate and the death rate as

r(x, y, θ) = 1{y>x}e
−(0.1−x)2−(0.9−y)2 + 1{x>y}e

−(0.1−y)2−(0.9−x)2 , d(x, y, θ) =
1

2
.

We choose the diffusion matrix

A(θ) =

(θ + 1)10−6 0 0
0 (θ + 1)10−6 0
0 0 10−6

 ,

and the advection term, tearing apart traits x and y, is chosen as V (t, z) = 10−3(−y,−x,−(x + y)), or
10−3θ(−y,−x,−(x + y)) if we want plasticity θ to impinge also on the advection term, representing in
all cases the influence of the tumour ecosystem on the tumour cell population.

Figure 1: Phenotype divergence and loss of plasticity. On these cartoon-like figures, one can follow the
progressive distancing of an initial cell population arbitrarily set at z = (0.25, 0.25, 0.5), submitted to an
advection gradient that tends to split the cell population into two subpopulations migrating towards the
two extreme points (0, 1) and (1, 0) of the domain Ω, while the plasticity variable θ decreases towards 0.

The reader is sent to [2] for more detailed explanations and illustrations.
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2.4 What this model tackles and what it leaves unexplained

Our reaction-diffusion-advection equations give the most important part in modelling phenotype diver-
gence to the drift (advection) term representing environmental pressure from the ecosystem towards
separation of phenotypes. Plasticity is naturally already present in the reaction term of this continu-
ous phenotype-structured cell population model of adaptive dynamics, and the diffusion term adds to
phenotype adaptability by uncertainty in its determination. Nevertheless, the sensitivity of phenotype
adaptation and the trade-off we set between the supposed contradictory 1D phenotypes is mainly repre-
sented by the advection term and the bounded region within which the phenotypes evolve, that together
represent constraints and offer possibilities of trade-offs between the phenotypes.

This model is clearly a mathematical abstraction that may be applied as such to every possible
branching situation in the physiological development of multicellular animals or in bet hedging of phe-
notypes in tumours. For instance, one could model more precisely in glioblastoma cells such branching
situations as the “go-or-grow” alternative between enhancing a proliferation potential (fecundity) and a
motion potential (motility) [19], which would need to represent in the same kind of model the biological
mechanisms that account for them, and about the constraints (likely of energetic nature) between them.
This would help us design more precisely the advection term and the domain in phenotype space within
which phenotypes evolve. It would imply efficient transdisciplinary collaboration on this subject between
mathematicians and biologists of cancer, which we hope to develop in the future.

3 Cooperation

3.1 Tinkered cooperation in the emergence of multicellularity vs. directed
cooperation in constituted multicellular animals

Noting that the question of cooperation and of division of labour has been considered by many authors
at different stages of associations between individuals, including animal societies [28]. To follow again
the metaphor of the separation in evolution between Paranthropus and early Homo, the situation with
respect to phenotype divergence between body plans of animals is as if, mutatis mutandis, in evolution
from their common hominin ancestor, Paranthropus and early Homo, after their genetic separation start-
ing by fixation of initial epigenetic haphazard strategic adaptive choices (since evolution under changes
in environmental pressure proceeds by tinkering [22]), had found interest in developing mutualistic inter-
actions, living in symbiosis, less and less independently of one another. However, since the Paranthropus
species eventually became extinct, likely due to climate changes incompatible with his too specialised
vegetalian diet, whereas Homo survived, having adapted his diet to meat eating, this was actually not
the case, or not in a permanent way, in the evolution of hominins.

We are aware of the fact that this metaphor is by no means perfect, and that reversible development,
of epigenetic nature, within an isogenic individual (or a tumour) is not the same process as evolution of
species, which is based on fixed, irreversible, genetic separations by branchings. Nevertheless, hypothe-
sising that genetic specialisation is likely to begin with reversible epigenetic phenotype divergence before
being fixed by gene mutations, we hope that it sheds some light on the processes that are at work in
elementary steps in the evolution towards multicellularity and in bet hedging in tumours.

Cooperation between populations of cells resulting from such phenotype divergence may be considered
as the glue that holds together all cell subpopulations in an isogenic multicellular organism. It may occur
when mutualistic interactions are beneficial for all the interacting cell populations, provided that none
of them becomes extinct. And it may also not occur, in which case no trace of such missed mutualism
is found in the evolution of body plans. It is indeed, in our representation, the body plan that has kept
memory, in each species, in constitutive intercellular gene regulatory networks, of the proper strategic
choices w.r.t. phenotype divergences that lead to the design of an anatomically and physiologically
cohesive animal. No tinkering is present anymore in these programmed choices designed in the body
plan, and this is what we would like to represent now.

We will present two different possible approaches to the study of evolution of cooperation. The first
one takes the prisoner’s dilemma as a starting point, and considers reciprocity as a factor influencing
the strategies of both players. The possible outcomes for a long running game are studied, and finally, a
way to model a scenario with n players is described. The second modelling choice is through an integro-
differential system structured according to the probability of cooperation. In this case, reciprocity is
represented by an advective term. For a simple set of hypotheses we show that cooperation might mark
the difference between extinction or proliferation for two interacting populations.
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3.2 Prisoner’s dilemma and reciprocity

According to [3], an initial intention for cooperation and the existence of reciprocity are crucial for the
evolution of cooperation, even in an environment composed of egoistic individuals. However, one may
wonder what are the conditions that guarantee this to be true; after all, it can be expected that, if
reciprocity is stronger in the absence of cooperation, then cooperation becomes less usual. In other
words: when is reciprocity a catalyst for cooperation? The following (very simple) model tackles this
question.
Consider two players (that can range from cells to entire groups of individuals, such as governments)
involved in the repeated prisoner’s dilemma game. Player A will initially cooperate with probability
p0 > 0 while player B will do so with probability q0 > 0. We assume both values to be strictly positive to
account for the initial intention of cooperation described in [3]. Both players will modify their probabilities
of cooperation at turn k + 1 (denoted as pk+1 and qk+1 respectively) by following the rule:

pk+1 =

pk + ε11(1− pk), if player B cooperated in turn k,

pk(1− ε12), if not,

and

qk+1 =

qk + ε21(1− qk), if player A cooperated in turn k,

qk(1− ε22), if not,

where 0 < εij < 1 for i, j ∈ {1, 2}. According to this model, both players modify their strategy by
“learning” from each other. A different strategy was already studied in [31], where players could modify
their strategy by imitation.
We recall that the payoff matrix of the prisoner’s dilemma game is given by(

b− c −c
b 0

)
,

where b is the benefit and c is the cost of cooperation (b > c). Hence, the expected gain for players A
and B at turn k are given by

EkA = (b− c)pkqk + b(1− pk)qk − cpk(1− qk) = bqk − cpk and EkB = bpk − cqk,

respectively. Therefore, the average expected gain at turn k is given by the relation

Ek =
(b− c)

2
(pk + qk).

Given that the probability of both players cooperating at turn k is equal to pkqk, our interest falls then
on the question: What are the conditions over the values εij , i, j ∈ {1, 2}, such that the sequence (pk, qk)
converges towards a non trivial limit ? In such cases, when does the average expected gain can be ex-
pected to increase ?

In order to answer these questions we first explicitly give the values of pk+1 and qk+1 as functions of
pk and qk. Thanks to the law of total probability, we get the relations

pk+1 = qk(pk + ε11(1− pk)) + (1− qk)pk(1− ε12)

= (1− ε12)pk + ε11qk + (ε12 − ε11)pkqk =: f1(pk, qk),

qk+1 = pk(qk + ε21(1− qk)) + (1− pk)qk(1− ε22)

= (1− ε22)qk + ε21pk + (ε22 − ε21)pkqk =: f2(pk, qk).

If this sequence has a limit (p∗, q∗), it must satisfy the relationp
∗ = f1(p∗, q∗),

q∗ = f2(p∗, q∗).
(2)

In the following proposition we will identify the possible values for (p∗, q∗) and determine their stability.

Proposition 1. Consider a couple (p0, q0) and the value e = ε11ε21 − ε12ε22.
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i) If e < 0, then the only possible values for (p∗, q∗) are (0, 0) and (1, 1). The first one is a stable fixed
point and the second one is an unstable fixed point.

ii) If e > 0, then the only possible values for (p∗, q∗) are (0, 0) and (1, 1). The first one is an unstable
fixed point and the second one is an stable fixed point.

iii) If e = 0 then (p∗, q∗) is the unique solution of

ε22p0 + ε11q0 = ε22p
∗ + ε11q

∗,

q∗ =
ε12p

∗

ε11 + (ε12 − ε11)p∗
,

and it is a stable fixed point.

Proof. Notice that the values (0, 0) and (1, 1) are always a solution of (2). The stability of said fixed
points (and others we wil determine) can be study by means of the eigenvalues of the Jacobian matrix.

First case: The unbalanced scenario: (ε11ε21 6= ε12ε22) If this condition is satisfied, a simple
computation shows that there are not non-trivial solutions for (2). Hence, if a limit exists, it has to be
either the (0, 0) or the (1, 1). The Jacobian matrix of the system at each of these points is equal to

J0 := J(0, 0) =

(
1− ε12 ε11
ε21 1− ε22

)
and J1 := J(1, 1) =

(
1− ε11 ε12
ε22 1− ε21

)
.

The eigenvalues of J0 are then

λ01 =
2− (ε12 + ε22)−

√
(ε12 + ε22)2 + 4e

2
and λ02 =

2− (ε12 + ε22) +
√

(ε12 + ε22)2 + 4e

2
,

while those of J1 are

λ11 =
2− (ε11 + ε21)−

√
(ε11 + ε21)2 − 4e

2
and λ12 =

2− (ε11 + ε21) +
√

(ε11 + ε21)2 − 4e

2
.

If e < 0, then −1 < 1− (ε12 + ε22) < λ01 < λ02 < 1 and λ12 > 1, hence (0, 0) is stable and (1, 1) is unstable.
On the other hand, if e > 0, then λ02 > 1 and −1 < 1− (ε11 + ε21) < λ11 < λ12 < 1, hence (0, 0) is unstable
and (1, 1) is stable.

Second case: The balanced scenario (ε11ε21 = ε12ε22) Under this condition, it is straightforward
to notice the relation

ε22pk+1 + ε11qk+1 = ε22pk + ε11qk, for all k ∈ N,

hence, if a limit (p∗, q∗) exists, it satisfies

r∗ := ε22p
∗ + ε11q

∗ = ε22p0 + ε11q0 =: r0.

Furthermore, directly from the relation f1(p∗, q∗) = p∗ we get the equality

q∗ =
ε12p

∗

ε11 + (ε12 − ε11)p∗
.

Hence, the value of (p∗, q∗) is given by the unique solution of the system
r0 = ε22p

∗ + ε11q
∗,

q∗ =
ε12p

∗

ε11 + (ε12 − ε11)p∗
.

(3)

Computing the Jacobian matrix at (p∗, q∗) gives

J∗ := J(p∗, q∗) =

(
1− ε11 q

∗

p∗ ε12
p∗

q∗

ε22
q∗

p∗ 1− ε21 p
∗

q∗

)
.
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The eigenvalues of J∗ are

λ∗1 = 1− (ε11
q∗

p∗
+ ε21

p∗

q∗
) and λ∗2 = 1.

Given that the second eigenvalue is equal to 1, we cannot immediately give a conclusion to the stability
of (p∗, q∗). However, we can proceed as follows: for a fixed (p0, q0), p∗ is solution of the equation

p∗ =f1(p∗,
r∗ − ε22p∗

ε11
)

=(1− ε12)p∗ + (r∗ − ε22p∗) + (ε12 − ε11)p∗
r∗ − ε22p∗

ε11

=r∗ + (1− (ε12 + ε22) + (ε12 − ε11)
r0

ε11
)p∗ + (ε22 − ε21)(p∗)2

=:f(p∗).

This is, p∗ is a fixed point of f(p). Therefore, in order to determine the stability of (p∗, q∗), it suffices to
study the value of

f ′(p∗) = (1− (ε12 + ε22) + (ε12 − ε11)
r0

ε11
) + 2(ε22 − ε21)p∗

= 1− (ε11
q∗

p∗
+ ε21

p∗

q∗
),

which is precisely the first eigenvalue of J∗. Since λ∗1 < 1, (p∗, q∗) will be a stable fixed point if and only
if λ∗1 > −1, or equivalently, if and only if

g(p∗) :=
ε11ε12

ε11 + (ε12 − ε11)p∗
+
ε21
ε12

(ε11 + (ε12 − ε11)p∗) = ε11
q∗

p∗
+ ε21

p∗

q∗
< 2.

Since g(p) is a convex function over [0, 1], which satisfies g(0) = ε12 + ε22 < 2 and g(1) = ε11 + ε21 < 2,
we conclude g(p∗) < 2 for all possible values of p∗. Therefore (p∗, q∗) is a stable fixed point.

Let us discuss the results from Proposition 1. There are two scenarios for the unbalanced case. If the
players reaction to the lack of cooperation is stronger than the reaction to the presence of it (e < 0), then
both players will eventually adopt the no cooperation strategy, making the average expected gain equal
to 0. On the other hand, two players that are highly responsive to cooperation, and not to the lack of it
(e > 0), will eventually always cooperate, maximising this way the average expected gain.
We observe a far more complicated outcome when the responses of both players are balanced (e = 0).
Given that (p∗, q∗) satisfies system (3), then the average expected gain will increase if ε11 < ε22 and the
initial values p0 and q0 satisfy

q0 >
ε12p0

ε11 + (ε12 − ε11)p0
,

or if ε11 > ε22 and

q0 <
ε12p0

ε11 + (ε12 − ε11)p0
.

Thanks to the balance condition, ε11 < ε22 implies that ε12 < ε21. This is, in a way, player A has more
shy responses than player B. According to the previously established conditions, interactions between
these two players will lead to an increase in the average expected gain only if the initial probability of
cooperation for player B is sufficiently big. An analogous interpretation can be given when ε11 > ε22.
Figure 2 shows several initial configurations for (p0, q0) and their respective limiting values satisfying the
relation.

q∗ =
ε12p

∗

ε11 + (ε12 − ε11)p∗
.
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Figure 2: Left panel: Several initial configurations of cooperation probabilities. Right panel: Limiting
values of the sequences (pk, qk) associated to initial values showcased on the previous figure.

Assume now the presence of n players, each one with an initial probability of cooperation pi0 and
reciprocity constants (εi1, εi2), for i ∈ {1, . . . , n}. The previous model can be adapted in such a way that
each player modifies its strategy by taking into account the global cooperation level. This is, pik satisfies
the relation

pik+1 = qik(pk + εi1(1− pik)) + (1− qik)pik(1− εi2)

= (1− εi2)pik + εi1q
i
k + (εi2 − εi1)pikq

i
k,

with

qik :=
1

n− 1

∑
j 6=i

pjk,

being the average probability of cooperation from the co-players of player i. As in the previous case, it
can be expected that the amount of fixed points for this recurrence, and its stability will depend on a
family of conditions over the values of (εi1, εi2), however, for the moment being, we will not study this
case any further.
An element that was not considered in these models was the effect of the average expected gain on the
relation between (pk, qk) and (pk+1, qk+1). For example, considering variable reciprocity coefficients which
directly depend on the average expected gain would create a mutual feedback between the cooperation
probabilities and the gain, resulting this way in a far more complex, interesting and realistic model.

3.3 A continuously structured population model for the evolution of coop-
eration

Take p ∈ [0, 1] to be a continuous structure variable representing a probability of cooperation. Consider
two populations A and B, each one composed by individuals with different probabilities of cooperation
with the elements on the other population. Let nA(t, p) and nB(t, p) be their respective population
densities of individuals with probability of cooperation equal to p at time t. The total populations at
time t are given by

ρA(t) :=

∫ 1

0

nA(t, p)dp and ρB(t) :=

∫ 1

0

nB(t, p)dp,
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and the mean cooperation probabilities by

p̃A(t) :=

∫ 1

0
pnA(t, p)dp

ρA(t)
and p̃B(t) :=

∫ 1

0
pnB(t, p)dp

ρB(t)
.

These choices allow to define the global expected gain for each population. For the first population its
global expected gain is defined then as

EA(t) := (b− c)p̃A(t)p̃B(t) + b(1− p̃A(t))p̃B(t)− cp̃A(t)(1− p̃B(t)) = bp̃B(t)− cp̃A(t),

where b and c are the benefit and cost, respectively, of cooperation in the prisoner’s dilemma setting1.
Similarly, the expected gain for population B is given by

EB(t) := bp̃A(t)− cp̃B(t).

This way, we may consider that the population densities evolve following the system of equations
∂tnA(t, p) + εA∂p ((p̃B(t)− p)nA(t, p)) = gA(p,EA(t))nA(t, p),

∂tnB(t, p) + εB∂p ((p̃A(t)− p)nB(t, p)) = gB(p,EB(t))nB(t, p),

nA(0, p) = n0A(p), nB(0, p) = n0B(p),

(4)

where εA and εB are reciprocity coefficients and gA, gB are continuous and increasing functions of EA
and EB respectively, while the elements of both populations modify their probabilities of cooperation,
depending on the global probability of cooperation of their counterpart.

Cooperation or extinction, an easy choice From model (4), we will illustrate, for an specific choice
of gA and gB , how cooperation may make a difference between extinction or persistence. Consider

gA(p,EA(t)) := rA(p) + γA(p)EA(t) = rA(p) + γA(p)(bp̃B(t)− cp̃A(t)),
gB(p,EB(t)) := rB(p) + γB(p)EB(t) = rB(p) + γB(p)(bp̃A(t)− cp̃B(t)),

(5)

where rA(p), rB(p) are the respective intrinsic growth rates of populations A and B and the non-negative
functions γA(p), γB(p) represent the effect of the expected gain on the growth rate of each population.
This choice of gA and gB makes system (4) bear a striking resemblance to the model studied in [35],
where conditions under which there is persistence of all species are given. Nevertheless, there are several
differences: In our case the non local terms are given by the mean cooperation probabilities, the functions
γA and γB are non-negative and we consider no restrictions over the signs of rA(p) and rB(p). Despite
these differences, we do not rule out the fact that the tools and techniques used within the cited reference
may be useful for the study of problem (4) as well. For specific choices of εA, εB , γA and γB it is possible
to identify the conditions over rA, rB , b and c which guarantee that one or both populations will either
go extinct or proliferate. Such conditions are stated on the following proposition:

Proposition 2. Consider εA = εB = 0, γA(p) ≡ γA and γB(p) ≡ γB, with γA, γB non negative constants.
Suppose rA(p), rB(p), n0A(p) and n0B(p) to be continuous functions such that the maximum value of rA(p)
over the support of n0A(p) is attained at a single point p∗A, and the maximum value of rB(p) over the
support of n0B(p) is attained at a single point p∗A. Then

i) If rA(p∗A) + γA(bp∗B − cp∗A) < 0, population A will go extinct.

ii) If rA(p∗A) + γA(bp∗B − cp∗A) > 0, there exists and interval I satisfying p∗A ∈ I ⊂ [0, 1] such that
population A will blow up for all p ∈ I.

iii) The same is true for population B, depending on the sign of rB(p∗B) + γB(bp∗A − cp∗B).

Proof. Under these hypotheses, the expression for nA(p) and nB(p) are implicitly given by the expressions

nA(t, p) = nA0 (p)erA(p)t+γA
∫ t
0
EA(s)ds and nB(t, p) = nB0 (p)erB(p)t+γB

∫ t
0
EB(s)ds,

1For a more general model,the values of b and c could be dependent on p, this is, the cost and benefit of cooperation
might depend on the probability of cooperation itself
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respectively. This allows to explicitly compute the values of p̃A(t) and p̃B(t):

p̃A(t) =

∫ 1

0
pn0A(p)erA(p)tdp∫ 1

0
n0A(p)erA(p)tdp

and p̃B(t) =

∫ 1

0
pn0A(p)erB(p)tdp∫ 1

0
n0A(p)erB(p)tdp

.

From here, it is not hard to prove that, under the hypotheses of Proposition 2, p̃A(t) and p̃B(t) converge
towards p∗A and p∗B respectively. This implies that, for all positive ε there exists T > 0 such that
r(p) + γA(bp̃B(t) − cp̃A(t)) 6 rA(p∗A) + γA(bp∗B − cp∗A) + ε for all t > T . If ε is chosen small enough,
then r(p) + γA(bp̃∗B(t) − cp̃∗A(t)) < 0 for all t > T which gives the convergence to 0 of the population.

Conversely, if rA(p∗A) + γA(bp∗B − cp∗A) > 0, we set δ :=
rA(p∗A)+γA(bp∗B−cp

∗
A)

2 , and define

I = {p ∈ [0, 1] : rA(p) > rA(p∗A)− δ}.

Hence, for all p ∈ I there exists T > 0 such that

r(p) + γA(bp̃B(t)− cp̃A(t)) > rA(p∗A)− δ + γA(bp̃B(t)− cp̃A(t))− ε = δ − ε,

for all t > T . Once again, by choosing ε small enough we obtain the strictly positive growth rate for all
values of p ∈ I, which implies the blow up of the population for all such values of p.
The proof for population B is analogous.

Let us illustrate the result of Proposition 2 with an example. Consider

rA(p) = rB(p) = p(1− p)− 1

2
< 0.

It is straightforward to conclude that, if there is no cooperation (γA(p) = γB(p) = 0 or nA0 (p) = nB0 (p) =
ρ0δ0(p)) then both populations will go extinct, at an exponential rate. On the other hand, consider
γA(p) = γB(p) = 1, nA0 (p) ≡ nA0 and nB0 (p) ≡ nB0 . Under these assumptions, we have

nA(t, p) = nA0 e
rA(p)t+

∫ t
0
EA(s)ds and nB(t, p) = nB0 e

rB(p)t+
∫ t
0
EB(s)ds,

and consequently we get

p̃A(t) =

∫ 1

0
perA(p)tdp∫ 1

0
erA(p)tdp

=
1

2
and p̃B(t) =

∫ 1

0
perB(p)tdp∫ 1

0
erB(p)tdp

=
1

2
,

after integrating by means of a substitution. This way, the equations for nA(t, p) and nB(t, p) are reduced
to 

∂tnA(t, p) = (rA(p) + (b−c)
2 )nA(t, p),

∂tnB(t, p) = (rB(p) + (b−c)
2 )nB(t, p),

nA(0, p) = n0A, nB(0, p) = n0B .

It is then evident that, as long as (b − c) > 1 there will be values of p for which rA(p) + (b−c)
2 > 0 and

rB(p)+ (b−c)
2 > 0, hence, the population densities nA(t, p) and nB(t, p) will be proliferating exponentially.

An interesting question left unanswered is the case rA(p∗A)+γA(bp∗B−cp∗A) = 0. In this scenario, additional
conditions over the parameters of the problem might be needed in the general case in order to determine
the behaviour of the solution. For the previous illustrative example, this condition is equivalent to
choosing b− c = 1

2 , which leads to a solution which decreases for all p 6= 1/2 and that remains constant
for p = 1/2. It is also of interest to identify whether the effect of cooperation on the populations dynamics
proved in Proposition 2 can be observed for a more general family of conditions, and choices of gA and
gB . As mentioned before, the tools presented in [35] might be of use in order to better understand the
long time dynamics of both populations, and identify concentration phenomena, stable steady states and
rates of convergence or explosion.
The study of the effect of the advection term, representing reciprocity adds a layer of complexity to the
study of the problem. We refer to [17] and the references therein, where similar non local advection-
reaction problems have been studied, but for a single population. A diffusion term can be considered
as well in both equations of system (4) in order to model random instabilities of the probabilities of
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cooperation. This term may be a second order differential operator and suitable boundary conditions,
or an integral term with a mutation kernel. A similar model, for only one population, excluding the
advection term and depending on the population size as the non-local term was already studied in [27].
Finally, if all three terms are considered, the resulting model will follow the same principles as in model
(1), where the diffusion term represents the non-genetic instability of trait p, the advection term represents
the external stress exerted over each population as in [2] or the existence of a bias in the direction of
epimutations, as in [8] (in our case such stress or bias is prompted by the global cooperation probability
of the other population) and the reaction term accounts for selection mechanisms.

4 Conclusion

We have sketched in this short essay, relying on concepts of philosophy of science and on mathematical
models under development, the two settings of evolution in which phenotype divergence and cooperation
between phenotypes in the constitution of animal multicellularity should be considered from our point of
view. They are the billion-year Darwinian evolution of species - which we assimilate with the evolution of
body plans - and the short-term construction, in embryogenesis and development, of an isogenic animal
from the zygote to the constituted, terminally differentiated multicellular organism.

In the first case, phenotype divergence is considered to be determined by changes in the environment,
and it is represented by an advection term in a PDE, yielding different optimal adaptive strategies that
are chosen randomly in the initial body plan and resulting in (at least) two different body plans, that in
the first place should be reversible, before being fixed by stabilising mutations.

In the second case, the body plan of a given coherent multicellular animal, that has been established in
Darwinian evolution in a deterministic machinery of embryogenesis and organism maintenance, governs
the process of development from the zygote of the animal individual on principles of compatibility and
cooperativity between physiological functions, organs and tissues, that relies on cell differentiations. Of
note, cellular stress-induced genes might evolve into developmental organisers, according to a mechanism
proposed in the Chlamydomonas/Volvox lineage [23]. Such differentiations are by nature theoretically
reversible, relying on epigenetic enzyme activities which graft methyl or acetyl radicals on the DNA or
on the histones that constitute the genome on animal, and dedifferentiations indeed have been shown to
be experimentally possible in 2006 by Takahashi and Yamanaka [48]. However, they are physiologically
excluded, except in particular situations such as wound healing, by a strict control of the expression of
these epigenetic enzymes. Plasticity in cancer cells alters such normal organismic control.

In cancer, which is a disease characteristic of multicellular animals, differentiations are (locally, in the
tissue from which it originates) out of organismic control, so that tumours, as poorly organised cell colonies
that nevertheless are made of cells bearing in each one of them the body plan of a multicellular organism,
can reactivate a process of phenotype divergence in response to a deadly insult (such as a chemotherapy
at high doses), resulting in cancer bet hedging, i.e., developing diverse transient (reversible) phenotypes
without organised control, with the goal to preserve the proliferation potential of their cells.

We are aware that the mathematical models presented here are sketches that need refinement, and
that in particular the cooperativity part should be oriented towards defining a compulsory common gain
(likely represented by, again, an advection term in a PDE) that determines the precise construction of
an individual animal organism designed by its body plan. Much still remains to be done towards this
goal, and in particular the body plan - whose effects are patent in embryogenesis and development, but is
still not properly defined as a programme - needs to be better defined in a mathematical representation.
It is likely made of an organised ensemble of gene regulatory networks, as evidenced in the works of
Eric Davidson [12] and his colleagues, and systematically described in the diversity of its functions in
hypothetical Urmetazoa by W.E.G. Müller and his colleagues [30]. A mathematical representation of
the body plan, as a programme of construction of the individual and as the evolutionary unit on which
relies Darwinian evolution and the design of animal anatomy and physiology, is a challenge that awaits
philosophers, evolutionary biologists, and mathematical modellers and analysts, a challenge we have
merely sketched in this short essay.
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