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Abstract

In this work, we show that the coexistence of the maximal number of real spectral
values of generic single-delay retarded second-order differential equations guarantees the
realness of the rightmost spectral value. From a control theory standpoint, this entails
that a delayed proportional-derivative (PD) controller can stabilize a delayed second-
order differential equation. By assigning the maximum number of negative roots to the
corresponding characteristic function (a quasipolynomial), we establish the conditions
for asymptotic stability. If the assigned real spectral values are uniformly distributed,
we specify a necessary and sufficient condition for the rightmost root to be negative,
thus guaranteeing the exponential decay rate of the system’s solutions. We illustrate
the proposed design methodology in the delayed PD control of the damped harmonic
oscillator. It is worth mentioning that this work represents a natural continuation of
[Amrane et al., 2018] and [Bedouhene et al., 2020], addressing the problem of coexisting
real spectral values for linear dynamical systems including delays in their models.
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†Partial results of this paper were previously presented in [1], the current paper includes updated results
with full proofs. The first author would like to thank Inria Saclay and IPSA Paris for their financial support.
The authors are grateful to their collaborator Karim L. Trabelsi (IPSA Paris) for careful reading of the
manuscript and for valuable comments.

1

mailto:islam.boussaada@centralesupelec.fr


1 Introduction

The purpose of this paper is to study the asymptotic stability of the solutions of a dynamical
system represented by a second-order linear differential equation of the form:

y′′(t) + a1y
′(t) + a0y(t) = u(t−τ0), τ0 ≥ 0,

where τ0 is a minimum delay due to physical constraints and u(t) is a forcing delayed proportional-
derivative controller given by

u(t) = −α1y
′(t− τ1)− α0y(t− τ1), τ1 ≥ 0.

The closed-loop system is represented by a second-order autonomous delay-differential equation
(DDE) including five parameters: the parameters of the open-loop system a1, a0 ∈ R, the
controller gains α1, α0 ∈ R and the sum of input and output channel delays τ = τ0 + τ1 ∈ R∗

+,
see for instance [2]–[9] for further insights on time-delay systems and their qualitative properties.

If the interest in considering a delayed control law as above lies in its generality and simplicity
(tuning only three parameters, including the delay) in real-time implementation [10]–[12], its
main inconvenient concerns the fact that the closed-loop system becomes infinite-dimensional
leading, in some cases, to unexpected dynamical behaviors with respect to changes in the
system’s parameters. Such a controller belongs to the class of low complexity controllers. For a
more general discussion on such controllers as well as some of their applications, we refer to [13].
In this frame, it should be mentioned that the idea to use the delay as a controller parameter is
not new and there exists several examples in the literature exhibiting its relevance. For instance,
at the end of 1970, [10] introduced the so-called ”proportional-minus-delay” (PMD) controller
and highlighted a few interesting properties. More precisely, similar to the PD controllers, it
operates quick responses to input changes, but, surprisingly, it is less sensitive to high-frequency
noise, and thus it can offer an alternative to the ”classical” PD controllers by conserving its
low-complexity character∗. Such controllers have been implemented and have demonstrated
their interest in various case studies [14] including, among others, the well-known inverted
pendulum [11], [12] and, more recently, human balancing [15]. Finally, as [16] points out in
a different framework, the use of a delay in the controller led to a broader class of stabilizing
second-order systems. In other words, there exists stabilizing delayed PD controller such that
the delay-free PD controller does not stabilize the corresponding dynamical system. This idea
represents additional motivation for our paper.

In this framework, the method that we propose consists in tuning the control parameters
(the ”gains” α1, α0 and the ”delay” τ) in such a way that the solutions of the closed-loop
system are asymptotically stable with a guaranteed exponential decay rate.

To achieve this general purpose, several methodologies exist with various objectives. On
the one hand, a time-domain approach based on Lyapunov functions has proven its efficiency
in estimating solutions decay; see e.g. [17] and the references therein. On the other hand,
in frequency-domain, recent studies [18]–[21] have illustrated that the so-called Multiplicity-
Induced-Dominancy (MID) property can effectively be used to prescribe the decay rate of a
DDE solution, [22]. In this approach, one assigns to the characteristic function of the system a
single real root s0 with maximal multiplicity. Then, one shows (under necessary and sufficient
conditions) that any other root should have a real part less than s0, which proves the exponential
stability for the solutions of the system. In other words, s0 represents the spectral abscissa of
the characteristic function.

The originality of the proposed approach is to assign a maximal number of simple real zeros
of the characteristic function rather than a multiple zero. Then, we give necessary and sufficient

∗i.e., three tuning parameters
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conditions ensuring that the largest assigned root is negative and dominant , so that it is nothing
but the corresponding spectral abscissa. We call this property: Coexisting-Real-Root-Induced-
Dominancy (CRRID). The systematic analysis of the CRRID began in [18], [23], where the
asymptotic stability of the solutions of an n-order linear differential equation commanded by a
delayed proportional-position-controller. Notice that the MID property mentioned above [19],
[20] can be seen as the limit of the CRRID property when all the simple real roots tend to the
same (real) value. Moreover, it is commonly accepted that multiple roots are sensitive with
respect to small parameter changes; see for instance [24] and references therein. Therefore,
the CRRID property exhibits an interesting parametric robustness compared to the MID. As a
matter of fact, the effectiveness of the CRRID property has already been emphasized through
the problem of control of vibrations, see for instance [25]. For other methods/approaches and
ideas, we refer to [26] and [27] (see also, [28] for an overview on such topics).

The contribution of this work is twofold. First, we show that the CRRID property can
successfully be applied to stabilize second-order linear systems represented by differential equa-
tions with a delayed proportional-minus-derivative controller. More precisely, we provide a
necessary and sufficient condition that guarantees that the assigned real roots are negative and
that the largest one is the dominant root of the characteristic function that is, the spectral
abscissa of the dynamical system in closed-loop. Hence, we guarantee the exponential decay
rate of the solutions of the system. To the best of the authors’ knowledge, such a result repre-
sents a novelty in the literature. The proof makes use of the Stépán-Hassard formula [3], [29]
applied to an appropriate transformation of the characteristic function. Second, we apply our
methodology to two case studies, showing that the proposed methodology can be applied to
stabilize unstable (second-order) plants and to improve the solution decay rate. Furthermore,
in the first case, the controller gains do not guarantee the closed-loop stability of the system
in the delay-free case reinforcing thus the argument that the delay has a stabilizing effect (see,
e.g., Remark 4.1). In the second case, the decay rate is guaranteed for ”small” (controller)
gains, and thus less sensitive to high-frequency noise (see, for instance, Remark 4.2).

The remaining of this paper is organized as follows: some preliminary results (functional
Vandermonde-type matrices, Stépán-Hassard formula) are presented in Section 2. Next, the
main results are derived and commented in Section 3. Two illustrative examples are proposed
in Section 4 and some concluding remarks end the paper. The notations are standard.

2 Preliminaries

In this paper, we consider a dynamical system represented by a general second-order linear
differential equation with a proportional-derivative-delay term of the form

y′′(t) + a1y
′(t) + a0y(t) + α1y

′(t− τ) + α0y(t− τ) = 0, (1)

under appropriate initial conditions belonging to the Banach space of continuous functions
C([−τ, 0],R). In the Laplace domain, the corresponding characteristic function is a quasipoly-
nomial defined by ∆ : C× R+∗ → C:

∆(s, τ) = s2 + a1s+ a0 + e−τs (α1s+ α0) , (2)

where (a1, a0, α1, α0) ∈ R4, see for instance [16]. The degree of ∆, defined by the sum of the
degrees of the polynomials plus the number of delays (one in our case), is four. The following
result asserts that the maximal number of real roots counted with multiplicity is four, see [30].

Proposition 1 (Pólya-Szegö bound). Let ∆ be the quasipolynomial given by (2), and α, β ∈ R
be such that α ≤ β. Denote by Mα,β the number of roots of ∆ counted with multiplicities
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contained in the set {s ∈ C, α ≤ ℑ(s) ≤ β}. Then,

τ(β − α)

2π
− 4 ≤ Mα,β ≤ τ(β − α)

2π
+ 4.

As a consequence of the previous theorem, setting α = β = 0, we conclude that the degree
4 of ∆ is a sharp bound for the number of real roots of the quasipolynomial ∆. Our analysis
of the assignment of real roots to the quasipolynomial (2) will rely on the invertibility of a
certain matrix, which because of its shape and properties, is called in the sequel functional
Vandermonde-type matrix, similar to the ones studied in [31], [32]; see Lemma 3 below. This
result will be proved with the help of the multivariate functions Gn : Rn+1 ×R+∗ → R defined
recursively by G0(sk, τ) = e−τsk and

(s1 − sn+1)Gn(s1, . . . , sn+1, τ) = Gn−1(s2, . . . , sn+1, τ)−Gn−1(s1, . . . , sn, τ),

for n ≥ 1. The multivariate functions Gn(·, τ) are closely related to the functions Fn(·, τ)
introduced and analyzed in [18] and, thus, benefit from similar properties that we present
without proof in Lemma 2 below.

Lemma 2 (Properties of the Gn functions). For any real numbers s1, . . . , sn+1 and τ > 0, we
have

1. Gn(s1, . . . , sn+1, τ) ̸= 0.

2. limτ→0
1

(−τ)n
Gn(s1, . . . , sn+1, τ) =

1
n!
.

Lemma 3 (Invertibility of a structured functional Vandermonde-type matrix ). Let s =
(s1, s2, s3, s4), then the matrix

V (s, τ) =


s1 1 s1e

−τs1 e−τs1

s2 1 s2e
−τs2 e−τs2

s3 1 s3e
−τs3 e−τs3

s4 1 s4e
−τs4 e−τs4

 (3)

is invertible for any τ > 0 and any distinct real numbers s1, . . . , s4.

Proof. We give an explicit factorized form of the determinant υ(s, τ) of V (s, τ) and then we show
that υ(s, τ) ̸= 0 for τ > 0 and si ̸= sj. Observe that for 1 ≤ k ≤ 4, we have e−τsk = G0(sk, τ)
and thus ske

−τsk = −G′
0(sk, τ), where the prime denotes the derivative with respect to τ . We

start with the structured functional Vandermonde-type matrix V defined by (3) and we denote
by Li, for 1 ≤ i ≤ 4, its i-th line. By replacing Li by Li − Li+1, for 1 ≤ i < 4 and using the
properties of the Gn functions we get

υ = (s1 − s2)(s2 − s3)(s3 − s4)

∣∣∣∣∣∣∣∣
1 0 G′

1(s1, s2, τ) G1(s1, s2, τ)
1 0 G′

1(s2, s3, τ) G1(s2, s3, τ)
1 0 G′

1(s3, s4, τ) G1(s3, s4, τ)
s4 1 −G′

0(s4, τ) G0(s4, τ)

∣∣∣∣∣∣∣∣ .
We replace Li by Li − Li+1 one more time, for 1 ≤ i ≤ 2, and factor out (s1 − s3)(s2 − s4) to
obtain

υ = (s1 − s2)(s2 − s3)(s3 − s4)(s1 − s3)(s2 − s4)

∣∣∣∣∣∣∣∣
0 0 G′

2(s1, s2, s3, τ) G2(s1, s2, s3, τ)
0 0 G′

2(s2, s3, s4, τ) G2(s2, s3, s4, τ)
1 0 G′

1(s3, s4, τ) G1(s3, s4, τ)
s4 1 −G′

0(s4, τ) G0(s4, τ)

∣∣∣∣∣∣∣∣ .
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To show that υ ̸= 0, it suffices to prove that the latter matrix is invertible. Note that we can

express the determinant

∣∣∣∣G′
2(s1, s2, s3, τ) G2(s1, s2, s3, τ)

G′
2(s2, s3, s4, τ) G2(s2, s3, s4, τ)

∣∣∣∣ via the following quotient derivative

−G2(s1, s2, s3, τ)
2

(
G2(s2, s3, s4, τ)

G2(s1, s2, s3, τ)

)′

.

The above expression holds for any τ > 0, thus its vanishing implies that there exists a real
constant C (depending on s) such that

G2(s2, s3, s4, τ) = CG2(s1, s2, s3, τ).

By continuity, taking τ → 0 yields that C = 1, a contradiction, since

G2(s2, s3, s4, τ)−G2(s1, s2, s3, τ) = (s4 − s1)G3(s, τ) ̸= 0.

Therefore, υ ̸= 0 for any τ > 0 and any distinct numbers sk, k = 1, . . . , 4.

To prove the dominancy of the rightmost real spectral value, we will use the Stépán-Hassard
formula [3], [29] that we recall in the next theorem, in a particular context.

Theorem 4 (Stépán-Hassard formula). Let Q(x, q) = xn +
∑n−1

k=0 bkx
k + e−qx

∑m
k=0 βkx

k be a
quasipolynomial function and 0 < ρ1 ≤ . . . ≤ ρr be the positive zeros (counted with multiplici-
ties) of the real function Rq(ω) = ℜ(i−nQ(iω, q)). For each 1 ≤ j ≤ r such that Q(iρj, q) = 0,
assume that the multiplicity of iρj as a zero of Q is the same as the multiplicity of ρj as a zero
of Rq(ω). Then the number of roots of the quasipolynomial Q(x, q) which lie in the half plane
{ℜ(x) > 0}, counted with multiplicity, is given by the formula

Z =
n−K

2
+

1

2
(−1)r sgnS(κ)(0) +

r∑
j=1

(−1)j−1 sgnS(ρj), (4)

where K is the number of purely imaginary roots of ∆, counted by multiplicity, κ is the multi-
plicity of 0 as a root of Q, and Sq(ω) = ℑ(i−nQ(iω, q)).

3 Main results

In this section, we analyze the properties of quasipolynomial functions saturating their number
of real zeros, and we derive some results for the asymptotic stability of the solutions of the
DDE (1). More precisely, first, in Proposition 5 we give necessary and sufficient conditions on
the coefficients of the quasipolynomial (2) for the number of distinct real zeros to be maximal.
For the next results, we assume that the real roots are uniformly distributed. Second, in
Proposition 7 we give a necessary and sufficient condition that guarantees the negativity of the
real zeros of ∆. Third, in Theorem 8 we show that the coexistence of the maximum number of
real spectral values implies the CRRID property for the quasipolynomial ∆, i.e. the rightmost
real zero is the spectral abscissa. Finally, the combination of these results allows us to prove
exponential stability with a guaranteed decay rate for the solutions of (1).

3.1 Assigning real roots of the characteristic function

In this subsection, we show that assigning the maximal number of distinct real roots to the
quasipolynomial ∆ uniquely determines the coefficients ak and αk.
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Proposition 5 (Coexisting real roots). For a given delay τ > 0, the quasipolynomial (2) admits
4 distinct real spectral values s1, . . . , s4 if, and only if, the real coefficients a1, a0 and α1, α0 are
respectively given by the following functions in τ and s = (s1, . . . , s4):

a1(s, τ) =
−1

υ(s, τ)
det


s21 1 s1e

−τs1 e−τs1

s22 1 s2e
−τs2 e−τs2

s23 1 s3e
−τs3 e−τs3

s24 1 s4e
−τs4 e−τs4

 , a0(s, τ) =
1

υ(s, τ)
det


s21 s1 s1e

−τs1 e−τs1

s22 s2 s2e
−τs2 e−τs2

s23 s3 s3e
−τs3 e−τs3

s24 s4 s4e
−τs4 e−τs4

 ,

and

α1(s, τ) =
−1

υ(s, τ)
det


s21 s1 1 e−τs1

s22 s2 1 e−τs2

s23 s3 1 e−τs3

s24 s4 1 e−τs4

 , α0(s, τ) =
1

υ(s, τ)
det


s21 s1 1 s1e

−τs1

s22 s2 1 s2e
−τs2

s23 s3 1 s3e
−τs3

s24 s4 1 s4e
−τs4

 ,

where υ(s, τ) is the determinant of the structured functional Vandermonde-type matrix V (s, τ),
introduced in Lemma 3.

Proof. Assume that (2) admits four distinct real roots s1, . . . , s4, which entails that the coeffi-
cients a1, a0 and α1, α0 satisfy the linear system

a1sk + a0 + α1e
−τsksk + α0e

−τsk = −s2k,

for 1 ≤ k ≤ 4. Thanks to the invertibility of matrix V (s, τ), as ensured by Lemma 3, one
deals with a Cramer system with respect to the coefficients a1, a0 and α1, α0. So that, we easily
compute these coefficients with the standard formulas.

The following corollary gives the closed-form expression of the coefficients a1, a0 and α1, α0,
in the case where the real zeros are equidisributed.

Corollary 6. The quasipolynomial ∆ admits the equidistanced real roots sk = s1 − (k − 1)d,
for d > 0 and 1 ≤ k ≤ 4, if and only if its coefficients are given by

a0(s1, d, τ) =
6d2

(eτd − 1)2
+ s21 − ds1

(
eτd − 5

eτd − 1

)
, (5)

a1(s1, d, τ) = d

(
eτd − 5

eτd − 1

)
− 2s1, (6)

α0(s1, d, τ) =
−2deτs1

(eτd − 1)2
(
3d− s1(1− e−τd)

)
, (7)

α1(s1, d, τ) = −2deτs1
e−τd

eτd − 1
. (8)

Note that the expressions of the coefficients a1, a0 and α1, α0 in Corollary 6 characterize the
existence of four equidistant real roots sk = s1 − (k − 1)d, with d > 0 and k = 1, · · · , 4, for
the quasipolynomial ∆. In practical applications, notice that a1 and a0 are fixed by the model.
Hence, one has the solve (6) to determine σ := τd. We inject the expression of σ into (7) and
(8) to express α0 and α1 as a function of s1, d, τ and a1, and in equation (5) to determine
the relation verified by d (as a polynomial of degree 2). The suitable solution of d is quickly
determined via the positivity constraint of τ and d.

Remark. Observe that the open-loop system P (s) = s2 + a1s + a0 needs not a priori to be
stable when applying the retarded PD controller. Indeed, observe that a1(s1, d, τ) is negative for

τ < 1
d
ln
(

5d−2s1
d−2s1

)
, which implies that P (s) has at least one root with a positive real part.
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3.2 Assuring negativity of the real roots

The following proposition gives a necessary and sufficient condition for the coefficients of the
quasipolynomial (2) to ensure that the rightmost real root is negative.

Proposition 7. For a fixed delay τ > 0, assume that the quasipolynomial ∆ admits four
equidistanced real roots sk = s1 − (k − 1)d, for d > 0 and 1 ≤ k ≤ 4. Then, s1 is negative if,
and only if, there exits τ ∗ > 0 such that :

a1(s1, d, τ
∗) + s1 − d = 0. (9)

Furthermore, τ ∗ necessarily satisfies:

τ ∗ =
1

d
ln

(
1− 4

d

s1

)
> 0.

Proof. By a direct calculation using the explicit form of a1 given in Corollary 6, we obtain

a1(s1, d, τ) + s1 − d = −s1 − 4d
1

eτd − 1
.

Then, a1(s1, d, τ
∗) + s1 − d = 0 if, and only if, τ ∗ = 1

d
ln
(
1− 4 d

s1

)
. Finally, one immediately

observes that τ ∗ > 0 if, and only if, s1 < 0.

Remark. Note that Proposition 7 is of importance in stabilization of unstable plants. Indeed,

• The existence of the mentioned τ ∗ represents a guarantee for the negativity of the closed-
loop assigned real roots.

• Equation (9) is of importance for control design purposes. In particular, if the coefficient
a1 is fixed by the model and one wants to assign equidistanced real roots to stabilize the
system, then the distance d > 0 needs to be chosen such that d> a1 + 2s1.

3.3 The CRRID property

In this subsection, we prove the CRRID property for the quasipolynomial ∆. Namely, we have
the following theorem.

Theorem 8. If the quasipolynomial ∆(·, τ) admits the maximal number of four equidistanced
real roots sk = s1 − (k − 1)d, for 1 ≤ k ≤ 4, then

∀ s0 ∈ C\{s1}, ∆(s0) = 0 =⇒ ℜ(s0) < s1.

Theorem 8 asserts that s1 is a strictly dominant root of ∆, i.e. it is the spectral abscissa of the
quasipolynomial. Moreover, by carefully studying the proof, we have the stronger result that
the pair (s1, s2 = s1 − d) is a system of dominant roots for ∆, i.e.

∀ s0 ∈ C\{s1, s2}, ∆(s0) = 0 =⇒ ℜ(s0) ≤ s2.

Our strategy to prove the dominancy of s1 for ∆(·, τ) relies on the application of the Stépán-
Hassard formula [29] on a transformed version of ∆. Let us introduce the following transfor-
mation of the complex plane:

ϕ : C −→ C
z 7−→ dz + s1 − d,

7



which translates the root s1 − d to the origin and scales the distance between two consecutive
real root to 1. We introduce the transformed quasipolynomial

Q(z, q) =
1

d2
∆(ϕ(z), τ) = z2 + b1z + b0 + e−qz (β1z + β0) ,

where the new delay parameter is q = τd. The following lemma assert that the normalized
quasipolynomial Q(·, q) admits four distinct real roots, gives the explicit form of the coefficients
b1, b0, β1, and β0, and asserts that the problem of proving that s1 is dominant for ∆ is the same
as proving that z = 1 is dominant for Q.

Lemma 9 (Properties of the normalized quasipolynomial). The normalized quasipolynomial
Q(z, q) admits the real roots {1, 0,−1,−2}. The coefficients {b1, b0, β1, β0} of Q are given by

b0(q) = 2
2eq + 1

(eq − 1)2
, b1(q) = −eq + 3

eq − 1
,

β0(q) = −2
2eq + 1

(eq − 1)2
, β1(q) = − 2

eq − 1
.

The root s1 of ∆ is dominant if, and only if, z = 1 is a dominant root of Q(·, q).

Proof. The map ϕ(z) is an isomorphism of the complex plane, that maps {1, 0,−1,−2} to the
real roots {s1, s2, s3, s4} of ∆ to. Thus, the coefficients {b1, b0, β1, β0} of Q satisfy the set of
linear equations Q(z0) = 0 for z0 ∈ {1, 0,−1,−2}. Therefore, using Corollary 6 with s1 = 1
and d = 1, we deduce that the coefficients {b1, b0, β1, β0} admit the closed forms given in the
statement of the Lemma.

Moreover, the linear transform ϕ is the composition of a translation and a positive scaling
(in particular, it does not involve a rotation). Thus, any inequality between the real parts of
the roots of ∆ is preserved. Hence, the dominancy of 1 for Q corresponds to the dominancy of
s1 for ∆.

To prove the dominancy of 1 for Q, we apply the Stépán-Hassard formula (see Theorem 4),
which relies on the properties of the following parametrized real functions

Rq(ω) = ℜ (−Q(iω, q)) and Sq(ω) = ℑ (−Q(iω, q)) ,

given by

Rq(ω) = ω2 − b0(q)− cos(qω)β0(q)− sin(qω)β1(q)ω, (10)

Sq(ω) = sin(qω)β0(q)− cos(qω)ωβ1(q)− b1(q)ω.

In the remaining part of this section, we compute the different numbers involved in the Stépán-
Hassard formula (4).

Number of imaginary roots of Q. Let ω ≥ 0 be such that Q(iω) = 0, then ω satisfies

Rq(ω) = 0 and Sq(ω) = 0.

Using simple algebraic manipulations, we obtain that the expressions of cos(qω) and sin(qω)
are given by

cos(qω) = −ω2(b1β1 − β0) + b0β0

ω2β2
1 + β2

0

,

sin(qω) =
ω(ω2β1 − β0β1 + b1β0)

ω2β2
1 + β2

0

.
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The relation cos(qω)2 + sin(qω)2 = 1, implies that ω is necessarily given by

ω1 = 0 or ω2 = ±
√

2b0 − b21 + β2
1 = ±i.

Therefore, the only imaginary root of Q(·, q) is ω = 0, which, by definition of Q, is of multiplicity
1. Moreover, we have

S ′
q(0) =

1

(eq − 1)2
(
e2q − 4(q − 1)eq − 2q − 5

)
,

which can be seen positive for any q > 0 with the following argument. Denote by f(q) the
numerator of the right-hand-side of the above equality. Then, f ′′(q) = 4eq (eq − (q + 1)) is
positive for q > 0. Thus, f ′(q) is increasing and, since f ′(0) = 0, is positive. Finally, we deduce
that f(q) is increasing and, since f(0) = 0, we conclude that f(q) is positive for q > 0. Hence,

in the Stépán-Hassard formula we have K = 1, κ = 1, and sgnS
(κ)
q (0) = 1.

Locating the real positive roots of Rq. If ω > 0 is a root of (10), then (using the
expressions of the coefficients given in Lemma 9) we get

ω2 + 2
2eq + 1

(eq − 1)2
(cos(qω)− 1) +

2

eq − 1
ω sin(qω) = 0.

Multiplying the last equation by q2, reduces the problem to the search of the positive zeros of
the parameterized function Fq : R+∗ → R defined by

Fq(ρ) = ρ2 + A(q) (cos(ρ)− 1) +B(q)ρ sin(ρ) = 0,

where ρ = qω > 0, A(q) = 2q2 2eq+1
(eq−1)2

, and B(q) = 2q
eq−1

. The following technical lemma gives

the main properties of the functions A and B that we will use the next results.

Lemma 10 (Properties of the A and B functions). For all q > 0, we have

B(q) < 2 and 6 > A(q) > 3B(q) > B(q) > 0.

The function ρ̄q =
(
B(q) +

√
B(q)2 + 8A(q)

)
/2 is strictly decreasing and limq→0+ ρ̄q = 1+

√
13.

Proof. Clearly we have A(q) > 0 and B(q) > 0. Moreover, B′(q) = − 2
(eq−1)2

(eq(q − 1) + 1) < 0,

thus B is decreasing and B(q) < limq→0+ B(q) = 2. Second, we also obtain A′(q) < 0, which
yields A(q) < limq→0+ A(q) = 6. Third, we have A − 3B = 2q

(eq−1)2
(2qeq − 3eq + q + 3), the

second factor is seen to be positive by differentiating it twice, implying that A− 3B > 0. Con-
sider the function ρ̄q defined in the Lemma and whose expression is ρ̄q =

q
eq−1

(
1 +

√
5 + 8eq

)
.

To show that ρ̄q is decreasing, we show that it is the sum of two positive decreasing functions.
Namely, we set ρ̄q = ρ̄1q + ρ̄2q, with ρ̄1q = q

eq−1
and ρ̄2q = q

eq−1

√
5 + 8eq. First, we obviously

have that ρ̄1q is decreasing. Second, we have d
dq
(ρ̄2q) = −eq 4eq+9

(eq−1)2
√
8eq+5

< 0, hence ρ̄2q is also

decreasing. Thus, ρ̄q < limq→0+ ρ̄q = 1 +
√
13

The results of Lemma 10 are illustrated by Figure 1.

Lemma 11. The parametrized transcendental function Fq(ρ) admits at most one real positive
zero ρ∗q, and when it does, it is located within the open interval I =

]
0, 3π

2

[
.
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2

6

1 +
√
13

q

A(q)
B(q)
3B(q)
ρ̄q

Figure 1: Qualitative behavior of the functions A(q) (red) and B(q) (blue) involved in the definition
of Fq. We also illustrate the function ρ̄q (dashed).

Proof. First, since A(q) > 0 and B(q) > 0, observe that for ρ > 0 we have

Fq(ρ) ≥ ρ2 − 2A(q)−B(q)ρ.

The right hand side of the above inequality is a polynomial of degree 2 in the variable ρ, whose
largest root is ρ̄q defined in Lemma 10. Since limq→0 ρ̄q = 1 +

√
13 < 3π

2
, we deduce that,

necessarily, all roots ρ∗q (if any) of Fq(ρ) must lie within I =
]
0, 3

2
π
[
. Now, by studying the

first derivatives of Fq with respect to ρ we show that Fq admits at most one positive root. The
third derivative of Fq with respect to ρ is given by:

F (3)
q (ρ) = −B(q)ρ cos(ρ) + (A(q)− 3B(q)) sin(ρ).

Depending on whether the function C(q) = B(q)
A(q)−3B(q)

is greater than 1, the equation tan(ρ) =

C(t)ρ has either one or two solutions within the interval I. We separate the two cases.

1. If F
(3)
q (ρ) has only one zero ρ1 ∈ I. Using that F

(3)
q (0) = 0 and F

(3)
q

(
3π
2

)
= 3B(q)−A(q) <

0, we deduce that F ′′
q (ρ) is increasing on ]0, ρ1[ and decreasing on

]
ρ1,

3π
2

[
. Observe that

F ′′
q

(
3π
2

)
= 2 + 3π

2
B(q) > 0 and denote f2(q) = F ′′

q (0) = 2− A(q) + 2B(q).

(a) If f2(q) ≥ 0, then F ′′
q (ρ) is positive on I. Thus, F ′

q(ρ) is increasing and since
F ′
q(0) = 0, we conclude that F ′

q is positive. Finally, Fq(ρ) is increasing on I and,
since Fq(0) = 0, we conclude that Fq does not admit a zero on I.

(b) If f2(q) < 0, then F ′′
q (ρ) admits a zero ρ2 ∈]0, ρ1[. Thus, F ′

q(ρ) is decreasing on ]0, ρ2[

and increasing on
]
ρ2,

3π
2

[
. Using that F ′

q(0) = 0 and F ′
q

(
3π
2

)
= A−B + 3π > 0, we

conclude that F ′
q(ρ) admits a zero ρ3 ∈

]
ρ2,

3π
2

[
. Therefore, Fq is decreasing on ]0, ρ3[

and increasing on
]
ρ3,

3π
2

[
. Since Fq(0) = 0 and Fq

(
3π
2

)
= 9π2

4
− 3π

2
B(q)−A(q) > 0,

we conclude that Fq admits a unique zero ρ∗ ∈
]
ρ3,

3π
2

[
.

2. If F
(3)
q (ρ) has two zeros ρ1, ρ2 ∈ I. Then, F ′′

q (ρ) is decreasing on ]0, ρ1[, increasing on

]ρ1, ρ2[, and decreasing on
]
ρ2,

3π
2

[
. In this case we necessarily have F ′′

q (0) < 0 and, using

F ′′
q

(
3π
2

)
> 0, we conclude that F ′′

q has a unique zero ρ3 ∈]ρ1, ρ2[. So F ′
q(ρ) is decreasing on

]0, ρ3[ and increasing on ]ρ3, 0[. Since F ′
q(0) = 0 and F ′

q

(
3π
2

)
> 0, the function F ′

q admits

a unique zero ρ4 ∈
]
ρ3,

3π
2

[
. Finally, Fq is decreasing on ]0, ρ4[ and increasing on

]
ρ4,

3π
2

[
.

Since, Fq(0) = 0 and Fq

(
3π
2

)
> 0, we conclude that Fq admits a unique zero ρ∗ ∈

]
ρ4,

3π
2

[
.

To summarize the case distinction made above, we have proved that for any value of the
parameter q, the function Fq(ρ) admits at most a root ρ∗ > 0.
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Therefore, for a given delay q∗, there exists at most one ω∗ > 0, defined by ρ∗ = q∗ω∗, such
that Rq(ω

∗) = 0. We now show that Sq(ω
∗) > 0. In the same fashion as for Rq, we introduce

the parametrized univariate function Hq(ρ) = qSq(
ρ
q
), which can be expressed as

Hq(ρ) = C(q)ρ+D(q)ρ cos(ρ) + E(q) sin(ρ),

with C(q) = eq+3
eq−1

, D(q) = 2
eq−1

, and E(q) = −2q 2eq+1
(eq−1)2

. The following lemma details the

properties of the C,D,E functions that we will use in the next results.

Lemma 12 (Properties of the C,D,E functions). For all q > 0, we have

C(q) > D(q) > 0 and 2D(q) + E(q) < 0.

Proof. It is immediate to obtain C(q) > 0 and D(q) > 0; moreover, C(q) −D(q) = eq+1
eq−1

> 0.

Next, we have 2D(q) + E(q) = − 2
(eq−1)2

(2eq(q − 1) + q + 2), which can be seen to be positive

since the second factor is positive (proved using its second derivative).

The results of Lemma 12 are illustrated by Figure 2.

2

4

6

8

q

C(q)
D(q)

−E(q)
2

Figure 2: Qualitative behavior of the functions C(q) (red), D(q) (blue), and E(q) (black), involved in
the definition of Hq.

Lemma 13. For any q > 0 and ρ ∈
]
0, 3π

2

[
, we have Hq(ρ) > 0.

Proof. By a direct calculation, we obtain

H ′′
q (ρ) = −D(q)ρ cos(ρ)− (2D(q) + E(q)) sin(ρ).

The function J(q) = − D(q)
2D(q)+E(q)

satisfies 0 < J(q) < 1, so we conclude that the equation

tan(ρ) = J(q)ρ admits a unique solution in the interval I. Using H ′′
q (0) = 0 and H ′′

q

(
3π
2

)
=

2D(q) + E(q) < 0, it follows that H ′
q is increasing on ]0, ρ1[ and decreasing on

]
ρ1,

3π
2

[
. Since,

H ′
q(0) = C(q) + D(q) + E(q) > 0 and H ′

q

(
3π
2

)
= 3π

2
D(q) + C(q) > 0, we conclude that H ′

q is
positive, and Hq is increasing, since Hq(0) = 0, it follows that Hq(ρ) > 0.

Hence, in the Stépán-Hassard formula we either have r = 0 or r = 1 and sgnSq(ρ
∗) = 1.
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Applying the Stépán-Hassard formula. The previous preliminary results allow to com-
pute the number of zeros of Q located in the right-half plane.

Theorem 14. The root 1 is dominant for Q.

Proof. We apply the Stépán-Hassard formula (4) to obtain the number of zeros of Q in {ℜ(z) >
0}. If r = 0, then

Z0 =
2− 1

2
+

1

2
(−1)0(1) = 1.

If r = 1, then

Z1 =
2− 1

2
+

1

2
(−1)1(1) + (−1)0(1) = 1.

Thus, in both cases, the quasipolynomial Q admits only one root in the right-half plane. But,
we already know that z = 1 is a root of Q. Therefore any other root z0 ∈ C of Q satisfies
ℜ(z0) ≤ 0 and we conclude the dominancy of 1 for Q.

As a consequence of Theorem 14 and of Lemma 9, we conclude that s1 is dominant for
∆(s, τ) and that ∆ satisfies the CRRID property.

3.4 Asymptotic stability of the DDE

Collecting the results of the previous subsections give the following theorem.

Theorem 15. If the quasipolynomial ∆ given by (2) admits four equidistributed real zeros and
(9) is satisfied, then the trivial solution of (1) is asymptotically stable with a decay rate equal
to s1.

4 Illustrative examples

In this section, we illustrate the effectiveness of our approach by providing two examples. First,
we show that the CRRID property can be applied via a delayed PD controller to successfully
stabilize unstable plants. Second, we show that even the second-order open-loop plant is stable,
one is able to improve its solution decay rate.

4.1 Stabilizing two unstable poles

To highlight the utility of using a retarded PD controller, we use the approach developed in the
previous section to stabilize an unstable second-order plant free of delays. Consider the open-
loop system given by y′′(t)+a1y

′(t)+a0y(t) = 0 and assume that a1 < 0, which implies that its
characteristic function has at least one unstable zero. Following the methodology introduced
in the paper, we consider that we use a delayed PD controller u(t) = −α1y

′(t− τ)−α0y(t− τ)
and that the closed loop characteristic function

∆(s) = s2 + a1s+ a0 + e−τs (α1s+ α0) (11)

admits four equidistributed real roots sk = s1 − (k − 1)d, for 1 ≤ k ≤ 4 and d > 0. Therefore,
∆ satisfy the CRRID property, i.e. the largest real root s1 is the dominant one, and thus the
negativity of s1 implies that the solutions of the closed-loop system are asymptotically stable.
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The control parameters s1, d, and τ cannot be chosen arbitrarily. Indeed, a1 must be given
by Corollary 6 and its negativity implies that the control parameters have to be chosen such
that it holds

s1 >
d

2

eτd − 5

eτd − 1
.

Hence, to guarantee that the spectral abscissa of the closed loop system s1 is negative, we need
to satisfy τd < ln(5). The precise assignability region for s1 as a function of τ > 0 and d > 0
is depicted in Figure 3. For a numerical illustration, we set a1 = −2, a0 = 51/8, s1 = −1, and

ln(5)

−2

−1

1

τd

τs1

Negativity of s1 and a1

Figure 3: Assignability region for the spectral abscissa of the closed loop system (11) as a function of
the distance d and delay τ .

d = 1. Then, the formula for a1 of Corollary 6 implies that necessarily τ = ln
(
9
5

)
giving the

following values of the controller’s gains α0 = −3875/648, α1 = −125/162. First, Figure 4

shows that the roots of the unstable open-loop system (given by 1± 1
2
i
√

43
2
) are located in the

right half of the complex plane, whereas the infinite number of roots of the closed-loop (11)
system are located in the left half of the complex plane and are dominated by s1.

−6 −4 −2 0
−60

−40

−20

0

20

40

60

s1

−d−d−d

ℜ(s)

ℑ
(s
)

Closed loop roots
Open loop roots

Figure 4: Spectrum ditribution of (red) the closed-loop system (blue) the closed-loop system (11).

Remark. In the numerical example above, it is easy to observe that the gain α1 of the proposed
controller satisfies the inequality |α1| < |a1|, and since a1 < 0, the corresponding delay-free
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PD controller u(t) = −α0y(t) − α1y
′(t) does not stabilize the corresponding system. In other

words, the presence of the delay in the control law guarantees the stability of the closed-loop
system reinforcing thus the stabilizing effect induced by the delay on the system’s dynamics.
For further discussions on such topics, we refer to [16], [7], and the references therein.

4.2 Improving decay rate

In this second example, we show that we can improve the decay rate of a stable second-order
control system without instantaneous velocity and state observations. We consider the control
problem

y′′(t) + 2ζωy′(t) + ω2y(t) = u(t), (12)

where ζ > 0 is the damping ratio and ω > 0 is the oscillator’s natural frequency. In absence of
a controller, i.e. u(t) = 0, the characteristic polynomial is ∆(s) = s2 + 2ζωs+ ω2, the roots of

which are s± = ω
(
−ζ ± i

√
1− ζ2

)
if 0 < ζ < 1, and s± = ω

(
−ζ ±

√
ζ2 − 1

)
if ζ ≥ 1. Hence,

the spectral abscissa of ∆ is given by

γ0 =

{
−ζω if 0 < ζ < 1,

ω
(
−ζ +

√
ζ2 − 1

)
if ζ ≥ 1.

In particular, we have γ0 < 0 and the system is asymptotically stable. For many applications,
we need a delay τ > 0 to access a good approximation of the velocity and state of the system.
This suggests to use a controller u having a delayed proportional-minus-derivative structure,
i.e.

u(t) = −α1y
′(t− τ)− α0y(t− τ), τ > 0. (13)

The closed-loop system defined by (12) and (13) has a characteristic function given by the
four-degree quasipolynomial

∆(s) = s2 + 2ζωs+ ω2 + e−τs(α1s+ α0). (14)

To illustrate the results of Section 3.3, we consider the case where ∆ admits equidistributed real
roots sk = s1 − (k − 1)d, with d > 0 and 1 ≤ k ≤ 4. One solves the system of transcendental
equations ∆(sk) = 0 for the control parameters (α1, α0, τ) in terms of the system’s physical
parameters ζ and ω, as well as the assigned root s1 and the distance between two consecutive
roots d. More precisely, we obtain the following expressions:

τ =
σ

d
, (15)

α1 = −1

2
(d− 2s1 − 2ζω) e−τ(d−s1),

α0 = −15

8
(d− 2s1 − 2ζω)

(
d− 2

3
s1 −

2

5
ζω

)
e−τ(d−s1),

with

σ = ln

(
5d− 2s1 − 2ζω

d− 2s1 − 2ζω

)
.
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Moreover, we also get the following relation that links the distance d, the spectral value s1, and
the parameters ζ and ω

1

2
d2 − 2(ωζ + s1)d+

2

3
(3ζ2 − 2)ω2 +

4

3
(ζωs1) +

1

3
(2s21) = 0. (16)

Now, to achieve asymptotic stability, we need to choose the positive distance d and the negative
root s1 such that the positivity of the delay τ , given by (15), is guaranteed and such that the
constraint (16) is satisfied. First, note that τ > 0 corresponds to choosing s1 and d such that

5d− 2s1 − 2ζω

d− 2s1 − 2ζω
= 1 +

4d

d− 2s1 − 2ζω
> 1,

which is equivalent to the condition

d− 2s1 − 2ζω > 0. (17)

Second, solving (16) we infer that d is necessarily given by

d = 2s1 + 2ζω +
2

3

√
6s21 + 6ω2 + 12ζωs1,

which is real if,

s1 < ω
(
−ζ −

√
ζ2 − 1

)
or s1 > ω

(
−ζ +

√
ζ2 − 1

)
,

when ζ > 1 or s1 is arbitrary when 0 < ζ ≤ 1. Furthermore, we have d > 0 if

s1 > ω
(
−ζ −

√
2
√
1− ζ2

)
if 0 < ζ ≤ 1,

s1 > ω
(
−ζ −

√
ζ2 − 1

)
if ζ ≥ 1,

Summing up all the conditions to ensure the realness and the positivity of d, we obtain the
assignment region for the spectral abscissa s1 that is depicted in Figure 5. In particular, we
observe that we can improve the negative spectral abscissa γ0 only in the case ζ < 1.

1

−
√
2

ζ

s1
ω

Positive and real distance d

The open-loop spectral abscissa γ0

Figure 5: Assignment region for s1
ω to ensure the positivity (blue) and realness (red) of the distance d.

It is interesting to compare our approach with the MID one. Adapting the results of
[20], [21] to our context, we see that the MID can be applied with a controller of the form
(13) only when 0 < ζ < 1, in which case the assigned root of maximal multiplicity four is

s0 = ω
(
−ζ −

√
2
√

1− ζ2
)
. This case illustrates the property that the MID is the limiting
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case of the CRRID when the distance d approaches 0. To apply the CRRID, we need to choose
the spectral abscissa s1 in such a way that the corresponding distance d is not zero. Hence, the
spectral abscissa given by the CRRID is larger than the one given by the MID. However, the
CRRID approach involves choosing the spectral abscissa in an open interval, whereas the MID
approach assigns a unique value for the spectral abscissa given in terms of the corresponding
delay, illustrating the robustness property of the CRRID. Moreover, the CRRID approach can
be applied to systems with ζ > 1, even though the exponential decay rate will be worse than
the one of the open-loop system.

For a numerical illustration of our results (dominancy of s1 and stability), we set ω = 1 and

ζ = 1
5
. In this case, the assigned root s1 must satisfy the bound s1 > −1

5
− 4

√
3

5
to ensure the

positivity of the distance d. Let us set s1 = −1, which yields the following values of the other
parameters 

d= −8
5
+ 8√

15
≈ 0.47,

τ =
30 ln(5

√
5−5

√
3)−15 ln(5)

16
√
15−48

≈ 1.38,

α1 = −4 15
15

16
√
15−48

(
5
√
15− 12

) 9−8
√
15

8
√
15−24 ≈ −0.14,

α0 = − 4
75

(
10
√
15− 19

)
15

16
√
15−33

16
√
15−48(

5
√
15− 12

) 9−8
√
15

8
√
15−24 ≈ −0.54.

(18)

In Figure 6, we give the spectrum of the characteristic function (14) with the above parameters
and we illustrate the dominancy of the root s1 with respect to all the other complex roots.

−4 −3 −2 −1 0

−40

−20

0

20

40

γ0s1

−d−d−d

ℜ(s)

ℑ
(s
)

Closed loop roots
Open loop roots

Figure 6: Spectrum distribution of the characteristic function (14) corresponding to the closed-loop
system given by (12) and (13), with parameters given in (18)

Remark. Regarding the control problem (12)-(13), it is crucial to highlight that in the absence
of the input delay, that is if τ = 0, then employing a standard filtered PD may lead to outcomes
featuring dominant poles. Notably, one can strategically place the poles of the finite-dimensional
closed-loop system anywhere in the complex plane by employing a ”state-feedback plus a second-
order observer” type controller. This approach provides further flexibility when performing a
finite-dimensional (delay-free) prescribed stabilization. However, the undoubted advantage of the
approach proposed through this paper consists of the reduced complexity control that it suggests.

Remark. Practical control systems are often subject to operational constraints such as limited
control capacity, i.e. limitations on input, state, and output variables. To emphasis the interest

16



of using a delayed controller (13) in such scenarios we compare it to a classical PD controller
v(t) = −β1y

′(t)−β0y(t). Let us focus on the limitation on the controllers amplitude by defining
the following constraint on the gains:

|β1|2 + |β0|2 < 1, (19)

replacing βi by αi in the case of the retarded PD controller u(t) given by (13). Using a classical
pole placement strategy, we assign the same spectral abscissa s1 = −1 and we set the second
root to s2 = s1 − d, which yields β1 = 8

√
15

15
≈ 2.07 and β0 = 8

√
15

15
− 8

5
≈ 0.47. Hence, we

observe that the gains of the PD controller v(t) do not satisfy the constraints (19). On the
other hand, the gains α1 ≈ −0.14 and α0 ≈ −0.54 of the delayed version u(t) satisfy such a
constraint. Thus, similar to the discussion proposed in [33]†, we illustrate the positive effect of
time-delay in constrained control systems. Furthermore, it should be emphasized that the decay
rate is guaranteed for”small” (controller) gains, and thus less sensitive to high-frequency noise.

5 P3δ Software

Partial pole placement via delay action (P3δ) is an intuitive Python software application that
facilitates the design of stabilizing feedback laws incorporating time-delays. The software makes
use of quasipolynomials properties (in particular, the MID property as studied in [19], [21]) to
compute efficient control laws. Based on the results of this work, as well as reference [18], the
software has been enhanced to include the CRRID property for design control strategies. P3δ
is available for free download at https://cutt.ly/p3delta, where installation instructions, video
demonstrations, and the user manual can also be found. Interested readers may also contact
directly the software authors.

6 Concluding remarks

This work focused on the stabilization of a generic second-order linear differential equation
with a delayed PD controller via the assignment of the maximum number of real roots of the
corresponding characteristic function. We provided the expression of the differential equation
for which the corresponding quasipolynomial admits the maximal number of real roots (which
is, in our case, equal to four). In the case where the real roots are equidistant, we determined a
necessary and sufficient condition on those coefficients for the largest real root to be negative.
And we showed that this root is always the spectral abscissa of the quasipolynomial. Therefore,
we proved exponential stability of the second-order linear differential equation and thus, we
provided a partial poles placement alternative to the MID property.
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