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bUniversità degli Studi del Molise, DiBT, Via Francesco De Sanctis, 1, Campobasso, 86100, , Italy
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Abstract

The Eikonal non-local damage (ENL) approach models damage as a space-deforming phenomenon that

affects the interaction distance between material points. As damage increases, interactions between points

decrease, ultimately resulting in no interaction. In the integral version of such an approach, non-local inter-

action distances between material points are computed by solving a stationary Hamilton-Jacobi equation

with a damage-dependent Riemannian metric. In the implicit gradient version of ENL models, the Rieman-

nian metric figures in the Helmholtz equation to be solved for computing the non-local field controlling

damage evolution. However, one of the main criticisms of such formulation is the lack of thermodynamics

basis in its derivation. This paper presents a thermodynamics derivation of the Eikonal implicit gradient

formulation based on differential geometry concepts to overcome this issue. A free-energy potential is

defined considering the non-local strain as a morphological descriptor belonging to the abstract differen-

tiable manifold (where the Riemannian metric is defined). Following a micromorphic media framework,

the balance equations of the model are obtained. It is shown that the stress tensor and thermodynamic force

associated with damage are the sum of standard and additional non-local contributions. It is also shown

that the resulting energy dissipation is always positive, thus verifying the Clausium-Duhem inequality.

After presenting all development considering second-order anisotropic continuum damage, the isotropic

formulation is obtained as a particular case. Finally, a two-dimensional numerical implementation of an

isotropic implicit Eikonal non-local gradient damage model is illustrated. Test cases are simulated to show

the relocalization features of the considered formulation and its natural capability of naturally representing

damage-to-fracture transition for high damage levels.

Keywords: Eikonal non-local damage, implicit gradient, anisotropic/isotropic damage, thermodynamics,

differential geometry
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1. Introduction

Complex constitutive relations are often needed to describe general material behaviors. Accordingly,

material laws are commonly defined following phenomenological approaches. From elasticity coupled

to isotropic and anisotropic damage, several models derived from thermodynamic principles exist (e.g.,

(Maire and Chaboche, 1997; Faria et al., 1998; Carol et al., 2001; Richard et al., 2010; Desmorat, 2015; Zafati

and Richard, 2019)) and allow modeling complex behaviors characterized by hysteresis, crack sliding and

friction, unilateral effects, induced anisotropy, etc.

Local damage models fail to predict the fracture process in strain-softening materials, providing physically

meaningless results. As already well-known, the boundary value problem becomes ill-posed when local-

ization occurs, and the unicity of the solution cannot be guaranteed (Hadamard, 1903; Thomas, 1961; Hill,

1962; Mandel, 1966; Rudnicki and Rice, 1975; Benallal et al., 1989; Borré and Maier, 1989; Masseron et al.,

2022). This is translated into a mesh dependency of the obtained structural response in a numerical finite

element context. Non-local theories allow palliating this effect by supposing that the state of a material

point inside the domain is influenced by what happens in in the rest of the domain.

Several enriched continuum approaches exist. One can refer, for instance, to Cosserat-type models (Cosserat

and Cosserat, 1909), micropolar and micromorphic theories (Eringen and Suhubi, 1964; Mindlin, 1964;

Suhubl and Eringen, 1964; Eringen and Kafadar, 1976; Eringen, 1999), and gradient theories (Aifantis,

1984; Frémond and Nedjar, 1996; Lorentz and Andrieux, 1999). Other approaches are more numerically

oriented and mainly aim at introducing a characteristic length scale (lc) into the formulation to avoid the

ill-posedness of the problem without establishing direct links with microstructural phenomena. In this

latter case, non-locality can be mainly considered as mathematical tool (a localization limiter) to regular-

ize the response provided by the model. Among them, it is worth citing integral non-local formulations

(Pijaudier-Cabot and Bažant, 1987), implicit gradient formulations (Peerlings et al., 1996, 2004), the thick

level-set model (Moës et al., 2011), phase-field formulations (Francfort and Marigo, 1998; Bourdin et al.,

2000; Miehe et al., 2010; Pham et al., 2011), and more recently the ”Lip-field” approach to damage (Moës

and Chevaugeon, 2021; Chevaugeon and Moës, 2022).

Integral and implicit gradient non-local formulations, in particular, are often used for treating continuum

damage mechanics problems. A main drawback of the standard non-local regularization methods consists,

however, in nonphysical interactions of material points across damaged bands and holes or close to free

boundaries (Geers et al., 1998; Simone et al., 2004; Krayani et al., 2009). Different formulations have been

proposed in the literature to reduce such parasite effects. In particular, non-local interactions evolving

with mechanical fields (e.g., stress, strain, damage) were introduced by different authors (Geers et al., 1998;

Pijaudier-Cabot et al., 2004; Simone et al., 2003; Nguyen, 2011; Giry et al., 2011; Saroukhani et al., 2013;
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Desmorat and Gatuingt, 2007; Desmorat et al., 2015) to better model strain localization, thus indirectly

describing a progressive damage-to-fracture transition.

The ENL formulation (Desmorat et al., 2015) provides a geometrical interpretation of damage dependent

evolving non-local interactions, both in isotropic and anisotropic contexts. From a differential geometry

viewpoint, this approach states that damage induces a curvature of the Riemannian space in which inter-

action distances are computed (figure 1). From a mathematical point of view, interaction distances between

material points are computed as solution of an isotropic time-independent Eikonal equation with a damage

dependent metric function. In a integral non-local framework, geodesic interaction distances computed in

the curved space are thus used to obtain non-local variables driving the damage evolution (Rastiello et al.,

2018; Jirásek and Desmorat, 2019; Thierry et al., 2020), thus preserving the general theoretical framework

of integral non-local theories. An equivalent implicit gradient ENL formulation (called ENLG in the re-

mainder of this manuscript) was also developed by Desmorat et al. (2015), following the same procedure

used by Peerlings et al. (1996) to derive the standard implicit gradient (GNL) formulation from the integral

non-local formulation by Pijaudier-Cabot and Bažant (1987). The resulting formulation is very close to the

original GNL model, with the main difference that the damage dependent metric now intervenes directly

in the Helmholtz differential equation that needs to be solved to compute the field (e.g., an equivalent non-

local strain field) controlling damage evolution. A non-intrusive implementation of this approach applied

to a damage-plastic model can be found in (Marconi, 2022).

One of the main criticisms of these regularization techniques is that they lack a well-defined thermody-

namic background. In these models, the variable controlling damage growth is usually taken as the non-

local equivalent strain, whereas the damage variable remains purely local. Thus, the intrinsic energy dissi-

pation is evaluated following the standard thermodynamics theory (i.e., no effects of non-locality are taken

into account in the free-energy potential).

To overcome this issue, Peerlings et al. (2004) proposed a thermodynamics framework for deriving the

GNL model. The non-local equivalent strain and its gradient were considered state variables in the free-

energy potential, together with damage and the displacement field. To account for non-local interactions

and the exchange of energy in the entire body, the Clausius-Duhem inequality was globally verified (i.e.,

the positivity of the total dissipation on the whole body was exploited). Constitutive relations were derived

following usual arguments, leading to a modification of the elasticity law. The Helmholtz differential equa-

tion was derived with no need to define some generalized stresses. A very similar free-energy potential was

proposed in (Forest, 2009), where the micromorphic approach was used to derive the same equations of

the model, with the explicit contribution of generalized terms in the local energy balance. Other equivalent

techniques introduce a residual term, respecting an insulation condition, in the point-wise Clausius-Duhem

inequality, taking into account the energy exchange between neighbor points (Polizzotto et al., 1998; Borino
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et al., 1999; Polizzotto, 2003).

The present work provides a thermodynamic derivation of the ENLG model based on the micromorphic

media framework. A first form of the free energy potential is proposed, entirely based on the one intro-

duced for the GNL model in Peerlings et al. (2004). The equations of the ENLG model are first obtained

following the approach proposed by (Forest, 2009). It is shown that the using standard approaches leads

to some thermodynamic inconsistencies related to intrinsic energy dissipation and Cauchy stress tensor

definitions.

Such inconsistencies are eliminated when a geometric description consistent with the initial assumption of

ENL models is used. A second form of the free energy potential is then proposed. In this case, the non-

local strain is considered a morphological description of the abstract differentiable manifold where the

Riemannian metric is defined (i.e., it is defined on a Riemannian space deformed by damage). Employing

differential geometry concepts, all the equations of the ENLG non-local model can then be derived. It is

also shown that the expression of the energy dissipation for the ENLG model differs from the usual ones

considered in the classic non-local models.

The paper is structured as follows. The formulations of the GNL and ENLG damage models are briefly

recalled first, and the boundary value problem is defined in its weak (variational) form. A free-energy

potential is then proposed and isotropic and anisotropic derivations of the ENLG model are presented.

The second part of the paper addresses a geometric description of the thermodynamics introduced before.

A recall on some useful elements of differential geometry is therefore provided. The equations of the ENLG

model are obtained again and the expressions of the energy dissipation in anisotropic and isotropic damage

are derived. Then, a brief comparison with other formulations is presented. Finally, numerical simulations

compare the GNL and ENLG models regarding structural response, damage profiles, and “pseudo-crack”

paths.

2. Gradient-enhanced damage models: GNL and ENLG

After illustrating the GNL formulation, this section presents the ENLG model considering a second-order

damage tensor (D) for describing material degradation (its principal components (Di) take values between

zero (sound material) to unity (totally damaged material) in the corresponding directions). Then, the vari-

ational boundary value problem to be solved is introduced.
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Figure 1: Qualitative representation of damage curving the space where non-local interactions take place. An exponential isotropic

damage profile was considered in one direction to compute the metric field. From top left to bottom right, snapshots are given at

increasing damage levels in the middle of the damaged band. The red line represents the geodesic path between two points separated

by the damaged zone. Computations were carried out with the SageManifolds project, within the open-source SageMath software

(The Sage Developers, 2022). Similar results where obtained by Rastiello et al. (2018) using a Fast-Marching method to solve the

Hamilton-Jacobi equation controlling damage dependent non-local interaction distances.

2.1. GNL model

According to the GNL model, the differential problem to be solved for computing the non-local equivalent

strain field driving damage reads:

ē ≠ cÒ2
ē = e on � (1)

Òē · n = 0 on ˆ� (2)

where ”Ò2” is the Laplace operator, ”Ò” is the gradient operator, symbol ”·” denotes the simple contraction

operator between tensors, � is the domain under consideration, ˆ� denotes its boundary, n is the outward

unity vector to ˆ�, e is the local equivalent strain, ē is its nonlocal counterpart, and c > 0 is the gradient

parameter (homogeneous to the square of a length).
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Figure 2: Domain and boundary conditions.

2.2. ENLG model

The ENLG regularization (Desmorat et al., 2015) naturally considers non-local interactions which are func-

tion of the damage state (represented through the second-order damage tensor D). This agrees with the

desired characteristics described by Bažant et al. (2022) for non-local models to represent the crack-parallel

stresses well. The resulting differential problem to be solved can be written as:

ē ≠ c
1Ô

det gÒ ·
1 

det g g≠1 · Òē

2
= e on � (3)

g≠1 · Òē · n = 0 on ˆ� (4)

where ”Ò·” denotes the divergence operator. Here, the second order tensor g is the damage-dependent

Riemannian metric:

g = (I ≠ D)≠1 (5)

with I being the second-order identity tensor. Notice that according to (3), det g > 0.

2.3. ENLG boundary value problem (BVP)

Let us consider a n-dimensional solid body � µ Rn, with n œ [[1, 3]] (figure 2). Neumann conditions are

applied on ˆ�t µ Rn and Dirichlet conditions on ˆ�u µ Rn, such as ˆ� = ˆ�t fi ˆ�u and ˆ�t fl ˆ�u = ÿ.

Quasi-static conditions are considered. Given this choice, the time dependence of all quantities is omitted

in the following, and all the variables introduced should be referred to the present time t œ [0, T ] with T

being the total time.

6



Admissibility spaces. Let us introduce the following functional spaces:

U = {w | w œ H
1(�) , w = ud on ˆ�u} (6)

U(0) = {w | w œ H
1(�) , w = 0 on ˆ�u} (7)

V = {w | w œ H
1(�)} (8)

where ud = ud(x) : ˆ�u æ Rn is the imposed displacement on ˆ�u and H
1 denotes a square integrable

Sobolev space.

Equilibrium problem. Neglecting body forces, and under quasi-static conditions, the variational equilibrium

problem to be solved consists in finding at each time t, the admissible displacement field u œ U satisfying:
⁄

�
‡(‘(u), D) : ‘(v) dV =

⁄

ˆ�t

td · v dS ’ v œ U(0). (9)

where u = u(x) : � æ Rn is the displacement vector field, v = v(x) : � æ Rn is a virtual displacement

field, ‡(‘(u), D) is the Cauchy stress tensor, ‘(u) (respectively, ‘(v)) is the small strain tensor applied to

u (respectively, v), ”:” denotes the double contraction between tensors, and td = td(x) : ˆ�t æ Rn is the

imposed traction vector on ˆ�t.

Damage problem. The variational form of the Helmhotz equation (3) reads:
⁄

�


det g ē ÷dV ≠

⁄

�
cÒ · (


det g g≠1 · Òē)÷dV =

⁄

�


det g e÷dV ’ ÷ œ V (10)

where ÷ = ÷(x) : � æ R is a virtual non-local equivalent strain field. Using the identity:

cÒ · (


det g g≠1 · Òē÷) = cÒ · (


det g g≠1 · Òē)÷ + c(


det g g≠1 · Òē) · Ò÷ (11)

equation (10) can be rewritten as:
⁄

�


det g ē ÷dV ≠

⁄

ˆ�
c


det g ÷ (g≠1 · Òē) · ndS

+
⁄

�
c(


det g g≠1 · Òē) · Ò÷dV =

⁄

�


det ge÷dV ’÷ œ V (12)

Substituting in the integral equation above and taking into account for the Neumann zero flux condition

(4), one obtains the final problem to be solved. It consists in finding at each time t the field ē œ V satisfying:1

⁄

�


det g ē ÷dV +

⁄

�
(c


det g g≠1 · Òē) · Ò÷dV =

⁄

�


det g e ÷dV ’÷ œ V (14)

1The variational formulation of the GNL model (Peerlings et al., 1996) is retrieved by considering g = g≠1 = I, such as:
⁄

�
ē÷dV +

⁄

�
cÒē · Ò÷dV =

⁄

�
e÷dV ’÷ œ V (13)
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3. Standard thermodynamics derivations of the ENLG model based on a postulated free-energy

Starting from a free-energy potential inspired to the one proposed by Peerlings et al. (2004) for deriving

the GNL model, this section illustrates a standard way of obtaining the governing equations of the ENLG

model. The method is based on the formalism presented by Forest (2009) for micromorphic media. It

is shown that non-locality comes into the picture in the expression of the stress tensor (even in elastic

conditions) and affects the intrinsic dissipation. This latter can no more be computed using the standard

expression valid for local models, as for the GNL model. Some conclusions concerning the Cauchy stress

tensor definition and the fulfillment of the Clausius-Duhem inequality are finally drawn to motivate the

differential geometry thermodynamics description introduced in the next section.

3.1. Derivation of the anisotropic model from the micromorphic media approach

Following the so-called ”micromorphic media theory” (Forest, 2009), ē is taken as the micromorphic vari-

able, while e is its equivalent macro quantity. As a result, u and ē are the unknown of the problem.

Extended virtual power principle. Neglecting contact and volume forces, the virtual power principle reads:

Pú
int(vú

, ÷̇
ú) + Pú

ext(vú
, ÷̇

ú) = 0 ’ vú
, ÷̇

ú (15)

where vú and ÷̇
ú are the virtual velocity and the virtual variation rate of ē, respectively. The generalized

virtual powers of the internal (Pú
int) and external (Pú

ext) forces read:

Pú
int(vú

, ÷̇
ú) = ≠

⁄

�
(‡ : ‘(vú) + a÷̇

ú + b · Ò÷̇
ú)

 ̧                                  ̊  ̇                                  ̋

:=p(i)(vú,÷̇ú)

dV (16)

Pú
ext(vú

, ÷̇
ú) =

⁄

�
(ae

÷̇
ú + be · Ò÷̇

ú) dV +
⁄

ˆ�

!
td · vú + a

c
÷̇

ú"
dS (17)

where a and b are generalized stresses related to the micromorphic variable and its first gradient, a
e and be

are the generalized body forces, and a
c are the generalized tractions applied on the boundary ˆ�.

Exploiting the arbitrary nature of the virtual velocity fields (vú
, ÷̇

ú), one obtains the momentum balance

equations and the corresponding boundary conditions:

Ò · ‡ = 0 on � (18)

Ò · (b ≠ be) ≠ a + a
e = 0 on � (19)

td = ‡ · n on ˆ� (20)

a
c = (b ≠ be) · n on ˆ� (21)
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Entropy principle. Under isothermal conditions, the entropy principle reads:

p
(i) ≠ flÂ̇ = ‡ : ‘ + a ˙̄e + b · Ò ˙̄e ≠ flÂ̇ Ø 0. (22)

where the free energy potential Â is considered to be a function of the micromorphic quantities and their

gradients. For a anisotropic damage model with a second order tensorial damage variable one has:

flÂ = flÂ(‘, D, ē, Òē) (23)

Computing the derivative of the potential with respect to time gives:

flÂ̇ = fl
ˆÂ

ˆ‘
: ‘̇ + fl

ˆÂ

ˆD
: Ḋ + fl

ˆÂ

ˆē

˙̄e + fl
ˆÂ

ˆÒē
Ò ˙̄e (24)

and replacing this expression into (22), one has:
3

‡ ≠ fl
ˆÂ

ˆ‘

4
: ‘̇ +

3
a ≠ fl

ˆÂ

ˆē

4
˙̄e +

3
b ≠ fl

ˆÂ

ˆÒē

4
Ò ˙̄e ≠ fl

ˆÂ

ˆD
: Ḋ Ø 0 (25)

The following state laws can therefore be derived:

‡ = fl
ˆÂ

ˆ‘
Y = ≠fl

ˆÂ

ˆD
a = fl

ˆÂ

ˆē
b = fl

ˆÂ

ˆÒē
(26)

Thermodynamic potential. Drawing from the free-energy potential postulated by Peerlings et al. (2004) for

deriving the standard isotropic GNL model, a free-energy potential for the anisotropic ENLG model can

be written as:

flÂ = flÂ(‘, D, ē) = flÂ0 + 1
2h


detg (e ≠ ē)2 + 1

2hc


detg g≠1 : (Òē ¢ Òē) (27)

where flÂ0 = flÂ0(‘, D) is the free-energy potential postulated by the anisotropic damage model (see e.g.,

(Desmorat et al., 2007; Desmorat, 2015; Masseron et al., 2022)), h > 0 is a model parameter (homogeneous

to a stiffness), and ¢ denotes the standard tensor product.2

Model equations. The expression of the stress tensor, the Helmholtz damage diffusion equation and the

intrinsic dissipation can be obtained by applying these state laws, such as:

(i) The stress tensor ‡ reads as the sum of a standard contribution (‡0) and a damage-dependent term

related to non-locality:

‡ = ‡0 + h


detg(e ≠ ē)ˆe

ˆ‘
(29)

2Given three vectors (a, b, c), the tensor product a ¢ b is defined as:

(a ¢ b) · c = (b · c)a (a ¢ b)ij = aibj (28)
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Compared to (Peerlings et al., 2004), the additional damage-dependent factor


detg is present in

(29). The formulation of Peerlings et al. (2004) is recovered in undamaged conditions (i.e., D = 0)

since g = I and det g = 1.

(ii) The terms a and b read:

a = ≠h


detg(e ≠ ē) b = hc


detg(g≠1 · Òē) (30)

Introducing the usual assumption (Forest, 2009) of no generalized volume forces (ae = 0, be = 0),

equations (19) and (21) give:


detg (e ≠ ē) ≠ cÒ · (


detg g≠1 · Òē) = 0 on � (31)

g≠1 · Òē · n = 0 on ˆ� (32)

where, to simplify the boundary condition, we exploited the condition det g > 0.

(iii) The intrinsic dissipation is:

D = Y : Ḋ (33)

where the thermodynamic force associated with damage Y reads:

Y = Y(‘, D, ē) = Y0 + Z = ≠fl
ˆÂ0
ˆD

+ Z (34)

The tensorial function Z can be understood as a non-local rate of energy restitution of the model.

Such an additional non-local term does not appear in the case of the GNL model (Peerlings et al.,

2004). As already mentioned, in this case the dissipation does not differ from the one corresponding

to the local model.

3.2. Isotropic ENLG model as a special case

Simplified two- (2D) and three-dimensional (3D) isotropic damage mechanics formulations can be obtained

by considering specific metrics. In the following, the 3D, full 2D, plane-stress, and plane-strain problems

are treated separately for completeness.

3.2.1. 3D conditions

The isotropic 3D Helmholtz problem to be solved can be derived considering D = DI, such as the metric

tensor reads:

g = I
1 ≠ D

(35)

Observing that:

det g = 1
(1 ≠ D)3 g≠1 = (1 ≠ D)I


det g g≠1 = 1Ô

1 ≠ D
I (36)
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equations (3) and (4) can be simplified as:

ē ≠ c


(1 ≠ D)3Ò ·

3 1Ô
1 ≠ D

Òē

4
= e on � (37)

Òē · n = 0 on ˆ� (38)

where we exploited the condition 1 ≠ D > 0 to simplify the Neumann boundary condition. The variational

equation to be solved thus reads:
⁄

�

1
(1 ≠ D)3

ē ÷dV +
⁄

�

cÔ
1 ≠ D

Òē · Ò÷dV =
⁄

�

1
(1 ≠ D)3

e ÷dV ’÷ œ V (39)

This formulation can also be easily derived according to the procedures described before, by considering,

the following free-energy potential:

flÂ = flÂ(‘, D, ē) = flÂ0(‘, DI) + 1
2h

1
(1 ≠ D)3

(e ≠ ē)2 + 1
2hc

1Ô
1 ≠ D

Òē · Òē (40)

where we employed the property I : (Òē ¢ Òē) = tr(Òē ¢ Òē) = Òē · Òē.

From the state laws, one obtains the following expressions for the Cauchy stress tensor:

‡ = ‡0 + h
1

(1 ≠ D)3
(e ≠ ē)ˆe

ˆ‘
(41)

and for the (scalar) thermodynamic force associated with damage:

Y = Y0 + Z (42)

Here:

Y0 = ≠fl
ˆÂ0

ˆ(DI) : I = ≠3fl
ˆÂ0
ˆD

Ø 0 (43)

Z = ≠h

2
ˆ

ˆD

C
1

(1 ≠ D)3
(e ≠ ē)2 + cÔ

1 ≠ D
Òē · Òē

D

= ≠h

2

C
3
2

1
(1 ≠ D)5

(e ≠ ē)2 + c

(1 ≠ D)2 Òē · Òē

D
Æ 0 (44)

One also obtains:

a = ≠ h
(1 ≠ D)3

(e ≠ ē) (45)

b = hcÔ
1 ≠ D

Òē (46)
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3.2.2. 2D conditions

The full 2D isotropic Helmholtz problem to be solved can be derived with:

g = I2
1 ≠ D

(47)

with I2 denoting the 2D identity tensor. In this case, � µ R2 and:

det g = 1
(1 ≠ D)2 g≠1 = (1 ≠ D)I2


det g g≠1 = I2 (48)

As a consequence, equations (3) and (4) can be simplified as:

ē ≠ c(1 ≠ D)Ò · Òē = e on � (49)

Òē · n = 0 on ˆ� (50)

The variational problem to be solved is:
⁄

�

1
1 ≠ D

ē ÷dV +
⁄

�
cÒē · Ò÷dV =

⁄

�

1
1 ≠ D

e ÷dV ’÷ œ V (51)

The following free-energy potential can be considered to derive the 2D isotropic ENLG damage formula-

tion:

flÂ = flÂ(‘, D, ē) = flÂ0(‘, DI2) + 1
2

h

1 ≠ D
(e ≠ ē)2 + 1

2hcÒē · Òē (52)

By applying the state laws, one obtains the following expression of the Cauchy stress tensor:

‡ = ‡0 + h

1 ≠ D
(e ≠ ē)ˆe

ˆ‘
(53)

The thermodynamic force Y reads as in (42), with Y0 defined as in (43) and:

Z = ≠h

2
ˆ

ˆD

5 1
1 ≠ D

(e ≠ ē)2
6

= ≠h

4
1

(1 ≠ D)2 (e ≠ ē)2 Æ 0 (54)

In addition to equations (53), (42), (43) and (54), one also obtains:

a = ≠ h

1 ≠ D
(e ≠ ē) (55)

b = hcÒē (56)

Plane-stress and plane-strain conditions. The equations introduced above can be used to address the situa-

tions of plane-stress and plane-strain. Specifically, in the case of plane-strain conditions, the complete 2D

equations are still applicable since the out-of-plane strain is non-null and the out-of-plane component of

Òē is assumed null.
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3.3. Comments on stress tensor and energy dissipation

Although the boundary value problem corresponding to the ENLG model could be derived from the pro-

posed potential, one can detect some inconsistencies in the previous formulations by investigating the

expressions of the stress tensor and the intrinsic dissipation for the isotropic case. In particular:

(i) Stress tensor. Let us analyze equations (41) and (53). Contrarily to the GNL model, the term (1 ≠ D)
figures at the denominator of the non-local contributions. It results from the ”arbitrary” modification

of the free-energy potential by Peerlings et al. (2004) to account for damage-dependent interactions.

Now, the term (1 ≠ D)E : ‘ vanishes when D æ 1 but this is not the case of the second contributions

of both equations. If an arbitrary small constant value is chosen for h, the second contributions to ‡

in equations (41) and (53) may eventually tend to infinity when D æ 1. This is physically inconsistent

since a zero-stress condition should be described.

(ii) Energy dissipation. Let us now consider equations (44) and (54). A first remark is that the expressions

of Z differ depending on the problem dimension (i.e., the energy dissipation depends on the problem

dimension). Besides that, it has been shown that Z is always negative. Consequently, the dissipation

inequality (Y0 + Z)Ḋ Ø 0 may not be verified in some situations. This is the case when D æ 1 since

the term (1≠D) figures at the denominator of both expressions of Z. The Clausius-Duhem inequality

is, therefore, not fulfilled.

The inconsistencies mentioned above are intrinsically related to how the modified free-energy potentials

(40) and (52) were written. To obtain the Helmholtz equation corresponding to the ENLG model, the factor


detg was added to the terms related to the non-local strain and its gradient. However, this led to a wrong

description of the stress tensor and intrinsic dissipation. In other words, such a way of defining the free-

energy potential does not allow for correctly deriving the ENLG model. A different point of view needs to

be introduced to achieve this objective.

4. Differential geometry viewpoint to the thermodynamics of ENLG models

This section gives the first insights into a possible thermodynamics framework to derive the ENLG model.

A geometric description is introduced using differential geometry concepts. Two different spaces are used

in the eikonal problem. A Euclidean space, where � is placed in a given configuration, and a Riemannian

space, where non-local interactions are computed. In the latter case, a tangent space is defined at each point

of an abstract differentiable manifold M (i.e., a topological manifold with a globally defined differential

structure), where the metric g defines a scalar product. To derive the formulation, the non-local equivalent

13



strain is seen as a morphological descriptor and is an element of M (see (Mariano and Stazi, 2005) for

further discussions). This idea directly stems from the theoretical assumption that damage curves the

space where the non-local interactions are computed (Desmorat et al., 2015). Similar ideas were presented

in (Ganghoffer and de Borst, 2000; Ganghoffer, 2003), where a metric was coupled with an internal variable

distribution. In their work, the strength of interactions is incorporated into the space’s geometry, such

as their effect on the curvature is discussed. Other contributions where geometric concepts are used to

describe damage behaviors exist (e.g., (Steinmann and Carol, 1998; Mariano, 2010; Das et al., 2021)).

4.1. A few useful elements of differential geometry

In curved spaces, contravariant and covariant coordinates differ. The basic rules are: (i) if a is a vector living

in a vectorial space E, then its coordinates are represented by a
i (with upper index); (ii) if a is a covector

living in the dual space Eú, then its coordinates are represented by ai (with lower index); (iii) metric tensors

are totally symmetric (and positive definite) second-order tensors of covariant nature. Tensor g : E æ Eú

is represented by its covariant components gij and gikgkj = ”
j

i , which is the mixed second order identity

tensor; (iv) only upper and lower indexes can be contracted; (v) the covector associated with vector a is

given by:

a# = g · a (a#)i = gija
j (57)

whereas the vector associated with covector b is given by:

b˜ = g≠1 · b (b˜)i = gij
bj (58)

Scalar product. A scalar product between two covectors b and c is defined by a metric contraction as:

Èb, cÍg := b · c˜ = b · g≠1 · c = g≠1 : (b ¢ c) = bigij
cj (59)

In the Riemannian space curved by damage, the metric and its inverse read:

g = (q ≠ D)≠1
gij = [(q ≠ D)≠1]ij (60)

g≠1 = q≠1 ≠ I˜ : D g
ij = q

ij ≠ I
ijkl

Dkl (61)

where q = I = ”ij and I˜ : Eú ◊ Eú æ E ◊ E is the Euclidean 4th-order identity tensor:

I˜ = q≠1 ¢ q≠1
I

ijkl = 1
2

!
q

ik
q

jl + q
il

q
jk

"
(62)

where ¢ denotes the symmetrized tensor product. According to previous definition, tensor I˜ transforms

Euclidean covariant tensors into an Euclidean contravariant tensors.3 Similarly, the tensor I# : E ◊ E æ

3Given a covariant tensor T œ Eú ◊ Eú, one has:

T˜ = I˜ : T T ij = IijklTkl (63)
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Eú ◊ Eú:4

I# = q ¢ q Iijkl = 1
2 (qikqjl + qilqjk) (65)

transforms Euclidean contravariant tensors into an Euclidean covariant tensors. The mixed fourth-order

identity tensor I˜
# : E ◊ E æ E ◊ E:5

I˜
# = I˜ : I# I

ij
mn = I

ijkl
Iklmn (67)

transforms contravariant tensors into themselves. Finally, the conjugated mixed fourth-order identity ten-

sor I ˜
# : Eú ◊ Eú æ Eú ◊ Eú:6

I ˜
# = I# : I˜

I
mn

ij = IijklI
klmn (69)

transforms covariant tensors into themselves.

In the Euclidean space or undamaged medium, one has:

g = q = I = ”ij g≠1 = q≠1 = I≠1 = ”
ij (70)

i.e., the covariant and contravariant Euclidean metrics, so that (59) defines the standard scalar product.

Based on this description, the isotropic elasticity law can be rewritten as:

‡ = 2µI˜ : ‘ + ⁄Tr(q≠1 · ‘)q≠1 (‡)ij = 2µq
ik(‘)klq

jl + ⁄(‘)k
kq

ij (71)

with µ and ⁄ denoting the two Lamé parameters. Notice that according to previous equation ‘ is a covariant

tensor whereas ‡ is a contravariant tensor.

Gradient of a function. In local coordinates (xi), (ˆ/ˆx
i = ˆi) denotes the basis of the tangent space TxM

and dx
i is the dual basis of the cotangent space Tı

xM for x œ M (it is such that dx
i(ˆj) = ”

i
j).

The derivative df of a function f : M æ R is the 1-form of covariant components dfi = ˆif . The gradient

of f is therefore the vector obtained as:

Òf = g≠1 · df (Òf)i = ˆ
i
f = gij

ˆjf (72)

4Given a contravariant second order tensor S œ E ◊ E one has:

S# = I# : S Sij = IijklS
kl (64)

5Given a contravariant second order tensor S œ E ◊ E one has:

S = I˜
# : S Sij = Iij

mnSmn (66)

6Given a covariant second order tensor T œ Eú ◊ Eú one has:

T = I ˜
# : T Tij = I mn

ij Tmn (68)
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In the case of Euclidean spaces, one has Òf = (Òf)i = ”
ij

ˆjf = ˆif = (df)i = df , so the gradient Òf and

the 1-form df do not differ.

The Riemannian norm ÎÒfÎg is defined as:

ÎÒfÎ2
g = ÈÒf, ÒfÍg = Òf · g · Òf = df · g≠1 · df = Èdf, dfÍg = ÎdfÎ2

g (73)

Laplacian of a function. The divergence of the gradient on a manifold is the so-called “connection Laplacian”

or “Laplace-Beltrami operator”. It is defined as:

�f := Ò · Òf = 1
det(gij)

ˆi

3 Ò
det(gij)gij

ˆjf

4
. (74)

In Euclidean spaces, the Laplace-Beltrami operator generalizes the usual Laplacian definition, i.e., �f =
ˆiˆif = Ò · (Òf).

4.2. Anisotropic ENLG model

Let us suppose that the non-local equivalent strain is a map (i.e., a linear application from the manifold to

the real space, ē : M æ R). The free-energy potential can directly be written on the manifold as:

flÂ = flÂ(‘, D, ē, Ò̃ē) = flÂ0 + 1
2h(e ≠ ē)2 + 1

2hcÎÒ̃ēÎ2
g (75)

where, to avoid confusion, the symbol Ò̃ is now used to denote that the gradient (and also the divergence

in the remainder of this section) is computed in the deformed space by damage (i.e., on the manifold M).

Given this choice, the factors


detg no longer appear in the expression of flÂ (se eq.(27)).

State laws. The state laws read:

‡ = ‡0 + h(e ≠ ē)ˆe

ˆ‘
‡

ij = ‡
ij
0 + h(e ≠ ē)

3
ˆe

ˆ‘

4ij

(76)

Y = Y0 + Z Y
ij = Y

ij
0 + Z

ij (77)

a = ≠h(e ≠ ē) (78)

b = fl
ˆÂ

ˆÒ̃ē
= hcg · Ò̃ē bi = hcgij(Ò̃ē)j = hc(dē)i = hcˆiē (79)

where:

‡0 = fl
ˆÂ0(‘, D)

ˆ‘
‡

ij
0 =

3
fl

ˆÂ0(‘, D)
ˆ‘

4ij

(80)

Y0 = ≠fl
ˆÂ0(‘, D)

ˆD Y
ij

0 = ≠
3

fl
ˆÂ0(‘, D)

ˆD

4ij

(81)

Z = ≠hc

2
ˆÎdēÎ2

g
ˆg≠1 : ˆg≠1

ˆD
Z

ij = ≠hc

2

A
ˆÎdēÎ2

g
ˆg≠1

B

kl

3
ˆg≠1

ˆD

4klij

(82)
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One can notice that the expression of the thermodynamic forces are naturally contravariant by simple

derivation and index contraction rules, for instance:

flˆÂ0(‘, D) =
3

fl
ˆÂ0(‘, D)

ˆ‘

4ij

ˆ‘ij +
3

fl
ˆÂ0(‘, D)

ˆD

4ij

ˆDij (83)

Helmholtz equation. From the balance equation (19), one has:

Ò̃ · b˜ ≠ a = 0 (84)

where a
c was supposed null and b˜ is the vector associated with the covector b:

b˜ = hcg≠1 · b = hcÒ̃ē (b)˜,i = hcgij
ˆj ē (85)

Replacing (85) into (84) one obtains:

Ò̃ · (hcÒ̃ē) ≠ hē + he = 0 (86)

and then, exploiting the fact that h and c are both constant and non-null:

ē ≠ cÒ̃ ·
!
Ò̃ē

"
= e (87)

The same expression was obtained in (Desmorat et al., 2015). Previous equation can also be written in an

euclidean space as:

ē ≠ cÔ
det gÒ · (


det g g≠1 · Òē) = e. (88)

where Òē is taken here equal to the 1-form ˆiē = dēi.

Variational formulation. A variational formulation for the ENLG model can be obtained directly starting

from equation (87).7 One has:
⁄

M
ē÷volg ≠

⁄

M
cÒ̃ ·

!
Ò̃ē

"
÷volg =

⁄

M
e÷volg. (89)

where:

cÒ̃ ·
!
Ò̃ē÷

"
= c�̃ē÷ + cÈÒ̃ē, Ò̃÷Íg (90)

and:

volg =
Ò

det(gij)dx
1 · dx

2
... · dx

n (91)

a n-form (the volume form). In previous equation · denotes the vector product. The above integral thus

becomes: ⁄

M
ē÷volg ≠

⁄

M
cÒ̃ ·

!
Ò̃ē÷

"
volg +

⁄

M
cÈÒ̃ē, Ò̃÷Ígvolg =

⁄

M
e÷volg (92)

7Alternatively, one could use the micromorphic approach by writing the principle of virtual work in the curved space.
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Applying the divergence theorem:
⁄

M
cÒ̃ ·

!
Ò̃ē÷

"
volg =

⁄

ˆM
c÷(Ò̃ē · g) · ndS (93)

enforcing the boundary condition:

(Ò̃ē · g) · n = 0 on ˆM (94)

and remembering that ÈÒ̃ē, Ò̃÷Íg = Èdē, d÷Íg (see equation (73)), one ends up with:
⁄

M
ē÷volg +

⁄

M
cÈdē, d÷Ígvolg =

⁄

M
e÷volg. (95)

Here, (dē)i = ˆiē denotes the 1-form, which is usually taken as the gradient in Euclidean space. Conse-

quently, a straightforward rewriting of last variational equation is:
⁄

�


detgē÷dV +

⁄

�
c


detg(g≠1 · Òē) · Ò÷dV =

⁄

�


detge÷dV (96)

On the expression of tensor Y (and of tensor Z). The terms figuring in the expression of the thermodynamic

force Z in (77) read:8

ˆÎdēÎ2
g

ˆg≠1 = ˆ

ˆg≠1 (dē · g≠1 · dē) = ˆg≠1

ˆg≠1 : (dē ¢ dē) = I˜
# : (dē ¢ dē) = I ˜

# : (dē ¢ dē) = dē ¢ dē (99)

ˆg≠1

ˆD
= ≠I˜ : I ˜

# = ≠I˜ (100)

The tensor Z can thus be written as:9

Z = hc

2 I˜ : (dē ¢ dē) (101)

Finally, the expression of the dissipation rate taking into account the modified energy release rate for the

3D anisotropic ENLG model is (substituting into equation (77)):

D = Y : Ḋ =
3

Y0 + hc

2 I˜ : (dē ¢ dē)
4

: Ḋ Ø 0 (102)

Since contravariant and covariant quantities are the same when the Euclidean metric is used (i.e. one has

only lower indexes), the above expression can be simplified as:

D =
3

Y0 + hc

2 (Òē ¢ Òē)
4

: Ḋ Ø 0 (103)

8Similarly, the computation can be performed using index notation as follows:

ˆÎdēÎ2
g

ˆg≠1 = ˆ

ˆgkl

!
dēig

ijdēj

"
= ˆgij

ˆgkl
dēidēj = Iij

kldēidēj = I ij
kl dēidēj = I ˜

# : (dē ¢ dē) = dē ¢ dē (97)

ˆg≠1

ˆD
= ˆ

ˆDpq
(qij ≠ IijklDkl) = ≠Iijkl ˆDkl

ˆDpq
= ≠IijklI pq

kl = ≠I˜ (98)

9Notice that I˜ : (dē ¢ dē) , dē˜ ¢ dē˜ since the Euclidean metric is used in I˜.
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Damage-induced curvature of the space. For the case of the ENLG model, the Christoffel symbols are damage-

dependent and read (Desmorat et al., 2015):

�k
ij = 1

2g
kl (gli,j + glj,i ≠ gij,l) = 1

2(qkl ≠ Dkl)
!
[(q ≠ D)≠1]li,j + [q ≠ D)≠1]lj,i + [(q ≠ D)≠1]ij,l

"
(104)

which induces also a damage-dependent Ricci curvature tensor (Rij) by definition. A scalar measure of the

curvature in the space created by damage can be obtained with the contraction g
ij

Rij . For an undamaged

medium, the metric becomes the identity, and Christoffel symbols vanish, so the curvature is null. As

pointed out by Ganghoffer (2003), further investigation is necessary to better understand the meaning of

this curvature in terms of topological aspects, bridging micro-structural to a macroscopic approaches.

4.3. Isotropic ENLG model derivation

Let us now consider the isotropic ENLG damage formulation. The metric g is now given in local coordi-

nates by gij = qij/(1 ≠ D) and its inverse g≠1 reads gij = (1 ≠ D)qij . The thermodynamic force Z in (42)

can thus be written as:

Z = ≠hc

2
ˆÎÒ̃ēÎ2

g
ˆD

= ≠hc

2
ˆ

ˆD
(g≠1 · dē · g · g≠1 · dē)

= ≠hc

2
ˆ

ˆD
(gik

dēkgijgjl
dēl)

= ≠hc

2
ˆ

ˆD

3 (1 ≠ D)qik
dēkqij(1 ≠ D)qjl

dēl

(1 ≠ D)

4

= hc

2 dēiq
ik

dēk (105)

Now, one can easily notice that dēiq
ik

dēk in (105) is a scalar product in the Euclidean space. As a conse-

quence:

Z = hc

2 ÎdēÎ2 = hc

2 Òē · Òē (106)

where Î(·)Î is the Euclidean norm of (·). The expression of the dissipation rate taking into account the

modified energy release rate for the full 3D isotropic ENLG model is:

D = Y Ḋ =
3

≠3fl
ˆÂ0
ˆD

+ hc

2 Òē · Òē

4
Ḋ Ø 0 (107)

This expression can also be obtained from the one obtained for the anisotropic model considering:

Y0 = ≠fl
ˆÂ0
ˆD

q≠1 D = Dq (108)

Replacing (108) into (102), one has:

D = Y : Ḋ =
3

≠fl
ˆÂ0
ˆD

q≠1 + hc

2 I˜ : (dē ¢ dē)
4

: Ḋq =
3

≠3fl
ˆÂ0
ˆD

+ hc

2 Òē · Òē

4
Ḋ = Y Ḋ Ø 0 (109)
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4.4. Comparison with other formulations from the literature

4.4.1. Micromorphic model of Poh and Sun (2017)

A localizing gradient damage model was proposed by Poh and Sun (2017). Developed in the framework

of the micromorphic theory, such a model modifies the standard thermodynamic potential proposed by

Forest (2009) to account for damage-dependent non-local interactions. The free energy reads:

flÂ = flÂ(‘, D, ē) = 1
2(1 ≠ D)‘ : E : ‘ + 1

2h (e ≠ ē)2 + 1
2hcg(D)ÎÒēÎ2 (110)

where g(D) is an exponentially decreasing function of D. It is chosen such that g(0) = 0 and g(D æ 1) = R,

with R > 0 a small parameter accounting for residual non-local interactions.

Following usual arguments, the following Helmholtz differential equation is obtained:

ē ≠ Ò · (gcÒē) = e (111)

with the boundary condition (2). Moreover, the intrinsic dissipation reads:

D = 1
2

3
‘ : E : ‘ ≠ ˆg

ˆD
hcÒē · Òē

4
Ḋ Ø 0 (112)

which is always positive for Ḋ Ø 0, provided that ˆg/ˆD < 0.

Similarities and differences. This model closely resembles the isotropic ENLG damage model, with the only

difference being the decreasing function g which is introduced by the metric g in the ENLG model. How-

ever, this latter presents some interesting features:

(i) residual non-local interactions do not exist since the gradient term in (3) vanishes when damage

approaches the unity (i.e., ē æ e when D æ 1);

(ii) vanishing non-local interactions (or vanishing internal length) naturally represent damage-to-fracture

transition. This means that a ”pseudo-crack” can be described, and interactions between material

points crossed by it are no longer allowed;

(iii) finally, the ENLG model does not require the introduction of additional parameters for describing the

evolving interactions, as this approach relies entirely on a geometric problem description.

4.4.2. Stress-based GNL model of Vandoren and Simone (2018)

Vandoren and Simone (2018) proposed a stress-based anisotropic GNL model that builds upon the integral

version introduced by Giry et al. (2011) to account for evolving internal interactions based on the stress

state in the medium. The following Helmholtz differential equation was proposed:

ē ≠ Ò · (c · Òē) = e (113)
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where c is a second-order tensor accounting for the influence of the anisotropic stress state in the interac-

tions. Once again, equation (113) needs to be supplemented by the Neumann boundary condition (2). Two

different models can be derived, depending on the definition of tensor c which can be based on either the

principal stress components or the equivalent stress. Additional details can be found in the cited work.

Similarities and differences. From a mathematical viewpoint, the stress-based GNL model is very similar

to the ENLG one. Choosing, for instance, c = g≠1, the only missing term in their model is related to


detg =
Ô

detc≠1, which naturally appears in the ENLG formulation.

However, conceptually, the differences between the two formulations are more pronounced. Stress-based

formulations (Giry et al., 2011; Vandoren and Simone, 2018) are suitable for modeling evolving interactions

due to damage evolution and vanishing interactions close to stress-free boundaries. In contrast, the ENLG

model is suitable for dealing with newly created boundaries (i.e., damaged bands) inside the considered

domain only.

The influence of existing boundaries on non-local interactions is not considered in ENL formulations. How-

ever, they can be easily introduced by applying a modified metric depending on damage and stress states.

For instance, one could imagine writing g = [c · (I≠D)]≠1. A similar formulation that couples the effects of

damage and stress on non-local interactions was introduced in (Negi et al., 2020). The free-energy potential

proposed by the last cited paper has strong relations with the one proposed for the ENLG model based on

a geometric damage description (equation (75)).

5. Numerical simulations

The isotropic ENLG and GNL damage models are implemented in a finite element toolbox developed

in-house at CEA (Badri et al., 2021; Badri and Rastiello, 2023) (for testing purposes) using the FreeFEM

platform. Both models are tested in the simulation of two classic problems to highlight differences and

underline how the ENLG model behaves in situations where the GNL model shows some well-known

drawbacks.

5.1. Damage model

An isotropic damage model with a single scalar damage variable D is considered. Following Sarkar et al.

(2019) and Negi and Kumar (2022), parameter h can be taken very small compared to the Young’s modulus,

and the constitutive stress-strain relation is simplified as:

‡(u, D) = (1 ≠ D)E : ‘(u) (114)
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The damage variable ranges from zero (undamaged material) to unity (fully damaged material) according

to the exponential evolution model:

D = 1 ≠ Ÿ0
Ÿ

1
1 ≠ – + –e

≠B(Ÿ≠Ÿ0)
2

(115)

where:

Ÿ = max
t

(Ÿ0, ē) (116)

is a damage-driving history variable, ē = ē(Á(u)) is the non-local equivalent strain, Ÿ0 is the damage

threshold, B the damage brittleness, and – is a parameter used to account for residual stresses in the

behavior law. The local equivalent strain is computed according to the modified Von Mises definition

(De Vree et al., 1995):

e = e(Á(u)) = k ≠ 1
2k(1 ≠ 2‹)I1 + 1

2k

Û
(k ≠ 1)2

(1 ≠ 2‹)2 I
2
1 + 12k

(1 + ‹)2 J
Õ
2 (117)

where ‹ is the Poisson’s ratio, and k is a parameter corresponding to the ratio of the material strength in

compression and in tension. The invariants of the strain tensor are defined as:

I1 = I1(Á(u)) = Tr(‘(u)) (118)

J
Õ
2 = J

Õ
2(Á(u)) = 1

6
!
3Tr(‘(u) · ‘(u)) ≠ Tr2(‘(u))

"
(119)

5.2. Finite element implementation

The domain � is discretized through a finite element mesh �h containing linear triangular elements (Con-

stant Strain Triangles, CST). The unknown displacement and non-local equivalent strain fields on each

finite element are approximated by linear interpolation of their nodal values.

A staggered/partitioned Picard iteration algorithm is employed to handle non-linearity (Badri et al., 2021;

Badri and Rastiello, 2023). At iteration k + 1, one first computes the [P1,P1] discretized vector-valued

displacement field uh,k+1 œ Uh(ud) such that:
⁄

�h

(1 ≠ D
h,k)‘(uh,k+1) : E : ‘(vh) dV =

⁄

ˆ�h
t

td · vh
dS ’ vh œ Uh(0) (120)

and then computes the P1 discretized nonlocal equivalent strain field ē
h,k+1 solving:

⁄

�h

1
1 ≠ Dh,k

ē
h,k+1

÷
h
dV +

⁄

�h

cÒē
h,k+1 · Ò÷

h
dV =

⁄

�h

1
1 ≠ Dh,k

e(‘(uh,k+1)) ÷
h
dV ’÷

h œ Vh (121)

Here, (Uh(ud), Uh(0), Vh) are the discretized counterparts of (U(ud), U(0), V), D
h,k is the P0 discretized

damage field at iteration k, and e(‘(uh,k+1)) is the P0 local strain field computed from the symetrized

gradient of uh,k+1. At each iteration, the field ē
h,k+1 is used to update the P0 history variable field Ÿ

h and

compute damage. The computation is repeated till convergence at each pseudo-time step.
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5.3. Four-point bending test

A notched beam is submitted to a four-point bending test (figure 3). Numerically, an increasing displace-

ment is imposed at the loading points (denoted by the force F ). The structure is discretized using three

different meshes with additional refinement in the central zone of the beam. They contain 6262 (coarse

mesh), 11504 (medium mesh) and 16004 (fine mesh) elements, respectively. Material parameters used in

simulations are given in table 1.

Global responses. Figure 4 shows the structural responses (force vs. displacement) obtained using the ENLG

and GNL models for the three considered meshes. Mesh convergence is obtained for the GNL model,

whereas slight differences can be observed in the responses upon mesh refinement for the ENLG formu-

lation. Moreover, the ENLG model gives more brittle responses than the GNL model, as is expected for

evolving interaction approaches (Giry et al., 2011; Vandoren and Simone, 2018; Rastiello et al., 2018).

Damage evolution. The damage maps computed for three different imposed displacement levels using both

models are depicted in figure 5. In the early phases of the test (step 1), the damage fields provided by

the GNL and ENLG models are very similar (damage starts close to the notch). Then, the damaged zone

computed by the GNL model becomes wider than the one obtained through the ENLG model. In this latter

case, the damage field tends to localize since the early phases of the simulation (i.e., the damage tends to

unity on a single line of elements) and propagates towards the upper part of the beam (step 2). At the

end of the simulation (step 3), nonphysical damage spreading takes place for the GNL model around the

notch. Damage is diffused in a large zone, and the expected ”pseudo-crack” path cannot be described.

Conversely, the damage is still localized in a smaller damage band (with D æ 1 on its center) about 2lc in

width for the ENLG model, and the nonphysical damage diffusion does not occur. Very similar behavior

was described by Rastiello et al. (2018) considering an integral ENL damage model.

This feature can be even better underlined by applying a simple post-treatment of the damage field. Figure

6 shows the damage maps at the end of the simulation, considering element deletion when D exceeds

the arbitrary threshold value of 0.995 at a given integration point. In the case of the GNL model, high

damage levels are attained over a large region, which cannot be compared to a realistic ”pseudo-crack”.

Conversely, the ENLG model provides a more physical ”pseudo-cracking” behavior since D æ 1 on a

single line of elements. This behavior is directly related to non-local interactions evolution during the

computation. In particular, material points separated by the damage band no longer interact due to the

damage-dependent Riemannian metric. Consequently, nonphysical damage spreading does not occur. The

ENLG not only gives a better description of the ”pseudo-crack” path compared to the GNL model but

also shows promising features to naturally model damage-to-fracture transition, thus coupling CDM and

Fracture Mechanics models.
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Figure 3: Four-point bending test – Geometry and boundary conditions.

5.4. Shear-band problem

The second example analyzed is the shear-band test. A square plate is submitted to a compression action on

the upper boundary (figure 7). An increasing vertical displacement is applied to the top of the specimen,

whereas the bottom of the specimen is constrained. Once again, three different meshes are used for the

simulations. They contain 13473 (coarse mesh), 33706 (medium mesh) and 52869 elements (fine mesh),

respectively. A rectangular weakened zone (with Ÿ
ı
0 = Ÿ0/5), 6x3 mm2 in size, is placed on the bottom left

of the specimen to initiate damage. Material parameters are given in table 2.

Global responses. The structural responses obtained using the GNL and ENLG models and different meshes

is given in figure 8. The maximum reaction force is the same for both models. After the load peak is

reached, the responses provided by the two models start to differ. Mesh convergence is obtained for the

GNL model, but differences are observed in the responses provided by the ENLG model for the different

meshes. A clear tendency toward mesh convergence is, however, observed.

Damage evolution. Figure 9 gives the damage maps computed using the GNL and ENLG models for three

simulation steps. In the early phases of the simulation (step 1), right after the maximum reaction force,

damage initiates in the weakened zone and starts to propagate diagonally in the specimen (step 2). From

this point on (step 3), the size of the damage band tends to increase in the transverse direction (the band

Table 1: Four-point bending test – Material parameters.

E c Ÿ0 B k – ‹

[N/mm2] [mm2] [-] [-] [-] [-] [-]

40000 4 0.000075 300 10 0.92 0.2
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Figure 4: Four-point bending test – Structural force vs. displacement responses computed using the GNL and ENLG models and

three different meshes.

enlarges). This is a well-known drawback of the classic non-local damage models. Contrarily, the shear

band remains stationary for the ENLG model since no non-local interactions occur between material points.

High damage levels are concentrated in a thin band a few elements width.

Such a behavior becomes clearer post-processing the results by deleting the elements where damage ex-

ceeds the threshold value of 0.999. For illustration, a very large displacement level is considered in this

case (u = 0.5 mm). One can see that damage exceeds the threshold value in a larger zone in the case of the

GNL model, whereas it tends to concentrate on almost one line of elements in the case of the ENLG model

(i.e., a ”pseudo-crack” is described). Once again, the ENLG model provides a more physical behavior than

the GNL one.

Comments on solution oscillations. The small oscillations observed in the force vs. displacement responses

illustrated in figure 8 concerning the ENLG model are related to the numerical approximation of the solu-

tion. Vandoren and Simone (2018) studied this aspect and its consequences on the damage and non-local

equivalent strain evolution. They showed that, in a finite element context, the vanishing gradient pa-

rameter in (113) causes oscillations in the non-local field controlling damage evolution. In this case, mesh

convergence could be affected, and minor damage spreading could take place. Such an effect is also present

in the ENLG model. It is less pronounced in the 2D formulation used here since the finite element matrix

related to the term c in (121) does not vanish. However, the contributions where the term 1/(1≠D) appears

can still cause this effect. Simulations in 1D and 3D of the ENLG model will inevitably show this behavior
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Figure 5: Four-point bending test – Damage evolution computed using the GNL and ENLG models (displacement levels identified

by labels (1), (2) and (3) in figure 4).

(see Ribeiro Nogueira et al. (2022) for the 1D case) since the term related to c vanishes when D æ 1.

Vandoren and Simone (2018) proposed to use a minimum value of the gradient parameter to cancel non-

local interactions properly and significantly reduce this effect. A similar study should be carried out for the

ENLG model, which is beyond the scope of this paper. The case of the ENLG model is even more complex,

as division by zero appears when D æ 1. However, it should be noted that from a physical viewpoint,

the displacement field is no longer continuous when this condition occurs. Consequently, instead of cor-

recting the damage formulation, strong discontinuities should be considered in the model to make it more

physically and numerically robust.
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Figure 6: Four-point bending test – Damage maps at the end of the simulation (step (3) in figure 5) for the GNL and ENLG models

(post-processing element deletion applied for D > 0.995 to identify a ”pseudo-crack”).

Table 2: Shear-band test – Material parameters.

E c Ÿ0 B k – ‹

[N/mm2] [mm2] [-] [-] [-] [-] [-]

20000 2 0.0001 100 1 0.94 0.18

6. Conclusions and perspectives

Non-local models of gradient type are often used to regularize the response of continuum damage mechan-

ics models. Despite their capabilities in retrieving objectivity in structural response, standard approaches

(e.g. the GNL model by Peerlings et al. (1996)), are incapable of describing realistic crack paths. Moreover,

they often lack a proper thermodynamic framework.

This paper proposed a thermodynamic framework to derive anisotropic and isotropic ENLG damage mod-

els. Two different approaches were used, based either on a similar derivation to the one proposed for the

GNL model by Peerlings et al. (2004) or inspired by the micromorphic formalism presented by Forest Forest

(2009). Firstly, a straightforward modification of the free energy potential proposed for the GNL model by

Peerlings et al. (2004) was proposed. It was shown that the two theories lead to similar results: the elasticity

law and the energy dissipation are both modified by the evolving interactions. Considering a simplified

isotropic ENLG damage formulation, it was shown, however, that the energy dissipation can become neg-

ative, which is physically unacceptable due to the non fulfillment of the Clausius-Duhem inequality. This

is not due to the model assumptions but to the ad-hoc modification of the free energy potential by Peerlings

et al. (2004) to retrieve the Helmholtz equation controlling the non-local strain evolution.

A geometric extension of the micromorphic approach was then proposed to derive the equations of the
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Figure 7: Shear-band test – Geometry and boundary conditions.

ENLG model. As different spaces (Euclidean and Riemannian) were considered in the original derivation

of this model (Desmorat et al., 2015), it was necessary to take differential geometry considerations into

account when deriving it from a thermodynamics viewpoint. Compared to the GNL model, the only

modification introduced in the potential was the consideration that the non-local equivalent strain lives

in a space curved by damage (Desmorat et al., 2015). Following this assumption, the original equations

of the ENLG model were retrieved by applying the Laplacian-Beltrami operator, so that the term


detg
naturally appears. It was also shown that the geometric approach led to a unique expression of the energy

dissipation for all the dimensions. Furthermore, it remains strictly positive, in agreement with the second

principle of thermodynamics.

A simplified 2D isotropic damage variational formulation of the ENLG problem was obtained. Two nu-

merical examples were used to highlight the advantages of considering the ENLG model instead of the

GNL one. It was demonstrated that the ENLG model gives more realistic crack paths but has a more brit-

tle behavior. In the case of the four-point bending test, the classic damage spreading around the notch,

which happens for the GNL model, was not observed for the ENLG model. Moreover, the damage was

concentrated in one line of elements which better describes a sort of ”pseudo-crack”. Similarly, the ENLG

model has shown better properties when dealing with the shear-band problem. The damage band remains

stationary throughout the simulation, which is not the case for the GNL model. The post-processing ele-

ment deletion showed huge differences between the failure modes provided by both models, with damage

localized in almost one line of elements for the ENLG model. Further investigation should be carried out

to better study the numerical properties of the ENLG model, especially upon damage localization.

Further developments can be easily introduced within the framework described in this work. The exten-
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Figure 8: Shear-band test – Structural force vs. displacement responses computed using the GNL and ENLG models and three

different meshes.

sion to anisotropic damage mechanics models, for instance, is straightforward. Tensorial damage behavior

laws, where a second-order damage tensor is used, are suitable to be regularized with the ENLG approach

since the metric is a damage-dependent second-order tensor. Another option is to consider anisotropic

damage by using microplane damage models (e.g., Caner and Bažant (2013)). A classic implicit gradient

regularization of these models was proposed in (Zreid and Kaliske, 2014). As the authors indicate, an ex-

tension of their method to transient evolving gradient models is necessary to have more accurate crack

patterns. In both situations, the ENLG model could be helpful to describe more complex effects, such as

parallel crack stress, as anisotropic internal length is naturally considered.

Finally, the transition from a regularized ENLG damage model to an explicit crack description should be

considered (see, for instance, Negi and Kumar (2022)). As discussed before, the limit case where D æ

1 leads to a division by zero in the ENLG formulation. One has g≠1 that becomes singular, given that

det(g≠1) æ 0, and its inverse (the metric itself) cannot be obtained. In other words, similarly to a black

hole in space-time, D æ 1 represents the case where a singularity appears in the space curved by damage

(see figure 1). A transition to a strong discontinuity approach would be suitable not only to deal with this

singularity, but also to provide direct access to crack information.
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Borré, G., Maier, G., 1989. On linear versus nonlinear flow rules in strain localization analysis. Meccanica 24, 36–41.

doi:10.1007/bf01576001.

Bourdin, B., Francfort, G., Marigo, J.J., 2000. Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics

of Solids 48, 797–826.
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Moës, N., Chevaugeon, N., 2021. Lipschitz regularization for softening material models: the Lip-field approach. Comptes Rendus.
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