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Amadou Mactar Mbaye1,2, Cécile Doderer‑Lang9, Mamane Nassirou Garba1,2, Amy Kristine Bei1,10,11, 
Didier Ménard9,12,13,14† and Daouda Ndiaye1,2,5† 

Abstract 

Background Malaria control is highly dependent on the effectiveness of artemisinin‑based combination therapy 
(ACT), the current frontline malaria curative treatment. Unfortunately, the emergence and spread of parasites resistant 
to artemisinin (ART) derivatives in Southeast Asia and South America, and more recently in Rwanda and Uganda (East 
Africa), compromise their long‑term use in sub‑Saharan Africa, where most malaria deaths occur.

Methods Here, ex vivo susceptibility to dihydroartemisinin (DHA) was evaluated from 38 Plasmodium falciparum 
isolates collected in 2017 in Thiès (Senegal) expressed in the Ring‑stage Survival Assay (RSA). Both major and minor 
variants were explored in the three conserved‑encoding domains of the pfkelch13 gene, the main determinant of ART 
resistance using a targeted‑amplicon deep sequencing (TADS) approach.

Results All samples tested in the ex vivo RSA were found to be susceptible to DHA (parasite survival rate < 1%). The 
non‑synonymous mutations K189T and K248R in pfkelch13 were observed each in one isolate, as major (99%) or minor 
(5%) variants, respectively.

Conclusion The results suggest that ART is still fully effective in the Thiès region of Senegal in 2017. Investigations 
combining ex vivo RSA and TADS are a useful approach for monitoring ART resistance in Africa.

Keywords Malaria, Plasmodium falciparum, Artemisinin partial resistance, Ring‑stage Survival Assay, Pfkelch13 
genotype, Targeted‑amplicon deep sequencing, Senegal
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Background
Prompt management of malaria cases remains a vital 
component of malaria control and elimination strategies 
[1]. Over the two last decades, artemisinin (ART)-based 
combination therapy (ACT) has contributed significantly 
to the reduction of malaria-related morbidity and mor-
tality in sub-Saharan Africa [2]. Since 2006, the Senega-
lese National Malaria Control Programme (NMCP) has 
recommended artemether–lumefantrine (AL) as the 
first-line treatment for uncomplicated malaria [3]. How-
ever, recent reports of the emergence and expansion of 
partial resistance to ART (ART-R) in the Greater Mekong 
Subregion have endangered the long-term efficacy of 
ACT. Although ACT remains clinically and parasitologi-
cally effective in most African malaria endemic coun-
tries [4], the local emergences of ART-R in Rwanda and 
in Uganda, respectively reported in 2020 and 2021, are 
warning signals to the loss of ART efficiency [5–8]. As 
ART-R could independently emerge in western Africa or 
spread from eastern African ATR-R hotspots, the moni-
toring of Plasmodium falciparum parasites susceptibil-
ity to ART using the current clinical and biological tools 
is of utmost importance and must be implemented [4]. 
Clinically, ART-R is defined as delayed parasite clear-
ance or Day-3 positive parasitaemia upon ART-based 
treatment [9]. Delayed clearance has been associated 
with decreased in  vitro parasite susceptibility (survival 
rate ≥ 1%) expressed in the Ring-stage Survival Assay 
 (RSA0–3  h) [10]. These clinical and biological pheno-
types were later associated with non-synonymous muta-
tions in the P. falciparum kelch13 gene (pfkelch13) [11]. 
Pfkelch13 encodes a 726-amino acid protein contain-
ing three structurally conserved domains: a coiled-coil-
containing (CCC) domain, a Broad-Complex, Tramtrack 
and Bric a brac (BTB) domain, and a C-terminal kelch-
repeat propeller domain where most of non-synon-
ymous mutations associated with ART-R have been 
described [12]. Since then, a surveillance based on the 
detection of pfkelch13 single-nucleotide polymorphisms 
(SNPs) has been conducted in many malaria endemic 
settings. In the Greater Mekong Subregion, multiple 
ART-R pfkelch13 mutant parasites evolved concomi-
tantly until a multidrug-resistant pfkelch13 C580Y line-
age (named KEL1/PLA1) outcompeted the others and 
spread across Southeast Asia [13]. In Africa, this vari-
ant has been sporadically reported [14–16]. Rather, the 
pfkelch13 R561H mutant rapidly increased in frequency 
in Rwanda between 2014 and 2016 and 2018–2019 (from 
8 to 22%, respectively) [17–19] and was associated with 
in vivo and in vitro ART-R [19]. Similarly, in Uganda, two 
pfkelch13 mutants (A675V and C469Y) were recently 
reported to be associated with in vivo and in vitro ART-R 
[6, 8, 20]. In Senegal, most investigations have looked for 

SNPs in the propeller-encoding domain of the pfkelch13 
gene using conventional methods, such as PCR/Sanger 
sequencing [21–26], except for two studies that used 
pfkelch13 targeted-amplicon deep sequencing (TADS) 
[25, 26]. Although the authors did not detect validated 
or candidate ART-R pfkelch13 mutations [27], the TADS 
approach is particularly relevant to detect the presence 
of minor variants in P. falciparum isolates. Here, the 
pfkelch13 genotype was evaluated by TADS in 38 P. fal-
ciparum isolates collected in Thiès in 2017. The genetic 
variation was explored in the three conserved-encoding 
domains of pfkelch13 owing that one mutation in the 
BTB-encoding domain of pfkelch13 gene in a western 
African strain has been shown to confer ART-R [28].

Methods
Ethics
The National Ethics Committee for Health Research 
and the Ministry of Health of Senegal approved the 
protocol used for this study under number 00000169/
MSAS/DPRS/CNERS (December 2, 2016). Written and 
informed consent was obtained from all participants, 
before participant recruitment and sample collection.

Study site
The study was conducted during the peak malaria season 
(September to December) in 2017 in Thiès, a city ~ 75 km 
southeast of Dakar (Senegal; 14° 47′ 26″ north, 16° 55′ 29″ 
west), an area belonging to the Sahelian facies defined 
by a short malaria seasonal transmission (< 4 months). 
In this region, the entomological inoculation rate (EIR) 
is low and varies from one year to another (0–20 infec-
tious bites/person/year), estimated to be < 5 [29], and 
malaria is mainly transmitted by Anopheles arabiensis 
and Anopheles gambiae mosquito vectors. Malaria trans-
mission is perennial and hypoendemic, and malaria inci-
dence ranges between 5 and 15 per 1000 inhabitants [30].

Study design
Individuals who visited clinic of the Service de Lutte 
Antipaludique (SLAP) harbouring a P. falciparum infec-
tion only, confirmed by thick drop and thin smear; a par-
asite density between 1000 and 200,000 asexual forms/
µL of blood; an absence of general danger signs or other 
signs of severe and complicated P. falciparum malaria as 
defined by the World Health Organization (WHO) [31]; 
a fever or history of fever within 48 h; absence of history 
of hypersensitivity reactions to the drugs assessed; liv-
ing within 10  km of the health facility; and a provided 
informed consent (adult and/or equivalent minor), or 
legal guardian consent in the case of children, were 
enrolled. Patients with clinical malaria were treated with 
artemether–lumefantrine (AL, Coartem®), according to 
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the treatment guideline of the Senegal National Malaria 
Control Programme (NMCP). For each patient, 5 mL 
vacutainer tubes of venous blood were collected for 
ex vivo RSA.

Parasite culture and ring‑stage survival assay
Parasitaemia was estimated by microscopy examination 
on Giemsa-stained blood smears. Venous blood samples 
were then processed by eliminating plasma, leukocytes 
and anticoagulant from red blood cells (RBCs), washed 
twice in RPMI 1640 medium (Gibco, Life technologies). 
Parasitaemia were adjusted to 1% if greater by adding 
uninfected RBCs as previously described [10]. Then, 900 
µL RBCs were loaded into wells, exposed to either 100 
µL of 700 nM DHA (Sigma, reference D7439) or 0.1% of 
dimethyl sulfoxide (DMSO; Sigma, reference D8418) and 
cultivated at 37 °C in incubator for 6 h (conditions: 94% 
 N2, 5%  CO2, 1%  O2). Finally, RBCs were washed and cul-
tivated for 66 h. The proportions of viable parasites were 
estimated independently by two expert malaria micros-
copists on Giemsa-stained thin smears. The number of 
viable parasites that developed into ring/trophozoite 
stages were determined, pyknotic forms were excluded 
[32]. The average of the two counts was calculated. If 
any discrepancy was noted (either difference of parasite 
density of > 50%), slides were checked by a third inde-
pendent reader, and parasite densities were calculated by 
averaging the two most close counts. Survival rates were 
calculated as the ratio of parasites in exposed and non-
exposed cultures. Results were deemed as interpretable 
if the parasitaemia in the sample exposed to DMSO was 
higher than the initial parasitaemia at 0 h [33]. The P. fal-
ciparum ART-sensitive 3D7 strain was used as a negative 
control.

DNA extraction
DNA was extracted from the same whole blood sample 
used for the ex vivo RSA using the QIAamp DNA Blood 
Mini Kit (Qiagen, Valencia, CA, USA) according to man-
ufacturer’s instructions.

Targeted‑amplicon deep sequencing of pfkelch13
Extracted DNA samples were subjected to two sepa-
rate overlapping PCRs covering the three conserved-
encoding domains of the pfkelch13 gene (Jérôme Clain, 
personal communication). The first fragment covered 
both the CCC and BTB domains (5′-agatgcagcaaatctta-3′ 
and 5′-ttctacaccatcaaatcc-3) and measured 850  bp; and 
the second fragment covered from the end of the CCC 
domain to the end of the propeller domain (5′-aaaaa-
gaaaaagaagaacataggaaa-3′  and 5′-tgtgcatgaaaataaatat-
taaagaag-3′) and measured 1,409 bp. Briefly, 1 µL of DNA 
was amplified with 0.25 µM of each primer, 0.2 mM of 

dNTP, 0.625 unit of GoTaq G2 Flexi DNA Polymerase 
(Promega, Madison, USA) and 2.5 mM and 3 mM of 
 MgCl2 for the first and the second fragment, respectively. 
The cycling conditions were as follows: 3  min at 95  °C, 
then 40 cycles of 30 s at 95 °C, 30 s at 55 °C, 90 s at 68 °C 
and final extension 3  min at 68  °C. PCR products were 
detected using 1% agarose gel electrophoresis and SYBR 
Safe staining (Invitrogen, Waltham, USA). DNA from P. 
falciparum 3D7 strain and water were used as positive 
and negative controls, respectively.

Generated amplicons were then sequenced by next-
generation sequencing. Briefly, PCR amplicons were 
fragmented with the Covaris S220 to about 150 bp, and 
libraries were constructed using the KAPA HyperPrep 
Library Preparation Kit (Kapa Biosystems, Woburn, 
MA) following the manufacturer’s protocol. Amplicons 
were purified with AMPure Agencourt XP beads (Beck-
man Coulter). Libraries quality and quantity control were 
assessed using Qubit® for concentration and Bio Analyser 
2100 Agilent for fragment size. Libraries were pooled at 
approximately equal concentration and sequenced on 
an Illumina NextSeq 500 instrument (Illumina Inc, San 
Diego, CA, USA) to generate 150  bp paired-end reads 
at the GENOM’IC platform of Cochin Institute (Paris, 
France). Raw sequences were then demultiplexed and 
quality trimmed at a Phred score of 30. Primer sequences 
were trimmed from the 5′-end of the sequences to avoid 
primer bias in the sequenced fragments. Base calling was 
performed by comparing reads with a custom database 
consisting of the pfkelch13 sequence retrieved from the 
3D7 reference genome. Bioinformatic analyses were per-
formed using the CLC Genomics Workbench 22 software 
(Qiagen), using the following criteria: an allele was stud-
ied when its frequency was > 2%; the allele was consid-
ered as minor when the frequency was < 50%; otherwise, 
the allele was considered as major.

Results
Baseline characteristics
A total of 38 patients with uncomplicated P. falciparum 
malaria meeting the inclusion criteria were enrolled. 
The sex ratio (M/F) was largely dominated by males (36 
males/2 females). The age of the participants ranged from 
9 to 70 years (median of 21.5 years). Median weight was 
59.5 kg and median body temperature was 38.5  °C. The 
median parasitaemia was 1.03%, ranging from 0.68 to 
1.53% (Table 1).

Ex vivo RSA phenotype
Examination of blood smears and species-specific PCR 
revealed that all samples were P. falciparum monoinfec-
tions. Ex  vivo RSA were successfully performed for the 
38 tested samples. Survival rates showed the absence of 
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surviving parasite to the 700 nM DHA pulse as for the 
3D7 strain (0%) except for three isolates Th54, Th77 and 
Th95 (0.054%, 0.06% and 0.22% respectively) which were 
however less than the 1% threshold to be considered as 
associated with ART-R.

Pfkelch13 genotyping
Among the 38 samples successfully sequenced, two non-
synonymous mutations (K189T and K248R) located 

outside of the propeller-encoding domain of pfkelch13 
were detected (Table 2). Each mutation was observed in 
a single sample in major (99% for K189T) and minor (5% 
for K248R) proportions. The pfkelch13 K248R mutant 
was detected for the first time in Senegal (Table 3).

Discussion
ACT is the mainstay of treatment for uncomplicated 
malaria in malaria endemic regions [2]. Unfortunately, 
the emergence and the clonal expansion of pfkelch13 
mutant parasites have been reported recently in Rwanda 
(R561H) and Uganda (C469Y and A675V) [5–8]. There-
fore, the WHO recommends to closely monitor the sus-
ceptibility of P. falciparum to anti-malarial drugs and 
particularly to ART derivatives [4]. As in many sub-Saha-
ran African countries, ACT has contributed significantly 
to the decline in malaria incidence and mortality over the 
past decade. In Senegal, considerable efforts have been 
done to reduce malaria morbidity and mortality mainly 
since 2006 when AL was introduced [3]. Consequently, 
the emergence of ART-resistant parasites is a major 
threat which can hinder malaria elimination.

Table 1 Baseline characteristics of the study participants and 
the P. falciparum isolates, Thiès, Senegal, 2017

CI95%: 95% confidence interval;  IQR25-75: Interquartile range

Median CI95% IQR25 − 75

Age (years) 21.5 17.0–25.0 15.0–28.0

Weight (kg) 59.5 50.5–64.5 38.0–67.0

Temperature (°C) 38.5 38.2–39.1 37.8–39.5

Glycaemia 0.9 0.9–10.9 0.8–1.0

Haemoglobin 13.4 12.1–14.2 11.5–15.4

Parasitaemia (%) 1.0 0.7–1.5 0.6–1.9

Table 2 Proportion of non‑synonymous pfkelch13 mutations detected in the 38 P. falciparum isolates

The boldface highlights the nucleotide base change. n: number of samples harbouring the mutant allele; N: total number of successfully sequenced samples; NS: non-
synonymous mutation

Codon position Reference sequence Mutant sequence Type n/N

Amino acid Nucleotide Amino acid Nucleotide

189 K AAA T ACA NS 1/38

248 K AAG R AGG NS 1/38

Table 3 List of the mutations in the pfkelch13 gene previously observed in Senegal and in the present study

*Most frequent mutations

Plasmodium‑specific/CCC/
BTB‑POZ

Propeller Authors Year(s) City

T149S and K189T* N142N/NN 
(insertion)

No mutation Madamet et al. 2012–2013 Dakar

D109H, L119L, H136N, P152P, 
M163I, K189T*, K189N, D214G, 
M235I, R239L, R255K, L258M, 
K278N, G287C, K293N, I313I, 
G357V, T367T, L368I, R398M, S423I, 
L429F

P443Q, S459S, Q468Q, C469C, 
C473F, W518C, G533V, R539I, 
R553I, V555L, E556V, P570L, 
A578D, R587I, G592V, R597I, 
A621A, A626V, W660C, G690G

Talundzic et al. 2011–2014 Dakar and Thiès

K123R, N137S, N142NN/NNN, 
T149S, and K189T/N

N554H, Q613H, and V637I Boussaroque et al. 2013–2014 Dakar

D109H, T149S, K189N, K189T*, 
H274Y, D283Y, D389Y, N141‑
N142NN, N142N

T478T, A578S and V637I Gaye et al. 2015–2016 Dakar (2015), Kédougou 
and Matam (2016)

No mutation C469C, F491F, G545G, F583F and 
A627A

Ahouidi et al. 2015, 2016 and 2017 Bounkiling

No mutation No mutation Diallo et al. 2018 Diourbel and Kédougou

No mutation No mutation Delandre et al. 2015, 2016, 2017, 2018 and 2019 Dakar

K189T*, K248R No mutation This Study 2017 Thiès
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Partial resistance to ART is associated with non-syn-
onymous mutations in the pfkelch13 gene. However, 
the impact of most mutations on ART-R detected in 
field samples is largely unknown mainly due to the lack 
of association between the clinical phenotype (delayed 
parasite clearance) and the pfkelch13 genotype. The 
study presented here aims to fill this gap by combin-
ing ex vivo RSA with pfkelch13 genotyping. The ex vivo 
RSA estimates the susceptibility of P. falciparum to 
ART using parasite isolates freshly collected from 
patients with malaria. The ex  vivo RSA has been pre-
viously used in studies conducted in Central [34] and 
East Africa [33, 35]. Four isolates from Uganda showed 
high (> 10%) survival rates, levels of which are reported 
to be closely associated with delayed parasite clear-
ance following artesunate monotherapy [33]. The data 
presented here showed that none of the tested samples 
confer in  vitro ART-R with a survival rate ≥ 1%, sug-
gesting the absence of decrease susceptibility of Sen-
egalese parasites to ART derivatives in 2017.

By using a TADS approach, two pfkelch13 non-syn-
onymous mutations (K189T and K248R) were detected. 
The K248R mutation was observed in one sample in 
minor proportion (5%). The mutation is located in 
the CCC domain of pfkelch13, but the mutation is not 
likely related to ART-R since the survival rate was less 
than 1%. While K189T had already been reported in 
Africa [36, 37], the non-synonymous mutation K248R 
was detected for the first time in Senegal. The iso-
late carrying the K189T mutation had also a survival 
rate < 1%, confirming that this allele does not confer 
in  vitro ART-R as previously observed in India [38]. 
Only three pfkelch13 wild-type isolates (Th54, Th77 
and Th95) were found to have a survival rate above 0% 
(but still < 1%). To date, in  vitro susceptibility to ART 
derivatives by RSA of P. falciparum isolates have been 
reported in Cameroon and Uganda. Two studies con-
ducted in Cameroon [34, 35] showed the absence of 
pfkelch13 mutations associated with ART-R while 
one study in Uganda [33] reported high survival rates 
of isolates carrying the pfkelch13 A675V and C469Y 
mutations.

The study presented here has several limitations. First, 
this work included only 38 samples. Second, despite this 
low sample size, systematic ex vivo RSA is time consum-
ing: parasites exposure to DHA is 6 h before washing the 
drug, several samples cannot be processed at the same 
time and the method requires skilled personnel, and all 
validation steps must be done by microscopy experts. 
Third, in vitro RSA (from culture-adapted parasites) was 
not performed to confirm the ex vivo survival rates. And 
fourth, the study was conducted only in one site in Sen-
egal (Thiès) and no clinical data was collected.

Conclusion
This study shows that combining ex  vivo RSA pheno-
type and pfkelch13 genotyping can be efficiently car-
ried out to monitor ART-R, providing relevant data 
to malaria control programs on parasite susceptibil-
ity to ART. Particularly, TADS used here confirmed to 
be useful to detect the presence of minor alleles. This 
study showed that all P. falciparum isolates collected in 
Thiès  (Senegal) in 2017 were susceptible to DHA. As 
recommended by the WHO [4], similar studies must 
be conducted in Senegal and other African countries 
to strengthen surveillance of anti-malarial drug efficacy 
and ART-R.
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