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Abstract—Future mobile networks are supposed to handle a
variety of services with different requirements. Network slicing
is considered to be a key enabler to cope with the increasing
complexity of these networks. This includes slicing of the radio
resources in order to use them efficiently. In this paper, we
propose a radio resource slicing system for three types of slices
with specific radio resource/quality of service (QoS) requirements.
It enables co-existence of (1) rate-based/efficiency-oriented and
(2) low-latency slices, as well as (3) slices with fixed allocations.
Slice scheduling is based on utility functions with a priority-
based resource allocation. Using simulations, we validate the
applicability of the proposed system, and demonstrate that both
a guaranteed throughput and low delay for different slices at the
same time is possible. Our system outperforms existing slicing
solutions in terms of delay requirement satisfaction and efficient
resource utilization.

I. INTRODUCTION

Recent years have witnessed a trend towards a service-
oriented fifth generation (5G) mobile network. The Interna-
tional Telecommunication Union (ITU) has identified some
key usage scenarios alongside respective requirements in [TU-
R M.2083-0 to be fulfilled. Besides the enhanced data rate
for human-centric use cases, summarized as enhanced mo-
bile broadband (eMBB), more device-centric use cases, like
ultra-reliable and low latency communications (URLLC) and
massive machine type communications (mMTC), will reshape
the new 5G services in terms of latency and connection
density. These services have partially conflicting objectives,
and abstractions are needed to efficiently accommodate them
within the same network infrastructure while coping with
increasing complexity. This led to the proposal of network
slicing (NGMN Alliance, “Description of network slicing con-
cept”) to create separated virtual spaces for multiple services
to flexibly and efficiently use the network.

More specifically in the radio access network (RAN) do-
main, several virtual base stations (BSs) are built for each
service with individual state, processing and resource [1] on
top of the underlying BS. Among these three elements, radio
resources are the most scarce, and thus a slicing system has
to strike the balance among different objectives, such as using
the spectrum efficiently for many users while guaranteeing
delivery for high-reliability users. In addition, a slicing system
shall guarantee that (i) changes in one service do not affect
the system and/or violate the service-level agreement (SLA)
of other services, and (ii) redistribute unused resources to
maximize resource efficiency.

As the origination of RAN slicing, network slicing considers
a collection of logical overlay networks over a physical

network [2]. Also, any action taken by one slice will not
negatively affect other slices [3], which is an ideal match for
the vision of multiple services in 5G. In practice, several works
study the RAN slicing in terms of resource allocation. In [4],
a proposed RAN slicing architecture allows radio resource
management policies to be enforced at the level of physical
resource blocks (PRBs) by a resource visor towards each
slice. Orion [5] introduces the BS hypervisor to share the
radio resources in terms of virtual resource blocks (VRBs)
to be grouped and provided to the corresponding slice. The
resource abstraction approach in [6] can support three types of
resource requirements: PRB, vRB and virtual transport block.
The NVS approach [7] can slice the RAN domain resources
for two types of resource requirements: data rate and vRBs.
Nevertheless, none of above works consider the impacts of
quality of service (QoS) on the RAN domain resources for
three key types of resource requirements: physical resources,
throughput, and latency.

This paper proposes a RAN slice scheduling framework
with QoS guarantee to meet the performance requirements of
different usage scenarios as identified by ITU. It introduces
three types of slices with their associated formulated utility
functions as: (a) fixed slices requesting dedicated physical
resources, (b) dynamic slices asking for aggregate throughput
like eMBB, and (c) on-demand slices demanding latency
requirement like URLLC. Finally, it achieves QoS guarantee
by applying a priority-based resource allocation tailored to
each type of slice.

This paper is organized as follows. Section II outlines the
considered multi-service slicing approach and then highlights
some key challenges. In Section III, we present the proposed
slicing system and formulate the corresponding utility function
for each type of service and the associated three-step weight-
based radio resource scheduler with QoS awareness. Finally,
Section IV provides simulation results and reveals the effec-
tiveness of the proposed framework in terms of guaranteeing
QoS requirements.

II. SLICE REPRESENTATION AND CHALLENGES
A. Overview

In this work, we focus on the RAN domain, comprising
several BSs, to be sliced for multiple network services. In
practice, a slice descriptor will serve as a blueprint to craft
a slice instance into the virtual base stations (vBSs), which
is abstracted and embedded into the underlying BS and then
exposed through the controller interface [1]. On one hand, the
slice descriptor formally addresses the requirements from the



slice owner’s perspective, such as the required guaranteed bit
rate (GBR), to be applied to the corresponding vBS. On the
other hand, from an operator’s point of view, the objective is
to embed as many vBSs as possible into the underlying BS,
while satisfying their service requirements. To this end, a set
of rules can be applied to the embedding operation to pursue
these two goals simultaneously.

To fully represent a BS, we resort to a triple [1] consisting
of (i) resources!, (ii) processingz, and (iii) state’. This triple
within a vBS can be inferred from the SLA within the slice
descriptor. For instance, the SLA can comprise the required
resource parameters (e.g., the GBR or maximum delay thresh-
old), processing parameters (e.g., isolated CP processing), and
configuration parameters (e.g., customized admission control
rules). According to these contents within the slice descriptor,
the controller can perform admission control for the resource
parameters and checks the feasibility for specified processing
and configuration parameters. Finally, the vBS is created to
reveal a slice-specific view of the BS to the slice owner.

B. Challenges of embedding vBS into BS

Within the aforementioned process overview, a number of
challenges emerge during the procedure of embedding multiple
vBSs into a single BS. Especially, most of the attention is
given in the resource aspect as highlighted in Section I, and
thus we highlight three major challenges as follows:

1) Requested resource isolation: For instance, emergency
services will request dedicated radio resource to ensure
complete isolation from others.

2) Efficient resource utilization: Taking the eMBB service
as an example, it aims to pursue efficient resource uti-
lization with loose requirements on delay and isolation.

3) Performance guarantee: The URLLC service will re-
quest hard delay guarantees that need to be maintained
with sub-optimal resource utilization efficiency.

To better depict these challenges of vBS embedding, we
identify three corresponding slice resource requirement types,
which will be elaborated in the following section.

III. QOS-AWARE RESOURCE SLICING FRAMEWORK

In this section, we first identify three types of resource re-
quirements, then formulate the corresponding utility functions,
and finally propose the weight-based QoS-aware resource
slicing framework for the vBS embedding operation.

A. Three types of slice resource requirements

In particular, three types of slice resource requirements are
of interest in this work:

o A fixed slice requests dedicated radio resources along
time and frequency domains. Therefore, it is isolated
from other slices and does not multiplex its resources

!t describes the radio spectrum resources, consisting of bands, carriers, or
available resource blocks (RBs).

21t refers to the functional blocks to perform the necessary control plane
(CP)/user plane (UP) operations, delimited through functional splits.

31t refers to the status of CP/UP processing and the associated configuration.

with others. One example is the bandwidth parts (BWPs)
defined in 5G (see 3GPP TS 38.211) that operate on
disjoint parts of the spectrum with a given numerology.

o A dynamic slice requests a share of resources in terms
of aggregate throughput. It can be mapped to the eMBB
usage scenario, and thus a precise radio resource alloca-
tion is less important than the efficient use of available
resources for a guaranteed throughput.

e An on-demand slice exhibits more stringent requirements
in terms of latency, and hence it can be mapped to
the URLLC scenario. Therefore, such slice should be
assigned radio resources with short delay, in comparison
with the dynamic slice.

Based on these slice resource requirements, we propose
respective utility functions from which we will introduce a
novel slice scheduling algorithm with QoS awareness.

B. Utility functions for different types of slice

Corresponding to the three types of slice resource require-
ments, we form three slice sets grouping the slices with
respective types of resource requirements: Ky, Kayn, and Kong.
As for the k-th slice, its utility function is represented either as
Uy Vi, ot Wy, if k € Kiix, k € Kayn or k € Kong, respectively.
From the perspective of the operator, it aims to maximize
the summation of utility functions from all instantiated slices,
while still guaranteeing QoS requirements:

U= D U+ D Vit Y Wi (1)

ke ek kelcdyn kEKond

1) Fixed slices: For a fixed slice k € gy, its SLA stipulates
that such slice requests P, RBs in every scheduling interval,
starting at RB P;™". To ensure that no overlapping between
fixed slices occurs, extra admission control is required and
will be elaborated in Section III-C. Then, the slice’s utility
function can be written as

U — 1 if RB range [Py™", Py + Py) allocated
"7 0 otherwise

i.e., such slice can only be satisfied when the exact requested
resources are allocated, as required in Section II-B.

2) Dynamic slices: We modify the formulation of
bandwidth-based slices in [7] to enable concurrent slice
scheduling (multiple slices scheduled within the same sub-
frame/slot). The SLA of a dynamic slice k& € Kqyn requires a
requested rate Ry as well as a prioritization rate R™!, both in
bps. The former describes the rate that the slice shall achieve
in the long run. It is measured through the slice’s achieved
cumulative rate r; in bps, and should fulfill v, > Rj. The
prioritization rate serves as a reference which this slice should
achieve within the scheduled RBs to maintain its resource
efficiency. It is checked through the average per-RB rate 7.

For a BS with N RBs, we control the attempted allocation
rate R} which considers the resource efficiency via dividing

(@



the estimated allocation rate Ry = N -7, by the prioritization
rate R

' = R), - min (17%> — Ry - min (1%}}’“) e
Note that if Ry, is above the reference rate R'!, the requested
rate Ry, is targeted. Otherwise, the requested rate is propor-
tionally scaled down to get the attempted allocation rate R .
The rationale behind R% is to increase the resource efficiency,
as tailored in the second challenge of Section II-B.

Finally, to achieve proportional fairness among different
dynamic slices, the utility function can be expressed as

/
Vi(rg) = Nﬁ?kfk log(rk) . 4)

3) On-demand slices: The SLA of an on-demand slice
k € Kona includes a delay-threshold Ay in milliseconds, a
packet-loss probability dy, and a long-run maximum resource
share ¢, max in terms of the ratio of RBs (i.e., 0 < ¢ max < 1).
Beyond the aforementioned SLA, for each slice scheduling
interval, a slice signals the number of bits By to be sched-
uled to satisfy its delay-threshold Aj. Based on the above
parameters (i.e., By and ¢y, ,,q,) as well as measured statistics
(e.g., channel quality, user number), an on-demand slice can
estimate its delay bound of the scheduling process.

To maintain the above SLA, the operator measures the
achieved resource share t; as a fraction of the N RBs, and
the average per-RB transportation bit rate by.

Finally, we can write the utility function using the similar
approach for dynamic slices as:

B
Wi(t) = = log(ti) = Ti log(t), (5)
N - by,
in which T}, = A’,B’gk represents the requested resource®. It is

subject to {j max as elaborated in Section III-C.

Since we follow the same formulation approach as for the
dynamic slice, (4) and (5) show several similarities. Such
observation is also found in [7], and the maximization over
these two utility functions can be shown to be equivalent®.

C. Proposed multi-slice scheduler with QoS-awareness

To utilize above utility functions, we hereby propose a
multi-slice scheduler comprising three major steps:

1) Based on the SLA of fixed slices, we first allocate the
dedicated requested resources.
2) Then, following the QoS requirements of on-demand
slices, we allocate necessary resources.
3) Finally, we schedule resources for dynamic slices.
Nevertheless, as mentioned in Section III-B, extra admission
control is required prior to the creation of slices in order to
ensure that the resource usage of all slices can be reasonably
accommodated. Specifically, two constraints are applied. In the
first constraint, we restrict that available N RBs can sustain

4Since the resource efficiency is not targeted by on-demand slices, the
down-scaling operation of (3) is not applied here.
SDue to space reasons, we encourage the readers to refer to Lemma 1 of [7].

Algorithm 1: Allocation of RBs for fixed slices.

Input : SLA;, = {P*™", P, },Vk € Kax

Output: Allocation results for all fixed slices
1 forall k € K4, do
2 | Allocate P, RBs starting from P to slice k
3 end

the resource requirements from all slice instances. Thus, we
can write the ratio of requested resources from fixed slices
as %,Vk € Kix, the allocated resource ratio for on-demand
slice as ty,Vk € Kong, and the allocated resource ratio for
dynamic slices as ;—Z,Vk € Kayn. Assuming that on-demand
slices use their agreed maximum resource share t; = i max

and dynamic slices the attempted rate 7, = Rj,, we have

Py R
Z Wk+ Z tk,max+ Z Riz

kehx k€ond k€ dyn
Pk Rk
< Z W + Z tk,max + Z ﬁ <1 (6)
ke Kex k€K ona ]CEK:dyn k

where the first inequality follows from (3). This gives a suffi-
cient condition on the slices’ SLAs. In the second constraint,
admission control needs to ensure that no fixed slice is over-
lapping with other fixed slices. By denoting [P, Py 4 Py,)
as the range of RBs allocated to the fixed slice k € gy, we
can have the following restriction:

[Pftart, Pftart + PZ) N [P;tart’ P;tart + P]) — @,VZ 7&] . (7)

After admission control, we follow the aforementioned three
steps for the scheduling operation. Note that we adapt a
weight-based approach in each step, i.e., the weight for the
k-th slice is wy, to maximize the marginal utility of different
types of service requirements.

1) Fixed slices: As for the fixed slice, we can directly
follow the resource requirements within the SLA, as shown
in Algorithm 1. Note that the weights for all fixed slices are
set as wy < 0o0,Vk € Kjy, since they are guaranteed to be
satisfied after applying (7) in admission control.

2) On-demand slices: Before scheduling resources for on-
demand slices, we first derive the weights wj, based on the
marginal utility via a derivation approach:

d T. Bg
L= —Whi(ty) = — =2 8
Wk dty k( k) tr b ®)
in which by = N - by - 5 is the average transported bits

during each scheduling interval for slice k. However, this
weight ignores the QoS requirements between slices required
in Section II-A. Therefore, we can apply a similar approach
as the M-LWDF scheduler [8] and multiply this weight with
the QoS-related coefficients, i.e., the delay threshold Ay, the
packet loss probability dx, and the delay reported by the slice
Dy. Finally, the weight for slice k& can be represented as:

log 5;,3 D Bk

_logék 10g 0 Dk
A, F

X Dy, -wl, = —

9
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which will be used by our proposed algorithm to determine the
scheduling ordering for on-demand slices. The average rate by,
is approximated through an exponential moving average b} "
at the scheduling interval j:

by = (1= 8) - b5 + 8- b

where b};ﬁ_l is the achieved rate at scheduling interval j — 1,
and [ is a small positive constant.

Afterwards, we need to determine the amount of RBs to be
allocated for each on-demand slice. A naive approach would
be to limit each slice to its maximum share of resources
of ?;,max. However, this would penalize slices that did not
request resources in the past, and we therefore resort to fulfill
the maximum resource share over a moving time window. In
this sense, more than {j .x resources can be scheduled in
a single scheduling interval, if few or zero resources were
requested before. To better represent such condition, we collect
the historic resource usage ratio for the k-th slice at the j-th
scheduling interval as ¢, ;, and denote the average resource
usage ratio also at the j-th scheduling interval as ¢; ; with the
following relations:

(10)

T —1

_ 1 1\ - 1
t, = — trim |1 —— )t —tr . 11
ki = ; k.j ( Tk) k.j 1+Tk k.j (11)

Note that such average resource usage ratio is approximated
through an exponential moving average via only taking the
historic resource share within previous 7;, scheduling intervals.
We derive the maximally allowed resource share within the j-
th scheduling interval £, j max as:

_ 1)\ - 1
le; < (1 - m) lgj—1+ atk,j,max = Tk, max

= tk,j,max =Tk tk,max + (1 - Tk) 'Ek,j—l . (12)

Finally, the assigned resources are limited by the maximally
allowed resource share over time or the requested resources:
/

Ty

= min(tg jmax, Ik) - 13)

2

In summary, as shown in Algorithm 2, on-demand slices
are allocated in the order of their weight wy, from (9) with a
maximum resource share T ,; ; from (13) at the j-th scheduling
interval. A slice is not scheduled if By = 0.

3) Dynamic slices: To efficiently schedule dynamic slices,
we allocate the remaining RBs to the slice with the highest
marginal utility among those that have data to send. Based
on the utility function of the dynamic slice, we can deduce
the scheduling weights wy, using the derivative of the utility
function. Note that the achieved rate 7 is the product of
average RB rate 7, the number of RB N, and the resource
share ¢ of this slice:

d R, d
= — = - —log(N -7 - tg
(s dthk(Tk) Nt og(N - 7 - k)
R, N-i _ R,

(14)

_N~T_k.N~T_k'tk, T’k.

Algorithm 2: Allocation of RBs for on-demand slices.

Illpllt : By, Dy, SLA, = {tk,maxa Ak7 6k}, bZ,Xp7V/€ S
K:ﬁx
Output: Allocation results for on-demand slices € Ky
1 forall k& € K,y do
Calculate wy, as in (9)
Calculate T}, as in (13)
end
Kcsoned «— sort Kona desc. by wy, and skip if By =0
forall k € KC3°"d and while RBs available do
‘ Allocate round(T7, - N) RBs to slice k
end

L O N U R W N

Algorithm 3: Allocation of RBs for dynamic slices.
Input : SLA; = {Ry, Rff},rZXp,Vk € Kayn
Output: Allocation results for dynamic slices € Kgyn

1 forall k € K4y, do

2 | Update r;'® as in (15)

3 Calculate wy, as in (14)

4 end
5 kmax < argmax; (wg)
6 Allocate all remaining RBs to slice kpyax

Finally, as shown in Algorithm 3, the dynamic slice with the
highest weight wy, from (14) is allocated, where the achieved
rate 7 in (6) can be approximated through an exponential
moving average 1y} for slice & in (15):

g = U=B) B 09)

IV. SIMULATION RESULTS

We implemented the proposed algorithm in a 3GPP LTE-
aligned simulator, written in Matlab, with the system pa-
rameters as described in 3GPP TS 36.212.° The simulations
are done for a bandwidth of SMHz (25 RBs) in a single
antenna FDD mode. We consider a set of slices with a
varying number of users. The scheduling is performed in
two levels every subframe: (1) inter-slice scheduling with
the proposed framework, and (2) intra-slice scheduling with
a customized policy tailored to a slice requirement. In this
paper, we focus on the downlink (DL) direction with variable
wide-band channel qualities allowing dynamic modulation and
coding scheme (MCS) per user and per subframe. Also, traffic
profiles are defined on a per-user basis.

We first analyze the main slice requirements reusing the
same methodology as defined in NVS [7], and assess the
results for a 3GPP LTE system. Then, we evaluate scenarios
in which more stringent QoS constraints and a strict isolation
are necessary.

%The code is available at https:/gitlab.eurecom.fr/schmidtr/mac-slice-sim
upon request.
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Figure 1. Isolation between two dynamic slices. (a) Initially, both slices have

three users. (b) Then, one user in slice 2 disconnects, the slice increases per-
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Sllce 2

?; 3 2.4
S
< 2 1.63 1.5 1.56 1.63—
2 1.1
w1 -
=]
e
£ 0 I I
Slice 1 Slice 2

Figure 2. Customization through slicing: slice 1 operates with a proportional
fair scheduler, slice 2 applies a blind equal throughput scheduler.

A. Main Slice Requirements

1) Isolation: We first show the isolation capabilities of the
proposed slicing system. Consider two dynamic slices with the
same SLA Ry = 7.2Mbps and Rﬁff = 14.4 Mbps. Each slice
has three users with constant backlogged traffic. All users can
have equal throughput as shown in Fig. la. After one of the
users of slice 2 dissociates, we can observe in Fig. 1b that
slice 2 maintains the aggregate throughput by redistributing
its resources, without any impact on slice 1.

2) Customization: It should be possible to customize slices
to achieve a differentiated treatment of user data flows. We per-
form the same experiment of two dynamic slices with different
schedulers: Slice 1 uses a proportional fair scheduler [9] allo-
cating resources proportionally to a user’s current achievable
throughput and its past average throughput. On the other hand,
slice 2 employs a blind equal throughput scheduler [9] that
strives for achieving the same average throughput, regardless
of per-user channel quality. Both slices have three users
with different channel qualities (MCSs 18, 23, and 28) and
backlogged traffic. Fig. 2 shows that slice 2 achieves a lower
aggregate throughput compared to slice 1 (4.6 Mbps instead of
5.1 Mbps), which confirms the customization property of the
proposed framework and its potential impact of the resulting
per-user and per-slice performance.

3) Efficient resource utilization: One of the main goals of
resource slicing is an efficient resource utilization, and unused
radio resources should be redistributed if allowed by the SLA.
In this experiment, we consider two cases with (i) static slicing
with three perfectly isolated slices and a reservation Py of
28 %, 32 % and 40 % of bandwidth, similar to [4], against
(ii) three dynamic slices that dynamically share their resources
and a reservation Rj of 4.032Mbps (corresponds to 20 %),
4.608 Mbps (32 %) and 5.76 Mbps (40 %), similar to [7]. Each
slice has one user that periodically downloads a large file.
As can be seen in Fig. 3a, resources are wasted when not

z z
g — Slice 1 g
;—:i - - Slice 2 a
‘c:a 3 Pl Slice 3 gﬂ
I v F — Cell o
= 1 =
= 0 A | =
0 2 4
Time (s) Time (s)

(a) (b)

Figure 3. Exemplary resource utilization for three slices. (a) Static resource
reservation. (b) Dynamic resource reservation.

all users are active. In case two (Fig. 3b), resources can be
shared between slices. This can lead to increased throughput
for active slices, and the cell usage is improved. Another effect
is that the cell becomes completely unloaded, implying energy
saving potential.

B. Study of new scenario

1) Faster Delay Response: Within the prior work of
NVS [7], there exist two critical problems. First, NVS “penal-
izes” lightly loaded slices, typical for URLLC, by scaling them
down (cf. (3)) since it can not distinguish between bad channel
quality and lightly loaded slices. Second, a slice has no control
over when it is assigned resources. Thus, no delay bound can
be formed. To overcome these problems, we introduced the on-
demand slice in the proposed framework for which resources
are allocated when needed.

We deploy three dynamic slices with each 4.0 Mbps re-
quested throughput Ry (14.4 Mbps reference rate RY') and
serving two users each with backlogged traffic. We compare
the impact of the resource assignments with respect to QoS for
(i) the original NVS slices (equivalent to our dynamic slice)
to that of (ii) the on-demand slice. In case (i), we deploy
an additional dynamic slice for QoS-sensitive traffic with a
requested throughput Ry, of 1.6 Mbps over a reference rate R
of 10 Mbps (corresponding to 16 %). In case (ii), we deploy
an additional on-demand slice with a maximum resource share
Lk, max Of 16 %. The averaging window 7y, is set to 25 ms such
that the slice can reuse previously unused resources.

Both additional slices serve four users with the same MCS
20. Each user requests packets of 255B size and with 9 ms
of allowed delay as for the 5G flow class 82 for delay-critical
GBR traffic (see 3GPP TS 23.501). Packets arrive either in
constant intervals of 10 ms and with 2 ms difference between
the four users (denoted as CBR), or according to a Poisson
Process with mean inter-arrival time 10 ms (corresponding to
roughly 100 packets per user per second, denoted as VBR).
We simulate 30s.

Fig. 4a shows that the NVS-like slicing loses many packets
for VBR traffic, since packets arriving grouped cannot be
completely scheduled in the next scheduling window. The on-
demand slices of the proposed framework, on the contrary,
do not drop any packets at all. From Fig. 4b, it can also
be observed that the on-demand slices use less resources as
they request resources only when needed allowing efficient
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Figure 4. Comparison of (a) number of lost packets and (b) percentage of
used resources over total system resources for 10s of simulation.

resource utilization. On the contrary, NVS slices are assigned
a complete subframe for transmission which might not always
be possible to fill. This could also result in down-scaling of
the NVS slice.

We report the packet scheduling delay as experienced by
the users within a QoS-sensitive slice for non-dropped packets.
Fig. 5a shows the cumulative distribution function (CDF) for
the delay of packet transmissions. For CBR, our framework
allows packet scheduling immediately after arrival, whereas
NVS increases the delay to up to 5ms. For VBR, we observe
that our framework schedules packets reliably with 90 % of
packets being scheduled before 1 ms and 99.9999 % before
8.0ms’ for the considered traffic scenario. NVS achieves the
same percentile after 9 ms for VBR traffic by dropping packets.
This is due to non-responsive behavior of NVS in which slices
are scheduled purely with respect to their past throughput
and not the actual queue state. Fig. S5b reports the delay for
scheduled packets over a time duration of 1s. Note how spikes
in delay for on-demand slices (due to high traffic intensity)
seldom reach the average delay of the NVS approach.

Finally, we note that the above traffic patterns favor NVS,
since lower traffic would automatically result in packet loss
due to down-scaling or resource limitation, subject to SLA.
On the contrary, for on-demand slices, low traffic and after
inactivity, a higher averaging duration 7 in (12) can enable a
more aggressive resource allocation.

In summary, we remark that the on-demand slice provides
deterministic behavior subject to SLA when scheduling pack-
ets and thus greatly improves the latency and reliability of user
data flows. Since the frame structure of 5G is highly similar,
we expect analogous results if on-demand slices are scheduled
on a slot basis (i.e., no mini-slot scheduling is employed).

2) Reaction to channel quality changes: As shown in
Section IV-Al, individual dynamic slices are isolated from
each other. Further, isolation of slices under changing channel
qualities is ensured, as demonstrated in NVS [7].

In the following, we investigate the impact of changing
channel qualities on a mix of dynamic and on-demand slices.
We consider two dynamic slices with each 5.0 Mbps requested
throughput Ry, over a 12.5 Mbps reference rate R, They each
have two users with a constant 2.5 Mbps downlink bit rate and

"This duration includes all packets for the considered packet error rate, and
the maximum data burst volume would exclude packet bursts that cannot be
handled. See TS 23.501.
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Figure 5. Comparison of delay of non-discarded packets between the proposed
Framework (FW) and an NVS-like scheduling scheme (NVS): (a) CDF for
CBR and VBR traffic. (b) Packet delays over 1s simulated time for VBR
traffic. Note the respective average delays, marked with horizontal lines.
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Figure 6. Behavior of dynamic (rate) and on-demand slices (delay) if user
channel quality changes. The delay is an average over 100 ms.

an initial MCS 28. At 5, the channel quality of users of one
slice drops to MCS 25; at 10s, to MCS 22; and at 15s, MCS
returns to 28 (cf. Fig 6). Furthermore, there is an on-demand
slice with a maximum resource reservation ty max of 20 %. To
increase the effect of increased delay due to decreased channel
quality, we set the slice’s resource averaging window 7 in (12)
to 10ms. This slice contains four users and a packet arrival
identical to the Poisson Process in Section IV-B1. The user
channel quality, initially at MCS 28, drops to 23, 18, 17, and
16, at 5, 10s, 155, and 25 s, respectively. It returns to MCS
28 at 30s. The strong degradation of quality in the on-demand
slice is motivated by the assumption that the slice still seeks
to serve even bad users with high reliability requirements. The
dynamic slice might be able to average out user quality drops
over all its users, maintaining a high efficiency.

As shown in Fig. 6, the dynamic slice with diminishing
user channel quality initially experiences instability in the
throughput before dropping due to low channel quality. Note
how in both cases, an adaptation is almost immediate. When
the user channel quality reestablishes, the throughput for this
slice initially overshoots for two reasons. First, since the rate
adaptation needs less radio resources for the same amount of
data, free resources can be used to catch up the previously
low throughput. Second, the moving average "% in (15)
needs some time to adapt to the new, real throughput K, thus
artificially boosting the weight of the dynamic slice in (14).

For the on-demand slice, Fig. 6 plots average delays over
100 ms windows. Down to MCS 18, a drop in channel quality
results in a stronger variation of channel delays; the lower
the quality, the higher the variation. Since the lower channel
quality results in a lower rate for transmission, packet trans-
missions for some packets tend to take longer themselves and
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Figure 8. RB allocation for multiple slices: (light gray) fixed slice, (blue and
green) two dynamic slices, (black) on-demand slice.

queuing up subsequent transmissions. Note that the quality of
the dynamic slices has no impact on the on-demand slices
since the on-demand slices are scheduled preferentially. This
can also be seen in Fig. 7, which shows almost no difference
in the CDF for the time windows 10-15 and 15-20s. Starting
at 20s (Fig. 6) for qualities lower than MCS 18, a strong
increase in latency (and a loss of packets) is noticeable for
a slight decrease in MCS. It can be supposed that a sweet
spot is reached for the parameter settings (arrival rate, resource
share ?j max, windowing duration 73) such that the slice can
frequently not request more than its maximum resource share
to guarantee a short delivery time. For a fixed arrival rate, the
latency could be reduced by setting a higher resource share
tr,max for this slice. However, this would constantly block
resources in admission control and might create instability if
overbooking is employed. Hence, it would be advisable to
increase the windowing duration 75 such that the scheduler
might be temporarily granted more resources temporarily.

In summary, we note that on-demand slices have compar-
ative, low scheduling delays down to a minimum channel
quality for a given traffic pattern and parameter setting. Below
this minimum quality, they show behavior similar to NVS-like
or fixed slices (cf. Fig. 5a), since they are constantly restricted
to their minimum resource share tj max-

3) Behavior of on-demand slices: As already alluded in
Section III-C, an on-demand slice is limited in the amount
of RBs it can allocate to prevent that such a slice occupies
all radio resources of the BS. In fact, a slice owner could
fake the parameter B to be very high which the inter-slice
scheduler uses without further checks. Hence we introduced
the averaging parameter 7y, in (12) to limit an on-demand slice
to its maximum allowed resource share ¢j max, on average. This
is shown in Fig. 8 where the on-demand slice uses almost all
resources (at 30 ms), followed by no activity. However, as soon
as it constantly requests resources, it is limited to its resource
share 5 max = 0.2 (at 45 ms).

V. CONCLUSION

We presented a utility-based slice scheduling algorithm
applicable to 4G and 5G systems to achieve QoS guaran-
tees. It applies a priority-based resource allocation tailored
to three types of slices, namely fixed slice, dynamic slice,
and on-demand slice. Through extensive set of simulation, we
demonstrated that the proposed framework maintains isolation,
customization, and QoS guarantees, and significantly outper-
forms existing approaches, like NVS, in this respect.

Our framework is applicable to 5G since it uses a similar
frame structure as 4G. However, 5G has additional means to
accomodate low-latency services. In the future, we plan to
evolve this work in the following directions: (i) considering
5G mini-slot scheduling within a slot, (ii) considering multiple
BWPs with different numerologies, and (iii) integration with
our FlexVRAN [1] and OpenAirlnterface [10] platforms.
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