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ARTICLE

Identifying and correcting for misspecifications
in GWAS summary statistics and polygenic scores

Florian Privé,1,6,* Julyan Arbel,2 Hugues Aschard,3,4 and Bjarni J. Vilhjálmsson1,5
Summary
Publicly available genome-wide association studies (GWAS) summary statistics exhibit uneven quality, which can impact the validity of

follow-up analyses. First, we present an overview of possible misspecifications that come with GWAS summary statistics. Then, in both

simulations and real-data analyses, we show that additional information such as imputation INFO scores, allele frequencies, and per-

variant sample sizes in GWAS summary statistics can be used to detect possible issues and correct for misspecifications in the GWAS sum-

mary statistics. One important motivation for us is to improve the predictive performance of polygenic scores built from these summary

statistics. Unfortunately, owing to the lack of reporting standards for GWAS summary statistics, this additional information is not sys-

tematically reported. We also show that using well-matched linkage disequilibrium (LD) references can improve model fit and translate

into more accurate prediction. Finally, we discuss how to make polygenic score methods such as lassosum and LDpred2 more robust to

these misspecifications to improve their predictive power.
Introduction

Contrary to individual-level genotypes and phenotypes,

summary statistics resulting fromgenome-wide association

studies (GWAS) are widely available, and very large sample

sizes can be obtained through meta-analyses.1 GWAS sum-

mary statistics have been extensively used to derive poly-

genic scores (PGS), perform fine-mapping, and estimate a

range of key genetic architecture parameters.2–4 However,

GWAS summary statistics come with uneven imputation

accuracy. There is also heterogeneity in the information

made available in these summary statistics; for example,

per-variant imputation INFO scores, sample sizes, and allele

frequencies are often missing. Moreover, many methods

based on summary statistics use Bayesianmodels and itera-

tive algorithms, which can be particularly sensitive to

model misspecifications.5,6

We present an overview of possible misspecifications

that come with GWAS summary statistics in Table 2. First,

the total sample size used can be misestimated, which

would result in a biased estimation of the SNP heritability.

For example, the total effective sample size is overesti-

mated when computed from the total number of cases

and controls from ameta-analysis of binary outcomes;7 us-

ing BOLT-LMM summary statistics can result in an

increased effective sample size;8,9 and using SAIGE on bi-

nary traits with a large prevalence can result in a reduced

effective sample size.10,11 Second, per-variant sample sizes

can vary substantially and be much smaller than the total

sample size when meta-analyzing GWAS summary statis-

tics from multiple cohorts with different sets of variants.12
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Using very different per-variant sample sizes can be prob-

lematic for models implicitly assuming that summary sta-

tistics have all been derived from the same individuals.13,14

Third, many genetic variants are imputed, with association

statistics being reported for the allele dosages instead of the

true alleles, which can lead to some bias in the summary

statistics. Fourth, the imputation quality of each variant

(e.g., INFO scores), often used in a quality control (QC)

step in statistical genetics analyses, can be severely misesti-

mated (often overestimated) when computed from multi-

ancestry individuals instead of a more homogeneous sub-

set. Fifth, errors such as allele inversions can be present

in the summary statistics; QC is particularly important

here. Sixth, many follow-up analyses require using linkage

disequilibrium (LD) from a reference panel. There can be

some mismatch between the GWAS summary statistics

and the LD reference used, which can, e.g., lead to subop-

timal predictive performance for polygenic scores.

Here we investigate some of these misspecifications and

propose adjustments to improve the predictive perfor-

mance of polygenic scores derived from GWAS summary

statistics. We approach this from three different angles.

First, based on additional summary information such as

the imputation INFO scores and allele frequencies from

the GWAS summary statistics, we refine our previously

proposed QC.15 This QC consists in comparing standard

deviations (of genotypes) inferred from GWAS summary

statistics with the ones computed from a reference panel.

This is useful to check that the input parameters used are

consistent with one another. This was particularly impor-

tant for LDpred2-auto, which directly estimates two key
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model parameters, the SNP heritability and polygenicity,

from the data.15 Here we further show that standard devi-

ations of imputed genotypes (allele dosages) are lower than

the expected values under Hardy-Weinberg equilibrium.

Second, we investigate possible adjustments to apply to

the input parameters of PGS methods using summary sta-

tistics, namely the reference linkage disequilibrium (LD)

matrix, the GWAS effect sizes, their standard errors, and

their corresponding sample sizes. For example, we show

that GWAS effect sizes computed from imputed dosages

are larger in magnitude than when computed from true ge-

notypes. Third, we introduce two new optional parameters

in LDpred2-auto to make it more robust to these types of

misspecification. Note that, in this paper, we use ‘‘robust’’

to mean that we obtain predictive performance similar to

that when there is no misspecification. We also reimple-

ment and use a new version of lassosum, called lassosum2,

in which we better handle when per-variant sample sizes

are different. We focus our investigations on LDpred2

and lassosum2 for two reasons. First, multiple studies

have shown that LDpred2 and lassosum rank among the

best methods for single-trait polygenic prediction.15–18

Second, lassosum2 now uses the exact same input param-

eters as LDpred2, which makes it easy for us to test the

different QCs and adjustments presented here. We addi-

tionally investigate PRS-CS and SBayesR, two competitive

PGS methods,19,20 for which we develop some code to

convert between the different formats required for the

LD matrices and input GWAS summary statistics.
Material and methods

Data for simulations
We use the UK Biobank imputed (BGEN) data.21 We restrict indi-

viduals to the ones used for computing the principal components

(PCs) in the UK Biobank (field 22020). These individuals are unre-

lated and have passed some QC including removing samples with

a missing rate on autosomes larger than 0.02, having a mismatch

between inferred sex and self-reported sex, and outliers based on

heterozygosity (more details can be found in section S3 of Bycroft

et al.21). To obtain a set of genetically homogeneous individuals,

we compute a robust Mahalanobis distance based on the first 16

PCs and further restrict individuals to those within a log-distance

of 5.22 This results in 362,307 individuals of Northwestern Euro-

pean ancestry. We randomly sample 300,000 individuals to form

a training set (e.g., to run the GWAS), 10,000 individuals to form

a validation set (to tune hyper-parameters), and use the remaining

52,307 individuals to form a test set (to evaluate final predictive

models).

Among genetic variants on chromosome 22 and with a minor

allele frequency larger than 0.01 and an imputation INFO score

larger than 0.4 (as reported by the UK Biobank), we sample

40,000 of them according to the inverse of the INFO score density

so that they have varying levels of imputation accuracy

(Figure S1). We read the UK Biobank data into two different data-

sets using function snp_readBGEN from R package bigsnpr,23 one

by reading the BGEN data as hard-called genotypes by randomly

sampling according to the imputation probabilities (of being 0,
2 Human Genetics and Genomics Advances 3, 100136, October 13, 2
1, or 2), and another one by reading it as dosages (i.e., expected

values according to the imputation probabilities). The first dataset

is used as what could be the real genotype calls and the second da-

taset as what would be its imputed version; this design technique

was used in Privé et al.24

Data for real analyses
We also use the UK Biobank data for validation/testing in real-data

analyses, and use the same individuals of Northwestern European

ancestry as described in the previous section. We sample 10,000

individuals to form a validation set and use the remaining

352,307 individuals as a test set. We restrict to the 1,054,315

HapMap3 variants used in the LD reference provided in Privé

et al.15

To define phenotypes in the UK Biobank, we first map ICD10

and ICD9 codes (UK Biobank fields 40001, 40002, 40006, 40013,

41202, 41270, and 41271) to phecodes using R package Phe-

WAS.25,26 We also use some continuous phenotypes, namely

vitamin D (data-field 30890), height (50), body mass index

(BMI) (21001), systolic blood pressure (4080), and high-density li-

poprotein (HDL) cholesterol (30760).

To derive polygenic scores, we use published GWAS summary

statistics listed in Table 1. We also use GWAS summary statistics

for five disease endpoints from FinnGen33 (release 6) and for

four continuous outcomes from Biobank Japan.34

Model for summary statistics
In this paper, we extensively use the following formula:

Sj ¼ sd
�
Gj

�
z

sdðyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nj se

�bgj

�2

þ bg2
j

r ; (Equation 1)

where bgj is the marginal GWAS effect size of variant j, nj is the

GWAS sample size associated with variant j, y is the vector of

phenotypes, and Gj is the vector of genotypes for variant j. This

formula is used in LDpred2.15,35 Note that, for a binary trait for

which logistic regression is used, we have instead

sd
�
Gj

�
z

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
neff
j se

�bgj

�2

þ bg2
j

r ; (Equation 2)

where neff
j ¼ 4

1=ncases
j

þ1=ncontrols
j

.

It is assumed that the marginal (GWAS) effects follow

bgjS;R;g � N �
S�1RSg; S�1RS�1

�
; or;

SbgjS;R;g � NðRSg;RÞ; (Equation 3)

where R is the correlation matrix of genotypes.13 Then PGS

methods aim at inferring g, the true causal (per-allele) effects,

from S, R, and bg. However, in practice, we only have estimates

for S and R, which causes somemodelmisspecifications.Moreover,

ubiquitous correlations between the large number of variants may

cause a Gibbs sampler or any iterative approach used in PGS

methods to fail in properly estimating genetic effect sizes.36

GWAS sample size imputation
We can impute nj from Equation (1) using

njz
varðyÞ

.
var

�
Gj

� � bg2
j

se
�bgj

�2
; (Equation 4)

and impute neff
j from Equation (2) using
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Table 1. Summary of external GWAS summary statistics used

Trait GWAS citation
Effective GWAS
sample size

No. of GWAS
variants

No. of matched variants
with INFO > 0.4 Mean INFO

Breast cancer (BrCa) (iCOGS) Michailidou et al.27 87,037 11,792,542 1,051,242 0.841

Breast cancer (BrCa) (OncoArray) Michailidou et al.27 104,442 11,792,542 1,054,233 0.968

Type 1 diabetes (T1D) (Affymetrix) Censin et al.28 5516 8,996,866 934,712 0.885

Type 1 diabetes (T1D) (Illumina) Censin et al.28 7982 8,996,866 949,334 0.942

Prostate cancer (PrCa) Schumacher et al.29 135,316 20,370,946 818,400 0.969

Depression (MDD)
(without UK Biobank)

Wray et al.30 110,464 9,874,289 1,049,455 0.968

Coronary artery disease (CAD) Nikpay et al.31 129,014 9,455,778 1,052,200 0.982

Vitamin D Jiang et al.32 79,366 2,579,296 1,016,935 N/A

PrCa summary statistics have many variants with a missing INFO score, which we discard. We also restrict to variants with an INFO score larger than 0.4. Note that
vitamin D summary statistics do not report INFO scores.
neff
j z

4
.
var

�
Gj

� � bg2
j

se
�bgj

�2
: (Equation 5)

In practice, we also bound these estimates to be between 0:5, N

and 1:1,N, where N is the total (effective) sample size. Also note

that the estimate of varðGjÞ has to account for the imputation ac-

curacy, i.e., use 2,fj,ð1 � fjÞ,INFOj (section ‘‘misspecification

when using imputed allele dosages’’). In Equations 1 and 4, we es-

timate varðyÞ by the first percentile of 0:5ðN seðbgjÞ2 þbg2
j Þ, where

the first percentile approximates the minimum and is robust to

outliers.
New implementation of lassosum in bigsnpr
Instead of using a regularized version of the correlation matrix R

parameterized by s, Rs ¼ ð1 � sÞRþ sI (where 0 < s%1), we use

Rd ¼ Rþ dI (where d > 0), which makes it clearer that lassosum

is also using L2-regularization (therefore elastic-net). Then, from

Mak et al.,16 the solution from lassosum can be obtained by itera-

tively updating

b
ðtÞ
j ¼

8>><
>>:

sign
�
u
ðtÞ
j

�����uðtÞ
j

��� � l
�

~X
T

j
~Xj þ d

if
���uðtÞ

j

��� > l

0 otherwise

where

u
ðtÞ
j ¼ rj � ~X

T

j

�
~Xbðt �1Þ � ~Xjb

ðt �1Þ
j

�
:

Following the notations from Privé et al.,15 denote ~X ¼
1ffiffiffiffiffiffiffiffi
n�1

p CnGS
�1, where G is the genotype matrix, Cn is the centering

matrix, and S is the diagonal matrix of standard deviations of the

columns of G. Then ~X
T

j
~X ¼ Rj;: ¼ RT

:;j and
~X
T

j
~Xj ¼ 1. Moreover,

using the notations from Privé et al.,15 u
ðtÞ
j ¼ bbj � RT

:;jb
ðt �1Þþ

b
ðt �1Þ
j , where rj ¼ bbj ¼ bg jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nj seðbg jÞ2þbg2

j

q and bgj is the GWAS effect of

variant j, and n is the GWAS sample size.16,35 Then computing

RT
:;jb

ðt �1Þ is the most time-consuming part of each iteration. To

make this faster, instead of computing RT
:;jb

ðt �1Þ at each iteration

(j and t), we can start with an initial vector of 0s only (for all j) since

bð0Þh0, then update this vector when b
ðtÞ
j sb

ðt �1Þ
j only. Note that
Human
only positions k for which Rk;js0 must be updated in this vector

RT
:;jb

ðt �1Þ. Since bigsnpr v1.10.4, we now also use this updating

strategy in LDpred2 (-grid and -auto), which makes it much faster,

especially when the polygenicity is small.

In this new implementation of the lassosum model, which we

call lassosum2, the input parameters are the correlation matrix

R, the GWAS summary statistics (bgj, seðbgjÞ, and nj), and the two

hyper-parameters l and d. Therefore, except for the two hyper-pa-

rameters, lassosum2 uses the exact same input parameters as

LDpred2.15We try d˛ f0:001;0:01;0:1;1g by default in lassosum2,

instead of s˛ f0:2;0:5;0:8;1:0g in lassosum. For l, the default in

lassosum uses a sequence of 20 values equally spaced on a log scale

between 0.1 and 0.001. By default in lassosum2, we use a similar

sequence of 30 values, but between l0 and l0=100 instead, where

l0 ¼ maxj

���bbj

��� is the minimum l for which no variable enters the

model because the L1-regularization is too strong. To make lasso-

sum2 more robust to different per-variant sample sizes nj, we

also introduce per-variant penalty factors
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxkðnkÞ=nj

p
, by which

we internally multiply l and d to penalize variants with smaller

GWAS sample sizes more. Note that we do not provide an ‘‘auto’’

version using pseudo-validation (as in lassosum16), since we

have not found the pseudo-validation scores to be consistent

enough with the predictive performance (Figure S2). Also note

that, as in LDpred2, we run lassosum2 genome-wide using a sparse

correlation matrix which assumes that variants further away than

3 cM are not correlated. Contrary to lassosum, we do not require

splitting the genome into independent LD blocks any longer, yet

we recommend to do so for robustness in LDpred2 and for extra

speed gain (cf. section ‘‘new LD reference’’).
LDpred2-low-h2 and LDpred2-auto-rob
Here we introduce the small changes made to LDpred2 (-grid and

-auto) in order to make them more robust. First, LDpred2-low-h2

simply consists in running LDpred2-grid while testing h2 within

f0:3;0:7;1;1:4g,h2
LDSC (note the added 0.3 compared with Privé

et al.15), where h2
LDSC is the heritability estimate from LD score

regression. Indeed, we show in simulations here that using lower

values for h2 may provide higher predictive performance in the

case of misspecifications (thanks to more shrinkage of the effects).

In simulations, because of the large misspecifications, we use a

larger grid over f0:01;0:1;0:3;0:7;1;1:4g,h2
LDSC.
Genetics and Genomics Advances 3, 100136, October 13, 2022 3



For LDpred2-auto, we introduce two new parameters. The first

one, shrink_corr, allows for shrinking off-diagonal elements

of the correlation matrix. This is similar to parameter ‘‘s’’ in lasso-

sum (section ‘‘new implementation of lassosum in bigsnpr’’), and

acts as a means of regularization. We use a value of 0.9 in simula-

tions and 0.95 in real data when running ‘‘LDpred2-auto-rob’’

here, and the default value of 1 (with no effect) when running

‘‘LDpred2-auto.’’ The second new parameter, allow_jump_sign,

controls whether variant effect sizes can change sign over two

consecutive iterations of the Gibbs sampler. When setting this

parameter to false (in the method we refer to as ‘‘LDpred2-auto-

rob’’ here), this forces the effects to go through 0 before changing

sign. This is useful to prevent instability (oscillation and ulti-

mately divergence) of the Gibbs sampler under large misspecifica-

tions, and is also useful for accelerating convergence of chains

with a large initial value for p (the proportion of causal variants).
New LD reference
We form nearly independent LD blocks using the optimal algo-

rithm developed in Privé.37 Note that a new parameter max_r2

has now been added to this method, which controls the

maximum single squared correlation allowed outside blocks and

offers an extra guarantee that the splitting is good and makes

the function much faster by discarding many possible splits. For

different numbers of blocks and maximum number of variants

in each block, we use the split that minimizes ðC2 , ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ C1

p Þ,
where C1 is the sum of squared correlations outside the blocks

and C2 is the sum of squared sizes of the blocks (Figure S3). Twelve

blocks from chromosome 22 are used in the simulations, and be-

tween 731 and 2,527 in the real-data analyses (cf. next section).

Having a correlation matrix with independent blocks prevents

small errors in the algorithm (e.g., the Gibbs sampler in LDpred2)

from propagating to too many variants. It also makes running

LDpred2 (and lassosum2) faster, taking e.g., 70% of the initial

time (since only 70% of the initial non-zero values of the correla-

tion matrix are kept). Note that we also compute the correlations

within the same blocks and from the same data for PRS-CS.

We have also developed a new ‘‘compact’’ format for the SFBMs

(sparsematrices on disk). Instead of using something similar to the

standard ‘‘compressed sparse column’’ format which stores all

fi; xði; jÞg for a given column j, we only store the first index i0
and all the contiguous values fxði0; jÞ; xði0 þ1; jÞ; .g up to the

last non-zero value for this column j. This makes this format about

twice as efficient for both LDpred2 and lassosum2 (in terms of

both memory and speed). Therefore, using both this new format

and the LD blocks should divide computation times by 3 (without

counting the faster updating strategy of residuals).
Alternative LD reference for FinnGen and Biobank Japan
To be used with GWAS summary statistics from FinnGen, we

investigate three different LD reference panels. To define homoge-

neous ancestry groups in the UK Biobank, we include all individ-

uals within a specific distance to a population center in the PC

analysis space.35,38 We use either the 503 European (including

99 Finnish) individuals from the 1000 Genomes (1000G) data,39

404 Finnish-like UK Biobank plus the 99 Finnish 1000G individ-

uals (also 503 in total), or the 10,000 UK individuals from the vali-

dation set we use in this paper. 1,454, 731, and 1,165 independent

LD blocks are identified for these three LD references, respectively.

To be used with GWAS summary statistics from Biobank Japan,

we also investigate three different LD reference panels. We use
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either the 504 East Asian (including 104 Japanese) individuals

from the 1000G, 400 Japanese-like UK Biobank plus the 104 Japa-

nese 1000G individuals (also 504 in total), or 2,041 East Asian UK

Biobank individuals (including the 400 previous Japanese individ-

uals). For the small LD references (based on �500 individuals), we

restrict to variants with a minor allele frequency (MAF) >0.02. For

the one based on 2,041 individuals, we restrict to MAF >0.01. We

also construct versions of these LD references with independent

LD blocks, as described in the previous section. 2,527, 1,769,

and 2,196 independent LD blocks are identified for these three

LD references, respectively.
Results

Misspecification of per-variant GWAS sample sizes

We design GWAS simulations where variants have

different sample sizes, which is often the case when

meta-analyzing GWAS summary statistics from multiple

cohorts with different sets of variants.12 Using 40,000 var-

iants from chromosome 22 (see material and methods), we

simulate quantitative phenotypes by picking 2,000 causal

variants at random, sampling their genetic effects (after

scaling of the genotypes) from a normal distribution, and

adding some Gaussian noise to the genetic component of

the phenotype so that it has a heritability of 20%. This is

implemented in function snp_simuPheno of R package

bigsnpr.23 We then randomly divide the 40,000 variants

into three groups: for half of the variants, we use 100%

of 300,000 individuals for GWAS, but use only 80% for

one quarter of the variants and 60% for the remaining

quarter. We use a simple linear regression for GWAS, as im-

plemented in function big_univLinReg of R package big-

statsr.23 We then run CþT, lassosum, lassosum2 (section

‘‘new implementation of lassosum in bigsnpr’’), LDpred2-

inf, LDpred2(-grid), LDpred2-auto, SBayesR (GCTB v2.03

with the automatic robust option), and PRS-CS-

auto15,16,19,20,24 by using either the true per-variant

GWAS sample sizes, the total sample size for all variants,

or per-variant sample sizes imputed using Equation (4).

When providing true per-variant GWAS sample sizes,

squared correlations between the polygenic scores and

the simulated phenotypes are of 0.123 for CþT, 0.160 for

lassosum, 0.169 for lassosum2, 0.159 for LDpred2(-grid),

0.140 for LDpred2-auto, 0.141 for LDpred2-inf, 0.138 for

SBayesR, and 0.159 for PRS-CS-auto (Figure 1, averaging

over ten simulations). Results when using imputed sample

sizes are very similar to when using the true ones. Note that

CþT does not use this sample size information, and that

PRS-CS can only be provided with a single value (we use

the maximum one). When using the total GWAS sample

size instead of the per-variant sample sizes, predictive per-

formance slightly decreases to 0.158 for lassosum and to

0.164 for lassosum2, but dramatically decreases for

LDpred2 with new values of 0.134 for LDpred2-grid,

0.122 for LDpred2-auto, and 0.125 for LDpred2-inf

(Figure 1). This extreme simulation scenario shows that

LDpred2 can be sensitive to the misspecification of per-
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Figure 1. Results for the simulations with sample size misspecification, averaged over ten simulations for each scenario
Reported 95% confidence intervals are computed from 10,000 non-parametric bootstrap replicates of themean. The GWAS sample size is
either ‘‘true’’ when providing the true per-variant sample size, ‘‘max’’ when providing instead the maximum sample size as a unique
value to be used for all variants, ‘‘imputed’’ (cf. Equation 4), or ‘‘any’’ when the method does not use this information (the case for
CþT). Red bars correspond to using the LD with independent blocks (section ‘‘new LD reference’’), which is a requirement for lassosum
and PRS-CS.
variant GWAS sample sizes, whereas lassosum (and lasso-

sum2) seems little affected by this. With 0.141 for SBayesR,

predictive performance is actually larger than when using

the true per-variant sample sizes.

We conduct further investigations to explain the results

of Figure 1. First, the results for LDpred2-auto and SBayesR

are similar to LDpred2-inf in these simulations because the

internal polygenicity estimate p (proportion of causal var-

iants) of LDpred2-auto, and similarly the proportion of

non-null variants in SBayesR, always continuously in-

creases up to 1 in the Gibbs sampler, which makes them

behave as an infinitesimal model ðp ¼ 1Þ. To overcome

this limitation in LDpred2-auto, we introduce two new pa-

rameters to make it more robust, and refer to this as

‘‘LDpred2-auto-rob’’ here (section ‘‘LDpred2-low-h2 and

LDpred2-auto-rob’’). The first parameter prevents p from

diverging to 1 while the second shrinks the off-diagonal el-

ements of the LDmatrix (a form of regularization). Second,

for lassosum2, results for a grid of parameters (over l and d)

are quite smooth compared with LDpred2 (Figures S4 and

S5). In these simulations with misspecified per-variant

sample sizes, it seems highly beneficial to use a small value

for the SNP heritability hyper-parameter h2 in LDpred2,

e.g., a value of 0.02 or even 0.002 when the true value is

0.2 (Figure S5). Indeed, using a small value for this hyper-

parameter induces a larger regularization (shrinkage) on

the effect sizes. Here we call ‘‘LDpred2-low-h2’’ when

running LDpred2(-grid) with a grid of hyper-parameters

including these low values for h2. Results with LDpred2-

low-h2 improve from 0.159 to 0.169 when using true sam-

ple sizes and from 0.134 to 0.164 when using the
Human
maximum sample size (Figure 1). Finally, we introduce

here a last change for robustness: we form independent

LD blocks in the LD matrix to prevent small errors in the

Gibbs sampler to propagate to too many variants (section

‘‘new LD reference’’). This change seems to solve conver-

gence issues of LDpred2 in these simulations (Figure S5)

and further improves predictive performance for all

LDpred2 methods (Figure 1).

As secondary analysis, we rerun these simulations with a

smaller heritability of 4% instead. While predictive perfor-

mance are overall much lower, relative performance are

less attenuated when using the maximum sample size,

otherwise results are highly consistent as before

(Figure S6). We also try using the shrunk LD matrix from

GCTB that is used, e.g., for SBayesR;20 in these simulations,

higher predictive performance is obtained for LDpred2-

auto with this shrunken LD matrix, whereas SBayesR ben-

efits from using LDpred2’s windowed LD matrix

(Figure S7).
Misspecification when using imputed allele dosages

Marchini and Howie40 showed that the IMPUTE INFO

measure is highly concordant with the MACH measure
varðGjÞ

2bq jð1�bq jÞ, where bqj is the estimated allele frequency of Gj,

the genotypes for variant j. Therefore, when using the ex-

pected genotypes from imputation (allele dosages), their

standard deviations are often lower than the expected

value under Hardy-Weinberg equilibrium, because

INFOjz
varðGjÞ

2bq jð1�bq jÞ. In simulations (cf. section ‘‘data for
Genetics and Genomics Advances 3, 100136, October 13, 2022 5
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Figure 2. Results of predictive performance for the simulations using GWAS summary statistics from imputed dosage data, averaged
over ten simulations for each scenario
Reported 95% confidence intervals are computed from 10,000 non-parametric bootstrap replicates of the mean. Correction ‘‘sqrt_info’’
corresponds to using bgimp

j ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
INFOj

p
and seðbgjÞimp,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
INFOj

p
. Correction ‘‘info’’ corresponds to using bgimp

j ,INFOj and nj,INFOj. Correction
‘‘in_between’’ corresponds to using bgimp

j ,INFOj, seðbgjÞimp,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
INFOj

p
, and nj,INFOj. Red bars correspond to using the LDwith independent

blocks (section ‘‘new LD reference’’), which is a requirement for PRS-CS.
simulations’’), we verify that sdðGjÞtruezsdðGjÞimp=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
INFOj

p
(Figure S8). As a direct consequence of the lower standard

deviation of dosages, we also show that GWAS effect sizesbg computed from imputed dosages are overestimated:

bgtrue
j zbgimp

j ,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
INFOj

p
and seðbgjÞtruezseðbgjÞimp,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
INFOj

p
(Figures S9 and S10). This is the first correction of summary

statistics we consider in the simulations below. As a second

option, instead of using dosages to compute the GWAS

summary statistics, it has been argued that using multiple

imputation (MI) would be more appropriate.41 Here MI

consists in forming multiple (e.g., 20) datasets of hard-

called genotypes by sampling them according to the impu-

tation probabilities stored in the BGEN files, performing a

GWAS on each of these datasets, and pooling the GWAS es-

timates. In simulations, we show that bgMI
j zbgimp

j ,INFOj

and ZMI
j zZ

imp
j ,INFOj, where Z ¼ bg=seðbgÞ (Figure S11).

This is the second correction of summary statistics we

implement in the simulations below, along with nj,
INFOj as the new per-variant sample sizes. Finally, we

consider an in-between solution as a third correction, us-

ing bgj ¼ bgimp
j ,INFOj, seðbgjÞ ¼ seðbgjÞimp,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
INFOj

p
, and

nj,INFOj as the per-variant sample sizes. Note that we

have recomputed INFO scores for the subset of 362,307 Eu-

ropean individuals used in this paper, since they can differ

substantially from the ones reported by the UK Biobank for

the whole data (Figures S12 and S13).

To compare these three corrections, we conduct a simula-

tion using the same 40,000 variants from chromosome 22
6 Human Genetics and Genomics Advances 3, 100136, October 13, 2
as before, whereby we simulate quantitative phenotypes

assuming a heritability of 20%and 2,000 causal variants us-

ing the ‘‘true’’ dataset (cf. section ‘‘data for simulations’’).

We compute GWAS summary statistics from the dosage da-

taset and use these summary statistics to run LDpred2, las-

sosum2 and PRS-CS with either no correction of the sum-

mary statistics or with one of the three corrections

described above. The LD references are computed from

the validation set using the dataset with the ‘‘true’’ geno-

types (i.e., same as before). For lassosum2 and LDpred2

(-grid), which tune parameters using the validation set, cor-

recting for imputation quality slightly improves predictive

performance in these simulations (Figure 2). However, cor-

recting for imputation quality can dramatically improve

predictive performance for LDpred2-auto, provided the

imputation quality is well estimated. Moreover, new addi-

tions for robustness introduced before, namely LDpred2-

low-h2, LDpred2-auto-rob, and forming independent

blocks in the LD matrix, also improve predictive perfor-

mance for all corrections (Figure 2). However, these correc-

tions do not prove beneficial for PRS-CS-auto (Figure 2).

When performing similar simulations with a heritability

of 4% (instead of 20%), correction ‘‘sqrt_info’’ still provides

slightly higher predictive performance for all methods

(compared with no correction), yet the other two correc-

tions sometimes provide lower predictive performance

(Figure S14). In the real-data applications hereafter, we

therefore choose to use the first correction, ‘‘sqrt_info,’’

which seems to more consistently provide better results
022
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Figure 3. Results for the simulations with summary statistics with LD matrices based on two different populations
One comes from the same ancestry used for computing the GWAS summary statistics (North-West Europe), while the other one comes
from South Europe (alternative LD reference). Reported 95% confidence intervals are computed from 10,000 non-parametric bootstrap
replicates of the mean. Red bars correspond to using the LD with independent blocks (section ‘‘new LD reference’’), which is a require-
ment for PRS-CS.
and is simple because it is somewhat equivalent to post-

processing PGS effects by multiplying them by
ffiffiffiffiffiffiffiffiffiffiffiffi
INFO

p
.

Mismatch between LD reference and GWAS summary

statistics

Here we design simulations to understand the impact of

using a mismatched LD reference panel, e.g., that comes

from a different population compared with the one used

to compute the GWAS summary statistics. We use the

same simulation setup as before (see material and

methods), i.e., using individuals of Northwestern Euro-

pean ancestry from the UK Biobank for training (GWAS),

validation (tuning of hyper-parameters), and testing (the

final models). In addition to the LD reference panel of

Northwestern European ancestry, we design an alternative

reference panel based on 10,000 individuals from South

Europe by using the ‘‘Italy’’ center defined in Privé

et al.35 Allele frequencies and pairwise correlations are

quite similar between these two LD reference panels

(Figure S15). When using this alternative LD reference

panel instead of a well-matched one as in the previous sec-

tions, squared correlations between the polygenic scores

and the simulated phenotypes drop from 0.173 to 0.166

for lassosum2, from 0.168 to 0.159 for LDpred2(-grid),

from 0.174 to 0.169 for LDpred2-low-h2, from 0.142 to

0.136 for LDpred2-auto, from 0.162 to 0.147 for

LDpred2-auto-rob, from 0.143 to 0.138 for LDpred2-inf,

and from 0.163 to 0.155 for PRS-CS-auto (Figure 3, aver-

aging over ten simulations). Forming independent LD

blocks in these two LDmatrices always improves predictive
Human
performance, yet again. We also compute and test using a

shrunk LD matrix (from GCTB) for this alternative LD

reference panel; again, using this type of LD matrix seems

beneficial for LDpred2-auto. Finally, under the same simu-

lation scenario but with a smaller simulated heritability of

4% (instead of 20%), there remains a small drop in predic-

tive performance when using the alternative LD reference

(Figure S16).

Application to breast cancer summary statistics

In this section, we transition to using real data. Breast can-

cer GWAS summary statistics are interesting because they

include results from two mega-analyses,27,42,43 which

means that parameters reported in these GWAS summary

statistics, such as INFO scores and sample sizes, are esti-

mated with high precision. Imputation INFO scores for

the OncoArray summary statistics are generally very

good (mean of 0.968 after having restricted to HapMap3

variants, Figure S17) and better than the ones from iCOGS

(mean of 0.841, Figure S18), probably because the iCOGS

chip included around 200K variants only, compared with

more than 500K variants for the OncoArray. For both sum-

mary statistics, we compare the standard deviations (of ge-

notypes) inferred from the reported allele frequencies (i.e.,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2f ð1 � f Þp

where f is the allele frequency, and denoted as

sd_af) versus the ones inferred from the GWAS summary

statistics (Equation 2, and denoted as sd_ss). As shown in

Figures 4 and S19, there is a clear trend with sd_ss being

lower than sd_af as INFO decreases; indeed, using

sd ss=
ffiffiffiffiffiffiffiffiffiffiffiffi
INFO

p
provides a very good fit for sd_af, except for
Genetics and Genomics Advances 3, 100136, October 13, 2022 7



Figure 4. Comparison of standard deviations for quality control of GWAS summary statistics
Standard deviations inferred from theOncoArray breast cancer GWAS summary statistics using Equation 2 (A: raw or B: dividing them byffiffiffiffiffiffiffiffiffiffiffiffi
INFO

p
) versus the ones inferred from the reported GWAS allele frequencies fj (using

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2fjð1 � fjÞ

p
). Only 100,000 HapMap3 variants are

represented, at random.
some variants of chromosomes 6 and 8 for the OncoArray

summary statistics. Most of these outlier variants are either

in region 25–33 Mbp of chromosome 6 or in 8–12 Mbp of

chromosome 8 (Figure S20), which are two known long-

range LD regions.44 We hypothesize that this is due to us-

ing PCs that capture LD structure instead of population

structure, as covariates in the GWAS.22 To validate this hy-

pothesis, we simulate a phenotype using HapMap3 vari-

ants of chromosome 6 for 10,000 individuals from the

UK Biobank and then run GWAS with or without PC19

as covariate. PC19 from the UK Biobank was previously re-

ported to capture LD structure in region 70–91 Mbp of

chromosome 6.22 In these simulations, the same bias as

in Figure 4B is observed for the variants in this region

(Figure S21), confirming our hypothesis.

Therefore, providing an accurate imputation INFO score

is useful for two reasons. First, it allows for correcting for a

reduced standard deviation when using imputed data in

the QC step we propose to better uncover possible prob-

lems with the GWAS summary statistics. Second, using

one of the proposed corrections based on INFO scores

may lead to an improved prediction when deriving poly-

genic scores. We apply these corrections to the two breast

cancer summary statistics. In the comparison, we first use

the QC proposed in Privé et al.15 (which ends up filtering

on MAF here, which we call ‘‘qc1’’). We then also filter

out the two long-range LD regions of chromosomes 6

and 8 for the OncoArray summary statistics and remove

around 500 variants when filtering on differences of allele

frequencies (>0.1) between summary statistics and the

validation dataset (‘‘qc2’’). As for the correction using

INFO scores, we use the first correction, ‘‘sqrt_info,’’ which

is simple because it is equivalent to post-processing PGS ef-

fects, by multiplying them by
ffiffiffiffiffiffiffiffiffiffiffiffi
INFO

p
. Although results for
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both QC used are very similar, correcting using INFO

scores slightly improves predictive performance when

deriving polygenic scores based on iCOGS summary statis-

tics (Figure S22). All other improvements introduced

before have little to no effect here, probably because mis-

specifications are much smaller than in the simulations.

Results for other phenotypes

We use other external GWAS summary statistics for which

INFO scores are reported (see Table 1); they all have a very

high mean INFO score (larger than 0.94), except for T1D-

affy (0.885). QC plots comparing standard deviations usu-

ally show little deviation from the identity line (after the

INFO score correction), except for coronary artery disease

(CAD) summary statistics (Figures S23–S27). Note that

the popular CAD summary statistics used here come

from a multi-ancestry GWAS meta-analysis with more

than 20% non-European samples.31,38 In Figures 5 and

S28–S32, we then provide similar results as in Figure S22

for other phenotypes. For major depressive disorder

(MDD) and prostate cancer (PrCa), most changes intro-

duced before have little to no impact on predictive perfor-

mance. For CAD and T1D, the QC proposed in Privé et al.15

and the additional QC proposed here provide much better

predictive performance, especially for LDpred2-auto (and

LDpred2-auto-rob) than when using no QC, showing

how important this preliminary step is.

We also investigate results for vitamin D GWAS sum-

mary statistics, which do not report INFO scores or allele

frequencies, as opposed to previous ones. The QC proced-

ure is thus less precise and uses allele frequencies from the

LD reference (Figure S33). However, these summary statis-

tics do report per-variant sample sizes, which cover a wide

range of different values (Figure S34). Here we compare
022
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Figure 5. Variance explained of CAD in the UK Biobank by PGS derived from external summary statistics
These are computed using function pcor of R package bigstatsr where 95% confidence intervals are obtained through Fisher’s
Z-transformation; these values are then squared. Red bars correspond to using the LD with independent blocks (see material and
methods), which is a requirement for PRS-CS.
using either the maximum sample size or the true per-

variant sample sizes when deriving polygenic scores, and

an additional QC step, ‘‘qc2’’, which refers to removing

all variants with a per-variant sample size less than 70%

of the maximum one. When the true per-variant sample

sizes are used, the additional ‘‘qc2’’ does not seem to be

necessary (Figure 6), which is a bit surprising to us.

When the maximum sample size is used, this ‘‘qc2’’ is

very important, especially for LDpred2-auto. Note that,

when using the maximum sample size to derive ‘‘sd_ss’’

in ‘‘qc1’’ (not the case here; we used the per-variant sample

sizes), ‘‘qc1’’ would remove variants with underestimated

standard deviations due to overestimated sample sizes,

which would effectively remove variants with low sample

sizes (Figure S35), similar to the ‘‘qc2’’ used here.

For all phenotypes, PRS-CS-auto is very robust, whatever

the QC procedure used (e.g., see the results for CAD,

Figure 5).We believe this is because of the strong regulariza-

tion used internally. We then run LDpred2-auto-rob for

CAD with different shrinkage multiplicative coefficients

for the off-diagonal elements of the LD matrix, from 1 (LD

matrix unchanged) to 0 (using the identitymatrix instead).

When using a strong shrinkage of 0.3 or 0.4, results for

LDpred2-auto-rob are similar regardless of the QC used

(Figure S36), aspreviouslyobserved for PRS-CS-auto. Results

with LDpred2-auto-rob are always best when using ‘‘qc2’’,

themost stringentQC; thenno shrinkage (1) seemsneeded,

whereas a strong shrinkage leads to a drop in predictive per-
Human
formance. For phenotypes with relatively large genetic ef-

fects (e.g., vitamin D, Figure 6), PRS-CS-auto performs

muchworse, possibly due tousing toomuch regularization.

Application to FinnGen and Biobank Japan summary

statistics

Here we investigate the use of different LD reference panels

with GWAS summary statistics from two large biobanks of

isolated populations. We use GWAS summary statistics for

five disease endpoints from FinnGen33 (release 6), namely

breast and prostate cancers (BrCa and PrCa), CAD, and

type 1 and type 2 diabetes (T1D and T2D). These were

derived using SAIGE.10 First, for each phenotype, we esti-

mate a global effective sample using the 80th percentile

of imputed sample sizes from Equation 5. This estimation

is only 84.7% for BrCa, 79.1% for PrCa, 73.1% for T1D,

64.5% for T2D, and 61.3% for CAD, when compared

with the effective sample computed from the reported

numbers of cases and controls. We believe this reduction

in effective sample size is due to having related individuals

included in the analyses as well as using SAIGE, as noted in

the introduction. We then compare three different LD

reference panels to use with these GWAS summary statis-

tics (section ‘‘alternative LD reference for FinnGen and Bio-

bank Japan’’). Interestingly, using the small Finnish LD

reference panel we have defined here, composed of only

503 individuals, seems to almost always provide more pre-

dictive polygenic scores than using the large UK panel
Genetics and Genomics Advances 3, 100136, October 13, 2022 9
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Figure 6. Variance explained of vitamin D in the UK Biobank by PGS derived from external summary statistics
These are computed using function pcor of R package bigstatsr where 95% confidence intervals are obtained through Fisher’s
Z-transformation; these values are then squared. Red bars correspond to using the LD with independent blocks (see material and
methods), which is a requirement for PRS-CS.
composed of 10,000 individuals or the widely used Euro-

pean subset of the 1000G data (Figure 7). For PRS-CS-

auto, none of the three LD references seems to consistently

outperform the other two across all phenotypes consid-

ered. Note that the PGS here are validated in people of

UK-like ancestry in the UK Biobank to obtain sufficient

sample sizes.

We also use GWAS summary statistics for four contin-

uous outcomes from Biobank Japan.34 These were

derived using BOLT-LMM-inf.8 First, for each phenotype,

we estimate a global power improvement provided by

BOLT-LMM by comparing c2 statistics (the boost of

BOLT-LMM-inf versus linear regression) across genome-

wide significant variants, as recommended in Loh

et al.8 This estimated power ratio, which corresponds

to the increase in effective sample size, is 1.143 for

height, 1.039 for HDL cholesterol, 1.025 for BMI, and

1.013 for systolic blood pressure. We then compare three

different LD reference panels to use with these GWAS

summary statistics (section ‘‘alternative LD reference for

FinnGen and Biobank Japan’’). Interestingly, when look-

ing at height and HDL cholesterol, where we could get

the best predictive performance, using the smaller Japa-

nese LD reference we have defined here seems to provide

more predictive PGS than using the one using a larger set

of East Asian individuals from the UK Biobank or the

widely used East Asian subset of the 1000G data

(Figure S37), except when using PRS-CS-auto to predict
10 Human Genetics and Genomics Advances 3, 100136, October 13,
height. Note that the PGS here are validated in people

of broad East Asian ancestry in the UK Biobank and for

continuous outcomes to obtain moderate sample sizes

for comparison.

Recommendations

Based on previous results from simulations and real-data an-

alyses,weuse this section to suggest some recommendations

on how to handle misspecifications in GWAS summary sta-

tistics and to get themost out of PGS.We recall that an over-

view of these misspecifications, along with possible conse-

quences and possible corrections, is summarized in Table 2.

First, standardQC should always be performed, e.g., variants

with low frequency or low imputation quality should be

removed; one must make sure to recompute MAF and

INFOscores for thehomogeneous subset of individuals of in-

terest. Second, comparison of allele frequencies can be used

to, e.g., detect problems with signs of effects while

comparing standard deviations to detect other issues such

as low per-variant GWAS sample sizes. Third, the LD refer-

ence panel should be as close as possible (in terms of genetic

ancestry) to the data used to derive theGWAS. In case of any

doubt, ancestry proportions can be estimated from GWAS

allele frequencies using the method derived in Privé.38

Fourth, if some validation data is available for tuning hy-

per-parameters, one can use methods such as lassosum2

and LDpred2(-grid). The grid of parameters used in lasso-

sum2 includes a broad range of regularization, whichmakes
2022
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Figure 7. Results for PGS derived from five FinnGen GWAS summary statistics and using three different LD references
Partial correlations are computed using function pcor of R package bigstatsr where 95% confidence intervals are obtained through
Fisher’s Z-transformation, then all values are squared to report the phenotypic variance explained by PGS. Red bars correspond to using
the LD with independent blocks (see material and methods), which is a requirement for PRS-CS.
it very robust. For LDpred2, we recommend to also include a

smaller value for the heritability in the grid of parameters to

allow for more regularization when needed. As these two

methods use the same data and the same principle (i.e., hy-

per-parameter tuning), one could run both methods and

choose the best one when tuning hyper-parameters. Fifth,

if no validation/tuning dataset is available, we recommend

using LDpred2-auto with the two new parameters intro-

duced here, or PRS-CS-auto if there are strong misspecifica-

tions and the phenotype of interest is known to have only

small effects. Sixth, we recommend to form independent

LDblocks in theLDmatrix, as it proved tomake themethods

more robust (and slightly faster). Most of these new recom-

mendations are included in the LDpred2 tutorial.
Discussion

Here we have investigatedmisspecifications in GWAS sum-

mary statistics, focusing particularly on the impact of sam-

ple size heterogeneity and imputation quality, and the

application to PGS methods. Previously, we proposed a

QCbased on comparing standard deviations (of genotypes)

inferred from GWAS summary statistics with the ones

computed from a reference panel.15 Here we show that we

can refine thisQCbyderiving the latter directly from the re-

ported allele frequencies in the GWAS summary statistics,

andby correcting the former using imputation INFO scores.

Using this refined QC, we are able to identify a potential
Human G
issuewithhowPCswere derived in aGWASof breast cancer.

Fortunately, this has practically no effect on the predictive

performance of the derived PGS. Additional QC can also

be performed, e.g., comparing reported GWAS allele fre-

quencies with the ones from the LD reference panel to

detect genotyping errors or allele inversions. We perform

this additional QC as part of ‘‘qc2’’ here. One can also run

other QC tools such as DENTIST,4 and also infer ancestry

proportions from summary statistics to make sure these

are matching with the LD reference used.38

Note that, in this study, we mostly use GWAS summary

statistics that include extended information (e.g., INFO

scores and allele frequencies), yetmostGWAS summary sta-

tistics do not provide such exhaustive information.47 We

acknowledge that, in the case of a meta-analysis frommul-

tiple studies, providing a single INFO score per variant may

notbepossible. Solutions suchas using aweighted averaged

INFO score might be worth exploring in future studies.

Nevertheless, this QC could be performed within each

study beforemeta-analyzing results to ensure that resulting

summary statistics have the best possible quality for follow-

up analyses such as deriving PGS. Other information, the

effective sample size per variant, is often missing from

GWAS summary statistics. Sometimes it can even be chal-

lenging to recover the total effective sample size from large

meta-analyses. We recall that when some studies have an

imbalancednumberof cases andcontrols, the total effective

sample size of their meta-analysis should not be computed

from the total numbers of cases and controls overall, but
enetics and Genomics Advances 3, 100136, October 13, 2022 11



Table 2. Overview of possible misspecifications when using GWAS summary statistics, along with possible consequences and corrections

Misspecification Possible consequence(s) Possible correction

Misestimation of the total sample sizea bias estimation of SNP heritability7,9 estimation of the effective sample size

Differences in per-variant sample sizes possible violation of model assumptions
(e.g., Equation 3) resulting in poor predictive
performance

imputation using Equations 4 and 5, and
filteringb

Using imputed dosages for GWAS standard deviations of dosages are too small,
resulting in overestimated effect sizes and
standard errors

see section ‘‘misspecification when using
imputed allele dosages’’

Using imputed dosages for LD computation none required; LD seems correctly estimated
(Figure S38)

Misestimation of imputation INFO scores misuse when filtering or adjusting input
parameters based on these

recomputing from a homogeneous subset

Error in summary statistics (e.g., allele
inversions)

strong violation of model assumptions,
which can result in e.g., identifying false
positives in fine-mapping45

quality control

Rounding of summary statistics (e.g., effect
sizes and SEs)

add unnecessary noise to the data none, but this has almost no impact on the
predictive performance (Figure S39)

Ancestry mismatch between summary
statistics and LD

strong mismatch of LD and allele
frequencies, often resulting in divergence of
models

checking ancestry proportions from GWAS
summary statistics38

Any possible violation of model assumptions
resulting in poor predictive performance

quality control, using more regularization,
and constraining LD to blocks

aExamples: using the total number of cases and controls in a meta-analysis of binary traits, a larger effective sample size when using BOLT-LMM summary statis-
tics,8 and a reduced effective sample size when using SAIGE on binary traits with a large prevalence.10,11
bFor example, removing SNPs with an effective sample size less than 0.67 times the 90th percentile of sample size.46
instead from the sum of the effective sample sizes of each

study.7 Indeed, take the extreme example of meta-

analyzing two studies, one with 1,000 cases and 0 controls

and another one with 0 cases and 1,000 controls: the effec-

tive sample size of the meta-analysis is then 0, not 2,000.

Misspecifying the GWAS sample size can lead to serious is-

sues such as misestimating the SNP heritability.7 Fortu-

nately, an overestimated sample size can be detected from

the QC plot we propose, where the slope is then less than

1 for case-control studies using logistic regression. Here we

have used this strategy to estimate reduced effective sample

sizes in FinnGen GWAS summary statistics.

We have assessed the impact of these misspecifications

in GWAS summary statistics on the predictive performance

of some PGS methods. Using both the Bayesian LDpred2

models15 and our reimplementation of the frequentist las-

sosum model16 for deriving PGS, we have introduced and

investigated some changes to possibly make these models

more robust to misspecifications. Overall, these changes

provided large improvements of predictive performance

in the simulations with large misspecifications. The pro-

posed QCs on GWAS summary statistics also provided bet-

ter predictive performance for CAD, T1D, and vitamin D.

However, these changes had limited effect when applied

to some other real GWAS summary statistics, which is

both unfortunate but also reassuring because it means

that these GWAS summary statistics are of particularly

good quality for follow-up analyses such as deriving PGS.

In conclusion, we recommend adopting these changes,

i.e., performing the (refined) QC proposed here, forming
12 Human Genetics and Genomics Advances 3, 100136, October 13,
independent LD blocks in the LD matrix, and using more

regularization when needed. We also recommend using

well-matched LD reference panels. More regularization

can be achieved by testing additional smaller values for

the heritability parameter in LDpred2-grid, and using the

two new parameters introduced here in LDpred2-auto (sec-

tion ‘‘LDpred2-low-h2 and LDpred2-auto-rob’’). Note that

LD blocks are already widely used by several methods,

such as lassosum and PRS-CS, because they allow for pro-

cessing smaller matrices at once.16,19 Imposing indepen-

dent blocks on the LD matrix could result in further

misspecifications,14 but here we have shown that well-

defined blocks can actually make PGS methods more

robust. PRS-CS is currently one of the most robust PGS

methods; for example, it can use the (small) 1000G dataset

as LD reference,19 and can even use a European LD refer-

ence panel with multi-ancestry GWAS summary statis-

tics,12 also shown here. We believe this is made possible

by the use of a strong regularization in PRS-CS

(4�1j�1
j R1, which would approximately correspond to

using s ¼ 0:5 in lassosum, d ¼ 1 in lassosum2, and the

new parameter shrink corr ¼ 0:5 in LDpred2-auto). Using

enough regularization is good for robustness, but note that

using too much regularization can also damage predictive

performance. To address this limitation, we recommend

reliance on a proper QC and choice of ancestry-matched

LD instead of on too much regularization. We would like

to encourage large biobanks, such as FinnGen and Biobank

Japan, to provide LD reference matrices matching the large

GWAS summary statistics they provide, ideally based on
2022



the same large number of individuals. As a future research

direction, we are interested in using multi-ancestry-

matched LD matrices to use with multi-ancestry GWAS

summary statistics to improve polygenic prediction in all

ancestries. It would also be useful to investigate the impact

of the QC, well-matched LD reference panels and other ad-

justments we propose here on other (non-PGS) methods,

for which consistency and robustness are likely to be

very important as well.4 For example, we are interested in

assessing the impact of these misspecifications on the

inference of disease architecture parameters in future work.
Data and code availability

The UK Biobank data is available through a procedure described

at https://www.ukbiobank.ac.uk/using-the-resource/. All code

used for this paper is available at https://github.com/privefl/

paper-misspec/tree/master/code. We have extensively used R

packages bigstatsr and bigsnpr23 for analyzing large genetic data,

packages from the future framework48 for easy scheduling and par-

allelization of analyses on the HPC cluster, and packages from the

tidyverse suite49 for shaping and visualizing results. The latest

version of R package bigsnpr can be installed from GitHub, and

a recent version can be installed from CRAN.
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A tutorial on running LDpred2 and lassosum2 using R

package bigsnpr is available at https://privefl.github.io/

bigsnpr/articles/LDpred2.html.

We have recomputed the allele frequencies and imputa-

tion INFO scores within the European subset used here

and across all imputed variants in the UK Biobank, and

have made them available at https://doi.org/10.6084/m9.

figshare.16635388.
Human G
We have formed independent LD blocks within the

Northwestern European LD references provided in Privé

et al.,15 and have made these updated versions available

at https://doi.org/10.6084/m9.figshare.19213299.
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23. Privé, F., Aschard, H., Ziyatdinov, A., and Blum,M.G.B. (2018).

Efficient analysis of large-scale genome-wide data with two R

packages: bigstatsr and bigsnpr. Bioinformatics 34, 2781–

2787. https://doi.org/10.1093/bioinformatics/bty185.
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