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Introduction

Let G(V, E) be a graph with weights w ij on each edge ij of E. The graph partitioning problem consists in partitioning the nodes V in subsets called clusters such that the sum of the weights of the edges in the clusters is minimized, or equivalently such that the sum of the weight between the clusters is maximized.

Integer formulations of this problem based on edge variables have in particular been studied in [START_REF] Grötschel | A cutting plane algorithm for a clustering problem[END_REF][START_REF] Oosten | The clique partitioning problem: facets and patching facets[END_REF]. This problem is declined in numerous versions in which the size of the clusters or the number of clusters K is constrained.

Sorensen et al. [START_REF] Sørensen | Facet-defining inequalities for the simple graph partitioning polytope[END_REF] studied the simple graph partitioning problem in which a cluster may contain at most b nodes. In [START_REF] Fan | Robust optimization of graph partitioning involving interval uncertainty[END_REF][START_REF] Labbé | Size-constrained graph partitioning polytopes[END_REF] upper and lower bounds are set on the number of nodes per clusters. If K is set to 2 we obtain the max-cut problem [START_REF] Barahona | On the cut polytope[END_REF]. In this context, Hager et al. [START_REF] Hager | An exact algorithm for graph partitioning[END_REF] studied the case in which the number of nodes in one of the two sets is constrained. Many studies are also dedicated to the partitioning problem with at most or at least K clusters [START_REF] Chopra | The partition problem[END_REF][START_REF] Deza | Clique-web facets for multicut polytopes[END_REF].

In this paper we consider a problem called K-partitioning problem in which a partition of K non empty clusters must be created. This problem is addressed for example by [START_REF] Ghaddar | A branch-and-cut algorithm based on semidefinite programming for the minimum k-partition problem[END_REF] with a branch-and-cut approach based on semi-definite relaxation. For the sake of simplicity we adopt the same point of view as Chopra and Rao [START_REF] Chopra | The partition problem[END_REF] and we note that the general case can be solved by adding edges to obtain a complete graph. However it is possible to derive specific valid inequalities for sparse graphs, as in [START_REF] Ferreira | The node capacitated graph partitioning problem: a computational study[END_REF]. Whenever the weights are negative Goldschmit and Hochbaum [START_REF] Goldschmidt | A polynomial algorithm for the k-cut problem for fixed k[END_REF] proved that this problem can be solved in O(n k 2 /2-3k/2+4 T (n, m)), where T (n, m) is the time required to find the minimum (s, t)-cut on a graph with n vertices and m edges. In the general case, this problem is known to be N P-hard [START_REF] Garey | Some simplified np-complete graph problems[END_REF].

Most formulations from the literature contain a lot of symmetry, which is considered a major drawback for branch-and-bound based methods. Kaibel et al. [START_REF] Kaibel | Orbitopal fixing[END_REF] have proposed a method called orbitopal fixing to deal with the symmetry during the branching steps. Another way is to break the symmetry directly in the formulation, like in [START_REF] Campêlo | On the asymmetric representatives formulation for the vertex coloring problem[END_REF]. A nodecluster formulation with representative variables has been proposed in [START_REF] Bonami | On the solution of a graph partitioning problem under capacity constraints[END_REF]. Unfortunately, the authors note that their formulation gives a rather weak lower bound compared to the edge formulation of [START_REF] Grötschel | A cutting plane algorithm for a clustering problem[END_REF]. In Section 2 we add representative variables to the edge formulation and obtain a promising formulation, as well as an extended version. The last section is dedicated to some numerical results.

Formulations

Chopra and Rao formulation

In [START_REF] Chopra | The partition problem[END_REF] Chopra and Rao present a formulation of the problem GPP1 (Graph Partitioning Problem 1) in which the number of clusters is required to be lower than or equal to a given K. This formulation can easily be modified to fix the number of clusters to exactly K. To ease the understanding, the notations of Chopra and Rao are adapted to fit our own notations.

Given a partition {C 1 , . . . , C K }, if ij is inside a cluster C k then the edge variable x ij is equal to one; otherwise it is equal to zero. Note that x ij and x ji represent the same variable. This formulation also considers node-cluster variables y it for all i ∈ V and t ∈ {1, . . . , K}. The variable y it is equal to 1 if the node i is in the cluster t and 0 otherwise. We show below the formulation (F cr ) of the K-partitioning problem from [START_REF] Chopra | The partition problem[END_REF].

Constraints (1), ( 2) and (3) ensure the link between the edge variables and the nodecluster variables. Each node i is assigned to exactly one cluster thanks to Constraints (4). Finally, exactly K clusters are obtained through Constraints [START_REF] Campêlo | On the asymmetric representatives formulation for the vertex coloring problem[END_REF].

A significant drawback of this formulation is its inherent symmetry. A way to tackle this difficulty is by setting variables directly in the branch-and-cut nodes [START_REF] Kaibel | Orbitopal fixing[END_REF]. However, in this paper we propose two formulations which do not have any symmetry.

(F cr )                        minimize ij∈E w ij x ij subject to -y it + y jt + x ij ≤ 1 ∀ij ∈ E ∀t ∈ {1, . . . , K} (1) y it -y jt + x ij ≤ 1 ∀ij ∈ E ∀t ∈ {1, . . . , K} (2) 
y it + y jt -x ij ≤ 1 ∀ij ∈ E ∀t ∈ {1, . . . , K} (3) 
t∈{1,...,K} y it = 1 ∀i ∈ V (4)

i∈V y it ≥ 1 ∀t ∈ {1, . . . , K} (5) 
y it ∈ {0, 1} ∀i ∈ V ∀t ∈ {1, . . . , K} (6) x ij ∈ {0, 1} ∀ij ∈ E (7)

Edge-representative formulation

Grötschel and Wakabayashi [START_REF] Grötschel | Facets of the clique partitioning polytope[END_REF] formulation for the general clique partitioning problem is based on the edge variables x ij only. We call this formulation the edge formulation (or nodenode formulation as in [START_REF] Bonami | On the solution of a graph partitioning problem under capacity constraints[END_REF]). The triangle inequalities are considered in this formulation:

x ij + x ik -x jk ≤ 1, ∀i ∈ V, ∀j, k ∈ V \{i}, j < k (8) 
To break the symmetry and fix the number of clusters at the same time, we add to the previous formulation a set of node variables called representative variables. The representative variable r v is equal to one if the index of node v is lower than the index of any node in the same cluster. In that case v is said to be the representative of its cluster; otherwise, r v is equal to 0. We call the resulting formulation (F er ) edge-representative formulation:

(F er )                    minimize ij∈E w ij x ij subject to (8) r j + j-1 i=1 x ij ≥ 1 ∀j ∈ V (9) r j + x ij ≤ 1 ∀i, j ∈ V, i < j (10) n j=1 r j = K (11) x ij ∈ {0, 1} ∀ij ∈ E (12) r j ∈ [0, 1] ∀j ∈ V (13) 
The values of the representative variables are fixed using Constraints (9) (each cluster has at least one representative per cluster) and [START_REF] Garey | Some simplified np-complete graph problems[END_REF] (each cluster has at most one representative per cluster). Constraint [START_REF] Ghaddar | A branch-and-cut algorithm based on semidefinite programming for the minimum k-partition problem[END_REF] ensures that the number of obtained clusters is equal to K. Note that in the above formulation fixing all edge variables to 0 or 1 forces the representative variables to be in {0, 1}. Hence, we only have |E| binary variables.

Extended edge-representative formulation

To extend this formulation we first note that the value of the representative variablesinstead of using Constraints ( 9) and ( 10) -can be fixed by using the following quadratic constraints:

r j + j-1 i=1 r i x ij = 1, ∀j ∈ V.
The extended edge-representative formulation is obtained by a linearization of these constraints: 8), ( 12), [START_REF] Grötschel | A cutting plane algorithm for a clustering problem[END_REF] xij

(F ext )                    minimize ij∈E w ij x ij subject to (
≤ x ij ∀ij ∈ E (14) xij ≤ r i ∀ij ∈ E, i < j (15) x ij + r i -xij ≤ 1 ∀ij ∈ E, i < j (16) r j + j-1 i=1 xij = 1 ∀j ∈ V (17) xij ∈ [0, 1] ∀ij ∈ E (18) 
Constraints ( 14) to ( 16) ensure that xij is equal to r i x ij . Like in (F er ), we don't need to declare the variables xij to be binary: we still have |E| binary variables. Note that in a feasible solution, the x variables represent a spanning forest, each tree spanning its cluster. Hence, x can be interpreted as a location problem solution corresponding (one to one) to a K-partition solution x.

A comparison of formulations

The linear relaxations of formulations (F er ) and (F ext ) are obtained by substituting for each edge ij ∈ E the constraint x ij ∈ {0, 1} with x ij ∈ [0, 1]. Let R er and R ext respectively denote the convex hull of all feasible solutions of the linear relaxation of formulations (F er ) and (F ext ). To compare the two linear relaxations, we consider proj(R ext ), the projection of (R ext ) onto the space of the variables of (R er ). The sets of all the integer solutions in R er and proj(R ext ) are identical since (F er ) and (F ext ) both formulate the same problem. To show that the extended formulation is tighter, we prove that -in all non-trivial casesproj(R ext ) is strictly included in R er .

Theorem 2.1 proj(R ext ) ⊂ R er if n ≥ 4 and K ∈ {2, . . . , n -2}.

Clearly proj(R ext ) is included in (R er ). To show the strict inclusion, we build an incidence vector x of a K-partition {C 1 , . . . , C K } with C 1 = {1, 2, 3}. Thus, we have r 1 = 1, r 2 = r 3 = 0, x 12 = x 13 = x 23 = 1. We change the value of x 13 and x 23 to 0.5 and the obtained vector can be proved to be in R er \proj(R ext ) (see [START_REF] Ales | Extraction et partitionnement pour la recherche de régularités : application à l'analyse de dialogues[END_REF] for further details).

This theorem ensures that the lower bound obtained with (F ext ) is necessarily at least as good as the one obtained with (F er ). We now compare numerically the quality of the lower bounds obtained by the linear relaxations of (F er ), (F ext ) and the formulation of Chopra and Rao.

For a given graph and a given formulation of the K-partitioning problem let z o be the objective value of the optimal integer solution and let z r be the value of the corresponding linear relaxation. We define the relative gap of this formulation over that graph by |z oz r |/z o . The lower the relative gap is, the faster the problem is likely to be solved with this formulation.

The relative gaps of the three formulations are illustrated in Table 1. It represents for each couple (n, K) and each formulation the arithmetic mean relative gap over twenty graphs. The instances have been generated randomly such that:

w ij ∈ [0, 500] ∀ij ∈ E.
The improvement of the extended formulation over the edge-representative formulation is significant and, although limited (lower than 14%) leads to a significant speeding up of the solving of the K-partitioning problem. Chopra and Rao's formulation gives results between our two formulations for K equal to 2. However, the relative gap increases quickly with K (a gap of 100% corresponds to a linear relaxation of value zero). 

Numerical results

In this section we present a branch-and-cut algorithm which starts by a thorough cuttingplane step at the root node, and we give some numerical results.

Polyhedral results

In a previous work [START_REF] Ales | Extraction et partitionnement pour la recherche de régularités : application à l'analyse de dialogues[END_REF][START_REF] Ales | On the polyhedron of the k-partitioning problem with representative variables[END_REF], we studied P n,K , the convex hull of the feasible solutions of (F er ), and proved that its dimension is full when K is in {3, . . . , n -2}. Four families of inequalities have been considered and we caracterized conditions under which they define facets of P n,K . In our algorithm, we only consider two of these families (namely: the 2partition inequalities [START_REF] Grötschel | A cutting plane algorithm for a clustering problem[END_REF] and the general clique inequalities [START_REF] Chopra | The partition problem[END_REF]) which experimentally proved to be the most efficient. Given two non empty disjoint subsets of V , S and T , we note x(E(S)) = i,j∈S, i =j

x ij and x(E(S), E(T )) = i∈S,j∈T

x ij . The 2-partition inequality associated to S and T is:

x(E(S), E(T )) -x(E(S)) -x(E(T )) ≤ min(|S|, |T |).

Given a subset Z of V of size qK + r (with r ∈ {0, 1 . . . , K -1}) the general clique inequality associated to Z for a complete graph is:

x(E(Z)) ≥ (q + 1)q 2 r + q(q -1) 2 (K -r).

Our branch-and-cut strategy

We start with a cutting plane procedure where we only keep constraints ( 12), ( 13), ( 17) and [START_REF] Labbé | Size-constrained graph partitioning polytopes[END_REF]. At each iteration we search violated inequalities ( 8), ( 14), ( 15) and ( 16) extensively. We limit the search of triangle inequalities [START_REF] Fan | Robust optimization of graph partitioning involving interval uncertainty[END_REF] to 3000 inequalities and we only keep the 500 most violated ones. To separate the 2-partition inequalities, we use the greedy algorithm by Grötschel and Wakabayashi [START_REF] Grötschel | A cutting plane algorithm for a clustering problem[END_REF] which seeks 2-partition inequalities in which the set S is reduced to only one node. To separate the general clique inequalities we adapt a greedy algorithm which achieves an approximation factor of 2 of the densest at least ksubgraph problem [START_REF] Khuller | On finding dense subgraphs[END_REF]. We also use a Kernighan-Lin-type algorithm for both the 2-partition inequalities and the general clique inequalities.

As a primal heuristic we use a greedy algorithm which first identifies the K highest representative variables of the current linear relaxation x * and then assigns each other node i to the cluster of a representative r which maximizes x * ir . When we can't find any violated inequality or after 2000 seconds the cutting plane procedure is over. We now consider all inequalities in the formulation (F ext ), and we keep all the generated 2-partition inequalities and generalized clique inequalities that are tight for the current solution. We proceed with the default CPLEX branch-and-cut procedure and the greedy algorithm for the separation of the generalized clique inequalities.

CPLEX branch and cut

Our branch-and-cut n K Total time (s) 

Preliminary results

We compare the performance of our algorithm to the default branch-and-cut of CPLEX 12.7 using a 1.86GHz Intel Xeon CPU equipped with 12 GByte RAM. Table 2 shows numerical results on hard instances consisting of complete graphs with random edge values in [0, 500].

The maximum time is one hour and our branch-and-cut procedure starts either when no cut is found during the cutting-plane step or after 2000 seconds. Table 2 shows that our approach is faster than CPLEX and that some hard instances are solved within one hour. Furthermore, when no optimal solution is found for both strategies the gap is always much smaller with our algorithm.

Table 1 :

 1 Average relative gap of the first formulation (F er ), the extended formulation (F ext ) and the formulation of Chopra and Rao (F cr ) over twenty random complete graphs.

	Formulation	n	2	3	4	5	6	K	7	8	9	10
	(F cr )		86 98 99 99 99		99 100 100 100
	(F er )	18 91 85 79 71 62		51	39	26	17
	(F ext )		80 76 69 61 51		40	27	15	8
	(F cr )		86 98 99 99 99 100 100 100 100
	(F er )	19 90 85 80 73 66		56	46	32	22
	(F ext )		81 77 71 64 56		46	35	22	13
	(F cr )		87 99 99 99 100 100 100 100 100
	(F er )	20 92 88 84 78 71		62	52	39	26
	(F ext )		83 80 76 70 62		54	45	33	20

Table 2 :

 2 Results obtained on randomly generated graphs.

			Node	Total	BB time	Gap	Node
				time (s)	(s)		
	35 4 2419	0	3903	1058	0	0	0
	35 6 3604	9.1	11494	1769	117	0	10
	35 8 3603	9.1	17284	1115	121	0	19
	35 10 542	0	3373	406	60	0	11
	40 4 3601	28.5	1113	3601	1600	3.8	166
	40 6 3602	36.2	4072	3600	1600	1.5	471
	40 8 3604	36.9	7464	2584	582	0	152
	40 10 3603	16.3	10243	2199	199	0	17