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Explicit construction of theminimumerror variance

estimator for stochastic LTI-ss systems. ?
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Abstract

We showcase the derivation of the optimal (minimum error variance) estimator, when one part of the stochastic LTI system
outputs is not measured but is able to be predicted from the measured system outputs.
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1 Introduction

Realization theory of stochastic linear time invariant
state-space representations (LTI-ss) with exogenous in-
puts is a mature theory [12,11]. In particular, there is
constructive theory for a minimal stochastic LTI-ss rep-
resentation of a process y with exogenous input w. The
construction uses geometric ideas, and it is based on
oblique projection of future outputs onto past inputs and
outputs.
Note that, in system identification it is often assumed
that jointly (y,w) has a realization by an autonomous
stochastic LTI system driven by white noise. Indeed, if
w has a realization by a stochastic LTI-ss representation
driven by i.i.d gaussian noise, and y has a realization
by a LTI-ss representation with exogenous input w and
i.i.d. gaussian noise, then under some mild assumptions
(absence of feedback from y to w) (y,w) will be the out-
put of an autonomous stochastic LTI-ss representation.
It is then natural to ask the question how to construct a
minimal stochastic LTI-ss realization of y with input w,
from an LTI-ss realization of the joint process (y,w), in-
stead of computing a realization of y using oblique pro-
jections.
In this paper we present an explicit construction of a
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minimal stochastic LTI-ss representation of y with an
exogenous input w from an autonomous stochastic LTI-
ss representation of the joint process (y,w). The ba-
sic idea is as follows: we will assume that (y,w) is sta-
tionary, square-integrable, zero-mean, jointly Gaussian
stochastic processes and there is no feedback from y to
w. Then use the result of [10] stating that there exists a
minimal LTI-ss realization of (y,w) with matrices which
admit a upper-triangular form. This allowed us to sep-
arate out part of the innovation noise of (y,w), which
purely drives w, thus allowing us to formulate this con-
struction.
Our motivation for developing an explicit construction
of an LTI-ss realization of y with input w from a LTI-ss
realization of (y,w) was that this construction turned
out to be useful in deriving non-asymptotic error bounds
of PAC-Bayesian type [1] for LTI-ss systems [7]. The
latter could be a first step towards extending the PAC-
Bayesian framework for stochastic state-space represen-
tations.
More precisely, one of the byproducts of the construc-
tion of this paper is a one-to-one relationship between
LTI-ss systems which generate (y,w) and optimal linear
estimators of future values of y based on past values of
w. This relationship is useful in Bayesian learning algo-
rithms, when one needs to define a parameterised set of
predictors (Hypothesis class). All prior knowledge or un-
certainty in the data generating system can then easily
be mapped to knowledge or uncertainty of the predictor.
The contribution of the paper can also be viewed as as
follows. We wish to construct an estimator of y(t) given
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past (s < t) and present (s = t) measurements of w(s).
We consider a specific class of relationships, specifically
when the two processes are related by a common stochas-
tic LTI-ss system, i.e., [yT (t) wT (t)]T is an output of an
LTI-ss system. The problem of finding this estimator can
also be thought of as trying to estimate non-measurable
quantities of a system from measurable quantities.

Related work: As it was pointed out above, stochas-
tic realization theory with inputs is a mature topic with
several publications, see the monographs [12,11,4] and
the references therein. However, we have not found in
the literature an explicit procedure for constructing a
stochastic LTI-ss realization in forward innovation form
of y with input w from the joint stochastic LTI-ss real-
ization of (y,w). The current note is intended to fill this
gap.
We will need to further analyse the relationship between
y and w by feedback-free assumption. In [9], the author
defines what it means for one process to cause another,
a similar notion to feedback. In [2], the authors further
extend the notion and define weak and strong feedback
free processes. As strong feedback free condition implies
weak feedback free, we consider the relaxed case of weak
feedback free throughout the paper. In frequency domain
using causal real rational transfer function matrices to
describe processes y and w, and analysing these pro-
cesses with feedback free assumption, yields a straight-
forward construction of estimator of y given w, see [3]
and [8]. In this paper we study this problem in time do-
main, using LTI-ss representations.

Outline: This paper is organised as follows. Below we
start by defining the notation and terminology used in
this paper, then in Section 2 we reformulate the state-
space system driven by innovation of [yT (t) wT (t)]T

into a state-space system, which yields a realisation of
y, driven by w and the innovation of a purely non-
deterministic part of y. Afterwards in Section 4.1, given
this new realisation we provide the optimal (in the sense
of minimum error variance) estimate of y.

Notation and terminology Let F denote a σ-algebra
on the set Ω and P be a probability measure on F. Un-
less otherwise stated all probabilistic considerations will
be with respect to the probability space (Ω,F,P). In
this paragraph let E denote some euclidean space. We
associate with E the topology generated by the 2-norm
|| · ||2, and the Borel σ-algebra generated by the open
sets of E. The closure of a set M is denoted clM . For
S ⊆ N and stochastic variables y, z1, z2, . . . with values
in R we denote by E(y | {zi}i∈S) the conditional expec-
tation of y with respect to the σ-algebra σ({zi}) gen-
erated by the family {zi}i∈S . Recall that E(zx) define
an inner product in L2(Ω,F,P) and that E(y | {zi}i∈S)
can be interpreted as the orthogonal projection onto the
closed subspace L2(Ω, σ({zi}i∈S),P) which also can be
identified with the closure of the subspace generated by

{zi}i∈S . That is,

L2(Ω, σ({zi}i∈S),P) = cl
{∑

i∈S αizi | αi ∈ R
}

(1)

with only a finite number of summands in (1) being
nonzero when S = N. Moreover, for a closed subspace
H of L2(Ω,F,P) and a stochastic variable y with val-
ues in E and E(||y||22) <∞, we let E(y | H) denote the
dim(E)-dimensional vector with ith coordinate equal to
E(yi | H) with yi denoting the ith coordinate of y.

There are two closed subspaces of particular importance.
Following [12], for a discrete time stochastic process z(t)
with values in E and E(||z(t)||22) < ∞, we write H−t (z)
for the closure of the subspace in L2(Ω,F,P) generated
by the coordinate functions zi(s) of z(s) for all s < t.
That is,

H−t (z) = cl
{∑t−1

i=−∞ αTi z(i) | αi ∈ E
}

(2)

with T indicating transpose and only a finite number of
summands in (2) being nonzero. In a similar manner we
define

H+
t (z) =cl

{∑∞
i=t α

T
i z(i) | αi ∈ E

}
, (3)

H(z) =cl
{∑∞

i=−∞ αTi z(i) | αi ∈ E
}
. (4)

Let A, B and C be closed subspaces of L2(Ω,F,P). We
then define

A ∨B = cl{a+ b | a ∈ A, b ∈ B} (5)

and say that A and B are orthogonal given C, denoted
A ⊥ B | C, if

E
((
a−E(a | C)

)(
b−E(b | C)

))
= 0 (6)

for all a ∈ A and b ∈ B.

We use the following notation, Y = Rp, W = Rq
and for the disjoint union W∗ =

⊔∞
k=1Wk we

write w = (w1, . . . , wk) in place of the more correct
(w, k) = ((w1, . . . , wk), k) for an element in W∗.

2 Assumptions

Suppose we want to construct an estimator of the output
stochastic process y(t) : Ω → Y given a sequence of
measurements as inputs obtained from the stochastic
process w(t) : Ω → W. In order to narrow down and
formally describe the estimation problem, we assume
that the processes y(t) and w(t) can be represented as
outputs of an LTI system in forward innovation form:
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Assumption 1 The processes y(t) and w(t) can be gen-
erated by a stochastic discrete-time minimal LTI system
on the form

x(t+ 1) = Agx(t) +Kgeg(t) (7a)[
y(t)

w(t)

]
= Cgx(t) + eg(t), Q = E[eTg (t)eg(t)] (7b)

where Ag ∈ Rn×n,Kg ∈ Rn×m, Cg = [CTy , C
T
w]T ∈

R(p+q)×n for n ≥ 0, m, p > 0 and x ∈ Rn, y ∈ Rp,w ∈
Rq and eg are stationary, square-integrable, zero-mean,
and jointly Gaussian stochastic processes. The processes
x and eg are called state and noise process, respectively.
Recall, that stationarity and square-integrability imply
constant expectation and that the covariance matrix
Cov(y(t),y(s)) = E[(y(t)−E[y(t)])(y(s)−E[y(s)])T ]
only depends on time lag (t − s). Furthermore, we re-
quire that Ag is stable (all its eigenvalues are inside the
open unit circle) and that for any t, k ∈ Z, k ≥ 0,
E[eg(t)e

T
g (t−k−1)] = 0, E[eg(t)x

T (t − k)] = 0, i.e.,
the stationary Gaussian process eg(t) is white noise and
uncorrelated with x(t − k). We identify the system (7)
with the tuple (Ag,Kg, Cg, I, eg); note that the state pro-
cess x is uniquely defined by the infinite sum x(t) =∑∞
k=1A

k−1
g Kgeg(t− k).

Before we can continue we have to consider the relation-
ship between y and w. For technical reasons we can not
have feedback from y to w, as w would then be deter-
mined by a dynamical relation involving the past of the
process y. As such we have Assumption 2

Assumption 2 There is no feedback from y to w, fol-
lowing definition 17.1.1. from [12], i.e.,

H−t (y) ⊥ H+
t (w) | H−t (w)

holds, i.e., the future of w is conditionally uncorrelated
with the past of y, given the past of w.

As a passing remark, the no feedback assumption is
equivalent to weak feedback free assumption [2] or
Granger non-causality [9]. Thus the no feedback as-
sumption can be stated as y does not Granger cause w.

3 Result

Under assumption 2, there exists a similarity transfor-
mation T of (7) such that Āg = TAgT

−1, K̄g = TKg

and C̄g = CgT
−1 are upper block triangular, specifically

(7) can be represented as[
x̄1(t+ 1)

x̄2(t+ 1)

]
=

[
A1,1 A1,2

0 A2,2

][
x̄1(t)

x̄2(t)

]
+

[
K1,1 K1,2

0 K2,2

][
e1(t)

e2(t)

]
(8a)[

y(t)

w(t)

]
=

[
C1,1 C1,2

0 C2,2

][
x̄1(t)

x̄2(t)

]
+

[
e1(t)

e2(t)

]
(8b)

where [eT1 (t) eT2 (t)]T = eg(t), and such that (A2,2, C2,2)
is observable. Moreover, Ai,j ∈ Rpi×pj , Ki,j ∈
Rpi×rj ,Ci,j ∈ Rri×pj , with r1 = p and r2 = q.

The optimal estimate ŷ(t) = E[y(t) | H−t+1(w)], in
the least square sense, is then given as the output of
the following LTI system

x̂(t+ 1) = Ãx̂(t) + K̃w(t) (9a)

ŷ(t) = C̃x̂(t)−D0w(t), (9b)

Ã =

[
A1,1 A1,2 − (K1,2 +K1,1D0)C2,2

0 A2,2 −K2,2C2,2

]
, (9c)

K̃ =

[
K1,2 +K1,1D0

K2,2

]
, (9d)

C̃ =
[
C1,1 C1,2 −D0C2,2

]
, D0 = Q1,2Q

−1
2,2. (9e)

with the covariance Q = E[eTg (t) eg(t)] partitioned ac-
cording to (8).

4 Derivation

Several results can be deduced from Assumption 2. First,
by [12, Proposition 2.4.2], we obtain the following rela-
tion between projections

E[y(t)|H(w)] = E[y(t)|H−t+1(w)], (10)

E[w(t)|H−t (w) ∨H−t (y)] = E[w(t)|H−t (w)]. (11)

Secondly, from [12, Ch. 17] it follows that the process
y can then be decomposed into a deterministic part yd
and a stochastic part ys, as follows

y(t) = yd(t) + ys(t), (12)

yd(t) = E[y(t)|H(w)] = E[y(t)|H−t+1(w)], (13)

ys(t) = y(t)− yd(t). (14)

Note that, as a consequence of (13) and (14)

E[yd(t)y
T
s (τ)] = 0 ∀t, τ ,
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i.e., yd and ys are uncorrelated. Moreover, the process
ys can be realised by a state-space system in forward
innovation form

xs(t+ 1) = Asxs(t) +Kses(t), (15a)

ys(t) = Csxs(t) + es(t), (15b)

es = ys(t)− E[ys(t)|H−t (ys)]. (15c)

Finally, from [12, Proposition 17.1.3.] we get

H−t (y) ∨H−t+1(w) = H−t (ys)⊕H−t+1(w), (16)

where ⊕ denotes orthogonal sum, and

es(t) = y(t)− E[y(t)|H−t (y) ∨H−t+1(w)]. (17)

Now consider a similarity transformation T of (7) such
that Āg = TAgT

−1, K̄g = TKg and C̄g = CgT
−1 are

upper block triangular, see (8). From [10] it then follows
that (A2,2,K2,2, C2,2, e2) is a minimal Kalman represen-
tation of w hence e2(t) is the innovation process of w
i.e.,

e2(t) = w(t)− E[w(t) | H−t (w)]

= w(t)− E[w(t) | H−t (y) ∨H−t (w)]. (18)

Moreover, the transformed system (8) induces a relation
between the output y and input w. In detail, from (8b)
we also have

e2(t) = w(t)− C2,2x̄2(t). (19)

Hence, substituting (19) in (8) yields the following real-
isation of y[
x̄1(t+ 1)

x̄2(t+ 1)

]
=

[
A1,1 A1,2 −K1,2C2,2

0 A2,2 −K2,2C2,2

][
x̄1(t)

x̄2(t)

]
(20a)

+

[
K1,2

K2,2

]
w(t) +

[
K1,1

0

]
e1(t) (20b)

y(t) =
[
C1,1 C1,2

] [x̄1(t)

x̄2(t)

]
+ e1(t) (20c)

Note that e1(t) is the innovation process of y (with
respect to w), i.e.,

e1(t) = y(t)− E[y(t) | H−t (y) ∨H−t (w)]. (21)

4.1 Optimal estimate

The goal in this section is to derive an optimal estimate
(in the sense of minimum error variance). Firstly, we

claim that

es(t) = e1(t)− E[y(t)|e2(t)] = e1(t)−D0e2(t) (22)

where 1 D0 = (E[y(t)eT2 (t)])T (E[e2(t)eT2 (t)])−1 is the
minimum variance linear estimator of y(t) given e2(t),
see [12, Proposition 2.2.3.]. In order to show (22), we
first demonstrate that

H−t (y) ∨H−t+1(w) = (H−t (y) ∨H−t (w))⊕H(e2(t)),
(23)

where H(e2(t)) = {αTe2(t) | α ∈ Rq}, is the space
spanned by innovation process e2(t), considered only at
the time t. By definition we have

(H−t (y) ∨H−t (w)) ∨H(e2(t)) =

cl
{ t−1∑
i=−∞

γTi y(i) +

t−1∑
i=−∞

ηTi w(i)

+ λTt e2(t) | γi ∈ Rp, ηi ∈ Rq, λt ∈ Rq
}

(24)

However, using definition of e2(t) from (18) we have

(H−t (y) ∨H−t (w)) ∨H(e2(t)) =

cl
{ t−1∑
i=−∞

γTi y(i) +

t−1∑
i=−∞

ηTi w(i)

+ λTt w(t) | γi ∈ Rp, ηi ∈ Rq, λt ∈ Rq
}
, (25)

which equals H−t (y) ∨H−t+1(w) and therefore

(H−t (y) ∨H−t (w)) ∨H(e2(t)) = H−t (y) ∨H−t+1(w)
(26)

Again from (18) it follows that e2(t) ⊥ H−t (w)∨H−t (y),
thus (23) holds. The relation (22) now follows since

E[y(t) | H−t (y) ∨H−t+1(w)]

= E[y(t) | H−t (y) ∨H−t (w)] + E[y(t) | e2(t)]

= E[y(t) | H−t (y) ∨H−t (w)] +D0e2(t), (27)

and therefore, using (21) we can see that

es(t) = y(t)− E[y(t) | H−t (y) ∨H−t (w)]−D0e2(t)
(28)

= e1(t)−D0e2(t) (29)

1 In order to numerically compute D0, we can use (21) to re-
place y with e1(t)+E[y(t) | H−

t (y)∨H−
t (w)], and since e2 ⊥

H−
t (w)∨H−

t (y), we get E[E[y(t) | H−
t (y)∨H−

t (w)]eT
2 ] = 0.

Therefore E[y(t)eT
2 (t)] = E[e1(t)eT

2 (t)]. In summary, one
can compute D0 directly from the covariance of innovation
noise, i.e., D0 = Q1,2Q

−1
2,2.
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Now from (22) and (19) we get

e1(t) = es(t) +D0w(t)−D0C2,2x̄2(t), (30)

which can be applied to (20) to obtain the following
realization of y[

x̄1(t+ 1)

x̄2(t+ 1)

]
= Ã

[
x̄1(t)

x̄2(t)

]
+ K̃w(t) +

[
K1,1

0

]
es(t),

(31a)

y(t) = C̃

[
x̄1(t)

x̄2(t)

]
+D0w(t) + es(t), (31b)

with (Ã, K̃, C̃,D0) according to (9). Finally we are in a
position to derive a formula for the minimum error vari-
ance estimate E[y(t) | H−t+1(w)]. That is, a formula for
the orthogonal projection of y(t) given past and present
values of w. First define x̂g(t) = E[x̄(t) | H−t+1(w)], then
from (31b) we get

E[y(t) | H−t+1(w)]

= E[C̃x̄(t) +D0w(t) + es(t) | H−t+1(w)] (32)

= C̃x̂g(t) +D0w(t) + E[es(t)|H−t+1(w)] (33)

= C̃x̂g(t) +D0w(t) (34)

where (34) follows from (17). Now (31a) can be used to
derive a dynamical expression for x̂g as follows

E[x̄(t+ 1) | H−t+2(w)]

= E

[
Ãx̄(t) + K̃w(t) +

[
K1,1

0

]
es(t)

∣∣∣∣∣H−t+2(w)

]
(35)

Clearly E[w(t)|H−t+2(w)] = w(t). For the state projec-

tion in (35) we haveE[x̄(t)|H−t+2(w)] = E[x̄(t)|H−t+1(w)]
since the state vector x̄(t) can be expressed as an infinite
sum using (31a), where (17) is used for es(t)

x̄(t) =

∞∑
i=1

Miw(t− i) +

∞∑
i=1

Niy(t− i)

+

∞∑
i=1

NiE[y(t− i) | H−t−i(y) ∨H−t−i+1(w)] (36)

Finally, from (15c) we observe that

E[es(t)|H−t+2(w)] = E[ys(t)|H−t+2(w)]

− E[E[ys(t)|H−t (ys)]|H−t+2(w)] = 0

since H(ys) ⊥ H(w) by (14). Finally we have obtained
(9) the formula for the minimum prediction error vari-
ance estimate of y(t) based on H−t+1(w) (present and
past of process w).

An explicit construction of a realization of y with input
w has the potential to provide an alternative to existing
system identification algorithms. There are many sub-
tleties in the consistency analysis of subspace identifica-
tion algorithms with inputs [12,11,5], so an alternative
approach involving the identification of an autonomous
model of (y,w) could be advantageous in some cases.

Before moving on to the numerical example we mention
that the proposed construction is very useful when try-
ing to learn estimators from data. If one has some prior
knowledge about some part of the generating system (7),
then the results of the paper can be used to easily con-
struct a parameterisation of the estimator (9). Secondly,
there are many subtleties in the consistency analysis of
subspace identification algorithms with inputs [12,11,5],
so an alternative approach involving the identification
of an autonomous model (7) of (y,w) could be advanta-
geous in some cases, i.e., estimating the data generator
(7) via autonomous system identification, and then us-
ing the results of the paper to obtain the estimate of y, is
more consistent. That is, with the same amount of data,
the estimated predictor will have better performance, in
the sense of lower validation mean square error.

5 Computational Example

The following examples’ code is available on GitLab [6].
To illustrate the findings consider the system

x(t+ 1) =

[
1.08 −0.23

0.58 0.27

]
︸ ︷︷ ︸

A

x(t) +

[
−0.56 −1.4

−0.56 −0.6

]
︸ ︷︷ ︸

B

v(t),

(37a)[
y(t)

w(t)

]
=

[
−0.25 2.25

1.24 −1.25

]
︸ ︷︷ ︸

C

x(t) +

[
−0.14 −1

0 −1

]
︸ ︷︷ ︸

D

v(t),

(37b)

v(t) ∼ N (0, I), (37c)

The system (37) is such that w is feedback free from
y, later we will find the upper block diagonal form of
the innovation process of (37). Before that, we first find
the forward innovation form of system (37) by following
[12, Chapter 6], for the sake of completeness we reiterate
statements of [12]. Note [12] assumes v(t) in (37) to be
normalised Gaussian.
First find P , which solves Lyapunov equation

P = APAT +BBT , (38)
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this implies

P =

[
11.34 9.22

9.22 7.96

]
(39)

now compute

C̄ = CPA+DBT =

[
17.24 15.28

3.79 2.47

]
(40)

Λ0 = CPCT +DDT =

[
31.64 3.72

3.72 2.28

]
(41)

then find Π, which solves the following algebraic Ricatti
equation

Π = AΠAT + (C̄T −AΠCT )∆(Π)−1(C̄T −AΠCT )T ,
(42)

this implies

Π =

[
11.1 8.98

8.98 7.71

]

with ∆(Π) = Λ0−CΠCT = E[eg(t) eTg (t)] =

[
2 1

1 1

]
and

finally we compute the gain

Kg = (C̄T −AΠCT )∆(Π)−1 =

[
0.5 0.9

0.49 0.11

]
, (43)

with which we obtain the system (37) in forward inno-
vation form

x(t+ 1) =

[
1.08 −0.23

0.58 0.27

]
x(t) +

[
0.5 0.9

0.49 0.11

]
e(t) (44a)

[
y(t)

w(t)

]
=

[
−0.25 2.25

1.24 −1.25

]
x(t) + e(t), Q =

[
2 1

1 1

]
(44b)

The triangular form is obtained by applying SVD to the
observability matrix of (Ag, Cw). From SVD, contrary
to standard practice, we sort the singular values from
lowest to highest, and appropriately sort the columns
of the matrices U and V containing the left and right
singular vectors respectively. Using the transformation

T = V T =

[
−0.71 −0.7

−0.7 0.71

]
,

we obtain a system in triangular form as (8).

x(t+ 1) =

[
0.85 0.81

0 0.5

]
x(t) +

[
−0.7 −0.71

0 −0.56

]
e(t)

(45a)[
y(t)

w(t)

]
=

[
−1.41 1.77

0 −1.76

]
x(t) + e(t) (45b)

Since a transformation that maps system (44) to upper
block diagonal system (45) exists, w is feedback free from
y, and we can compute the estimator of the form (9)

x̂(t+ 1) =

[
0.85 −1.69

0 −0.49

]
x̂(t) +

[
−1.42

−0.56

]
w(t) (46a)

ŷ(t) =
[
−1.41 3.53

]
x̂(t) + w(t) (46b)

The system (46) produces the least square estimate of
y(t), at least when the generating system is fully known.
Furthermore, the results of the paper are also useful for
system identification.

6 System identification example

The proposed construction could be useful in system
identification for parametric methods, since apriori
knowledge of the generating system (7) can easily be
translated to information about the estimator. For ex-
ample, say we know (Ag,Kg, Cg, Q), except for one
element of Ag, i.e., Ag1,2 = θ, then the parameterised
generator is given by

x̂(t+ 1) =

[
0.85 θ

0 0.5

]
x̂(t) +

[
−1.41

−0.56

]
w(t) (47a)

ŷ(t) =
[
−1.41 3.52

]
x̂(t) + w(t) (47b)

and the estimator is parameterised by

x̂(t+ 1|θ) =

[
0.85 θ − 2.49

0 −0.49

]
x̂(t|θ) +

[
−1.41

−0.56

]
w(t)

(48a)

ŷ(t|θ) =
[
−1.41 3.52

]
x̂(t|θ) + w(t) (48b)

Then θ can be found by minimising the mean square
error (MSE) on some collected data, i.e.,

θ∗ = arg min
θ

(
1

N

N∑
t=0

(y(t)(ω)− ŷ(t | θ))2).
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With the results of this paper one can also obtain an
estimator of y from data, by using autonomous system
identification on generator system (7), then use the pro-
posed construction to obtain an estimator. Using 100
points for identification, we obtain validation MSE of
4.88 when identifying the predictor, which constitutes
78.08% ”Variance Accounted For” (VAF)

VAF = min

{
0, 1− var(y − ŷ)

var(y)

}
× 100%,

and when identifying the generator we obtain validation
MSE of 4.69 (78.61% VAF).

To better explore the better consistency of first identi-
fying the ’data generator’, i.e. the system in forward in-
novation form 1, and then using the proposed construc-
tion, let us consider a larger system. That is, a system
with n = 10 states, of which p2 = 6 correspond to pro-
cess w, i.e. A2,2 ∈ R6×6 and p1 = 4, to process y i.e.
A1,1 ∈ R4×4, with p = 3 outputs, i.e. y(t) ∈ R3, and
q = 2, i.e. w(t) ∈ R2. We will consider 4 cases for system
identification of this n = 10 state system.

Case 1) We will assume no prior information, and the
identification will consist of identifying the full
system, by minimising MSE.

Case 1.1 ”No prior information, estimate pre-
dictor”
Identification of the system in the form of
the estimator (9)

Case 1.2 ”No prior information, est. genera-
tor”
Identification of the system in the form
of the generator (7), and after identifica-
tion compute the ’optimal’ estimator as
described in Section 3

Case 2) We will assume some prior information, more
specifically we will assume we are given
(A2,2,K2,2, C2,2, Q2,2), and the rest of the
system is unknown, and thus parameterised,
i.e., Note that all parameterised matrices
A1,1(θ), A1,2(θ),K1,1(θ),K1,2(θ), C1,1(θ), C1,2(θ), Q1,2(θ)
are fully parameterised, that is each element of
the matrix is assigned a parameter.

Case 2.1 ”Some prior information, estimate
predictor”
Identification of the system in the form of
the estimator (9)

Case 2.2 ”Some prior information, estimate
generator”
Identification of the system in the form
of the generator (7), and after identifica-
tion compute the ’optimal’ estimator as
described in Section 3

Case 0 ”Full knowledge of the system”
For comparison, we will include statistics in Ta-
ble 1, of the optimal estimator, obtained from

the results of the paper.

x̃(t+ 1) =

[
A1,1(θ) A1,2(θ)

0 A2,2

]
x̃(t) +

[
K1,1(θ) K1,2(θ)

0 K2,2

]
e(t)

(49a)[
ỹ

w̃

]
=

[
C1,1(θ) C1,2(θ)

0 C2,2

]
x̃(t) + e(t) (49b)

e(t) ∼ N

(
0,

[
Q1,1 Q1,2(θ)

QT1,2(θ) Q2,2

])
(49c)

All system identification is done in Matlab, using ”idss”
models for Case 1 and ”idgrey” models for Case 2, and
prediction error is minimised using Matlab’s ”pem” func-
tion.

In order to compare the different cases and approaches
to identifying the ’best’ estimator of y from data, we will
consider 2 indicators: average validation MSE, and aver-
age VAF. The average is understood If we collect M tra-
jectories {{y(t)(ωm),w(t)(ωm)}t∈{1,...,N}}m={1,...,M},
then for each trajectory we perform system identifica-
tion, which minimises (MSE)m, i.e.

(MSE)m =
1

N

N∑
t=1

ỹT (t,m)ỹ(t,m),

ỹ(t,m) = y(t)(ωm)− ŷ(t)(ωm).

Then the average MSE, is given by

average MSE =
1

M

M∑
m=1

(MSE)m (50)

Average VAF should be understood in a similar man-
ner. The difference between average MSE and average
validation MSE, is that we obtain the estimator by min-
imising MSE on one set of data, and achieved MSE is
labeled training MSE. Whereas, for validation MSE, we
take a previously identified estimator and compute MSE
on a different data set. Note that in Table 1 tra

In Figure 1, we see how on average the number of sam-
ples used for training affect the training MSE and val-
idation MSE. Something of note is the high validation
MSE of Case 1.2 identifying the full generator, note that
this case has the highest number of parameters (156)
to estimate as indicated in Table 1, and thus is over-
parameterised. If we ignore the over-parameterisation,
we see that on average we are better off identifying the
generator, instead of identifying the estimator.
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Table 1
Summary of the results. Best values marked in bold. All quantities are averaged over multiple system identifications with
varying data, as explained in (50)

Case 0
Optimal

Case 1.1 est.
predictor

Case 1.2 est.
generator

Case 2.1 est.
predictor

Case 2.2 est.
generator

Total Parameters 0 156 150 96 90

N = 150

Training MSE — 0.812 1.171 0.862 0.942

Validation MSE 1.012 1.382 1.428 1.278 1.098

Validation V AF1 22.7% 5.6% 11.6% 8.5% 16.6%

Validation V AF2 81% 73.2% 76% 74.9% 79.6%

Validation V AF3 92.6% 90.6% 89.5% 91% 91.9%

Validation V AF 65.4% 56.5% 59.1% 58.2% 62.7%

N = 1000

Training MSE — 0.982 1 0.988 1.002

Validation MSE 1.012 1.044 1.025 1.035 1.022

Validation V AF1 23% 20.6% 22% 20.9% 22.3%

Validation V AF2 81.7% 81% 81.5% 81.1% 81.5%

Validation V AF3 92.7% 92.4% 92.5% 92.5% 92.6%

Validation V AF 65.8% 64.7% 65.3% 64.8% 65.5%
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Case 2.1 est. predictor
Case 1.1 est. predictor
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Fig. 1. For a given N , Multiple trajectories have been gen-
erated, so we have a set of M data sets SN,i with N samples
each, then we try to estimate the predictor from each data set
SN,i using the 4 approaches discussed above, and compute
the average training MSE and average validation MSE. Note:
training MSE is computed only for those N data points that
have been used to estimate the predictor, whereas validation
MSE shows the true predictive power of the predictor.

Since the system in this example y has 3 components,
Table 1 reports ”Variance Accounted For” for each com-
ponent, i.e. with yi,m, ŷi,m as short-hand for the ith com-

ponent of trajectories y(ωm) and appropriately ŷ(ωm).

(VAF)m,i = max

{
0, 1− var(yi,m − ŷi,m)

var(yi,m)

}
× 100%

(VAF)i =
1

M

M∑
m=1

(VAF)m,i

this shows how well each component of y is estimated,
for example using 150 samples for identification we can
at best estimate 16.6% of the first component’s variance.
Whereas, if we had known the system (Case 0) we should
be able to estimate 22.7% of the first component. If, in
this hypothetical example, we had collected N = 1000
samples for identification, then we could estimate 22.3%
of the first component, much closer to best possible es-
timation (Case 0).
We also report the average over components VAF, i.e.

VAF =
1

p

p∑
i=1

(VAF)i

In summary if we collect enough samples to avoid over-
parameterisation, then identifying the generator, and
then applying the construction as defined in Section 3,
yields better performing estimators of y.
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