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CRYSTAL ISOMORPHISMS AND MULLINEUX INVOLUTION II

NICOLAS JACON AND CÉDRIC LECOUVEY

Abstract. We present a new combinatorial and conjectural algorithm for computing the Mullineux invo-
lution for the symmetric group and its Hecke algebra. This algorithm is built on a conjectural property of
crystal isomorphisms which can be rephrased in a purely combinatorial way.

1. Introduction

The Mullineux involution is an important map which has been originally defined by Mullineux [22] in the
context of the modular representation theory of the symmetric group. More generally, it can be defined for
the class of Hecke algebras of the symmetric group [2]. Let n ∈ Z>0 and e ∈ Z>1. Let η be a primitive e
root of 1. The Hecke algebra of the symmetric group Hn(η) is defined as the associative unital C-algebra
with generators T1, . . . , Tn−1 and the following relations:

(Ti − η)(Ti + 1) = 0 for i = 1, . . . , n− 1,
TiTi+1Ti = Ti+1TiTi+1 for i = 1, . . . , n− 2,

TiTj = TjTi if |i− j| > 1.

It is known that the simple modules of this algebra are naturally labelled by the set of e-regular partitions
Rege(n) with rank n (see §2.1 for the definition):

Irr(Hn(η)) = {Dλ | λ ∈ Rege(n)}.

There is a C-algebra automorphism ♯ which can be defined on the generators of Hn(η) as follows. For all

i = 1, . . . , n− 1, we have T ♯
i = −ηTi. This automorphism induces an involution:

me : Rege(n) → Rege(n),

defined as follows. For all λ ∈ Rege(n) there exists a unique µ ∈ Rege(n) such that the module Dλ twisted
by ♯ is isomorphic to Dµ. Then we define me(λ) := µ. If e is prime, this involution describes the structure
of a simple FeSn -module twisted by the sign representation. If e is sufficiently large, or more generally if λ
is an e-core, it is easy to see that me(λ) is just the conjugate partition λ′.

The study of the Mullineux involution has a long story. A first conjectural and combinatorial description
of me (if e is prime) was first given by Mullineux [22] and proved later by Ford and Kleshchev [11]. Before
this proof, Kleshchev gave a solution to the computation of the involution [18] (see also [1] and [3]). This
solution may be rephrased in terms of the crystal graph theory. Other algorithms were given by Xu [23, 24],
or more recently by Fayers [6], and by the author [13]. We also note that there exist different generalizations
in the context of Ariki-Koike algebras [7, 16], affine Hecke algebras [21, 17], general linear groups [5] or
rational Cherednik algebras [20, 10] and they are all connected with the above one. We also mention a
recent conjecture by Bezrukavnikov on this involution in relation with nabla operators and Haiman’s n!
conjecture studied in [4].

All the above algorithms for computing the Mullineux involution have a common feature: they are recur-
sive algorithms in n. The algorithms to compute the Mullineux image of a partition λ of rank n requires the
computation of the Mullineux involution me(µ) for |µ| < n. The aim of this paper is to present a conjectural
algorithm which is recursive in e. This conjecture is in fact built on the description of the Mullineux involu-
tion by Kleshchev in terms of crystal graphs together with the concept of crystal isomorphisms described in
[15]. The conjecture follows in fact from a purely combinatorial conjecture which can be described without
any mention to crystals and in a very simple way. Assuming the conjecture true, it becomes possible to
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compute me from the datum of m2e. As me corresponds to the conjugation of partitions if e is sufficiently
large, the algorithm follows.

The paper is organized as follows. We first recall several elementary combinatorial notions on partitions
and crystals. This section ends with a presentation of the Kleshchev’ solution to the Mullineux problem.
The second section explains the notion of crystal isomorphism. We then give a conjectural combinatorial
property, Conjecture 4.5, which can be rephrased in the context of crystal isomorphisms. The last sec-
tion presents several new results around this notion and states the conjectural algorithm for computing the
Mullineux involution.

Acknowledgements: The authors are grateful to Matt Fayers for useful discussions. The first author
is supported by ANR project AHA ANR-18-CE40-0001. Both authors are supported by ANR project COR-
TIPOM ANR-21-CE40-0019.

2. Mullineux involution for Hecke algebras

We first start with the definition of several elementary notions. Then we present the Kleshchev solution
to the computation of the Mullineux involution.

2.1. Partitions and Young diagrams. A partition is a non increasing sequence λ = (λ1, · · · , λm) of
nonnegative integers. The rank of the partition is by definition the number |λ| =

∑
1≤i≤m λi. We say that

λ is a partition of n, where n = |λ|. The unique partition of 0 is the empty partition ∅. We denote by Π(n)
the set of partitions of n. For e ∈ Z>1, we say that λ is an e-regular partition if no non zero part of λ can be
repeated e or more times. The set of e-regular partitions of rank n is denoted by Rege(n). Given a partition
λ ∈ Π(n), its Young diagram [λ] is the set:

[λ] =
{
(a, b) | 1 ≤ a ≤ r, 1 ≤ b ≤ λa

}
⊂ N× N.

The elements of this set are called the nodes of λ. The e-residue (ore more simply, residue) of a node γ ∈ [λ]
is by definition res(γ) = b − a+ eZ. For j ∈ Z/eZ, we say that γ is a j-node if res(γ) = j. In addition, γ is
called a removable j-node for λ if the set [λ] \ {γ} is the Young diagram of some partition µ. In this case,
we also say that γ is an addable j-node for µ.

Let γ = (a, b) and γ′ = (a′, b′) be two addable or removable j-nodes of the same partition λ. Then
we write γ > γ′ if a < a′. Let wj(λ) be the word obtained by reading all the addable and removable j-
nodes in increasing order and by encoding each addable j-node with the letter A and each removable j-node
with the letter R. Then deleting as many subwords RA in this word as possible, we obtain a new word
w̃j(λ) = A · · ·AR · · ·R. The node corresponding to the rightmost A (if it exists) is called the good addable

j-node and the node corresponding to the leftmost R (if it exists) is called the good removable j-node.

2.2. Level 1 Fock space. Let F be the C-vector space with basis given by all the partitions. It is called

the (level 1) Fock space. There is an action of U(ŝle) on F which makes F into an integrable module of level

1. For i ∈ Z, the Kashiwara operators ẽi+eZ,e and f̃i+eZ,e are then defined as follows.

• If λ has no addable i-node then f̃i+eZ,e · λ = 0.

• if λ has a good addable i-node γ then f̃i+eZ,e · λ = µ where [µ] = [λ] ⊔ {γ}.
• If λ has no removable i-node then ẽi+eZ,e · λ = 0.
• if λ has a good removable i-node γ then ẽi+eZ,e · λ = µ where [µ] = [λ] \ {γ}.

Using these operators one can construct the ŝle-crystal graph of F , which is the graph with

• vertices: all the partitions λ of n ∈ N,

• arrows: there is an arrow from λ to µ colored by i ∈ Z/eZ if and only if f̃i+eZ,e ·λ = µ, or equivalently
if and only if λ = ẽi+eZ,e · µ.

Note that the definition makes sense for e = ∞. The corresponding graph, sl∞-crystal graph, coincides
with the Young graph, which describes the branching graph of the complex irreducible representations of
symmetric groups.
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2.3. Mullineux involution. We can first give an interpretation of the set of e-regular partitions using
Kashiwara operators. The following result can be found for example in [19, §2.2].

Proposition 2.1. A partition λ is an e-regular partition of n if and only if there exists: (i1, . . . , in) ∈ Zn

such that:

f̃i1+eZ,e · · · f̃in+eZ,e · ∅ = λ.

In other words, the vertices in the connected component of the ŝle-crystal graph containing the empty
partition are exactly the e-regular partitions. We thus have a subgraph of this crystal graph with vertices
all these e-regular partitions.

Recall the definition of the Mullineux involution given in the introduction. The following result permits
to compute it in a purely combinatorial way thanks to the above results.

Theorem 2.2 (Kleshchev). Let λ be a e-regular partition. Then, there exists (i1, . . . , in) ∈ Zn such that:

f̃i1+eZ,e . . . f̃in+eZ,e.∅ = λ.

Then, there exists an e-regular partition µ such that:

f̃−i1+eZe . . . f̃−in+eZ,e.∅ = µ.

Moreover, we have me(λ) = µ where me is the Mullineux involution defined in the introduction.

If λ is a partition, every node of its Young diagram has an associated hook, defined as the set of nodes
directly below or to its right (including itself). A partition is called an e-core if it has no hook with k.e
nodes for every k ∈ N. Of course, if e is sufficiently large comparing to n (e > n), every partition of n is an
e-core. If λ is an e-core, it is already contained in Mullineux’s original paper [22] that me(λ) is the conjugate
partition of λ (defined as the partition obtained by interchanging rows and columns in the Young diagram
of λ)

Example 2.3. Let e = 3 and let λ = (5, 2, 1, 1). This is a 3-regular partition. Then we have:

f̃2
0+3Z,3f̃

2
1+3Z,3f̃0+3Z,3f̃

2
2+3Z,3f̃1+3Z,3f̃0+3Z,3∅ = λ.

We get

f̃2
0+3Z,3f̃

2
2+3Z,3f̃0+3Z,3f̃

2
1+3Z,3f̃2+3Z,3f̃0+3Z,3∅ = (4, 2, 2, 1).

and thus m3(5, 2, 1, 1) = (4, 2, 2, 1). If e = 6 then λ = (5, 2, 1, 1) is a 6-core and we have:

f̃0+6Z,6f̃3+6Z,6f̃
2
4+6Z,6f̃3+6Z,6f̃2+6Z,6f̃1+6Z,6f̃5+6Z,6f̃0+6Z,6∅ = λ.

We obtain
f̃0+6Z,6f̃3+6Z,6f̃

2
2+6Z,6f̃3+6Z,6f̃4+6Z,6f̃5+6Z,6f̃1+6Z,6f̃0+6Z,6∅ = (4, 2, 1, 1, 1),

which is the conjugate partition of λ, as expected.

In the following, we will study another way to compute this map without any use of the crystal and the
Kashiwara operators.

3. Crystal isomorphisms for bipartitions

In this section, we quickly summarize the needed results to expose our algorithm. These results mainly
concern certain expansions of the above discussion to the case of bipartitions.

3.1. Level 2 Fock space. From now we fix a bicharge, that is a couple s = (s1, s2) ∈ Z2. Let us denote by
Π2(n) the set of pairs of partitions (bipartitions) (λ1, λ2) such that |λ1|+ |λ2| = n. One can define the level
2-Fock space as the C-vector space with basis indexed by all the elements of Π2(n) for n ∈ Z≥0. There is

also a notion of crystal for this 2-Fock space with similar notions of Kashiwara operators f̃ s

i+eZ,e and ẽsi+eZ,e.
Importantly, the action of these operators on each bipartition really depends on the choice of s.

To each λ := (λ1, λ2) ∈ Π2(n) is associated its Young diagram:

[λ] = {(a, b, c) | a ≥ 1, c ∈ {1, 2}, 1 ≤ b ≤ λca}.

We define the content of a node γ = (a, b, c) ∈ [λ] as follows:

cont(γ) = b− a+ sc,
3



and the residue res(γ) is by definition the content of the node taken modulo e. We will say that γ is an
i + eZ-node of λ when res(γ) ≡ i + eZ (we will sometimes simply called it an i-node). Finally, we say that
γ is removable when γ = (a, b, c) ∈ [λ] and [λ]\{γ} is the Young diagram of a bipartition. Similarly, γ is
addable when γ = (a, b, c) /∈ [λ] and [λ] ∪ {γ} is the Young diagram of a bipartition.

Let γ, γ′ be two removable or addable i-nodes of λ. We denote

γ ≺s γ
′ def

⇐⇒

{
either b− a+ sc < b′ − a′ + sc′ ,
or b− a+ sc = b′ − a′ + sc′ and c > c′.

For λ a bipartition and i ∈ Z/eZ, we can consider its set of addable and removable i-nodes. Let w
(e,s)
i (λ)

be the word obtained first by writing the addable and removable i-nodes of λ in increasing order with respect
to ≺s, next by encoding each addable i-node by the letter A and each removable i-node by the letter R. Write

w̃
(e,s)
i (λ) = ApRq for the word derived from w

(e,s)
i (λ) by deleting as many of the factors RA as possible.

In the following, we will sometimes write w̃i(λ) and wi(λ) instead of w̃
(e,s)
i (λ) and w

(e,s)
i (λ) if there is no

possible confusion.
If p > 0, let γ be the rightmost addable i-node in w̃i. The node γ is called the good addable i-node.

If r > 0, the leftmost removable i-node in w̃i is called the good removable i-node. The definition of the

Kashiwara operators f̃ s

i+eZ,e and ẽsi+eZ,e follows then exactly as in §2.2. In the same spirit as in the above

discussion, one can also define a certain subset of bipartitions Φ(s,e)(n):

Definition 3.1. We say that (λ1, λ2) is an Uglov bipartition associated with s ∈ Z2 if there exist (i1, . . . , in) ∈
Zn such that:

f̃ s

i1+eZ,e . . . f̃
s

in+eZ,e.(∅, ∅) = (λ1, λ2).

We denote by Φ(e,s) the set of Uglov bipartitions and by Φ(e,s)(n) the set Φ(e,s) ∩ Π2(n).

We make the three important following remarks.

Remark 3.2. (1) Assume that k ∈ Z then there is a unique bijection:

ψ(e,(s1,s2+ke)) : Φ(e,(s1,s2+ke)) → Φ(e,(s1,s2+(k+1)e)),

preserving the rank of bipartitions and commuting with the Kashiwara operators, that is, for all
i ∈ Z and λ ∈ Φ(e,(s1,s2+ke)), we have

ψ(e,(s1,s2+ke))(f̃
(s1,s2+ke)
i+eZ,e .λ) = f̃

(s1,s2+(k+1)e)
i+eZ,e .ψ(e,(s1,s2+ke))(λ),

and

ψ(e,(s1,s2+ke))(ẽ
(s1,s2+ke)
i+eZ,e .λ) = ẽ

(s1,s2+(k+1)e)
i+eZ,e .ψ(e,(s1,s2+ke))(λ).

This bijection may be computed thanks to a purely combinatorial algorithm given in section §4.
This map is called a crystal isomorphism.

(2) By [9, §6.2.16], in the case where |s2 − s1| > n − 1 − e, the bijection ψ(e,(s1,s2)) restricted to
Φ(e,(s1,s2))(n) is always the identity. We say that (s1, s2) is very dominant (comparing to n). This
implies in particular that as soon as |s2 − s1| > n − 1 − e, the set Φ(e,s)(n) only depends on the
congruence class of (s1, s2) modulo e (and not on k). Similarly, the action of the Kashiwara operators
on the bipartitions of rank less than n does not depend on k if the above condition is satisfied. The
set is then called the set of Kleshchev bipartitions. The set of Kleshchev bipartitions of rank n will
be denoted by ΦK

(e,s)(n) and we denote ΦK
(e,s) := ⊔n≥0Φ

K
(e,s)(n)

(3) One can define a bijection:

ψ̃(e,(s1,s2)) : Φ(e,(s1,s2)) → ΦK
(e,s),

as follows. Let n ∈ Z≥0 and let λ = (λ1, λ2) ∈ Φ(e,(s1,s2)). Assume that k ∈ Z>0 is such that a
|s2 + ke− s1| > n− 1− e, then we define:

ψ̃(e,(s1,s2))(λ
1, λ2) := ψ(e,(s1,s2+(k−1)e)) ◦ . . . ◦ ψ(e,(s1,s2+e)) ◦ ψ(e,(s1,s2))(λ

1, λ2).

Due to the above remark, this bijection does not depend on k.
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3.2. Mullineux map. There exists a Mullineux type map in the case of bipartitions. Let s = (s1, s2) ∈ Z2

and let −s := (−s1,−s2). Our Mullineux map will be a map:

M(e,s) : Φ
K
(e,s) → ΦK

(e,−s),

which is uniquely defined as follows. Let λ ∈ ΦK
(e,s)(n). Let n ∈ Z>0. Let s1 = (s1, s2 + ke) be a very

dominant bicharge such that s1 ≡ s + eZ and let s2 be a very dominant bicharge such that s2 ≡ −s + eZ.
There exists (i1, . . . , in) ∈ Zn such that:

f̃ s
1

i1+eZ,e . . . f̃
s
1

in+eZ,e.∅ = λ.

Then it is shown in [7, §2] that there exists µ ∈ ΦK
(e,s2) such that:

f̃ s
2

−i1+eZ,e . . . f̃
s
2

−in+eZ,e.∅ = µ.

We denote M(e,(s1,s2))(λ) := µ. Then it is shown in [16, Prop. 4.2] that µ = (me(λ
1),me(λ

2)). In the
following section, we will use this property to deduce our conjectural algorithm.

4. Explicit computations and a combinatorial property

In this section, we explain how one can compute the above crystal isomorphisms. Our main conjecture
is relied on a combinatorial conjectural property of these maps. This property can in fact be settled in a
completely general framework.

4.1. A combinatorial map. We recall here results from [15]. Let e be a positive integer. For r a positive
integer, we denote by Pr the set of strictly increasing partitions in r parts. Let m1 and m2 be two integers
such that m1 ≤ m2.

Let (X1, X2) ∈ Pm1 × Pm2 . Set

X1 = (a1, . . . , am1), X2 = (b1, . . . , bm2).

We define an injection ϕ : X1 → X2 as follows.

• We set

ϕ(a1) = max{bj | j = 1, . . . ,m2, bj ≤ a1},

if it exists. Otherwise, we set

ϕ(a1) = max{bj | j = 1, . . . ,m2}.

• We repeat this procedure with (a2, . . . , am1) and X2 \ {ϕ(a1)} and thus associate to each element of
X1 a unique element in X2.

We now define a map:

Ψ(e,(m1,m2)) : P
m1 × Pm2 → Pm1 × Pm2+e,

with (Y1, Y2) := Ψ(e,(m1,m2))(X1, X2):

Y1 = {ϕ(aj) | j = 1, . . . ,m1},

Y2 = {aj + e | j = 1, . . . ,m1} ∪ {bj + e | j = 1, . . . ,m2; bj /∈ Y1} ∪ {0, 1 . . . , e− 1},

where we reorder these two sets so that Y1 ∈ Pm1 and Y2 ∈ Pm2+e.

Remark 4.1. The map is bijective and (Ψ(e,(m1,m2)))
−1 may be computed as follows. Assume that (Y1, Y2) :=

Ψ(e,(m1,m2))(X1, X2) then take Y ′
2 be the set {y− e | y ∈ Y2 \ {0, 1, . . . , e− 1}}. Then we define an injection

ϕ′ : Y1 → Y2 as follows.

• We set

ϕ′(a1) = min{bj | j = 1, . . . ,m2, bj ≥ a1},

if it exists. Otherwise, we set

ϕ′(a1) = min{bj | j = 1, . . . ,m2}.
5



• We repeat this procedure with (a2, . . . , am1) and X2 \ {ϕ′(a1)} and thus associate to each element
of Y1 a unique element in Y ′

2 . Then we have

X1 = {ϕ′(aj) | j = 1, . . . ,m1},

X2 = {aj | j = 1, . . . ,m1} ∪ {bj | j = 1, . . . ,m2; bj /∈ X1}.

(after reordering the elements)

Remark 4.2. In the case where X1 ⊂ X2, it follows from the above definition that

Ψ(e,(m1,m2))(X1, X2) = (X1, X2 + e).

4.2. Connection with crystal isomorphisms. Assume that s = (s1, s2) ∈ Z2 and assume in addition
that s1 ≤ s2 (we only need this case in the following but note that there is an analogue description of the
crystal isomorphisms if s1 ≥ s2, see [15]). Let λ = (λ1, λ2) be a bipartition of n in Φ(e,(s1,s2)). One can

assume that there exists an integer m such that λ1 = (λ11, . . . , λ
1
m+s1

) and λ2 = (λ21, . . . , λ
2
m+s2

), adding
parts equal to 0 if necessary. For i = 1, . . . ,m+ s1, we set

β1
j = λ1j − j + s1 +m.

For i = 1, . . . ,m+ s2, we set
β2
j = λ2j − j + s2 +m.

We then define Xs1,m
1 (λ1) := (β1

s1+m, . . . , β
1
2) ∈ Pm+s1 and Xs2,m

2 (λ2) := (β2
s2+m, . . . , β

2
1) ∈ Pm+s2 .

By [15], we get:

Proposition 4.3. Keeping the above notations, We have

ψ(e,(s1,s2))(λ
1, λ2) = (µ1, µ2),

where (µ1, µ2) is the unique bipartition of n such that

Ψ(e,(s1+m,s2+m))(X
s1,m
1 (λ1), Xs2,m

2 (λ2)) = (Xs1,m
1 (µ1), Xs2+e,m

2 (µ2)).

Remark 4.4. In the case where Xs1,m
1 (λ1) ⊂ Xs2,m

2 (λ2), by Remark 4.2, we obtain:

ψ(e,(s1,s2))(λ
1, λ2) = (λ1, λ2).

4.3. Computing the map ψ̃(e,(s1,s2)). . Assume that s1 ≤ s2. To compute ψ̃(e,(s1,s2)), as explained

in Remark 3.2 (3), we have to fix n ∈ Z≥0 and compute ψ̃(e,(s1,s2))|Φ(e,s)(n). If k ∈ Z>0 is such that

|s2 + ke− s1| > n− 1− e, we have to compose k crystal isomorphisms:

ψ̃(e,(s1,s2))|Φ(e,s)(n) := ψ(e,(s1,s2+(k−1)e)) ◦ · · · ◦ ψ(e,(s1,s2+e)) ◦ ψ(e,(s1,s2))|Φ(e,s)(n)

However, in most of the cases, if we want to compute the image of a particular bipartition λ ∈ Φ(e,s)(n)

under ψ̃(e,(s1,s2)) one can be considerably more efficient thanks to the following remark. Let λ ∈ Φ(e,s)(n)

and h := max{i ∈ Z>0 | λ2i 6= 0}+ 1. Assume that

(4.1) λ11 − 1 + s1 ≤ s2 − h,

then we have for all relevant m, and for all k ≥ 0 : Xs1,m
1 (λ1) ⊂ Xs2,m

2 (λ2). By Remarks 4.2 and 4.4, this
implies that

ψ(e,(s1,s2))(λ
1, λ2) = (λ1, λ2).

But now we also have λ11 − 1 + s1 ≤ s2 + e− h and thus we obtain

ψ(e,(s1,s2+e))(λ
1, λ2) = (λ1, λ2).

By an immediate induction, we deduce that for all k ≥ 0 , we have:

ψ(e,(s1,s2+ke))(λ
1, λ2) = (λ1, λ2).

In this case, we thus simply have:

ψ̃(e,(s1,s2))(λ
1, λ2) = (λ1, λ2).

Of course, a similar result holds for (ψ̃(e,(s1,s2)))
−1 : if (λ1, λ2) ∈ ΦK

(e,s) satisfies the above property, then we

have for all k ≥ 0 that (λ1, λ2) ∈ Φ(e,(s1,s2+ke)) and (ψ(e,(s1,s2+ke)))
−1(λ1, λ2) = (λ1, λ2).

We end this section with our combinatorial conjecture
6



4.4. A combinatorial conjecture. Our main conjecture is the following one:

Conjecture 4.5. Let X ∈ Pm and let k ∈ N, set

(X1, X2) = Ψ(e,(0,ke)) ◦ . . . ◦Ψ(e,(0,e)) ◦Ψ(e,(0,0))(X,X) ∈ Pm × Pm+ke.

Then if k is odd, we have X1 ⊂ X2.

We prove the conjecture in the case k = 1. Note that if X1 ⊂ X2 then ϕ is the identity. We thus have
that

Ψ(e,(0,0))(X,X) = (X,X + e ∪ {0, 1, . . . , e− 1}).

Now se set

Ψ(e,(0,e))(X,X + e ∪ {0, 1, . . . , e− 1}) = (Y1, Y2).

From the above procedure, the elements of Y1 are some elements of X + e∪ {0, 1, . . . , e− 1} and Y2 is given
by {0, 1, . . . , e − 1} together with all the elements of X + e and other elements of X + e ∪ {0, 1, . . . , e − 1}
translated by e. We thus have Y1 ⊂ Y2.

In the following, it will be convenient to write the image of an element (X1, X2) ∈ Pm1 × Pm2 under a

map Ψ(e,s) as

(
Y1
Y2

)
instead of (Y1, Y2). This is what we are going to do in the following example. Assume

that

X = {0, 3, 5, 6, 10, 12, 18, 20},

and e = 3. We check that

Ψ(3,(0,0))(X,X) =

(
0 1 2 3 6 8 9 13 15 18 21 23
0 3 5 6 10 12 15 18 20

)

Ψ(3,(0,3)) ◦Ψ(3,(0,0))(X,X) =

(
0 1 2 3 4 6 8 9 13 15 18 21 23 24 26
0 2 3 6 8 9 13 15 18

)

and the set below is included in the set above, as claimed by the conjecture. Then by applying Ψ(3,(0,6)) we
get (

0 1 2 3 4 5 6 7 9 11 12 16 18 21 24 26 27 29
0 2 3 6 8 9 13 15 18

)

and the action of Ψ(3,(0,9)) then gives
(

0 1 2 3 4 5 6 7 8 9 11 12 16 18 ...
0 2 3 6 7 9 11 12 18

)

which yet satisfies the inclusion property.
Note that in the assumptions of the conjecture, we really need k to be odd. In the case when k is even,

the assertion is wrong as we can see in the above example.

Remark 4.6. This conjecture has been checked for all couples (X,X) = (X0,m(λ), X0,m(λ)) with λ an
arbitrary partition of rank n with n ≤ 40 (and e arbitrary). A proof for the conjecture has already been
obtained by M.Fayers when e = 2 [8].

5. Conjectural consequences on crystal isomorphisms

We first establish some elementary results concerning e-regular partitions and then explain our conjectural
algorithm.

Proposition 5.1. Let λ be an e-regular partition and consider a sequence (i1, . . . , in) ∈ Z
n such that:

f̃i1+Ze,e . . . f̃in+Ze,e.∅ = λ.

Then we have

(f̃
(0,0)
i1+Ze,e)

2 . . . (f̃
(0,0)
in+Ze,e)

2(∅, ∅) = (λ, λ),

and in particular we have (λ, λ) ∈ Φ(e,(0,0)).
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Proof. Let λ ∈ Rege(n). By Proposition 2.1, there exists (i1, . . . , in) ∈ Zn such that:

f̃i1+Ze,e . . . f̃in+Ze,e.∅ = λ.

We set
λ̃ := f̃i1+Ze,e . . . f̃in−1+Ze,e.∅.

By induction, we have that

(f̃
(0,0)
i1+Ze,e)

2 . . . (f̃
(0,0)
in−1+Ze,e)

2(∅, ∅) = (λ̃, λ̃).

Assume that
win+eZ(λ̃) = Z1, . . . Zm.

where for all i = 1, . . . ,m, Zi ∈ {A,R} correspond to a node (ai, bi). Then we have:

win+eZ(λ̃, λ̃) = T1, . . . , T2m,

where T2i−1 = Zi correspond to the node (ai, bi, 2) for i = 1, . . . ,m and T2i = Zi for i = 1, . . . ,m corresponds

to the node (ai, bi, 1). It follows that if (ak, bk) is a good addable in + eZ-node for λ̃ then (ai, bi, 2) is a good

addable in + eZ-node for (λ̃, λ̃) and (ai, bi, 1) is a good addable in + eZ-node for (λ̃, λ). We conclude that

(f̃
(0,0)
i1+Ze,e)

2 . . . (f̃
(0,0)
in+Ze,e)

2(∅, ∅) = (λ, λ)

as required. �

The following result comes from [14, Lemma 3.2.12] (see also [12] for an similar result, but for a different
realization of the Fock space).

Proposition 5.2. Let λ be an e-regular partition and let (i1, . . . , in) ∈ Zn be such that:

f̃i1+Ze,e . . . f̃in+Ze,e.∅ = λ.

Then we have:

f̃
(0,e)
i1+2Ze,2ef̃

(0,e)
i1+e+2Ze,2e . . . f̃

(0,e)
in+2Ze,2ef̃

(0,e)
in+e+2Ze,2e(∅, ∅) = (λ, λ),

and in particular we have (λ, λ) ∈ Φ(2e,(0,e)).

We now use the above proposition together with the following result which rephrases Conjecture 4.5 in
terms of crystal isomorphisms.

Our algorithm is now built in the following result which assumes Conjecture 4.5.

Proposition 5.3. Assume that Conjecture 4.5 is true then for all e-regular partitions λ of n and k ∈ Z>0,

we have:

ψ(2e,(0,(2k+1)e)) ◦ · · · ◦ ψ(2e,(0,3e)) ◦ ψ(2e,(0,e))(λ, λ) = ψ(e,(0,(2k+1)e)) ◦ · · · ◦ ψ(e,(0,e)) ◦ ψ(e,(0,0))(λ, λ).

In particular, we have

ψ̃(2e,(0,e))(λ, λ) = ψ̃(e,(0,0))(λ, λ).

Proof. Let λ be an e-regular partition of n. By Prop. 5.1 and 5.2, we have that (λ, λ) ∈ Φ(2e,(0,e))∩Φ(e,(0,0)).
By Remark 4.2, we have

ψ(e,(0,0))(λ, λ) = (λ, λ) ∈ Φ(e,(0,e)).

We thus have (λ, λ) ∈ Φ(e,(0,e)) ∩Φ(2e,(0,e)). Now, the algorithm to compute the image of a bipartiton under
the crystal isomorphism ψ(e,(s1,s2)) does not depend on e. This implies that:

ψ(e,(0,e))(λ, λ) = ψ(2e,(0,e))(λ, λ).

We then argue by induction. Assume that

(µ1, µ2) := ψ(2e,(0,(2k−1)e)) ◦ · · · ◦ψ(2e,(0,3e)) ◦ψ(2e,(0,e))(λ, λ) = ψ(e,(0,(2k−1)e)) ◦ · · · ◦ψ(e,(0,e)) ◦ψ(e,(0,0))(λ, λ).

We use Conjecture 4.5 and Remark 4.2 to deduce that

ψ(e,(0,2ke))(µ
1, µ2) = (µ1, µ2).

Again, the algorithm to compute the crystal isomorphisms implies that:

ψ(2e,(0,(2k+1)e))(µ
1, µ2) = ψ(e,(0,(2k+1)e))(µ

1, µ2).

and we are done. �
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Remark 5.4. Note that in fact to prove the above result, we only need to prove Conjecture 4.5 in the case
where X ∈ Pm is such that there is no i ∈ X such that i, i + 1, . . . , i + e − 1 are in X (this corresponds to
the β-sets associated with e-regular partitions). We note that Matt Fayers has a proof of this conjecture in
the case e = 2 and for 2-regular partitions [8].

Assuming that the conjecture 4.5 is true, we will now be able to obtain our algorithm. To do this, we will
use a remarkable property of the Mullineux map which is available when the bicharge is very dominant. We

will thus use the map ψ̃(e,s) which “take to the very dominant world” (see Remark 3.2 (3)).

Proposition 5.5. Assume that Conjecture 4.5 is satisfied. Let λ be an e-regular partition and denote

(µ1, µ2) := ψ̃(e,(0,0))(λ, λ). We have:

ψ̃(e,(0,0))(me(λ),me(λ)) = ψ̃(2e,(0,e))(me(λ),me(λ))
= (m2e(µ

1),m2e(µ
2))

= (me(µ
1),me(µ

2)).

Proof. Let λ be an e-regular partition. There exists (i1, . . . , in) ∈ Z
n such that:

f̃i1+Ze,e . . . f̃in+Ze,e.∅ = λ.

By Proposition 5.1, we have that (λ, λ) ∈ Φ(e,(0,0)) and by Proposition 5.2, we have(λ, λ) ∈ Φ(2e,(e,0)). Now
By Proposition 5.3 , we have that

ψ̃(e,(0,0))(λ, λ) = ψ̃(2e,(0,e))(λ, λ).

Set µ := (µ1, µ2) := ψ̃(e,(0,0))(λ, λ). Then by Proposition 5.2, we have M(e,(0,0))(µ) = (me(µ
1),me(µ

2)) and

M(2e,(0,e))(µ) = (m2e(µ
1),m2e(µ

2)).
On the other hand take λ′ := (me(λ),me(λ)). If we argue exactly as above, we have

ψ̃(e,(0,0))(me(λ),me(λ)) = ψ̃(2e,(0,e))(me(λ),me(λ)).

By definition we have

(f̃
(0,0)
−i1+Ze)

2 . . . (f̃
(0,0)
−in+Ze)

2(∅, ∅) = (me(λ),me(λ)),

and this thus implies that

ψ̃(e,(0,0))(me(λ),me(λ)) = M(e,(0,0))(µ),

and thus the result follows. �

5.6. The algorithm can now be stated as follows.

(1) If e is sufficiently large, we know the Mullineux image of any e-regular partition because then any
e-regular partition is an e-core and thus its Mullineux image is its conjugate partition.

(2) Assume that we know m2e. Let λ be an e-regular partition. We compute:

(µ1, µ2) := ψ̃(2e,(0,e))(λ, λ).

(3) Then we compute:

(ν1, ν2) := (ψ̃(2e,(0,e)))
−1(m2e(µ

1),m2e(µ
2)).

(4) We must have

me(λ) = ν1 = ν2.

5.1. Example. Take e = 3 and the 3-regular partition λ = (6, 5, 2, 2, 1, 1). This is a partition of rank 17
and so the very dominant case is reached if s2 − s1 > 30. To perform our algorithm, we must compute:

ψ̃(2e,(0,0))(λ, λ) = ψ(2e,(0,ke)) ◦ · · · ◦ ψ(2e,(0,3e)) ◦ ψ(2e,(0,e))(λ, λ)

until we reach the ”very dominant case”. We consider the β-sets associated with the bipartition (λ, λ) with
respect to the bicharge (0, 3): (

0 1 2 4 5 7 8 12 14
1 2 4 5 9 11

)
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To compute ψ(2e,(0,e))(λ, λ), we need to apply the algorithm described in §4.1. We obtain:
(

0 1 2 3 4 5 6 7 8 11 12 15 17 18 20
1 2 4 5 7 8

)

The associated bipartition is ((3, 3, 2, 2, 1, 1), (6, 5, 5, 4, 1, 1)). In principle, we have to apply again the algo-
rithm until the “very dominant case”, but note that we are already in the case described in §4.3 so

ψ̃(2e,(0,0))(λ, λ) = (µ1, µ2) = ((3, 3, 2, 2, 1, 1), (6, 5, 5, 4, 1, 1)

By induction, we knowm6(3, 3, 2, 2, 1, 1) = (6, 4, 2) (because (3, 3, 2, 2, 1, 1) is a 6-core) andm6(6, 5, 5, 4, 1, 1) =

(11, 9, 2). So now we have to compute (ψ̃(6,(0,0)))
−1 for ((6, 4, 2), (11, 9, 2)) starting from the very dominant

case. In fact, using Remark 4.3 again, we see that ((6, 4, 2), (11, 9, 2)) is in Φ(6,(0,9)) and that

(ψ̃(6,(0,0)))
−1((6, 4, 2), (11, 9, 2)) = (ψ(6,(0,3)))

−1((6, 4, 2), (11, 9, 2))

To compute this latter expression, we use our (reversed) algorithm, we consider the following symbol :
(

0 1 2 5 13 16
2 5 8

)

This gives (
0 1 2 5 8 16
2 5 13

)

We get ((11, 4, 2), (11, 4, 2)) and one can check that we indeed have me(λ) = (11, 4, 2).
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