A priori error estimates of a diffusion equation with Ventcel boundary conditions on curved meshes - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Numerical Analysis Année : 2024

A priori error estimates of a diffusion equation with Ventcel boundary conditions on curved meshes

Résumé

In this work is considered an elliptic problem, referred to as the Ventcel problem, involving a second order term on the domain boundary (the Laplace-Beltrami operator). A variational formulation of the Ventcel problem is studied, leading to a finite element discretization. The focus is on the construction of high order curved meshes for the discretization of the physical domain and on the definition of the lift operator, which is aimed to transform a function defined on the mesh domain into a function defined on the physical one. This lift is defined in a way as to satisfy adapted properties on the boundary, relatively to the trace operator. The Ventcel problem approximation is investigated both in terms of geometrical error and of finite element approximation error. Error estimates are obtained both in terms of the mesh order r ≥ 1 and to the finite element degree k ≥ 1, whereas such estimates usually have been considered in the isoparametric case so far, involving a single parameter k = r. The numerical experiments we led, both in dimension 2 and 3, allow us to validate the results obtained and proved on the a priori error estimates depending on the two parameters k and r. A numerical comparison is made between the errors using the former lift definition and the lift defined in this work establishing an improvement in the convergence rate of the error in the latter case.
Fichier principal
Vignette du fichier
Ventcel_sinum.pdf (1.83 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04144655 , version 1 (28-06-2023)
hal-04144655 , version 2 (04-11-2024)

Identifiants

Citer

Fabien Caubet, Joyce Ghantous, Charles Pierre. A priori error estimates of a diffusion equation with Ventcel boundary conditions on curved meshes. SIAM Journal on Numerical Analysis, 2024, 62 (4), pp.1929--1955. ⟨hal-04144655v2⟩
168 Consultations
95 Téléchargements

Altmetric

Partager

More