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Supervised portfolios

Guillaume Chevalier∗ Guillaume Coqueret† Thomas Raffinot‡

July 21, 2022

Abstract

We propose an asset allocation strategy that engineers optimal weights before feed-
ing them to a supervised learning algorithm. In contrast to the traditional approaches,
the machine is able to learn risk measures, preferences and constraints beyond simple
expected returns, within a flexible, forward-looking and non-linear framework. Our
empirical analysis illustrates that predicting the optimal weights directly instead of the
traditional two step approach leads to more stable portfolios with statistically better
risk-adjusted performance measures. To foster reproducibility and future comparisons,
our code is publicly available on Google Colab.

1 Introduction
Machine learning (ML) algorithms are now ubiquitous in the money management industry
and have been extensively studied by scholars in financial economics. One of their common
use cases is the prediction of expected returns, e.g., as in Gu et al. (2020) and Coqueret
and Guida (2020). Endowed with ML-driven forecasts, the portfolio manager can craft
allocations, given a set of preferences and trading constraints.

This splitting of tasks can be summarized as follows: the machine mines the data and
finds (possibly spurious) relationships between predictors and returns, while the manager
translates the automated predictions in portfolio weights (see for example Cenesizoglu and
Timmermann (2012) and Gârleanu and Pedersen (2013) on this matter). This last stage
is complex, because it relies on preferences or utility (e.g., the risk-aversion parameter in
mean-variance portfolio), as well as on sets of constraints that are idiosyncratic to the
manager (leverage, factor exposure, geography, sector biases, liquidity, etc.).

In this two step process (prediction first, followed by optimization), the ML arsenal is
traditionally only deployed for the first task.1 A natural question emerges: why not shift
all the burden to the machine? As we show in this article, this is not entirely possible
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1For the sake of completeness, we mention that López de Prado (2016) and Raffinot (2017) have
introduced a new way to allocate capital based on unsupervised machine learning, namely hierarchical
clustering algorithms.
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because portfolio weights have to be computed at some point in the process (see Figure
1). We simply advocate to do so earlier than is usually done.
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Figure 1: Comparative diagram. In the upper panel, this scheme shows the traditional
process in the crafting of portfolio weights relying on machine learning methods. In the lower
panel, it depicts the simple idea of the paper.

Given a training dataset of past observations, the method we propose starts by com-
puting optimal weights for all relevant dates in the sample. For instance, this is done by
considering the realized returns as the expected returns in standard portfolio choice op-
timizations. This stage may require other estimations, typically for covariance matrices,
and they can be performed with some other subsets of the training sample. In addition,
constraints can of course be added in order to satisfy targets and policies. In the case of
mean-variance-based allocation, the risk aversion parameter is naturally a key input and
we document its importance in our results.

The construction of optimal weights in the training sample can thus be interpreted
as a pre-processing stage. Instead of trying to forecast the returns directly, we transform
them into the in-sample weights that would have maximized a given utility function if
these returns had been known in advance. It it then these optimal weights which we try to
forecast with the chosen set of predictors. It is important to note that this pre-processing
stage allows the construction to be completely forward-looking, which is a major advantage
when market regimes shift. Indeed, by lagging the data, we can use the in-sample future
realized returns to compute all estimates (mean vector and covariance matrix). This
allows to be forward-looking in the training sample, while at the same time avoiding any
look-ahead bias.

Our method is flexible and works for any tractable utility function and set of constraints
(e.g., leverage preferences towards long-only or long-short portfolios). It can accommodate
any asset class, as long as there are suitable predictors for its returns. As we show, it also
works across asset classes.

The performance of our approach is evaluated across three datasets, which differ in
terms of number of assets and composition of the universe. This highlights the robustness
of the methodology we propose.

We start by computing the target weights based on a constrained Markowitz mean-
variance optimization. Next, we build the predictors, which fall into two categories. First,
those that pertain to momentum-style variables (past returns) and those that are risk-
based (realized volatilities). Momentum predictors have been shown to perform well out-
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of-sample in the literature (Gu et al. (2020) and Coqueret (2021)). Risk measures are also
important because they will be useful to learn the risk tolerance or aversion that are coded
within the weights (e.g., via the risk aversion parameter). In fact, both momentum and
volatility are the main drivers of returns, according to the recent work of He et al. (2021).

The second category of predictors relates to macro-economic series, such as the yield
curve, the TED spread, the VIX and the US credit spreads. These variables are important
because they allow to introduce some conditionality in the model so as to adapt to changing
environments.

The findings of the paper can be summarized as follows. In a traditional mean-variance
optimization with constraints, predicting optimal weights directly instead of expected re-
turns generates substantial gains with respect to trading costs as long as the investor is not
too risk averse. In addition, this generates higher average returns as well as slightly higher
realized risk. Nevertheless, the net aggregate effect is that Sharpe ratios are improved
when switching to the direct estimation of weights. Our results are robust to sub-period
analyses and still hold when replacing boosted trees by simple regressions.

The remainder of the paper is structured as follows. Section 2 surveys the literature
that is adjacent to the themes of the article. We present the theoretical framing of our
approach in Section 3, along with a simple illustration. The empirical protocol is outlined
in detail in Section 4 and the corresponding results are gathered in Section 5. Several
robustness checks are carried out in Section 6. Finally, Section 7 concludes.

2 Related literature
The idea of optimizing portfolio weights based on predictors directly is not new. The
parametric portfolio policies of Brandt et al. (2009), Hjalmarsson and Manchev (2012) and
Ammann et al. (2016) are such examples and they seek to build enhanced benchmarks
based on firms’ characteristics.

Moreover, our contribution relates mostly to the streams of the literature that propose
non-standard portfolios allocations. Recently, Zhang et al. (2020a) seek to optimize Sharpe
ratios via gradient ascent in a neural network architecture where portfolio weights are
derived from a given set of predictors. Langlois (2020) models efficient weights as functions
of auto-regressive latent variables. The system learns the dynamics from past returns and
is then able to make predictions about expected returns.

Optimal weights are also a central ingredient in reinforcement learning because they are
progressively learned via the actions (investment decisions) of the agent and the subsequent
rewards (see Moody et al. (1998) and Zhang et al. (2020b), among others). However,
due to dimension issues, applications often include a very limited number of assets and
position types. In André and Coqueret (2020), the authors bypass this technical hurdle
by considering Dirichlet distributions as the driver of the allocation process.

The contributions that are the closest to our paper are the recent studies of Zhang
et al. (2020a), Uysal et al. (2021), Butler and Kwon (2021) and Simon et al. (2022).2 In the
former, it is proposed to maximize the Sharpe ratio via gradient ascent in a neural network
structure where the portfolio weights serve as inputs. Their approach is generalized to

2Outside financial applications, Elmachtoub and Grigas (2022) provide theoretical results on various
“predict, then optimize” tasks.
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other performance metrics in Uysal et al. (2021), with a view towards risk parity. Other
black-box approaches are advocated in Cong et al. (2022), Costa and Iyengar (2022) and
Simon et al. (2022).

In Butler and Kwon (2021), the authors also seek to optimize portfolio weights di-
rectly. They show, theoretically, that if predictions stem from a linear regression, it is
possible to model the entire process as a neural network with two intermediate layers: one
for the prediction stage and one for the optimization. Nevertheless, if nonlinear models
(e.g., tree methods, as in the present paper) are used for the prediction stage, then such
architectures cannot be implemented. Using simpler forecasting techniques (AR(FI)MA),
Golosnoy and Gribisch (2022) seek predict the realized weights of global minimum variance
portfolios. The present paper aims to propose a general framework for the direct estima-
tion of portfolio weights, and to pursue the discussion on the out-of-sample efficiency of
this approach.

3 Model
This section first lays out a rigorous formulation of the portfolio problem tackled in this
paper. In order to illustrate our idea, we then propose a simple toy model.

3.1 Theoretical framework

At any given (discrete) time t, the agent receives a financial dataset Dt which comprises
information onN assets (stocks, stock portfolios, or broad asset class indices in this paper),
as well as on the economy more generally. More precisely, it must contain at least the first
two of the following elements:

• prices of assets, and possibly dividends, which can be used to derive price returns,
total returns and dividend yields;

• from returns, risk measures like realized volatility, Value-at-Risk, CVaR (i.e., Ex-
pected Shortfall) can be assessed;

• traditional accounting values or ratios which are often mentioned in the asset pric-
ing literature: market capitalization (Banz (1981), Fama and French (1992); Fama
and Kenneth (1993), Van Dijk (2011)), book-to-maket ratios (Fama and French
(1992); Fama and Kenneth (1993), Asness et al. (2013)), asset growth and prof-
itability margins (Fama and French (2015)), etc.;3

• volumes, bid-ask spreads and other liquidity proxies that can help build precise
models of transaction costs;

• so-called alternative data fields, such as sentiment (both asset-specific, or region
and industry aggregates) and ESG data;

• macroeconomic variables (GDP growth, inflation, credit spread, term spread, etc.).

With these variables, the agents computes a set of estimations Et. Standard examples of
estimates include the first moments of expected returns. In portfolio choice problems, the
most important one is the mean vector of expected returns. If rt denotes the N ×1 vector

3Previous attributes are also mentioned in asset pricing, like past returns (Jegadeesh and Titman (1993),
Asness et al. (2013), or realized volatility (Baker et al. (2011), Li et al. (2016))
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of all assets’ time-t returns, then µ̂t = Et[rt+1] = E[rt+1|Ft] gives the agent’s estimate of
the one step ahead average returns, conditional on the information set available at time t,
Ft. In our framework, Ft = ∪s≤tDs. For instance, µ̂t can be estimated using supervised
learning algorithms, as is done in Gu et al. (2020):

rs+1 = fb(Ds) + es+1,b, s < t, (1)

with the final estimate being µ̂t = f̂b(Dt) where f̂b is the estimated model and t the current
date. The b subscript stands for the benchmark learning approach.

Likewise, the agent may construct an estimator Σ̂t = Et[(rt+1 − µ̂)(rt+1 − µ̂)′] for
the covariance matrix of returns. We use the convention that v′ denotes the transpose
of the vector v. In addition, 1N and IN will denote the unit N -dimensional vector and
the corresponding identity matrix. Thus, the mean-variance investing framework à la
Markowitz (1952) can be interpreted as a case where Et = {µ̂t, Σ̂t}. Moments of higher
order are sometimes used (see, e.g., Harvey et al. (2010)), but they usually require algebra
with 3 or 4 dimensional arrays (tensors) which are harder to handle.

The investor seeks to maximize some expected utility over future returns4 and under a
given set of constraints on the weights of her portfolio w, which we assume can be written
as C(w) � 0, where 0 is a zero vector of arbitrary size. This latter curvy inequality
is understood as term-by-term. For instance, a long-only portfolio is equivalent to (or
requires) w � 0N , where N is the number of assets. For some matrix A, linear constraints
such as Aw � 0N are well suited to impose geographic, factor, or sector constraints.

3.2 The benchmark approach

We posit that this optimization can be formulated and solved as a function of the estimates
Et, i.e., that there exists a function gb such that

w∗b = argmax
w

{
Et
[
u(w′rt+1)

]
, s.t. C(w) � 0

}
= gb(Et), (2)

where the benchmark function gb naturally operates on the set of estimators used by the
agent. Again, the subscript b stands for benchmark. For instance, in the case of a mean
variance investor with a typical budget constraint w′1N = 1 and a diversification target
w′w ≤ κ,5 the maximization of w′µ̂t − γ

2w
′Σ̂tw yields a solution of the form

w∗b = γ−1(Σ̂t + δIN )−1(µ̂t + η1N ), (3)

where η is chosen to satisfy the budget constraint and δ is adjusted to match the diversifi-
cation goal. The latter is very useful to reduce the leverage of unconstrained mean-variance
portfolios, which is one of their notorious weaknesses.

4In economics, the agent often maximize expected utility over terminal wealth. In finance, it is customary
to work on returns instead, see Campbell and Viceira (2002)

5We use the L2 norm of weights to measure diversification, as in Goetzmann and Kumar (2008). The
integration of diversification constraints in standard portfolio optimization is discussed in Coqueret (2015).
In practice, the minimum feasible κ is 1/N , where N is the number of assets, and it is reached for the
equally-weighted portfolio.
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3.3 A direct estimation of weights

The second, less straightforward, way to proceed is the following. We index the dates of
the data contained in Dt with s. Thus, with the knowledge of the realizations of returns,
it is possible, for each date s, to compute the in-sample optimal weights:

w∗s = argmax
ws

{
u(w′srs), s.t. C(ws) � 0

}
, 6 s < t. (4)

Note that there is no time shift between the weights and the returns because the former
are based on the synchronous realizations of the latter. For instance, if the utility function
is u(x) = x− γx2/2 and the constraints are w′s1N = 1 (budget constraint) and w′sws ≤ κ
(diversification), then

w∗s = (rsr′s + δIN )−1(rs + η1N ), (5)

which is the equivalent of (3) when there is no estimation step because only one date is
available. The shrinkage term +δIN serves as regularization and ensures that the inverse
matrix is well-defined. From the in-sample optimal weights w∗s that are obtained with
realized past returns only, the second approach aims to learn portfolio compositions in a
supervised fashion:

ws+1 = fd(Ds) + es+1,d, s < t. (6)

In the above equation, the time shift underlines that the weights are learned from prior
data Ds. Plainly, Equation (6) is the twin version of Equation (1). The latter (benchmark)
predicts returns, while the former seeks to forecast optimal weights. The subscript d stands
for direct estimation of portfolio weights. The final time-t weights are then simply

w∗d = f̂d(Dt),

where f̂d is the estimated model. By construction, they may not sum to one and satisfy
the budget constraint, thus it may be required to normalize them a posteriori.

One notable advantage of the direct approach is that if the sample encompasses several
dates, the target portfolio weights for each individual asset can be smoothed so as to
reduce trading costs. Often, predictors are slowly moving (macro-economic indicators,
accounting values and ratios, etc.), so that persistent dependent variables are preferable
in panel models (see Coqueret (2021)). The rationale is that if predictors are stable in
time, they can only forecast variables that also have smooth time-series.

3.4 A toy example

To illustrate this abstract framework, let us consider the case of regularized mean-variance
portfolios. This example does not even require any supervision and corresponds to a utility
function of

u(w) = w′µ−w′Σw − δw′w, (7)

which the investor seeks to maximize under the budget constraint w′1 = 1. The penal-
ization δw′w improves diversification when δ > 0 and regularizes the optimal solution à

6More generally, the utility could be written as u(ws, Es), but we stick to simpler notations to ease
readability.
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la Tikhonov. Given series of (N × 1) returns (rt)1≤t≤T , the direct estimation of weights
is such that they are proportional to

w∗b ∝
(
T−1

T∑
t=1

(rt − r̄)(rt − r̄)′ + δIN

)−1

×
T∑
t=1
rt, (8)

where r̄ is the sample mean of rt, and the constant δ tunes the penalization: as it increases,
the portfolio leverage decreases. In the limit δ → ∞, we recover the naive 1/N portfolio
if all average returns are equal (r̄ ∝ 1). w∗b will serve as the benchmark portfolio. On
the other hand, the simplest learning technique is to take the average of local (in-sample
pointwise) well-defined weights, so that we have

w∗d = T−1
T∑
t=1

ct
(
rtr
′
t + δIN

)−1
rt︸ ︷︷ ︸

pointwise weights

(9)

= (δT )−1
T∑
t=1

ct

(
IN −

δ−1rtr
′
t

1 + δ−1r′trt

)
rt

=
(
δ−1

T∑
t=1

ct

)
1N − (δ2T )−1

T∑
t=1

ct
r′trt

1 + δ−1r′trt
rt (10)

where we have used the Sherman-Morrison identity in the second equality. In each line,
ct is the constant that scales the weights at time t. Clearly, in this case again, we see the
effect of δ: as it increases, the first term goes to zero at the speed of δ−1, whereas the
second term decreases with δ−2. Thus, only the first term survives asymptotically after
normalization of the weights - when δ is arbitrarily large.

There is no simple analytical expression for these weights. In the first case, the dis-
tribution of mean-variance optimal weights along the efficient frontier is discussed in Kan
and Smith (2008). Adding the regularization further complicates the expressions. In the
second case, the expression (9) shows products of random vectors. Even if we assume
that they are Gaussian, the distributions underpinning these products are complex if we
assume nonzero correlations (see Nadarajah and Pogány (2016)). Adding the diagonal
term, taking the inverse, and then summing leaves no hope for tractable formulae.

We must thus resort to simulations and implement the following protocol, summarized
in Table 1. Given a covariance matrix Σ (detailed below), we generate bivariate returns.
The first method computes an estimator for Σ so as to derive the traditional penalized
minimum variance weights. The second method averages the point-wise weights as written
in Equation (10). The efficiency of both types of weights is evaluated via the realized
utility.

We consider 2 assets with Gaussian returns. The assets have mean returns of 5% and
10%, and volatilities of 10% and 20%, respectively. We test two configurations for their
correlations: -0.3 and +0.6, which could correspond to a bond-stock and a stock-stock
situation. We also allow for another degree of freedom: the samples use to estimate the
weights consist of 20, 60, or 300 simulated points. In terms of daily points, this corresponds
roughly to one, three and fifteen months of data.

The resulting average utilities are plotted in Figure 2 as a function of δ. The orange
curve, which corresponds to the traditional approach is decreasing: as the penalization
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Step Benchmark Direct
Given Σ, for each simulation n = 1, . . . , N : do
0 Simulate n samples N(0,Σ)
1 Compute weights wb from (8) Compute weights wd from (10)
2 Compute utility un,b = u(wb) from (7) Compute volatility un,d = u(wd) from (7)
return average utlities N−1∑N

n=1 un,b and N−1∑N
n=1 un,d

Table 1: Pseudo-code of simulation exercise.

increases, the utility decreases. The weights are more regularized, which may, in an out-of-
sample backtest be beneficial (see Jagannathan and Ma (2003)). The leftmost points on the
blue curve are clearly suboptimal. This is because when δ is small, the inversions linked to
the in-sample weights are ill-defined (the original matrices are not well conditioned). This
can be seen in expression (10), wherein the terms, in all generality, increase in magnitude
when δ decreases to zero.

sample = 20 sample = 60 sample = 300

rho =
 −

0.3
rho =

 0.6
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Figure 2: Regularized mean-variance choice. We plot the realized utilities defined in
Table 1 as a function of δ (x-axis), sample size (left, center and right panels), and asset correlation
(negative for the top graphs, positive for the bottom ones). We run 105 simulations in total.
Portfolio types (benchmark versus direct estimation) are coded via colors. Values below -5 are
omitted to ease readability.

However, when δ increases, both methods yield indistinguishable results, meaning that
the simple averaging for pointwise weights works as well as the optimal one. However,
this is only true when samples are deep enough, as we see in the left panels that averaging
over an insufficient number of weights generates noise. In fact, in the lower left panel,
it is plain that even the traditional approach fails because the estimators are not precise
enough.

We underline that because we are in an i.i.d. setting, the orange curve is optimal, so
that the direct approach can at best match it, which it often does. In practice, as is well-
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known, returns and risk-premia are risk varying (see, e.g., Chaieb et al. (2021)), so that
the benchmark approach is often not the best out-of-sample. This has been documented
at least since the work of Jorion (1985).

Moreover, in this toy model, there is no proper supervision stage, as defined in Equation
(6): the learning phase consists of a simple averaging. When supervision and learning
stages occur in the processing of weights, the analysis gains in complexity and analytical
results are out of reach. We thus detail several applications in the remainder of the paper.

4 Empirical protocol
This section is dedicated to the detailed presentation of our backtests. The latter can be
reproduced via our public code on Google Colab.

4.1 Datasets and variables

Portfolio Instruments

The performance of our method is evaluated on three different investment universes:

• the 10 US industry portfolios from Kenneth French’s website.7. Consequently, the
assets are sector portfolios: Consumer-Discretionary, Consumer-Staples, Manufac-
turing, Energy, Technology, Telecommunication, Wholesale and Retail, Health, Util-
ities, and Other.

• the 25 portfolios from the same source, sorted on size and book-to-market ratios.

• four asset class indices, namely: two equity indices (MSCI World index and MSCI
emerging index), and two bond indices (Bank of America Merrill Lynch Global Cor-
porate Index and Bank of America Merrill Lynch Global Government Bond Index).

All asset returns and variables are sampled at the daily frequency, from January 1997
to September 2020.

The rationale for choosing these investment universes is twofold. First, the data for the
first two is public and makes our results handily reproducible. To this purpose, a Jupyter
Notebook is openly available to allow researchers to replicate our results.8 Second, the
small number of assets alleviates issues in the estimation of covariance matrices. It is
possible to evaluate (and invert) the sample estimator even with just one month of daily
data.

Explanatory variables

We only resort to two types of predictors in all of our models, which are available for
any asset class with public quotes. The first type is simply derived from the prices. The
second type of predictors is of macro-economic nature.

Prices are translated into returns at various horizons so as to assess momentum and
reversals, and into realized volatilities, which approximate asset-specific risk. This choice

7Available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
8It is available here.
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is dictated by two considerations. First, as is reported in Gu et al. (2020) and He et al.
(2021), past returns (momentum) and volatilities are important drivers of the cross-section
of returns.9 Recently, Rapach et al. (2019) document the importance of past returns for
industry portfolios, which are thus relevant in the context of the present empirical study.
The second reason that incites us to stick with past returns and volatilities is that these
indicators can be derived for all asset classes. Thus, it makes it easier to transpose our
result for other markets.

As regards momentum, we compute the past annualized growth rate of each instrument
sectors over four horizons: 21 days (∼ one month), 63 days (∼ 3 months), 126 days (∼
6 months) and 252 days (∼ 12 months). For example, the time-t 126-day annualized
momentum is computed as ( Pt

Pt−126
− 1) ∗ 252

126 , where Pt is the value of the original time-
series.

With repsect to realized volatility, we straightforwardly resort to the standard deviation
of daily realized returns of each instrument over the same four horizons, which span 1, 3,
6, and 12 months.

The second type of predictors relates to macro-economic indicators. We consider
four classical economic variables: the yield curve, the credit spread, the Ted spread
and the VIX index10. All the macroeconomic series were download from the FRED
(https://fred.stlouisfed.org).

The yield curve is calculated as the spread between 10-Year Treasury Constant Ma-
turity and 3-Month Treasury Constant Maturity. The credit spread is calculated as the
daily time-series of US High Yield Spread Index minus the values of the US AA Corporate
Spread Index. The Ted spread is the difference between the three-month Treasury bill and
the three-month LIBOR based in U.S. dollars. At last, the VIX, which is often referred to
as the fear index or fear gauge, is a measure of the stock market’s expectation of volatility
based on S&P 500 index options.

4.2 The two-step approaches

4.2.1 Portfolio construction

All portfolio policies are based on constrained Markowitz mean-variance optimization. Let
n denote the number of instruments in the portfolio and wt ∈ Rn the portfolio allocation
vector. Given µ̂t ∈ Rn the vector of expected returns (annualized) over a given horizon
and Σ̂t ∈ Rn,n the corresponding covariance matrix (annualized) at time t, the solution
w∗ can be written:

w∗(µ̂t, Σ̂t) = arg max
wt

{
µ̂t

Twt −
γ

2w
T
t Σ̂twt , s.t. C(wt)

}
, (11)

with γ the risk aversion coefficient and C(wt) constraints on weights. In our empirical
study, we impose box constraints, meaning that weights must lie in specific intervals, e.g.,
[0, 0.2], which corresponds to long-only portfolios in which an asset can account at most

9In a similar vein, Han et al. (2013), Han et al. (2016) and Han et al. (2021) show that technical
indicators, based on past prices are also relevant predictors and are priced in the cross-section of stocks.

10See Welch and Goyal (2008) and Hull and Qiao (2017) for more information on the ability of macroe-
conomic predictors to forecast returns.
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for 20% of the portfolios. Again, we recall that this optimization is carried out at different
stages, depending on the method:

• in the benchmark traditional approach: it is applied on ML-based predictions.
• in the direct (supervised weights) approach: it is applied in-sample to obtain the

past optimal weights, which are then used as labels by the ML engine.

In the subsection below, we detail how we obtain the estimates µ̂t and Σ̂t.

4.2.2 Prediction model

As described in the asset pricing literature (Gu et al. (2020)), we forecast the time-t (N×1)
vector of dependent variables with a standard prediction error model:

ys+1 = gt(Xs,Ms) + εs+1,

where Xs represents the matrix of instruments’ specific explicative features (momentum
and volatilities) andMs the macro-economic variables plus a constant vector of ones. The
s index stands for all the dates in the training sample used at time t.

The function gt is approximated with a machine learning model and its parameters are
updated using a pooled regression on an expanding window training scheme (see sections
below). Hence, the number of observations is much higher than the number of explicative
features and the risk of over-fitting is less of a concern, as long as gt does not include too
many parameters.

In line with Gu et al. (2020), we define the the baseline set of covariates Zs as Zs =
Xs⊗Ms, where ⊗ is the Kronecker product. The total number of features (the number of
columns of Zs) is thus 8 * (4 + 1) = 40 because there are eight momentum and volatility
predictors and four macro-economics variables (plus a fifth constant term). The model is
thus:

yt+1 = gt(Zt) + εt+1, (12)

and corresponds to Equation (3) for the traditional method and to Equation (6) for the
direct approach. Naturally, each technique will lead to a dedicated (trained) model gt. Im-
portantly, there is no guarantee that the predicted weights from the direct approaches will
sum to one, though they should be close to satisfying the budget constraint. Consequently,
after each batch of predictions, we normalize the weights accordingly.

As regards the target (label), we consider three variables:

• yt+1 = rt+1: Future returns; this is the benchmark (standard) approach (Equation
(3)).

• yt+1 = wt+1: Weights coming from the optimizer when knowing both expected
returns and future covariance; this is a first direct approach to predict the portfolio
policies (see Equation (6)).

• yt+1 = wt+1 − 1
N : Difference between wt+1 and the equally-weighted portfolio. The

idea here is to make the distribution of the target vector more time-homogeneous (its
mean does not change in time, which can be useful if the number of assets evolves).
This is an alternative direct approach to forecast the portfolio allocations (again,
this corresponds to Equation (6)).
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Finally, the expected return µ̂t = gt(Zt), that is, the prediction based on the current
predictor values. With regard to the covariance matrix, we simply take the sample esti-
mator over the realized returns posterior to s. For simplicity, the sample size is equal to
the horizon we seek to predict. For example, if we predict three-month returns, we use
three months of data.

4.2.3 Gradient boosting decision trees

We now turn to the ML engine that we use in our empirical work (gt in Equation (12)),
namely boosted trees. Boosting is based on the idea of creating an accurate learner by
combining many so-called "weak learners" (Schapire (1990)), i.e., with high bias and small
variance, in order to form a single "strong" predictive model. With boosting, each trees are
fitted sequentially. In other words, each tree is fitted using information from the previously
fitted tree. They have been shown to perform well for predictive tasks in finance (Krauss
et al. (2017), Guida et al. (2018) and Gu et al. (2020)). Recently, Januschowski et al. (2021)
and Makridakis et al. (2022) have shown that in the latest (M5) forecasting competition,
tree methods remain highly popular and often outperform neural networks, especially on
tabular datasets (Shwartz-Ziv and Armon (2022), Grinsztajn et al. (2022)).

This approach is fast and efficient, but with a higher risk of over-fitting. Therefore, it
is crucial to correctly perform a thorough cross-validation of the hyper-parameters (HPs),
see next section below. The set of important HPs for boosted trees are well documented
and we will optimize the following:

• the number of trees. More trees imply a more complex model, and a higher risk
of overfitting.

• the learning rate. A lower rate leaves more room for future trees (the model learns
more slowly) and reduces the risk of overfitting.

• the maximum depth of trees. The deeper the trees, the more sophisticated the
model.

• the minimum sum of instance weight needed in a child. If a leaf node has
the sum of instance weight that is too small, the partitioning of the tree stops. This
prevents the tree from growing to much and helps mitigate the risk of overfitting.

Before training the models, we apply the following normalization techniques:

• Quantile normal transformation for the macroeconomic variables: we standardize
the time-series into quantile and then map the values to a normal distribution. This
is of course done on the training sample at each step and does not imply any forward
looking leakage of any kind.

• Cross sectional normalization for predictors: we scale the cross sectional values (i.e.
among the 10 industrial sectors) between 0 and 1 using the empirical cumulative
distribution function. This standard is commonplace in the asset pricing literature
(Koijen and Yogo (2019), Kelly et al. (2019), Freyberger et al. (2020) and Gu et al.
(2020)).

• Tanh scaling for the dependent variable: we mutate the time-series of dependent
variables using the hyperbolic tangent (tanh) function. The rationale for this is to
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center the label variables and make them more comparable by taming outliers. The
transform is the following:

ynorm = 0.5 ∗ (tanh(0.01 ∗ ((y − ymean)/ystd))), (13)

where the ymean and ystd are straightforwardly the sample mean and standard de-
viation of the labels. The reverse transformation is performed after the prediction
to transform back the labels into its original values (for prediction purposes), using
the below equation:

y = arctanh(ynorm/0.5) ∗ (ystd/0.01) + ymean.

4.2.4 Random search cross-validation

The simple K-fold cross-validation works by dividing the data into K contiguous folds. For
the kth part, the learning method is fit to the other K − 1 parts of the data and calculate
the prediction error of the fitted model when predicting the kth part of the data. This is
done for k = 1, 2, ...,K and the K prediction error estimates are averaged. For this study,
K = 5 was chosen, which is a commonly used value, and the five splits are performed
chronologically, generating 5 non-overlapping ordered blocks for testing.

Working with time-series adds an important risk of data leakage, whereby information
contained in the testing set is partly present in the training set, which of course never
happens in practice. In order to avoid such risk, and as is advised in Section 7.4 in López de
Prado (2018), each training dataset is purged. More specifically, at each rebalancing time
t, for each K-fold (20% of the sample for testing and 80% for training), all observations
from the training set whose labels overlap in time with those labels included in the testing
set are removed. Thus, training sets are in fact slightly smaller than 80% of the time-t
dataset.

However, instead of resorting to the simple average of the mean squared error (MSE)
for the evaluation of the cross validation prediction error, the ratio of the average and
the standard deviation of the MSE was used: MSEavg

MSEstd
. Indeed, this metric allows to more

efficiently select the hyper-parameters combination that has both a low prediction bias
and a low prediction variance (i.e. generalize better to new observations).

In practice, a random search with 500 iterations was used to generate the combination
of hyper-parameters that were evaluated via the cross validation. Bergstra and Bengio
(2012) show empirically and theoretically that randomly chosen trials are more efficient
for HP optimization than trials on a user-specified grid.

For the sake of exhaustiveness, the tuning of hyper-parameters is performed for each
configuration described in the next subsection. More precisely, for each risk aversion level,
horizon of predicted returns, label transformation, etc., we evaluate which boosted tree
architecture is the best.

In Figure 3, we plot the dispersion of tuned HPs across the three methods we evaluate.
Overall, the inter-quartile ranges are not very large, which means that HPs do not vary
too much across configurations. This is particularly true for the maximum depth, which is
overwhelmingly equal to two. The number of trees oscillates around 60, which is sufficiently
small to prevent overfitting, especially with tree depths of two.
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Figure 3: Distribution of hyper-parameters. We illustrate the distribution of HPs in
boxplots. Each point corresponds to a combination of risk aversion and horizon of forecasted
returns.

4.3 Investment strategies

4.3.1 Portfolio construction parameters

The first 5 years of the dataset (i.e. from January 1997 to December 2001) are used as a
buffer period to fine-tune the hyper-parameters using K-fold cross-validation (cf. previous
paragraph). These cross-validated hyper-parameters are then used to compare the various
strategies on an out-of-sample period that ranges between January 2002 and September
2020.

The weights are computed every Friday, at close of business (CoB) time. Returns are
also calculated on a weekly basis between each Monday CoB (using portfolio weights from
the previous Friday). It replicates a strategy where the portfolio managers evaluate new
weights on every Monday’s morning and invest on Monday’s close.

Prediction models are re-estimated every semester on samples of expanding windows.
More precisely, each semester, the training dataset is incremented with the last 6 months
of data and a new model is fitted on it (with fixed HPs values).

We allow for five additional degrees of freedom:

• the horizon of the returns used in the optimization and the learning stages. Three
values are tested, namely 21, 63 and 126 days.

• whether or not to apply the hyperbolic tangent transform to the labels, as
defined in Equation (13).

• the level of risk aversion, γ in (11), for which we test three values: γ ∈ {1, 3, 10}
(low, moderate and high).
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• the sample size for the estimation of the covariance matrix (for the traditional
approach only). Again, we test three depths: 3, 6 and 12 months.

• the stringency of the box constraint of optimal portfolio weights. All policies
are long only, meaning that the minimal weight is larger or equal to zero. In order to
impose diversification, we also impose weight constraints. For the 10 industry and
25 sorted portfolios, we enforce a maximum weight so that all weights are smaller
than some upper threshold which we fix contingently on the investment universe,
as described in Table 2 below. For the 4 asset class universe, we fix reasonable
target weights in Table 3, and the constraints ensure that the weights remain in the
vicinity of the benchmark values. For instance, if the target weight is 52%, the 30%
constraint imposes the interval 52%× [1.3, 0.7] = [67.6%, 36.4%].

Dataset Upper bound on weights
Strong Intermediate Loose

10 industries 20% 30% 40%
25 sorted portfolios 10% 15% 20%

Relative leeway on benchmark
4 asset classes 10% 20% 30%

Table 2: Summary of constraints

Asset class Target benchmark weight
Developed Markets - Equities 52%
Emerging Markets - Equities 8%

Global Markets - Sovereign Bonds 20%
Global Markets - Corporate Bonds 20%

Table 3: Benchmark weights for the 4 asset classes

Overall, for the traditional method, this makes 162 combinations while for the direct
ones, we carry out 54 versions of the portfolios. The results for each combination of these
options will be systematically reported, or averaged to ease clarity of exposition. The first
two (horizon and risk aversion) will always be reported, which will make nine types (or
clusters) of portfolios. For some indicators, we will only document the average across the
other degrees of freedom.

4.3.2 Performance criteria

The portfolio strategies are evaluated on a traditional set of performance measures:

• The transaction cost-adjusted Sharpe Ratio (SR):

SR = µ̃− rf
σ

(14)

where µ̃ is the expected return of the strategy, net of trading costs, and σ the
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standard deviation and rf the risk-free rate.11 µ̃ is computed by replacing the gross
performance with the performance net of trading costs. More precisely, in this case,
the weekly returns are discounted by a factor as follows.

rnet = (1− TO ∗ TC) ∗ (1 + rgross)− 1

Where TC is the average estimated trading cost and rgross the original weekly return.
TC is set to 5 basis points (bps) for the first and third datasets, and to 15 bps for the
25 sorted portfolios. This is because the latter are likely harder to trade, compared
to the other two, which can be packaged in ETFs. TO =

∑n
i=1 |wi,t − w

FwdAdj
i,t−1 | is

the weekly turnover where wFwd_Adj
i,t−1 is the portfolio weight from previous Friday

CoB, which is forward adjusted to take into account weights deviation between 2
rebalancing dates.

• The maximum drawdown (MDD) is an indicator of permanent loss of capital.
It measures the largest single drop from peak to bottom in the value of a portfolio.
In brief, theMDD offers investors a worst case scenario:

MDD(T ) = max
τ∈(0,T )

[
max
t∈(0,τ)

X(t)−X(τ)
]

(15)

Because it is a second measure of risk, we will report it as a fraction of volatility
(|MDD|/σ), which corresponds to the worst drawdown of the portfolio, for a given
unit of volatility. This ratio shows the extreme risk after controlling for σ and is
thus a truly complementary risk metric.

• The average weekly turnover (AT O), simply defined as:

AT O = 1
T

T∑
t=1

{
n∑
i=1
|wi,t − wFwdAdji,t−1 |

}
. (16)

It will evaluate the magnitude of asset rotation in the portfolios. High rotation is
naturally associated with higher trading costs.

4.4 Data Snooping and statistical testing

Harvey (2017) and Harvey and Liu (2021) contend that most claimed research findings in
financial economics are likely false due to data snooping.12 Data snooping occurs when
the same data set is employed more than once for inference and model selection. It leads
to the possibility that any successful results may be spurious because they could be due
to chance (White (2000)). In other words, looking long and hard enough at a given data
set will often reveal one or more models that seems promising but are in fact spurious.

Diebold (2015) notes that, unfortunately, many studies employ the Diebold and Mar-
iano (1995) test for comparing models in (pseudo-) out-of-sample environments, and con-
cludes: "unavoidable and crucially-important issues arise, related both to finite-sample

11Given the values of r over the timeframe of our study, a risk-free interest rate of zero is assumed when
calculating the SR.

12In full transparency, this claim is disputed in Chen (2021) and Jensen et al. (2021).
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analysis versus asymptotic analysis, and more importantly, to comparisons of two models
versus many models". To alleviate this issue, the model confidence set (MCS) of Hansen
et al. (2011) proposes a model selection algorithm, which sequentially filters a set of mod-
els from a given entirety of models. It aims to first find the best model from a group and,
second, to test if other models are statistically indistinguishable from this best candidate.

The primary output is a set of p-values, where models with a p-value above the size are
selected in the best models set. Small p-values indicate that the model is easily rejected
from the set that includes the best. In this paper, the MCS is applied with a risk-adjusted
profit maximization loss function (three-year rolling Sharpe ratio).

5 Empirical results
In this section, we show that predicting the optimal weights directly instead of the tradi-
tional two-step approach leads to more stable portfolios, with better risk-adjusted perfor-
mance measures.

5.1 Sharpe ratios

Our first important set of results pertains to the MCS p-values which we present in Figure
4. The results are clustered according to two degrees of freedom: the horizon of the returns
to be predicted (columns of graphs) and the risk aversion parameter (rows of graphs). In
addition, each data set (i.e., investment universe) has its own horizontal panel.

The interpretation is as follows. The y-axis shows the transaction-cost adjusted Sharpe
ratio defined in Equation (14). The x-axis corresponds to the p-value of the test for which
the null hypothesis is that a portfolio is comparable to the best portfolio. The test is
performed at the cluster level, so that the best portfolio is always located at the top right
of the nine sub-panels for each universe.

When the risk aversion is low or moderate (γ ∈ {1, 3}) - in the upper and middle
panels), the traditional approach is outperformed by the direct ones because almost all
dark blue points lie below (and to the left of) the yellow squares and orange triangles.
However, for high values of γ, when the volatility term is predominant, this is no longer
true and the results become in favor of the traditional approach. Note that for high γ
values, the contribution of the expected return forecast term in the optimizer is highly
reduced, in comparison to the risk term. In such case, the optimized weights are closer to
a minimum variance allocation.

In Tables 4 and 5, we provide the values of the indicators for all three investment
universes. This allows to access the two terms of the Sharpe ratio. We see that supervised
portfolios are linked to higher average returns and to higher volatilities, which is why their
Sharpe ratio is comparable (though slightly superior) to those of the benchmark method.

5.2 Maximum drawdown

In the present paper, we assess the risk of portfolio strategies via the most extreme and
conservative measure, the maximum drawdown, which we depict in Figure 5. The MDD
is the second risk metric we report after the volatility. Because the two are linked, we
choose to display the MDD, relative to the volatility. Therefore, the numbers we display

17

Electronic copy available at: https://ssrn.com/abstract=3954109



benchmark

0.40

0.45

0.50

0.55

Sh
ar
pe

Ra
tio

-T
C
5
bp
s

Return Horizon: 1M forecast

direct direct -1/N

Return Horizon: 3M forecast Return Horizon: 6M forecast

G
am

m
a:1

0.40

0.45

0.50

0.55 G
am

m
a:3

0 0.5 1
0.40

0.45

0.50

0.55

0 0.5 1 0 0.5 1

G
am

m
a:10

0.40

0.45

0.50

0.55

Sh
ar
pe

Ra
tio

-T
C
15

bp
s

Return Horizon: 1M forecast Return Horizon: 3M forecast Return Horizon: 6M forecast

G
am

m
a:1

0.40

0.45

0.50

0.55

G
am

m
a:3

0 0.5 1

0.40

0.45

0.50

0.55

0 0.5 1 0 0.5 1

G
am

m
a:10

0.425
0.450
0.475
0.500
0.525
0.550

Sh
ar
pe

Ra
tio

-T
C
5
bp
s

Return Horizon: 1M forecast Return Horizon: 3M forecast Return Horizon: 6M forecast

G
am

m
a:1

0.425
0.450
0.475
0.500
0.525
0.550

G
am

m
a:3

0 0.5 1
0.425
0.450
0.475
0.500
0.525
0.550

0 0.5 1 0 0.5 1
Model Confidence Set P-value (3Y-rollingSharpe Net TC 5 bps)

G
am

m
a:10

10
industry

portfolios
25
size

&
B
/M
sorted

portfolios
4
assetclasses

Figure 4: Transaction cost-adjusted Sharpe ratio and MCS p-values. We use a
3-year rolling Sharpe Ratio net of trading cost (5 or 15 bps, depending on the universe) as loss
function for the MCS by group of Return horizon (columns of the figure) and Gamma (rows in the
panels). Then we plot the realized Sharpe Ratio net of trading cost over the full period. The best
performing strategies by cluster are in the top right corner of each cell. Colors and shapes code
the methodology for the portfolio construction.

pertain to extreme risk, after controlling for baseline risk. One way to think about this
is to imagine a portfolio manager who has a risk budget (say, a vol of 10%) and wants to
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Dataset Type Horiz. γ SR Ann. ret. Ann. vol. Max DD.
vol. Avg. Weekly TO

10 industries

Trad. 1M 1 0.468 0.092 0.197 2.618 0.579
3 0.473 0.087 0.184 2.614 0.555
10 0.503 0.084 0.167 2.650 0.463

3M 1 0.463 0.092 0.198 2.487 0.504
3 0.459 0.086 0.186 2.526 0.482
10 0.505 0.085 0.168 2.636 0.385

6M 1 0.485 0.092 0.189 2.570 0.434
3 0.497 0.089 0.178 2.534 0.395
10 0.541 0.089 0.165 2.582 0.310

Direct 1M 1 0.498 0.096 0.193 2.807 0.067
3 0.499 0.096 0.192 2.817 0.060
10 0.505 0.095 0.188 2.825 0.076

3M 1 0.493 0.095 0.193 2.785 0.066
3 0.485 0.093 0.192 2.789 0.087
10 0.491 0.092 0.187 2.797 0.091

6M 1 0.494 0.095 0.192 2.799 0.085
3 0.494 0.094 0.189 2.825 0.093
10 0.506 0.093 0.184 2.835 0.105

Direct 1M 1 0.496 0.096 0.193 2.818 0.087
- 1/N 3 0.500 0.096 0.192 2.815 0.063

10 0.507 0.095 0.188 2.828 0.060
3M 1 0.481 0.093 0.194 2.780 0.096

3 0.491 0.094 0.192 2.787 0.076
10 0.493 0.092 0.187 2.792 0.090

6M 1 0.491 0.094 0.192 2.804 0.095
3 0.495 0.094 0.190 2.807 0.102
10 0.507 0.093 0.184 2.853 0.082

4 asset classes

Trad. 1M 1 0.496 0.057 0.116 3.513 0.059
3 0.503 0.057 0.114 3.459 0.060
10 0.512 0.056 0.109 3.549 0.061

3M 1 0.491 0.056 0.115 3.420 0.062
3 0.500 0.056 0.112 3.424 0.063
10 0.516 0.055 0.107 3.472 0.057

6M 1 0.490 0.057 0.116 3.446 0.055
3 0.502 0.057 0.113 3.432 0.056
10 0.530 0.056 0.106 3.474 0.055

Direct 1M 1 0.518 0.058 0.112 3.619 0.021
3 0.518 0.058 0.112 3.618 0.021
10 0.522 0.058 0.111 3.625 0.021

3M 1 0.512 0.058 0.113 3.588 0.021
3 0.513 0.058 0.112 3.594 0.021
10 0.520 0.057 0.110 3.609 0.021

6M 1 0.516 0.058 0.112 3.601 0.025
3 0.518 0.058 0.111 3.603 0.025
10 0.522 0.057 0.110 3.609 0.024

Direct 1M 1 0.517 0.058 0.112 3.616 0.022
- 1/N 3 0.517 0.058 0.112 3.614 0.022

10 0.520 0.058 0.111 3.621 0.022
3M 1 0.512 0.058 0.113 3.577 0.022

3 0.515 0.058 0.112 3.583 0.023
10 0.521 0.057 0.110 3.592 0.022

6M 1 0.514 0.058 0.112 3.588 0.026
3 0.515 0.057 0.111 3.592 0.026
10 0.522 0.057 0.110 3.590 0.026

Table 4: Average summary statistics. We gather the descriptive statistics of the combi-
nations of portfolios tested in the paper. The trading cost-adjusted Sharpe ratio, SR is defined in
Equation (14). The annual return corresponds to the numerator of the Sharpe ratio. Similarly, the
annualized volatility is simply the standard deviation of weekly returns, scaled for annualization
and corresponds to the denominator of the Sharpe ratio. The maximum drawdown and the average
turnover AT O are specified in Equations (15) and (16), respectively. Note that we standardized
the maximum drawdown by the volatility so that it can be comparable in terms of risk budget.
All indicators are averaged at the cluster level.
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Dataset Type Horiz. γ SR Ann. ret. Ann. vol. Max DD.
vol. Avg. Weekly TO

25 portfolios

Trad. 1M 1 0.384 0.081 0.210 2.667 0.640
3 0.418 0.086 0.205 2.738 0.585
10 0.478 0.095 0.198 2.890 0.432

3M 1 0.433 0.091 0.210 2.673 0.526
3 0.450 0.092 0.205 2.731 0.482
10 0.515 0.102 0.198 2.870 0.348

6M 1 0.433 0.090 0.208 2.744 0.450
3 0.460 0.094 0.203 2.760 0.406
10 0.512 0.102 0.198 2.863 0.306

direct 1M 1 0.508 0.114 0.225 2.769 0.079
3 0.510 0.114 0.224 2.782 0.079
10 0.518 0.114 0.220 2.813 0.082

3M 1 0.503 0.113 0.224 2.796 0.091
3 0.506 0.112 0.222 2.817 0.090
10 0.515 0.112 0.217 2.879 0.090

6M 1 0.510 0.114 0.223 2.806 0.088
3 0.514 0.113 0.221 2.828 0.085
10 0.520 0.112 0.215 2.893 0.082

direct 1M 1 0.512 0.115 0.225 2.765 0.068
- 1/N 3 0.514 0.115 0.224 2.774 0.068

10 0.521 0.115 0.221 2.806 0.071
3M 1 0.507 0.114 0.224 2.789 0.076

3 0.511 0.114 0.222 2.809 0.076
10 0.519 0.113 0.217 2.866 0.077

6M 1 0.514 0.115 0.223 2.799 0.074
3 0.517 0.114 0.221 2.819 0.072
10 0.523 0.113 0.216 2.885 0.069

Table 5: Average summary statistics - continued. We gather the descriptive statistics
of the combinations of portfolios tested in the paper. The trading cost-adjusted Sharpe ratio, SR
is defined in Equation (14). The annual return corresponds to the numerator of the Sharpe ratio.
Similarly, the annualized volatility is simply the standard deviation of weekly returns, scaled for
annualization and corresponds to the denominator of the Sharpe ratio. The maximum drawdown
and the average turnover AT O are specified in Equations (15) and (16), respectively. Note that
we standardized the maximum drawdown by the volatility so that it can be comparable in terms
of risk budget. All indicators are averaged at the cluster level.

compare the drawdowns linked to this fixed level of dispersion in returns.
The individual values of relative drawdowns are averaged across degrees of freedom

so as to display clustered values. The exhaustive results for each combination and each
universe are available upon request.

One interesting property is that the relative drawdown is not very sensitive to γ with
the direct methods, as if the supervision focused on expected returns, regardless of risk
aversion. Thus, when increasing γ, both simple risks and extreme risks can be curtailed.
Overall, in spite of a few exceptions, the traditional approach appears less extremely risky
than the direct approaches. Also, both direct methods yield very comparable results. This
was expected, because the number of assets is invariant, hence the demeaning of weights
adds little value in this case.

As a point of comparison, we provide in Table 8 of Appendix B the average metrics
pertaining to the portfolios computed with knowledge of realized returns. Because these
in-sample portfolios remain subject to the same constraints as our baseline allocations, the
relative drawdowns remain substantial (between 1.4 and 3.3 times the volatility, across all
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Figure 5: Relative maximum drawdown. We report the average of maximum drawdowns
net of trading cost (5 or 15 bps, depending on the universe) divided by volatility, within each
Return horizon and Gamma cluster (i.e., average across weight constraints, hyperbolic tangent
transform, and covariance matrix sample depth for the traditional approach).
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universes). This shows that any reasonable allocation (especially in the equity space) was
subject to strong losses at one point during the backtest (see also our sub-period analysis
in Section 6.1).

Moreover, to shed additional light on the differences between the direct and indirect
methods, we focus on the timing of the maximum drawdown for the four asset classes
in Figure 6. We note that for three out of the four classes, it occurs around the end of
2007 and the beginning of 2008, during the subprime financial crisis. We observe that the
traditional approach is more reactive in turbulent times, often with binary switches that
saturate the investment constraints. For developed market equities, the direct method
lowers the exposure slowly and never to the minimum authorized level. For emerging
equities however, the position is stable, while the benchmark model hesitates and oscillates.
For sovereign bonds, the direct approach fares better, but the magnitude of the drawdown
(-8%) is less severe compared to the other classes. Overall it seems that reactivity favors
the traditional approach for that matter.
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Figure 6: Maximum drawdown of the four asset classes. We display the period of the
maximum drawdown of the 4 assets alongside the corresponding portfolio weights (left axis) for
the two methods: benchmark in blue and direct in red. The dark dotted line shows the cumulative
return of the asset class (right axis). The plot corresponds to the case of relative constraint of
20%, so that the maximum weight for developed market equities can be 52% × 1.2 = 62.4% and
the minimum can be 52%× 0.8 = 41.6%; 52% being the benchmark target.

5.3 Turnover

In Figure 7, we plot the average turnover of the strategies. The turnover metrics are shown
by approach type and each color codes a constraint intensity. Naturally, the looser the
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constraint, the higher the turnover, on average. The most striking pattern in the figure is
the substantially lower turnover generated by the direct estimation of the strategies.
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Figure 7: Average Weekly Turnover. We report the average weekly asset rotation for each
strategy tested. The legend on the right corresponds to the maximum weight constraints used in
the optimizers.

We observe a clear difference between the investment approaches. Note that since
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the traditional approach requires to specify the backward looking horizon window for the
covariance matrix, there are three times more points in the benchmark column since we
tested 3 different horizon windows.

In Figure 8 in the Appendix, we depict the evolution of weights for the first dataset.
Each one of the ten assets has its own panel. Traditional weights are shown in red and
directly supervised weights are plotted in blue. The former often hit the edges of the
box constraints: this comes from the optimizer finding an corner solution. The result is
an allocation that is often binary in the assets (either fully invested or with zero weight
in the portfolio), which generates increased rotation and much higher turnover. In com-
parison, the weights that are learned directly exhibit much smoother patterns and thus,
reduced trading intensity. This has major consequences because taking on-off positions is
impossible in practice: asset managers fine-tune their positions with small shifts in their
portfolios rather than extreme changes.

6 Robustness checks

6.1 Sub-period analysis

An interesting question for investors pertains to the behavior of their portfolios during
times of financial turmoil. In Table 6 below, we compute the average returns realized in
recent periods of market turbulence. The values are averaged over the degrees of freedom
of the protocol: prediction horizon and risk aversion parameter.

The various methods yield relatively comparable results, and the latter are rather
universe and crisis dependent. For instance, results are quite close during the Lehman
crisis, favorable to the direct approach during the Brexit and the Covid-19 rebound. In
the midst of the Covid-19 crash, results are only favorable to the direct method for the
4 asset class universe. Overall, our conclusions are not much impacted when looking at
particular important moments in our samples.

6.2 Linear models

The results we have presented so far rely on boosted trees as the driving engine for super-
vision. Therefore, it is possible that our findings are contingent on this choice. The most
natural alternative to tree methods would be neural networks, but they would require
many architectural choices. Rather, we propose to evaluate the sensitivity of our results
to the learning engine by resorting to the simplest model there is: the linear regression.

In Table 7, we gather the performance indicators obtained when replacing boosted trees
by simple linear models. We report only the simple direct approach, as it is equivalent
to the corrected one in the case of linear models. A first observation is that Sharpe
ratios are overwhelmingly lower, compared to those of Table 4 and 5, meaning, that more
sophisticated algorithms do imply improved forecasting ability. Nevertheless, we note that
maximum drawdowns are lower with linear models.

When comparing the two approaches, the outcomes are very universe-dependent. For
example, with the 4 asset classes, both yield similar Sharpe ratios. However, for the
other two datasets, there is a very significant superiority of our direct approach. These
additional findings corroborate the usefulness of the core idea outlined in the paper.
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Type Subprime crisis Brexit Covid-19 Covid-19 Rebound

PANEL A: 10 industries
Trad. -0.112 0.047 -0.211 0.053
direct -0.129 0.052 -0.225 0.083
direct - 1/N -0.129 0.052 -0.225 0.083

PANEL B: 4 asset classes
Trad. -0.109 0.035 -0.142 0.033
direct -0.110 0.036 -0.128 0.035
direct - 1/N -0.110 0.036 -0.127 0.034

PANEL 5: 25 sorted portfolios
Trad. -0.140 0.053 -0.229 0.084
direct -0.141 0.059 -0.273 0.100
direct - 1/N -0.142 0.059 -0.274 0.100

Table 6: Crisis Performance. We report the average of realized returns of the portfolios,
across all combinations of horizons and risk aversions. The subsamples are defined as
follows: Subprime: 2008-09-26 → 2008-10-10; Brexit: 2016-06-23 → 2016-06-27; Covid-
19: 2020-02-19 → 2020-03-23; Covid-19 rebound: 2020-03-23 → 2020-04-27.

7 Conclusion
In this article, we propose a general, integrated, framework for portfolio construction based
on supervised learning. Traditionally, the supervision is only focused on mining expected
returns which are subsequently sent to an optimization scheme in order to derive optimal
portfolio weights. We advocate to process the weights before the supervision stage.

This allows the algorithm to learn from past time series of in-sample optimal weights
and to infer the best weights from variables such as past performance, risk, and proxies of
the macro-economic outlook.

Our open source empirical analysis shows that this idea is beneficial mostly when the
focus of the optimization is on the first moment of returns, that is, when the risk aversion
is low in the mean-variance framework. In this case, the trading cost-adjusted out-of-
sample Sharpe ratios of our directly supervised portfolios outperform those stemming
from the traditional approach. The former have larger average returns, along with higher
volatilities, but the net effect is in their favor overall.

Given the sensitivity of results to trading costs, a direction for future research would
be to include them directly into the optimizers and loss functions. This would allow to
further control asset rotation. This is left for future research.

Another open field of investigation pertains to the theoretical reasons underpinning the
superiority of direct estimation versus the traditional approach. One key element is the
shift in the returns’ distributions between the training phase and the testing phase (actual
trading). However, the channels through which this may favor the direct estimation remain
unclear. This is also fertile ground for future work.
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Dataset Type Horiz. γ SR Ann. ret. Ann. vol. Max DD.
vol. Avg. Weekly TO

10 industries

Trad. 1M 1 0.406 0.082 0.203 2.720 0.573
3 0.407 0.079 0.193 2.749 0.555
10 0.450 0.079 0.175 2.734 0.485

3M 1 0.402 0.081 0.202 2.586 0.505
3 0.392 0.075 0.193 2.629 0.489
10 0.439 0.076 0.173 2.654 0.426

6M 1 0.353 0.069 0.195 2.523 0.460
3 0.384 0.071 0.184 2.554 0.434
10 0.468 0.080 0.170 2.627 0.373

Direct 1M 1 0.478 0.092 0.193 2.811 0.107
3 0.479 0.092 0.192 2.814 0.107
10 0.483 0.090 0.187 2.825 0.107

3M 1 0.457 0.089 0.195 2.775 0.139
3 0.460 0.089 0.193 2.780 0.136
10 0.472 0.088 0.187 2.802 0.130

6M 1 0.470 0.090 0.191 2.751 0.141
3 0.473 0.089 0.188 2.766 0.136
10 0.483 0.087 0.181 2.799 0.128

4 asset classes

Trad. 1M 1 0.503 0.054 0.108 3.654 0.090
3 0.493 0.053 0.107 3.708 0.087
10 0.510 0.053 0.104 3.677 0.078

3M 1 0.481 0.052 0.109 3.471 0.078
3 0.491 0.053 0.107 3.481 0.076
10 0.499 0.052 0.104 3.560 0.066

6M 1 0.484 0.053 0.109 3.438 0.070
3 0.496 0.054 0.108 3.468 0.068
10 0.511 0.053 0.104 3.539 0.060

Direct 1M 1 0.503 0.057 0.113 3.614 0.030
3 0.504 0.057 0.113 3.613 0.030
10 0.507 0.057 0.112 3.616 0.030

3M 1 0.501 0.057 0.113 3.581 0.031
3 0.505 0.057 0.112 3.585 0.031
10 0.509 0.056 0.110 3.600 0.032

6M 1 0.502 0.056 0.112 3.562 0.036
3 0.504 0.056 0.112 3.565 0.036
10 0.507 0.056 0.110 3.599 0.035

25 portfolios

Trad. 1M 1 0.389 0.084 0.216 2.679 0.576
3 0.405 0.085 0.211 2.694 0.542
10 0.464 0.094 0.202 2.759 0.449

3M 1 0.429 0.094 0.220 2.681 0.459
3 0.434 0.093 0.215 2.712 0.436
10 0.459 0.095 0.206 2.824 0.368

6M 1 0.461 0.101 0.220 2.667 0.374
3 0.467 0.100 0.215 2.666 0.353
10 0.483 0.100 0.207 2.775 0.302

Direct 1M 1 0.515 0.116 0.225 2.739 0.116
3 0.519 0.116 0.223 2.747 0.115
10 0.527 0.115 0.219 2.778 0.113

3M 1 0.504 0.113 0.225 2.748 0.126
3 0.508 0.113 0.223 2.767 0.124
10 0.519 0.113 0.217 2.829 0.124

6M 1 0.518 0.116 0.224 2.778 0.121
3 0.519 0.115 0.221 2.810 0.121
10 0.527 0.113 0.215 2.878 0.119

Table 7: Average summary statistics using a linear regression model. We gather
the descriptive statistics of the combinations of portfolios tested in the paper. The trading cost-
adjusted Sharpe ratio, SR is defined in Equation (14). The annual return corresponds to the
numerator of the Sharpe ratio. Similarly, the annualized volatility is simply the standard deviation
of weekly returns, scaled for annualization and corresponds to the denominator of the Sharpe ratio.
The maximum drawdown and the average turnover AT O are specified in Equations (15) and (16),
respectively. Note that we standardized the maximum drawdown by the volatility so that it can
be comparable in terms of risk budget. All indicators are averaged at the cluster level.
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Figure 8: Strategy exposures by sectors. We compare the sector exposure between the
benchmark (red) and direct estimation (blue). We use 63 days for the horizon window as well as
for the covariance matrix lookback window. The maximum weight constraint is 20% and the risk
aversion factor gamma = 1
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B Perfect foresight (in-sample results)

Horiz. γ SR Ann. ret. Ann. vol. Max DD.
vol. Avg. Weekly TO

PANEL A: 10 industries
1M 1 2.210 0.434 0.196 1.521 0.633

3 2.259 0.434 0.192 1.489 0.627
10 2.302 0.422 0.183 1.551 0.604

3M 1 1.435 0.289 0.201 1.849 0.383
3 1.482 0.290 0.195 1.852 0.384
10 1.561 0.282 0.181 1.889 0.371

6M 1 1.222 0.250 0.204 2.082 0.293
3 1.274 0.251 0.196 2.134 0.288
10 1.311 0.239 0.182 2.041 0.269

PANEL B: 4 asset classes
1M 1 0.944 0.103 0.109 3.124 0.097

3 0.947 0.103 0.109 3.132 0.097
10 0.949 0.102 0.108 3.132 0.093

3M 1 0.787 0.088 0.111 3.200 0.057
3 0.808 0.089 0.110 3.241 0.058
10 0.821 0.089 0.108 3.200 0.054

6M 1 0.704 0.079 0.112 3.272 0.042
3 0.727 0.080 0.111 3.252 0.041
10 0.751 0.081 0.108 3.283 0.039

PANEL C: 25 sorted portfolios
1M 1 1.692 0.383 0.226 1.704 0.728

3 1.702 0.380 0.223 1.697 0.724
10 1.709 0.366 0.214 1.850 0.699

3M 1 1.223 0.278 0.227 1.999 0.433
3 1.249 0.276 0.221 1.947 0.429
10 1.242 0.260 0.209 2.027 0.399

6M 1 1.000 0.229 0.229 2.222 0.304
3 1.018 0.227 0.223 2.241 0.299
10 1.016 0.214 0.210 2.276 0.273

Table 8: In-sample average summary statistics (perfect foresight target). We
report the average metrics pertaining to the portfolios computed with knowledge of realized
first moments of returns. The portfolios are subject to the same constraints as the baseline
allocations.

29

Electronic copy available at: https://ssrn.com/abstract=3954109



References
Ammann, M., G. Coqueret, and J.-P. Schade (2016). Characteristics-based portfolio choice

with leverage constraints. Journal of Banking & Finance 70, 23–37.

André, E. and G. Coqueret (2020). Dirichlet policies for reinforced factor portfolios. SSRN
Working Paper 3726714.

Asness, C. S., T. J. Moskowitz, and L. H. Pedersen (2013). Value and momentum every-
where. Journal of Finance 68 (3), 929–985.

Baker, M., B. Bradley, and J. Wurgler (2011). Benchmarks as limits to arbitrage: Under-
standing the low-volatility anomaly. Financial Analysts Journal 67 (1), 40–54.

Banz, R. W. (1981). The relationship between return and market value of common stocks.
Journal of Financial Economics 9 (1), 3–18.

Bergstra, J. and Y. Bengio (2012). Random search for hyper-parameter optimization.
Journal of Machine Learning Research 13 (10), 281–305.

Brandt, M. W., P. Santa-Clara, and R. Valkanov (2009). Parametric portfolio policies:
Exploiting characteristics in the cross-section of equity returns. Review of Financial
Studies 22 (9), 3411–3447.

Butler, A. and R. Kwon (2021). Integrating prediction in mean-variance portfolio opti-
mization. SSRN Working Paper 3788875.

Campbell, J. Y. and L. M. Viceira (2002). Strategic asset allocation: Portfolio choice for
long-term investors. Oxford University Press.

Cenesizoglu, T. and A. Timmermann (2012). Do return prediction models add economic
value? Journal of Banking & Finance 36 (11), 2974–2987.

Chaieb, I., H. Langlois, and O. Scaillet (2021). Factors and risk premia in individual
international stock returns. Journal of Financial Economics 141 (2), 669–692.

Chen, A. Y. (2021). Most claimed statistical findings in cross-sectional return predictability
are likely true. SSRN Working Paper 3912915.

Cong, L. W., K. Tang, J. Wang, and Y. Zhang (2022). Alphaportfolio: Direct con-
struction through deep reinforcement learning and interpretable ai. SSRN Working
Paper 3554486.

Coqueret, G. (2015). Diversified minimum-variance portfolios. Annals of Finance 11 (2),
221–241.

Coqueret, G. (2021). Persistence in factor-based supervised learning models. Journal of
Finance and Data Science Forthcoming.

Coqueret, G. and T. Guida (2020). Machine Learning for Factor Investing: R Version.
CRC Press.

30

Electronic copy available at: https://ssrn.com/abstract=3954109



Costa, G. and G. N. Iyengar (2022). Distributionally robust end-to-end portfolio construc-
tion. arXiv Preprint (2206.05134).

Diebold, F. and R. Mariano (1995). Comparing predictive accuracy. Journal of Business
And Economic Statistics 13 (3), 253–63.

Diebold, F. X. (2015). Comparing predictive accuracy, twenty years later: A personal
perspective on the use and abuse of diebold–mariano tests. Journal of Business &
Economic Statistics 33 (1), 1–1.

Elmachtoub, A. N. and P. Grigas (2022). Smart “predict, then optimize”. Management
Science 68 (1), 9–26.

Fama, E. and K. French (1992). The cross-section of expected stock returns. Journal of
Finance 47 (2), 427–465.

Fama, E. F. and K. R. French (2015). A five-factor asset pricing model. Journal of
Financial Economics 116 (1), 1–22.

Fama, E. F. and R. Kenneth (1993). Common risk factors in the returns on stocks and
bonds. Journal of Financial Economics 33 (1), 3–56.

Freyberger, J., A. Neuhierl, and M. Weber (2020). Dissecting characteristics nonparamet-
rically. Review of Financial Studies 33 (5), 2326–2377.

Gârleanu, N. and L. H. Pedersen (2013). Dynamic trading with predictable returns and
transaction costs. Journal of Finance 68 (6), 2309–2340.

Goetzmann, W. N. and A. Kumar (2008). Equity portfolio diversification. Review of
Finance 12 (3), 433–463.

Golosnoy, V. and B. Gribisch (2022). Modeling and forecasting realized portfolio weights.
Journal of Banking & Finance Forthcoming, 106404.

Grinsztajn, L., E. Oyallon, and G. Varoquaux (2022). Why do tree-based models still
outperform deep learning on tabular data? arXiv Preprint (2207.08815).

Gu, S., B. Kelly, and D. Xiu (2020). Empirical asset pricing via machine learning. Review
of Financial Studies 33 (5), 2223–2273.

Guida, T., G. Coqueret, et al. (2018). Ensemble learning applied to quant equity: gradient
boosting in a multifactor framework. Big data and machine learning in quantitative
investment, 129–148.

Han, Y., Y. Liu, G. Zhou, and Y. Zhu (2021). Technical analysis in the stock market: A
review. SSRN Working Paper 3850494.

Han, Y., K. Yang, and G. Zhou (2013). A new anomaly: The cross-sectional profitability
of technical analysis. Journal of Financial and Quantitative Analysis 48 (5), 1433–1461.

31

Electronic copy available at: https://ssrn.com/abstract=3954109



Han, Y., G. Zhou, and Y. Zhu (2016). A trend factor: Any economic gains from using
information over investment horizons? Journal of Financial Economics 122 (2), 352–
375.

Hansen, P., A. Lunde, and J. Nason (2011). The model confidence set. Econometrica 79 (2),
453–497.

Harvey, C. R. (2017). Presidential address: The scientific outlook in financial economics.
The Journal of Finance 72 (4), 1399–1440.

Harvey, C. R., J. C. Liechty, M. W. Liechty, and P. Müller (2010). Portfolio selection with
higher moments. Quantitative Finance 10 (5), 469–485.

Harvey, C. R. and Y. Liu (2021). Uncovering the iceberg from its tip: A model of publi-
cation bias and p-hacking. SSRN Working Paper 3865813.

He, X., L. W. Cong, G. Feng, and J. He (2021). Asset pricing with panel trees under
global split criteria. SSRN Working Paper 3949463.

Hjalmarsson, E. and P. Manchev (2012). Characteristic-based mean-variance portfolio
choice. Journal of Banking & Finance 36 (5), 1392–1401.

Hull, B. and X. Qiao (2017). A practitioner’s defense of return predictability. The Journal
of Portfolio Management 43 (3), 60–76.

Jagannathan, R. and T. Ma (2003). Risk reduction in large portfolios: Why imposing the
wrong constraints helps. Journal of Finance 58 (4), 1651–1683.

Januschowski, T., Y. Wang, K. Torkkola, T. Erkkilä, H. Hasson, and J. Gasthaus (2021).
Forecasting with trees. International Journal of Forecasting Forthcoming.

Jegadeesh, N. and S. Titman (1993). Returns to buying winners and selling losers: Impli-
cations for stock market efficiency. Journal of Finance 48 (1), 65–91.

Jensen, T. I., B. T. Kelly, and L. H. Pedersen (2021). Is there a replication crisis in
finance? Journal of Finance Forthcoming.

Jorion, P. (1985). International portfolio diversification with estimation risk. Journal of
Business 58 (3), 259–278.

Kan, R. and D. R. Smith (2008). The distribution of the sample minimum-variance
frontier. Management Science 54 (7), 1364–1380.

Kelly, B. T., S. Pruitt, and Y. Su (2019). Characteristics are covariances: A unified model
of risk and return. Journal of Financial Economics 134 (3), 501–524.

Koijen, R. S. and M. Yogo (2019). A demand system approach to asset pricing. Journal
of Political Economy 127 (4), 1475–1515.

Krauss, C., X. A. Do, and N. Huck (2017). Deep neural networks, gradient-boosted trees,
random forests: Statistical arbitrage on the s&p 500. European Journal of Operational
Research 259 (2), 689–702.

32

Electronic copy available at: https://ssrn.com/abstract=3954109



Langlois, H. (2020). A new benchmark for dynamic mean-variance portfolio allocations.
SSRN Working Paper 3548138.

Li, X., R. N. Sullivan, and L. Garcia-Feijóo (2016). The low-volatility anomaly: Market
evidence on systematic risk vs. mispricing. Financial Analysts Journal 72 (1), 36–47.

López de Prado, M. (2016). Building diversified portfolios that outperform out of sample.
The Journal of Portfolio Management 42 (4), 59–69.

López de Prado, M. (2018). Advances in Financial Machine Learning. John Wiley &
Sons.

Makridakis, S., E. Spiliotis, and V. Assimakopoulos (2022). The M5 accuracy competition:
Results, findings and conclusions. Int J Forecast Forthcoming.

Markowitz, H. (1952). Portfolio selection. Journal of Finance 7 (1), 77–91.

Moody, J., L. Wu, Y. Liao, and M. Saffell (1998). Performance functions and reinforcement
learning for trading systems and portfolios. Journal of Forecasting 17 (5-6), 441–470.

Nadarajah, S. and T. K. Pogány (2016). On the distribution of the product of correlated
normal random variables. Comptes Rendus Mathematique 354 (2), 201–204.

Raffinot, T. (2017). Hierarchical clustering-based asset allocation. Journal of Portfolio
Management 44 (2), 89–99.

Rapach, D. E., J. K. Strauss, J. Tu, and G. Zhou (2019). Industry return predictability:
A machine learning approach. Journal of Financial Data Science 1 (3), 9–28.

Schapire, R. E. (1990). The strength of weak learnability. Machine Learning 5 (2), 197–227.

Shwartz-Ziv, R. and A. Armon (2022). Tabular data: Deep learning is not all you need.
Information Fusion 81, 84–90.

Simon, F., S. Weibels, and T. Zimmermann (2022). Deep parametric portfolio policies.
SSRN Working Paper 4150292.

Uysal, S., X. Li, and J. M. Mulvey (2021). End-to-end risk budgeting portfolio optimization
with neural networks. SSRN Working Paper 3883614.

Van Dijk, M. A. (2011). Is size dead? A review of the size effect in equity returns. Journal
of Banking & Finance 35 (12), 3263–3274.

Welch, I. and A. Goyal (2008). A comprehensive look at the empirical performance of
equity premium prediction. Review of Financial Studies 21 (4), 1455–1508.

White, H. (2000, September). A Reality Check for Data Snooping. Econometrica 68 (5),
1097–1126.

Zhang, Z., S. Zohren, and S. Roberts (2020a). Deep learning for portfolio optimization.
Journal of Financial Data Science 2 (4), 8–20.

Zhang, Z., S. Zohren, and S. Roberts (2020b). Deep reinforcement learning for trading.
Journal of Financial Data Science 2 (2), 25–40.

33

Electronic copy available at: https://ssrn.com/abstract=3954109


	Introduction
	Related literature
	Model
	Theoretical framework
	The benchmark approach
	A direct estimation of weights
	A toy example

	Empirical protocol
	Datasets and variables
	The two-step approaches
	Portfolio construction
	Prediction model
	Gradient boosting decision trees
	Random search cross-validation

	Investment strategies
	Portfolio construction parameters
	Performance criteria

	Data Snooping and statistical testing

	Empirical results
	Sharpe ratios
	Maximum drawdown
	Turnover

	Robustness checks
	Sub-period analysis
	Linear models

	Conclusion
	Sector weights
	Perfect foresight (in-sample results)

