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Abstract

Pulse rate (PR) is one of the most important markers for assessing a person's
health. With the increasing demand for long-term health monitoring, much
attention is being paid to contactless PR estimation using imaging photo-
plethysmography (iPPG). This non-invasive technique is based on the analy-
sis of subtle changes in skin color. Despite e�orts to improve iPPG, the exist-
ing algorithms are vulnerable to less-constrained scenarios (i.e., head move-
ments, facial expressions, and environmental conditions). In this article, we
propose a novel end-to-end spatio-temporal network, namely X-iPPGNet,
for instantaneous PR estimation directly from facial video recordings. Un-
like most existing systems, our model learns the iPPG concept from scratch
without incorporating any prior knowledge or going through the extraction of
blood volume pulse signals. Inspired by the Xception network architecture,
color channel decoupling is used to learn additional photoplethysmographic
information and to e�ectively reduce the computational cost and memory re-
quirements. Moreover, X-iPPGNet predicts the pulse rate from a short time
window (2 seconds), which has advantages with high and sharply �uctuating
pulse rates. The experimental results revealed high performance under all
conditions including head motions, facial expressions, and skin tone. Our ap-
proach signi�cantly outperforms all current state-of-the-art methods on three
benchmark datasets: MMSE-HR (MAE = 4.10 ; RMSE = 5.32 ; r = 0.85),
UBFC-rPPG (MAE = 4.99 ; RMSE = 6.26 ; r = 0.67), MAHNOB-HCI
(MAE = 3.17 ; RMSE = 3.93 ; r = 0.88).
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Figure 1: Overview of the proposed framework for visual pulse rate estimation. Face seg-
mentation and cropping are performed �rst on the input video to get rid of non-skin areas.
Then the facial image sequences are fed to a deep neural network (X-iPPGNet) consisting
of 3D Depthwise Separable Convolutions for spatial and temporal features extraction, and
Dense layers for pulse rate prediction.

1. Introduction

Pulse rate (PR) is one of the important indicators of a person's health
that needs to be monitored routinely to identify a range of health issues.
Electrocardiography and Photoplethysmography (PPG) are the main ways
of measuring heart rate activity. Both techniques use contact sensors that
need to be attached to body parts. Despite the high accuracy and robustness
provided by these devices, speci�c conditions are required to acquire accurate
measurements. Moreover, contact with skin can be inconvenient or even
infeasible in some critical cases such as burns, skin ulcers, or contagious
diseases [1]. These constraints limit their use in realistic scenarios. Over
the last decade, great progress has been made in non-contact pulse rate
estimation using imaging photoplethysmography, due to its wide application
domains [2, 3, 4, 5, 6, 7, 8]. iPPG is an optical technique allowing a remote
assessment of the pulse rate by observing the blood-volume variations on a
person's face using a simple camera.

Conventional iPPG algorithms are based on hand-crafted features ap-
proaches, which generally involve multi-stage pipelines and require multiple
image and signal processing steps [9, 2, 3, 6, 4, 5]. Most of these methods
have been carried out under constrained environments and rely on certain
assumptions regarding light-skin interaction and head motions. Therefore,
they perform reasonably well under controlled conditions. However, their
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performance degrades signi�cantly under challenging scenarios such as large
head movement, poor lighting conditions, and very dark skin [8, 10].

Inspired by the recent breakthroughs in computer vision tasks [11, 12,
13, 14], current state-of-the-art algorithms incorporate deep learning archi-
tectures in di�erent stages of the conventional imaging photoplethysmogra-
phy pipeline. Deep neural networks have been used to accurately extract the
iPPG signal [7, 8, 15, 16]. However, several limitations remain to be resolved.
These systems are not end-to-end, so they still require pre-processing or post-
processing steps as well as a larger time-span window to estimate pulse rate.
Furthermore, heart rate activity should be measured even in unconstrained
scenarios. Many factors can a�ect the measurement: the person may move
his head or express emotions, his face can be partially occluded or light con-
ditions may be changing continuously. These situations a�ect the quality of
the extracted iPPG signal, thus degrading the accuracy of the predicted PR
values.

To address these drawbacks, we developed an end-to-end deep learning
model (X-iPPGNet) for instantaneous pulse rate estimation directly from
raw facial videos. The architecture is fully automatic and does not require
any prior knowledge or special pre-processing or post-processing. This work
is an extension and improvement of the method proposed as part of the
Vision for Vitals Challenge [17]. We propose a new e�cient architecture and
evaluate its e�ectiveness using public databases. We also examine the impact
of challenging conditions on performance.

The main contributions of this study are summarized as follows:

1. We propose a novel one-stage approach based on an end-to-end train-
able neural network.

2. X-iPPGNet predicts pulse rate from short-time video excerpts (2 sec-
onds), which is particularly relevant in the case of high and sharply
�uctuating pulse rates.

3. Color channels decoupling is used to extract additional photoplethys-
mographic information.

4. The �rst use of the BP4D+ database in conjunction with data aug-
mentation.
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5. Extensive evaluations on multiple public databases to analyze the ef-
fectiveness and generalizability of the proposed method against a range
of challenging factors.

The remainder of the article is organized as follows: related works are
brie�y exposed in Section II. Section III presents the materials and meth-
ods. Experimental results are presented and discussed in Section IV and V
respectively. Finally, conclusions and future works are given in Section VI.

2. Related works

By surveying existing research on contactless pulse rate estimation using
iPPG, we can identify the existence of two major approaches according to the
way of iPPG signal extraction, either manually using conventional methods
[9, 2, 3, 6, 4, 5], or automatically using deep learning models [7, 8, 15, 16].
Earlier works on iPPG relied on hand-crafted features approaches that gen-
erally include image and signal processing operations. The image processing
techniques are �rst applied to locate the skin regions containing relevant
information about the subtle color changes associated with blood �ow. Dif-
ferent color spaces and di�erent regions of interest (ROI) were exploited to
constitute raw iPPG signals using a spatial averaging operation. Verkruysse
et al. [9] have initially computed raw iPPG signals from the green channel
using a set of prede�ned ROI. Several face detectors and trackers have been
used to extract the entire face or sub-regions from the face such as the fore-
head or cheeks [26, 30, 34, 35, 36]. Bousefsaf et al. [27] proposed to select
only the pixels of interest using a custom skin segmentation, while Tulyakov
et al. [22] developed an approach to choose dynamically the ROI using self-
adaptive matrix completion. Furthermore, di�erent color spaces have been
studied besides the standard RGB. For example, the u* component from the
CIE L*u*v* color space [27] and V from YUV have been exploited [28].

In the second step, signal processing algorithms are performed to increase
the signal-to-noise ratio and remove the noise from iPPG signal. Some of the
popular studies include blind source separation methods, such as independent
component analysis [26] and principal components analysis [30]. On the
other hand, Haan and his group achieved further improvements by proposing
model-based approaches [3, 4, 5]. They developed di�erent color subspace
transformations to overcome motion artifacts and improve the quality of
iPPG signal.
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Table 1: A brief summary of existing iPPG-based PR estimation approaches and their
pros & cons.

Multiple stage
One stage

Conventional Deep learning

Input

Thermal [18]
Thermal [19] R.G.B [20]

Monochromatic [21]

R.G.B [22, 23]
R.G.B [7, 16] Synthetic Data [24]

Five band [25]

Preprocessing

Face ROI detection

& tracking [22, 26]

Face ROI detection

& tracking [8] Face ROI detection

& tracking [20]Color space transformation [27, 28] Spatial temporal maps [8]

Signal decomposition [2] Video magni�cation [29]

Postprocessing

Filtering [26, 30, 3] FFT [31]

-FFT [32, 2] Peaks detection [15]

Peaks detection [26, 25] Deep learning model [8, 33]

iPPG signal extraction Spatial average [6, 26, 1] Deep regression model [7, 15] -

Pros
Allows pulse wave

features extraction

Good generezability Good generezability

Allows pulse wave

features extraction

Easy to deploy

Short time span window

Cons

Hard to deploy Hard to deploy

Does not allow pulse

wave features extraction

Require pre-processing

or post-processing steps

Require pre-processing

or post-processing steps

Large time span window
Large time span window

Poor generezability
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With the great success of deep learning and more speci�cally convolu-
tional neural networks for medical imaging and computer vision tasks [37,
38, 12], several groups developed deep learning-based methods for iPPG esti-
mation. According to the recent review of Ni et al. [39], existing methods are
built using VGG-style CNN [7, 33, 40], or combine CNN and LSTM to take
into account the temporal information [41, 8, 20], or use 3D-CNN directly to
simultaneously learn spatial and temporal features [15, 42, 24, 43, 44]. To
name some of the promising works, Chen and McDu� [7] proposed a con-
volutional attention network named DeepPhys, which consists of two-stream
CNN to extract blood volume pulse waveform from facial video under varying
lighting and signi�cant head motions. They used an appearance model based
on an attention mechanism to �nd the appropriate regions of interest (ROI)
and to guide the motion representation model. Radim et al. [33] proposed a
two-stage convolutional neural network method composed of 2D CNN and 1D
CNN respectively. The �rst one extracts the iPPG signal while the second re-
gresses pulse rate values. Niu et al. [8] generated spatial-temporal maps from
multiple ROI over the face and then trained a CNN-RNN network to regress
the average PR value. Yu et al. [15] introduced a spatial-temporal deep
neural network (PhysNet) to extract iPPG signals from raw facial videos,
and then measure the averaged PR and HRV features. AutoHR is a recent
contribution proposed by Yu et al. [16]. The authors used temporal di�er-
ence convolution beside a strong backbone discovered via neural architecture
search to estimate accurately the iPPG signal from image sequences.

All the methods mentioned above are based on several processing stages.
They mainly use deep learning to recover iPPG signals from facial videos.
However, some works have adopted deep neural networks to pulse rate esti-
mation in an end-to-end manner without passing by iPPG signal extraction.
Bousefsaf et al. [24] were the �rst to demonstrate the possibility of pulse rate
estimation from a face video without any additional processing. They put
forward a 3D CNN trained purely on synthetic data. Huang et al. [20] devel-
oped a one-stage spatio-temporal network that combines 3D convolutional
and LSTM modules to extract spatial and temporal features and a Dense
layer to pulse rate value estimation. Ouzar et al. [45] proposed an e�cient
model built on a linear stack of depthwise separable convolution layers con-
catenated with residual connections. This method has advantages in terms
of speed and simplicity and can run in real-time both on CPUs and GPUs.
Existing iPPG-based PR measurement approaches are summarized in Table
1.
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3. Materials and Methods

3.1. Datasets

The availability of huge databases and advanced neural architectures have
underpinned the great success of deep learning approaches in computer vision
tasks. In the �eld of remote PR estimation, the lack of large-scale heart rate
(HR) datasets has limited the use of deep learning models [8]. Existing
public domain HR databases are quite limited not only in data size but
also in diversity. Head motion, facial expressions, occlusion, and skin tone
correspond to the main challenging conditions that a�ect the performance
of contactless pulse rate measurement from facial videos. However, previous
works had not addressed all of these problems due to the quality and scale
of the aforementioned databases.

For this study, we used four public datasets for pulse rate estimation to
evaluate the performance of the proposed method. We trained X-iPPGNet
on BP4D+ [46], a public large-scale database, while MAHNOB-HCI [47],
UBFC-rPPG [48], and MMSE-HR [46] were used for testing. We brie�y
describe each of these three datasets in the subsequent paragraphs while
we present in detail the BP4D+ database as we are the �rst to use it for
training deep neural networks. Table 2 gives detailed comparisons between
the di�erent databases used in our experiments.

Table 2: Summary of the public-domain databases used in our experiments.

Database Nb of participants Nb videos FPS Ethnicity Task/Condition

MMSE-HR [46] 40 102 25

Latino/Hispanic, White,

African American,

Asian, and Others

Emotion elicitation

MAHNOB-HCI [47] 27 527 61 Caucasian and Asian Emotion elicitation

UBFC-rPPG [48] 42 42 30 - Interaction

BP4D+ [46] 140 1400 25

Latino/Hispanic, White,

African American,

Asian, and Others

Emotion elicitation

3.1.1. MMSE-HR

MMSE-HR [46] was collected for contactless pulse rate estimation under
challenging conditions. It consists of 102 RGB facial videos recorded at 25
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frames-per-second (fps) from 40 subjects (17 males and 23 females) with
various ethnic/racial ancestries. The corresponding average pulse rates were
gathered using a contact BVP sensor (sampling frequency: 1K HZ).

3.1.2. MAHNOB-HCI

MAHNOB-HCI [47] is a commonly used benchmark to assess the e�ec-
tiveness and generalizability of non-contact pulse rate estimation methods.
It includes 527 videos from 27 subjects (12 males and 15 females) along with
their corresponding physiological signals. All videos are recorded at 61 fps
with a resolution of 780× 580 pixels. ECG signal has been used to calculate
the ground truth pulse rate values.

3.1.3. UBFC-rPPG

UBFC-rPPG [48] consists of 42 videos from 42 subjects. The videos were
recorded using a low-cost webcam at 30 fps and a resolution of 640 × 480
pixels. The duration of each recording varies between 50 and 90 seconds.
A Contec Medical CMS50E �nger pulse oximeter is synchronized with the
video recordings to establish the ground truth PPG signal.
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Figure 2: Distribution of the ground truth pulse rates in BP4D+.

3.1.4. BP4D+ [46]

is a large-scale public database mainly dedicated to multimodal spon-
taneous emotion recognition based on facial expressions and physiological
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parameters. It includes several physiological signals such as heart rate, res-
piratory rate, and blood pressure. Compared to existing pulse rate databases,
BP4D+ is signi�cantly larger in terms of data amount and ethnic diversity
(including Black, White, Asian, and Hispanic/Latino). Additionally, it was
collected under challenging scenarios such as signi�cant head motions, wild
pulse rate range, facial expressions, and occlusions. 140 subjects (82 females
and 58 males) participated in ten sessions set up to elicit di�erent emotions.
1400 RGB videos lasting 30 seconds to 1 minute were recorded at 25 fps.
The resolution of each video is 1040 × 1392 pixels. Pulse rate and other
physiological signals were collected with contact sensors at 1K Hz. Figure 2
shows the histogram of ground truth pulse rate distribution in BP4D+. Pulse
rate values vary from 47 to 139 beats per minute (bpm), which almost cov-
ers the typical pulse rate range. The histogram forms an inverse Gaussian
distribution because most healthy and relaxed adults have a resting heart
rate comprised between 70 and 90 beats per minute (see Figure 2). On the
other hand, due to a large amount of corrupted ground truth signals (see a
typical example in Figure 3), we recalculated the pulse rates from the blood
pressure signals available in the database. We also removed segments where
facial regions are outside the image.

0 250 500 750 1000 1250 1500 1750
Frames
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Ground truth PR

Figure 3: Example of ground truth pulse rates (participant F005) showing strong inconsis-
tencies. Red curve: ground truth pulse rate provided by the database; Blue curve: pulse
rate computed from the raw blood pressure signal.
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3.2. Proposed framework

The general framework for pulse rate estimation from facial videos is
illustrated in Figure 1. We treat this task as a one-stage regression problem
that takes batches of 50 frames (corresponding to 2 seconds) as input and
regresses the pulse rate value as output. First, face segmentation is performed
to eliminate the background and non-skin areas [49]. Then the face region
is cropped from the segmented face image according to the coordinates of
the �rst non-zero pixel on each side of the image. Finally, the face image
sequences are scaled and fed to a 3D fully convolutional neural network. We
assume that the proposed architecture can automatically focus on the most
vascularized areas of the face. It then learns the spatio-temporal features
associated with iPPG.

3.2.1. Face segmentation

The extraction of regions of interest (ROI) is the �rst step of almost all
video-based pulse rate estimation [26, 8, 50, 15, 20]. It aims to maximize the
signal-to-noise ratio by only keeping the skin pixels that carry the iPPG in-
formation. Several face and facial landmarks detectors have been employed
to locate ROI. However, these techniques often fail in situations involving
head movement, occlusion, or facial expressions. Many other factors can also
a�ect ROI extraction, such as lighting and background. We compared the
performance of the three most popular face detectors used for iPPG extrac-
tion in terms of e�ciency, i.e., Viola&Jones [51], Dlib [52], and MTCNN [53].
Table 3 illustrates the number of missed images on the MMSE-HR dataset
[46] presented in section 3.1. MMSE-HR has been widely used as a test set in
several works and contains about 108117 images. The results show that the
three face detectors mentioned above fail to perform well in unconstrained
scenes.

To overcome the limitations of face detectors, especially in unconstrained
scenarios, we performed face segmentation using one of the state-of-the-art
algorithms [49] (see Table 3). This method, originally proposed for face-
swapping ideally works in all conditions without missing any frames. Faces
are properly segmented from backgrounds and occlusions with high accuracy.
Some processed images extracted from the MMSE-HR database are shown
in Figure 4.
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Table 3: Number of missed images according to the most popular face detection algorithms.

Face detector Number of missed frames

Viola-Jones [51] 1375

Dlib [52] 227

MTCNN [53] 48

Face segmentation [49] 0

Figure 4: Examples showing the ability of the face segmentation model to work in di�cult
scenarios. Top �gures: raw images, bottom �gures: corresponding segmentations.

3.2.2. Pulse rate estimation neural network

Most of the existing video-based PR estimation approaches that inte-
grate a deep learning model rely on a VGG-style CNN. Temporal information
is processed using recurrent networks [20, 8], spatio-temporal convolutions
[24, 15], or by incorporating another temporal branch in parallel [7]. The
VGG-style CNN is a basic architecture that uses a standard convolution
stack with no residual blocks [54]. Despite its simplicity, it is more prone to
over�tting. It also performs worse than other deep learning architectures on
many computer vision tasks [55]. In addition, standard convolution considers
all spatial and color channel information together. However, previous studies
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showed that color channels have di�erent physiological properties and that
pulsatile activity varies from one color to another [56]. Although the green
channel featuring the strongest plethysmographic signal and carries more
PPG information compared to the other channels, the red and blue channels
also contained useful and complementary plethysmographic information that
should not be neglected [26]. Nevertheless, and to the best of our knowledge,
all deep learning-based approaches have combined RGB channels. This can
lead to loss of useful features across channels, a�ecting measurement accu-
racy.

In this study, we designed an end-to-end deep regression framework based
on a modi�ed Xception network [57]. This architecture outperforms other
deep learning models in several computer vision tasks [55, 58]. Furthermore,
it relies on depthwise separable convolution instead of standard convolution
operations that require larger amounts of memory and computational cost.
A depthwise separable convolution extension for 3D volumes is used 1 to
learn the relevant features associated with the cardiac rhythm of each color
channel separately.

The idea behind the depthwise separable convolution is that the depth
and spatial dimension of a �lter can be decoupled within a convolutional
layer. First, the video embedding dimensions are separated and an indepen-
dent spatio-temporal convolution is performed for each color channel. This
operation is called depthwise convolution. It aims to extract local features
from each color channel of the input image sequences separately and to cap-
ture the temporal relationships among the spatial feature sequences. Then,
a pointwise convolution is performed on the convoluted tensor to merge the
feature maps across channels in the embedding dimension. This e�ectively
reduces computational costs and memory requirements.

Figure 5 presents the overall architecture of the proposed X-iPPGNet,
which consists of three blocks (entry, middle, and exit). It includes 36 con-
volutional layers structured in 14 modules, all linked with shortcuts as in the
ResNet architecture, except for the �rst and last modules. Since the network
is very deep, these residual connections allow reducing the impact of gradi-
ent vanishing. Each convolutional layer is followed by a batch-normalization
to stabilize the training process and accelerate the convergence. ReLU acti-
vation functions are also used to perform nonlinear mapping. The features

1https://github.com/alexandrosstergiou/keras-DepthwiseConv3D
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extraction output is �attened and fed into two dense layers of 1024 and 1
neurons, respectively, to estimate the pulse rate value.

In summary, the proposed non-contact pulse rate estimation framework
is a one-stage pipeline that predicts the average pulse rate in only 2 sec-
onds video fragments. The input is represented as a 5-dimensional tensor
(Nbacth×Nbframes× ImHeight× ImWeight×Channel) (where Nbatch
is the batch-size; Nbframes is the length of face video clip; ImHeight,
ImWeight, and Channel are the size of each frame) and the output is the
estimated pulse rate in beats per minute.

We consider pulse rate prediction as a one-step regression problem. Train-
ing is fully supervised where each 2-seconds video fragment takes a ground
truth pulse rate obtained with a contact device as a training label. In the
training phase, the network learns to associate the ground truth pulse rate
value with each facial video sequence by constructing a mapping relation-
ship between inputs and outputs, i.e., mapping of a three-dimensional tensor
(video data) to a single scalar (pulse rate). After the training phase, the
network would be able to estimate pulse rate within the trained pulse rate
range.

3.2.3. Implementation Details

3.1. Training

The proposed architecture is implemented with Keras and Tensor�ow
frameworks and trained with two Nvidia Quadro P6000s. The videos have
been cut into sequences of 50 frames (corresponding to 2 seconds). The size
of each frame is 160 × 120 × 3 (ImHeight × ImWeight × Channel). The
total number of sequences is 39762. Inspired by the SWATS optimization
procedure [59], we started training with a Recti�ed Adam (RAdam) optimizer
[60] before switching to Stochastic Gradient Descent (SGD) [61] when the
validation accuracy stops improving. The learning rate was initially set to
10−4, and then decreased to 10−6. We train the network for about 25 epochs
with a batch size of 64 (Nbacth = 64) and using the mean-squared-error
loss function. In addition, a dropout technique [62] is applied before the
�nal dense layer of the network (the dropout rate is set to 0.4). L1 and
L2 regularization strategies are employed as well, which help to overcome
over�tting issues and improve the model generalizability to new data.
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BatchNormalization

SeparableConv3D kernel:k

SepConv_BN_ReLU k

BatchNormalization

ReLU

SepConv_BN_ReLU 3×3×3

SepConv_BN_ReLU 3×3×3

SepConv_BN_ReLU 3×3×3

+

×8

Conv_BN_ReLU 16; 3×3×3; 2×2×2

Conv3D 32; 

1×1×1; s=2×2×2 

+

Conv_BN_ReLU 32; 3×3×3; 2×2×2

SeparableConv3D, 3×3×3

SepConv_BN_ReLU 3×3×3

AveragePool3D, 3×3×3; s=2×2×2 

SepConv_BN_ReLU 3×3×3

SepConv_BN_ReLU 3×3×3

AveragePool3D, 3×3×3; s=2×2×2 

Conv3D 64; 

1×1×1; s=2×2×2 

+

SepConv_BN_ReLU 3×3×3

SepConv_BN_ReLU 3×3×3

AveragePool3D, 3×3×3; s=2×2×2 

Conv3D 128; 

1×1×1; s=2×2×2 

+

SepConv_BN_ReLU 3×3×3

SepConv_BN_ReLU 3×3×3

AveragePool3D, 3×3×3; s=2×2×2 

Conv3D 256; 

1×1×1; 

s=2×2×2 

+

SepConv_BN_ReLU 3×3×3

SepConv_BN_ReLU 3×3×3

Flatten

Dense 1024; ReLU

Dense 1; Linear

3D-XceptionNet

Figure 5: X-iPPGNet architecture proposed in this work. It corresponds to a modi�ed
version of the Xception network. 2D depthwise separable convolution layers are replaced
by 3D depthwise separable convolution to capture both spatial and temporal features
across video frames. A Dense layer is used instead of a Global Average Pooling layer. The
input video fragment �rst passes through the entry �ow, then through the middle �ow
which is repeated eight times, and �nally through the exit �ow which ends with a dense
layer of 1 neuron, to estimate the corresponding pulse rate.

3.2. Training set augmentation

A common problem with limited and imbalanced datasets when training
a neural network is over�tting and poor predictive performance, speci�cally
for minority label samples.

X-iPPGNet was �rst trained without data augmentation. However, sev-
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eral problems that hinder the accuracy of pulse rate predictions have caught
our attention. They are mainly caused by the highly imbalanced pulse rate
samples in the BP4D+ database and also by the subjects skin tone [46].
Therefore, high and low pulse rate values and the skin color type with fewer
samples are more di�cult to predict. It is very challenging for a deep model
to learn relevant features on poorly represented data. Neural networks tend
to focus on targets with large numbers of samples. To address this issue, a
data augmentation technique was applied to increase the size of the training
set. Since more samples are available in the mid-pulse rates range (70, 90)
bpm and less outside this range (see Figure 2), we performed threefold o�ine
data augmentation on the video sequences associated with pulse rate values
greater than 90 bpm or lower than 70 bpm. Following the same strategy
presented in [63], we performed standard geometric augmentation and video
magni�cation to increase the training set size and improve the robustness of
the model. The geometric augmentation involves image transformations such
as random clockwise and counterclockwise rotations by up to 20 degrees, scal-
ing (in and out) of up to 20%, and horizontal and vertical video image shifting
by 10% of the frame's width and height. The Eulerian video magni�cation
(EVM) technique [64] was used to amplify the subtle colorimetric �uctuations
due to iPPG in the videos. The intensity of these �uctuations can be weak
for pixels that cover dark skin. The EVM method has been proven e�ective
for PR estimation [29, 65, 64]. This technique takes a cropped ROI video
sequence as input and applies spatial decomposition followed by temporal
�ltering to the frames. Laplacian pyramid is used for spatial decomposition,
while temporal �ltering is performed by applying the Fourier transform for
each pixel. The ampli�cation factor is �xed to 60 while Frequencies outside
the cuto� (45-240 bpm) are set to zero. Finally, the inverse Fourier transform
is applied to reconstruct the frames. The resulting video is then ampli�ed
and reveals hidden subtle changes in the skin color instigated by blood �ow
in facial vessels.

4. Experiments

We aim to achieve several goals in the conducted experiments. First,
we prove the possibility of measuring pulse rate with high accuracy without
going through the commonly used iPPG signal extraction step. Secondly, we
provide a performance comparison with various developed baseline systems
as well as other deep learning approaches recently proposed for contactless
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pulse rate estimation using iPPG. Thirdly, we demonstrate the generalization
ability of our method under challenging conditions to illustrate the proposed
framework's e�ciency.

In order to study the generalizability and the e�ectiveness of the pro-
posed X-iPPGNet presented in Section 3.2, three widely used public-domain
databases are employed namely MMSE-HR [46], MAHNOB-HCI [47], and
UBFC-rPPG [48]. MMSE-HR is directly used for testing without any addi-
tional processing since it was collected under the same conditions as BP4D+
(the training dataset). UBFC-rPPG and MAHNOB-HCI are downsampled
from 30 fps and 61 fps to 25 fps in order to harmonize the fps of training and
testing videos. For each experiment, we do not use videos of the same sub-
ject in both training and testing. We evaluate and compare the performance
with other state-of-the-art techniques using di�erent metrics: the standard
deviation (SD), the mean absolute error (MAE, see Equation 1), the root
mean square error (RMSE, see Equation 2), and the Pearson's correlation
coe�cient (r, see Equation 3). PRi and P̂Ri represent the ground truth and
estimated pulse rate, respectively.

MAE =
1

n

n∑
i=1

|PRi − P̂Ri| (1)

RMSE =

√√√√ 1

n

n∑
i=1

(
PRi − P̂Ri

)2

(2)

r =

∑n
i=1(PRi − PRi)(P̂Ri − P̂Ri)√∑n
i=1(PRi − PRi)2(P̂Ri − P̂Ri)2

(3)

4.1. Results

4.1.1. Evaluation on MMSE-HR

We �rst evaluate the generalization ability of X-iPPGNet by training the
network on BP4D+ and testing it on MMSE-HR (see section 3.1).

Table 4 gives detailed comparisons with several state-of-the-art approaches
including hand-crafted methods (Li2014 [66], CHROM [32], SAMC [22]) and
deep learning-based methods (EVM-CNN [29], PhysNet [15], RhythmNet [8]
and Auto-HR [16]). The X-iPPGNet proposed in this study achieves the best
performance (SD = 5.34 bpm; MAE = 4.10 bpm; RMSE = 5.32 bpm and r
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= 0.85), outperforming all competing methods. Comparison with the other
state-of-the-art methods are taken from [16].

Table 4: PR estimation results by the proposed approach and several state-of-the-art
methods on MMSE-HR.

Approach Method SD (bpm) RMSE (bpm) r

Multiple stage

Hand-crafted

Li2014 20.02 19.95 0.37

CHROM 14.08 13.97 0.55

SAMC 12.24 11.37 0.71

Multiple stage

Deep learnings

RhthmNet 6.98 12.76 0.78

PhysNet 12.76 13.25 0.44

AutoHR 5.71 5.87 0.89

One stage X-iPPGNet (Ours) 5.34 5.32 0.85

4.1.2. Evaluation on UBFC-rPPG

In this experiment, we followed the same strategy presented in [20]. 25
videos were randomly selected to �ne-tune the model pre-trained on BP4D+.
The remaining videos were reserved for testing. Since the UBFC-rPPG
dataset contains very limited facial videos (only one video is recorded for each
subject), we used a three-fold subject-independent cross-validation strategy.
Performance comparison results with other state-of-the-art techniques are
taken from [67] and presented in Table 5. The proposed X-iPPGNet achieves
good results and generalizes well in unseen domains. It should be noted that
we achieved the best SD (6.25 bpm) and RMSE (6.26 bpm) among the ex-
isting methods.

4.1.3. Evaluation on MAHNOB-HCI

We further verify the e�ciency and generalizability of X-iPPGNet on
MAHNOB-HCI [47], which is the most commonly used dataset for non-
contact PR estimation. The high compression rate and spontaneous move-
ments caused by emotional stimulation make PR estimation challenging. We
used the same three-fold subject-independent cross-validation protocol as
for UBFC-rPPG (see Section 4.1.2). We randomized 66% of the videos to
�ne-tune the model pre-trained on BP4D+ and used the remaining videos
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Table 5: PR estimation results by the proposed approach and several state-of-the-art
methods on UBFC-RPPG.

Approach Method SD (bpm) MAE (bpm) RMSE (bpm) r

Multiple stage

Hand-crafted

Green 20.2 10.2 20.6 -

ICA 18.6 8.43 18.8 -

CHROM 19.1 10.6 20.3 -

POS 10.4 4.12 10.5 -

Multiple stage

Deep learning
Meta-rPPG 7.12 5.97 7.42 0.53

One stage

3DCNN 8.55 5.45 8.64 -

PRNet 6.45 5.29 7.24 -

X-iPPGNet (Ours) 6.25 4.99 6.26 0.67

for testing. Table 6 compares the performance of X-iPPGNet with state-of-
the-art techniques, including hand-crafted and deep learning-based methods.
From the results, we can observe that the X-iPPGNet ranks �rst on all met-
rics (SD = 3.93; MAE = 3.17; RMSE = 3.93 and r = 0.88). It is clear that
our model performs very well under various image acquisition conditions and
highly compressed videos.

4.2. Key Components Analysis

We also provide additional analysis to examine the impact of challenging
factors, i.e., pulse rate distribution values, skin tone, gender, and head move-
ments. All experiments have been conducted on the MMSE-HR dataset.

4.2.1. Impact of pulse rate distribution values

To further analyze the impact of PR distribution values on the perfor-
mance of X-iPPGNet, we plot the di�erences between estimated and ground-
truth pulse rate versus ground-truth estimation. This Bland�Altman plot
(see Figure 6) shows that the distribution is concentrated inside the 95%
limits of agreement (1.96 SD) for low ( < 70) and mid (70, 90) pulse rates
range. However, predictions of high pulse rates exhibit some outliers ( > 90).
We suppose that this observation is connected to the imbalanced training set
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Table 6: PR estimation results by the proposed approach and several state-of-the-art
methods on MAHNOB-HCI.

Approach Method SD (bpm) MAE (bpm) RMSE (bpm) r

Multiple stage

Hand-crafted

Poh 2011 13.5 - 13.6 0.36

CHROM - 13.49 22.36 0.21

Li 2014 6.88 - 7.62 0.81

SAMC 5.81 4.96 6.23 0.83

Multiple stage

Deep learning

SynRhythm 10.88 - 11.08 -

DeepPhys - 4.57 - -

HR-CNN - 7.25 9.24 0.51

rPPGNet 7.82 5.51 7.82 0.78

RhythmNet 3.99 - 3.99 0.87

PhysNet 7.84 5.96 7.88 0.76

AutoHR 4.73 3.78 5.10 0.86

PulseGAN - 4.15 6.53 0.71

One stage X-iPPGNet (Ours) 3.93 3.17 3.93 0.88

(see �gure 2). Furthermore, the error rate increases signi�cantly for higher
pulse rates than for mid and low pulse rates due to their �uctuations over
the time window [20].

Moreover, the Bland�Altman exhibits a marked negative trend. The
model tends to over-estimate low PR and under-estimate high PR because
low and high pulse rates are under-represented in the training dataset. We
suppose that this observation is a direct consequence of the dataset imbal-
ance. The model tends to produce predictions oriented towards mid-PR
values. The PR di�erence is therefore positive for low PR and negative for
high PR.

4.2.2. Impact of skin tone and gender

MMSE-HR was selected to assess the generalizability of our method to
di�erent skin tones. This dataset is more diverse in terms of ethnicity (includ-
ing black, white, Asian, and Hispanic / Latino) compared to UBFC-rPPG
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Figure 6: Bland�Altman plot showing the di�erences in pulse rate between ground-truth
and estimated values plotted against the ground-truth measurements for the MMSE-HR
dataset (see section 3.1). Mean values are represented by black dash-dot lines and 95%
limits of agreement (1.96 SD) by red dashed lines.

[48] and MAHNOB-HCI [47], which are highly biased towards lighter skin.
Following the protocol employed by the authors of [68], which is based on the
Fitzpatrick scale [69], we divided the database into 4 categories according to
skin tone type. In addition to types III and IV, we grouped skin types I + II
and V + VI together as there were relatively few subjects in these categories.
The predictions of X-iPPGNet for di�erent skin tones are reported in Table
7. The proposed technique exhibits great performance for all skin types and
relatively less for dark skin, considering that participants with darker skin
tones are underrepresented in the training set.

We further evaluated the impact of gender on pulse rate estimation. The
results obtained show di�erences in performance between males and females
(see Table 8). This con�rms the results of previous study showing a slightly
lower error rate for males than for females [8].

4.2.3. Impact of head movement

Visual pulse rate estimation in unconstrained environments remains a
challenging task. Besides skin color and environmental conditions, head
movements and facial expressions should be considered to build a robust
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Table 7: PR MAE, RMSE and r for our method by skin type on MMSE-HR.

Skin Type Category

I+II III IV V+VI

4,17
3,94

4,52

5,43

Fitzpatrick
Skin Types

I+II III IV V+VI

MAE (bpm) 4.17 3.94 4.52 5.43

RMSE
(bpm)

5.31 5.18 5.76 6.82

r 0.87 0.81 0.84 0.40

pulse rate measurement system. Pulse rate estimation error for videos with
stable subjects and those that include facial expressions and head movements
has been computed in order to assess how rigid movements (e.g., head tilt
and posture changes) and non-rigid movements (e.g., facial expressions) af-
fect the performance of X-iPPGNet. The results are presented in Table 9.
We observe a performance degradation for large movements compared to
stable videos but the error remains acceptable.
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Table 8: Performance of our method on MMSE-HR by gender.

Gender Male Female

MAE (bpm) 3.74 4.53

RMSE (bpm) 4.76 5.84

r 0.79 0.85

Table 9: Performance of our method on MMSE-HR under di�erent head movement
conditions.

Head movement
conditions

Stable Large movement

MAE (bpm) 3.88 4.44

RMSE (bpm) 4.91 5.74

r 0.86 0.82

4.2.4. Time window size

The time window size is an important parameter for video-based pulse
rate estimation. Previous studies have reported that a longer window size
leads to better performance, especially when using bandpass �lter operation
or power spectral density [15, 29]. However, this increases the computational
cost which is not suitable for real-time applications. Indeed, there is a trade-
o� in the size of the time window. If the time window is too large, the
predicted pulse rate loses instantaneous information as we average pulse rates
in the concerned video fragment. Conversely, the input video fragment may
not contain a full cycle of two consecutive beats, resulting in an inaccurate
pulse rate estimate. Table 10 presents the window size selected in this work
in addition with state-of-the-art methods. All previous studies present much
longer time windows than our method, except PRNet [20], 3DCNN [24], and
rPPGNet [42]. These methods used a 2-seconds video fragment to estimate
pulse rate, but with a higher number of frames.

Table 11 presents computation time and accuracy by window size. It is
clear that increasing the window size implies more input images and more
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Table 10: The time window size of the input video fragment in state-of-the-art methods

Method Time window size

DeepPhys [7] 30 s

Siamese-rPPG [50] 20 s

CHROM [52] 10 s

POS [5] 10 s

SynRhythm [70] 10 s

RhythmNet [8] 10 s

2SR [4] 6 s

EVM-CNN [29] 4/6/8 s

PhysNet [15] 2/4(best)/8 s

rPPGNet [42] 2 s (64 frames)

PRNet [20] 2 s (60 frames)

3DCNN [24] 2 s (60 frames)

X-iPPGNet (Ours) 2 s (50 frames)

trainable parameters, thus increasing computation time. The same applies to
accuracy where MAE and RMSE raise with increasing time windows, except
for 1-second window which does not cover the low-frequency interval. For this
reason, the 2-seconds window has been carefully selected to have a complete
cardiac cycle and to cover the entire pulse rate range. Computation times of
the methods that use a 2-seconds window is reported in Table 12. X-iPPGNet
achieves 140 ms inference time behind PRNet [20], which runs the fastest
among the six methods. X-iPPGNet is however deeper and outperforms
PRNet in terms of accuracy.
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Table 11: Performance and computation time of our method on MMSE-HR using di�erent
time window sizes.

Window size 1s 2s 3s 4s 6s

MAE (bpm) 10.21 4.10 6.41 7.75 8.13

RMSE (bpm) 12.89 5.32 7.98 9.77 10.02

Computation time (ms) 120 140 160 180 220

Table 12: Computation time of our approach compared to state-of-the-art methods that
use a 2-second input window size.

Method Computation time (ms)

rPPGNet [42] 230

PhysNet [15] 200

3DCNN [24] 155

LCOMS [45] 150

PRNet [20] 130

X-iPPGNet (Ours) 140

5. Discussion

This work has been undertaken to optimize and improve iPPG-based sys-
tems for pulse rate estimation. Most existing studies extract the iPPG signal
using either conventional approaches [2, 32, 6, 66, 4, 5] or deep learning-based
methods [7, 15, 8, 16]. Pulse rate is usually computed as the inverse of the
average time di�erence between consecutive beats in the time domain, or
as the frequency with the highest power spectrum energy in the frequency
domain. Therefore, additional processing steps such as peak detection, Fast
Fourier Transform, or Power Spectral Density are required. Moreover, the
accuracy depends on the quality of the iPPG waveform and on the accuracy
of the main peaks detection. Since publicly available databases are challeng-
ing and provide a large number of corrupted and poor-quality PPG signals
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[46, 47, 71], this directly a�ects the main peak location and consequently
decreases the accuracy.

The proposed approach corresponds to an end-to-end trainable neural
network where pulse rate is directly predicted from facial video recordings
without separate iPPG signal recovery and with no prior knowledge. X-
iPPGNet merges iPPG signal extraction and pulse rate prediction in one
step. We rely on the ability of deep learning models to implicitly learn useful
information directly from raw data. The training is fully supervised where
each 2-seconds video fragment takes a ground truth pulse rate obtained with
a contact device as a training label.

The main advantages of the proposed approach lie in its simplicity and
low processing latency. A short time window is used to estimate pulse rate
(2 s, 50 video frames). The size of the time window has a direct impact on
performances. The larger it is, the higher the error, especially when dealing
with higher and sharply �uctuating pulse rates (see Table 11). This is due to
the loss of instantaneous information since the pulse rate is estimated by the
averaging operation over the time window (As shown in Table 11). Moreover,
our approach is more suitable for real-time measurement. The architecture
is based on the Xception backbone that signi�cantly reduces the number of
parameters and computational costs without any performance degradation.

Since the most important factor when dealing with deep learning-based
approaches is data, X-iPPGNet has been trained on BP4D+ to operate ac-
curately in challenging scenarios and enable more robust training. BP4D+
provides a large amount of data and ethnic diversity, as well as challeng-
ing conditions. Furthermore, data augmentation is applied to increase the
amount of under-represented samples at high and low frequencies. Using such
a database in conjunction with data augmentation allows automatic learning
of iPPG without hand-crafted features. Additionally, advanced deep learning
optimization techniques as well as regularization strategies used in our work
help to overcome over�tting issues and improve the model generalizability to
new data.

The above experimental results verify the e�ectiveness of the proposed
method and prove the possibility of measuring pulse rate directly from fa-
cial videos without going through iPPG signal recovery. Test results on three
benchmark databases outperform existing methods and reveal the generaliza-
tion ability to new data. We also examined the impact of various factors on
prediction errors. The evaluation shows good performance in less-constrained
scenarios such as head movement, illumination, video compression, and for
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di�erent skin tones.

5.1. Limitations

The main limitation of our method concerns the way the pulse rate is
measured. Although the framework is end-to-end trainable and superior in
terms of speed and simplicity, pulse rate prediction without going through
iPPG signal extraction does not allow pulse wave features extraction which is
useful in medical applications [1] or for a�ective state recognition [72]. Fur-
thermore, we have identi�ed several issues that can be improved in future
studies. First, most publicly available databases are very limited in terms of
amount of data [48, 73, 74]. This lack of data makes training deep learning
models more di�cult and therefore increases the probability of over�tting
and decreases the ability to generalize to new data. Although a few large-
scale databases are available [46, 71, 47], they are not very diverse and are
highly skewed towards light skin tones and mid-pulse rates. This leads to
a lack of generalization and poor performance for under-represented sam-
ples. Using synthetic data [75, 76, 24, 70] or combining multiple datasets
[77] can solve the problem of the limited amount of data while applying
advanced data augmentation strategies can improve performances for under-
represented samples by creating additional and di�erent training instances.
Secondly, we noticed a high rate of corruption and poor quality ground truth
PPG signals in the databases we used [46, 48, 47]. Data preparation and
cleaning are essential to properly train the network and avoid over�tting
problems. Finally, existing networks often consist of a large number of pa-
rameters and require high computational costs, which greatly hampers their
application on resource-limited devices such as mobile phones. Therefore, in-
vestigating lightweight network models can considerably improve the speed
and accuracy while maintaining similar performance.

6. Conclusion and Future Works

In this paper, we proposed a novel one-stage approach (X-iPPGNet) for
contactless pulse rate estimation from facial video recordings using a deep
spatio-temporal network. This approach is an e�cient and elegant way to
predict pulse rate without separate iPPG signal extraction and with no prior
knowledge. X-iPPGNet is inspired by the Xception network architecture,
which has proven to be e�cient for general-purpose 2D image tasks in terms
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of accuracy, fast convergence speed, and low computational cost. Our exten-
sive experiments showed the e�ectiveness of the proposed architecture, which
achieves higher accuracy and outperforms existing methods on three popular
benchmark datasets such as MMSE-HR, UBFC-rPPG, and MAHNOB-HCI.
The results of this study demonstrated that pulse rate can be estimated
remotely from facial videos without the need for complicated hand-crafted
features or iPPG signal extraction.

Looking forward to our future work, we intend to compare the perfor-
mance between our one-stage-based approach and two-stage-based methods.
We will further analyze the e�ect of combining real and synthetic data on
performance. Furthermore, we envisage investigating lightweight networks
to develop a faster and more suitable model for real-time applications. We
would also like to investigate the e�ectiveness of the proposed approach for
measuring other physiological parameters, such as blood pressure, respiratory
rate, and oxygen saturation.
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