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Introduction

Pulse rate (PR) is one of the important indicators of a person's health that needs to be monitored routinely to identify a range of health issues. Electrocardiography and Photoplethysmography (PPG) are the main ways of measuring heart rate activity. Both techniques use contact sensors that need to be attached to body parts. Despite the high accuracy and robustness provided by these devices, specic conditions are required to acquire accurate measurements. Moreover, contact with skin can be inconvenient or even infeasible in some critical cases such as burns, skin ulcers, or contagious diseases [START_REF] Djeldjli | Remote estimation of pulse wave features related to arterial stiness and blood pressure using a camera[END_REF]. These constraints limit their use in realistic scenarios. Over the last decade, great progress has been made in non-contact pulse rate estimation using imaging photoplethysmography, due to its wide application domains [START_REF] Poh | Advancements in Noncontact, Multiparameter Physiological Measurements Using a Webcam[END_REF][START_REF] De Haan | Robust pulse rate from chrominance-based rppg[END_REF][START_REF] Wang | A novel algorithm for remote photoplethysmography: Spatial subspace rotation[END_REF][START_REF] Wang | Algorithmic principles of remote ppg[END_REF][START_REF] Bousefsaf | Continuous wavelet ltering on webcam photoplethysmographic signals to remotely assess the instantaneous heart rate[END_REF][START_REF] Chen | Deepphys: Video-based physiological measurement using convolutional attention networks[END_REF][START_REF] Niu | Rhythmnet: End-to-end heart rate estimation from face via spatial-temporal representation[END_REF]. iPPG is an optical technique allowing a remote assessment of the pulse rate by observing the blood-volume variations on a person's face using a simple camera.

Conventional iPPG algorithms are based on hand-crafted features approaches, which generally involve multi-stage pipelines and require multiple image and signal processing steps [START_REF] Verkruysse | Remote plethysmographic imaging using ambient light[END_REF][START_REF] Poh | Advancements in Noncontact, Multiparameter Physiological Measurements Using a Webcam[END_REF][START_REF] De Haan | Robust pulse rate from chrominance-based rppg[END_REF][START_REF] Bousefsaf | Continuous wavelet ltering on webcam photoplethysmographic signals to remotely assess the instantaneous heart rate[END_REF][START_REF] Wang | A novel algorithm for remote photoplethysmography: Spatial subspace rotation[END_REF][START_REF] Wang | Algorithmic principles of remote ppg[END_REF]. Most of these methods have been carried out under constrained environments and rely on certain assumptions regarding light-skin interaction and head motions. Therefore, they perform reasonably well under controlled conditions. However, their performance degrades signicantly under challenging scenarios such as large head movement, poor lighting conditions, and very dark skin [START_REF] Niu | Rhythmnet: End-to-end heart rate estimation from face via spatial-temporal representation[END_REF][START_REF] Nowara | A meta-analysis of the impact of skin type and gender on non-contact photoplethysmography measurements[END_REF].

Inspired by the recent breakthroughs in computer vision tasks [START_REF] Lecun | Deep learning[END_REF][START_REF] Voulodimos | Deep learning for computer vision: A brief review[END_REF][START_REF] Baccouche | Sequential deep learning for human action recognition[END_REF][START_REF] Suzuki | Overview of deep learning in medical imaging[END_REF], current state-of-the-art algorithms incorporate deep learning architectures in dierent stages of the conventional imaging photoplethysmography pipeline. Deep neural networks have been used to accurately extract the iPPG signal [START_REF] Chen | Deepphys: Video-based physiological measurement using convolutional attention networks[END_REF][START_REF] Niu | Rhythmnet: End-to-end heart rate estimation from face via spatial-temporal representation[END_REF][START_REF] Yu | Remote photoplethysmograph signal measurement from facial videos using spatio-temporal networks[END_REF][START_REF] Yu | Autohr: A strong end-to-end baseline for remote heart rate measurement with neural searching[END_REF]. However, several limitations remain to be resolved. These systems are not end-to-end, so they still require pre-processing or postprocessing steps as well as a larger time-span window to estimate pulse rate. Furthermore, heart rate activity should be measured even in unconstrained scenarios. Many factors can aect the measurement: the person may move his head or express emotions, his face can be partially occluded or light conditions may be changing continuously. These situations aect the quality of the extracted iPPG signal, thus degrading the accuracy of the predicted PR values.

To address these drawbacks, we developed an end-to-end deep learning model (X-iPPGNet) for instantaneous pulse rate estimation directly from raw facial videos. The architecture is fully automatic and does not require any prior knowledge or special pre-processing or post-processing. This work is an extension and improvement of the method proposed as part of the Vision for Vitals Challenge [START_REF] Revanur | The rst vision for vitals (v4v) challenge for non-contact video-based physiological estimation[END_REF]. We propose a new ecient architecture and evaluate its eectiveness using public databases. We also examine the impact of challenging conditions on performance.

The main contributions of this study are summarized as follows:

1. We propose a novel one-stage approach based on an end-to-end trainable neural network.

2. X-iPPGNet predicts pulse rate from short-time video excerpts (2 seconds), which is particularly relevant in the case of high and sharply uctuating pulse rates.

3. Color channels decoupling is used to extract additional photoplethysmographic information.

4. The rst use of the BP4D+ database in conjunction with data augmentation.

5. Extensive evaluations on multiple public databases to analyze the effectiveness and generalizability of the proposed method against a range of challenging factors.

The remainder of the article is organized as follows: related works are briey exposed in Section II. Section III presents the materials and methods. Experimental results are presented and discussed in Section IV and V respectively. Finally, conclusions and future works are given in Section VI.

Related works

By surveying existing research on contactless pulse rate estimation using iPPG, we can identify the existence of two major approaches according to the way of iPPG signal extraction, either manually using conventional methods [START_REF] Verkruysse | Remote plethysmographic imaging using ambient light[END_REF][START_REF] Poh | Advancements in Noncontact, Multiparameter Physiological Measurements Using a Webcam[END_REF][START_REF] De Haan | Robust pulse rate from chrominance-based rppg[END_REF][START_REF] Bousefsaf | Continuous wavelet ltering on webcam photoplethysmographic signals to remotely assess the instantaneous heart rate[END_REF][START_REF] Wang | A novel algorithm for remote photoplethysmography: Spatial subspace rotation[END_REF][START_REF] Wang | Algorithmic principles of remote ppg[END_REF], or automatically using deep learning models [START_REF] Chen | Deepphys: Video-based physiological measurement using convolutional attention networks[END_REF][START_REF] Niu | Rhythmnet: End-to-end heart rate estimation from face via spatial-temporal representation[END_REF][START_REF] Yu | Remote photoplethysmograph signal measurement from facial videos using spatio-temporal networks[END_REF][START_REF] Yu | Autohr: A strong end-to-end baseline for remote heart rate measurement with neural searching[END_REF]. Earlier works on iPPG relied on hand-crafted features approaches that generally include image and signal processing operations. The image processing techniques are rst applied to locate the skin regions containing relevant information about the subtle color changes associated with blood ow. Different color spaces and dierent regions of interest (ROI) were exploited to constitute raw iPPG signals using a spatial averaging operation. Verkruysse et al. [START_REF] Verkruysse | Remote plethysmographic imaging using ambient light[END_REF] have initially computed raw iPPG signals from the green channel using a set of predened ROI. Several face detectors and trackers have been used to extract the entire face or sub-regions from the face such as the forehead or cheeks [START_REF] Poh | Non-contact, automated cardiac pulse measurements using video imaging and blind source separation[END_REF][START_REF] Lewandowska | Measuring pulse rate with a webcam a non-contact method for evaluating cardiac activity[END_REF][START_REF] Blöcher | An online ppgi approach for camera based heart rate monitoring using beat-to-beat detection[END_REF][START_REF] Kumar | Distanceppg: Robust noncontact vital signs monitoring using a camera[END_REF][START_REF] Kwon | Roi analysis for remote photoplethysmography on facial video[END_REF]. Bousefsaf et al. [START_REF] Bousefsaf | Automatic Selection of Webcam Photoplethysmographic Pixels Based on Lightness Criteria[END_REF] proposed to select only the pixels of interest using a custom skin segmentation, while Tulyakov et al. [START_REF] Tulyakov | Self-adaptive matrix completion for heart rate estimation from face 29 videos under realistic conditions[END_REF] developed an approach to choose dynamically the ROI using selfadaptive matrix completion. Furthermore, dierent color spaces have been studied besides the standard RGB. For example, the u* component from the CIE L*u*v* color space [START_REF] Bousefsaf | Automatic Selection of Webcam Photoplethysmographic Pixels Based on Lightness Criteria[END_REF] and V from YUV have been exploited [START_REF] Rumi | Reliability of pulse measurements in videoplethysmography[END_REF].

In the second step, signal processing algorithms are performed to increase the signal-to-noise ratio and remove the noise from iPPG signal. Some of the popular studies include blind source separation methods, such as independent component analysis [START_REF] Poh | Non-contact, automated cardiac pulse measurements using video imaging and blind source separation[END_REF] and principal components analysis [START_REF] Lewandowska | Measuring pulse rate with a webcam a non-contact method for evaluating cardiac activity[END_REF]. On the other hand, Haan and his group achieved further improvements by proposing model-based approaches [START_REF] De Haan | Robust pulse rate from chrominance-based rppg[END_REF][START_REF] Wang | A novel algorithm for remote photoplethysmography: Spatial subspace rotation[END_REF][START_REF] Wang | Algorithmic principles of remote ppg[END_REF]. They developed dierent color subspace transformations to overcome motion artifacts and improve the quality of iPPG signal. R.G.B [START_REF] Tulyakov | Self-adaptive matrix completion for heart rate estimation from face 29 videos under realistic conditions[END_REF][START_REF] Wang | Algorithmic principles of remote ppg[END_REF] R.G.B [START_REF] Chen | Deepphys: Video-based physiological measurement using convolutional attention networks[END_REF][START_REF] Yu | Autohr: A strong end-to-end baseline for remote heart rate measurement with neural searching[END_REF] Synthetic Data [START_REF] Bousefsaf | 3d convolutional neural networks for remote pulse rate measurement and mapping from facial video[END_REF] Five band [START_REF] Mcdu | Improvements in remote cardiopulmonary measurement using a ve band digital camera[END_REF] Preprocessing Face ROI detection & tracking [START_REF] Tulyakov | Self-adaptive matrix completion for heart rate estimation from face 29 videos under realistic conditions[END_REF][START_REF] Poh | Non-contact, automated cardiac pulse measurements using video imaging and blind source separation[END_REF] Face ROI detection & tracking [START_REF] Niu | Rhythmnet: End-to-end heart rate estimation from face via spatial-temporal representation[END_REF] Face ROI detection & tracking [START_REF] Huang | A novel one-stage framework for visual pulse rate estimation using deep neural networks[END_REF] Color space transformation [START_REF] Bousefsaf | Automatic Selection of Webcam Photoplethysmographic Pixels Based on Lightness Criteria[END_REF][START_REF] Rumi | Reliability of pulse measurements in videoplethysmography[END_REF] Spatial temporal maps [START_REF] Niu | Rhythmnet: End-to-end heart rate estimation from face via spatial-temporal representation[END_REF] Signal decomposition [START_REF] Poh | Advancements in Noncontact, Multiparameter Physiological Measurements Using a Webcam[END_REF] Video magnication [START_REF] Qiu | Evm-cnn: Real-time contactless heart rate estimation from facial video[END_REF] Postprocessing Filtering [START_REF] Poh | Non-contact, automated cardiac pulse measurements using video imaging and blind source separation[END_REF][START_REF] Lewandowska | Measuring pulse rate with a webcam a non-contact method for evaluating cardiac activity[END_REF][START_REF] De Haan | Robust pulse rate from chrominance-based rppg[END_REF] FFT [START_REF] Liu | Multi-task temporal shift attention networks for on-device contactless vitals measurement[END_REF] -FFT [START_REF] Haan | Robust pulse rate from chrominance-based rppg[END_REF][START_REF] Poh | Advancements in Noncontact, Multiparameter Physiological Measurements Using a Webcam[END_REF] Peaks detection [START_REF] Yu | Remote photoplethysmograph signal measurement from facial videos using spatio-temporal networks[END_REF] Peaks detection [START_REF] Poh | Non-contact, automated cardiac pulse measurements using video imaging and blind source separation[END_REF][START_REF] Mcdu | Improvements in remote cardiopulmonary measurement using a ve band digital camera[END_REF] Deep learning model [START_REF] Niu | Rhythmnet: End-to-end heart rate estimation from face via spatial-temporal representation[END_REF][START_REF] Petlík | Visual heart rate estimation with convolutional neural network[END_REF] iPPG signal extraction With the great success of deep learning and more specically convolutional neural networks for medical imaging and computer vision tasks [START_REF] Lundervold | An overview of deep learning in medical imaging focusing on mri[END_REF][START_REF] Goceri | Deep learning in medical image analysis: Recent advances and future trends[END_REF][START_REF] Voulodimos | Deep learning for computer vision: A brief review[END_REF], several groups developed deep learning-based methods for iPPG estimation. According to the recent review of Ni et al. [START_REF] Ni | A review of deep learning-based contactless heart rate measurement methods[END_REF], existing methods are built using VGG-style CNN [START_REF] Chen | Deepphys: Video-based physiological measurement using convolutional attention networks[END_REF][START_REF] Petlík | Visual heart rate estimation with convolutional neural network[END_REF][START_REF] Reiss | Deep ppg: Largescale heart rate estimation with convolutional neural networks[END_REF], or combine CNN and LSTM to take into account the temporal information [START_REF] Lee | Meta-rppg: Remote heart rate estimation using a transductive meta-learner[END_REF][START_REF] Niu | Rhythmnet: End-to-end heart rate estimation from face via spatial-temporal representation[END_REF][START_REF] Huang | A novel one-stage framework for visual pulse rate estimation using deep neural networks[END_REF], or use 3D-CNN directly to simultaneously learn spatial and temporal features [START_REF] Yu | Remote photoplethysmograph signal measurement from facial videos using spatio-temporal networks[END_REF][START_REF] Yu | Remote heart rate measurement from highly compressed facial videos: an end-to-end deep learning solution with video enhancement[END_REF][START_REF] Bousefsaf | 3d convolutional neural networks for remote pulse rate measurement and mapping from facial video[END_REF][START_REF] Luguev | Deep learning based aective sensing with remote photoplethysmography[END_REF][START_REF] Perepelkina | Hearttrack: Convolutional neural network for remote video-based heart rate monitoring[END_REF]. To name some of the promising works, Chen and McDu [START_REF] Chen | Deepphys: Video-based physiological measurement using convolutional attention networks[END_REF] proposed a convolutional attention network named DeepPhys, which consists of two-stream CNN to extract blood volume pulse waveform from facial video under varying lighting and signicant head motions. They used an appearance model based on an attention mechanism to nd the appropriate regions of interest (ROI) and to guide the motion representation model. Radim et al. [START_REF] Petlík | Visual heart rate estimation with convolutional neural network[END_REF] proposed a two-stage convolutional neural network method composed of 2D CNN and 1D CNN respectively. The rst one extracts the iPPG signal while the second regresses pulse rate values. Niu et al. [START_REF] Niu | Rhythmnet: End-to-end heart rate estimation from face via spatial-temporal representation[END_REF] generated spatial-temporal maps from multiple ROI over the face and then trained a CNN-RNN network to regress the average PR value. Yu et al. [START_REF] Yu | Remote photoplethysmograph signal measurement from facial videos using spatio-temporal networks[END_REF] introduced a spatial-temporal deep neural network (PhysNet) to extract iPPG signals from raw facial videos, and then measure the averaged PR and HRV features. AutoHR is a recent contribution proposed by Yu et al. [START_REF] Yu | Autohr: A strong end-to-end baseline for remote heart rate measurement with neural searching[END_REF]. The authors used temporal dierence convolution beside a strong backbone discovered via neural architecture search to estimate accurately the iPPG signal from image sequences.

All the methods mentioned above are based on several processing stages. They mainly use deep learning to recover iPPG signals from facial videos. However, some works have adopted deep neural networks to pulse rate estimation in an end-to-end manner without passing by iPPG signal extraction. Bousefsaf et al. [START_REF] Bousefsaf | 3d convolutional neural networks for remote pulse rate measurement and mapping from facial video[END_REF] were the rst to demonstrate the possibility of pulse rate estimation from a face video without any additional processing. They put forward a 3D CNN trained purely on synthetic data. Huang et al. [START_REF] Huang | A novel one-stage framework for visual pulse rate estimation using deep neural networks[END_REF] developed a one-stage spatio-temporal network that combines 3D convolutional and LSTM modules to extract spatial and temporal features and a Dense layer to pulse rate value estimation. Ouzar et al. [START_REF] Ouzar | Lcoms lab's approach to the vision for vitals (v4v) challenge[END_REF] proposed an ecient model built on a linear stack of depthwise separable convolution layers concatenated with residual connections. This method has advantages in terms of speed and simplicity and can run in real-time both on CPUs and GPUs. Existing iPPG-based PR measurement approaches are summarized in Table 1.

Materials and Methods

Datasets

The availability of huge databases and advanced neural architectures have underpinned the great success of deep learning approaches in computer vision tasks. In the eld of remote PR estimation, the lack of large-scale heart rate (HR) datasets has limited the use of deep learning models [START_REF] Niu | Rhythmnet: End-to-end heart rate estimation from face via spatial-temporal representation[END_REF]. Existing public domain HR databases are quite limited not only in data size but also in diversity. Head motion, facial expressions, occlusion, and skin tone correspond to the main challenging conditions that aect the performance of contactless pulse rate measurement from facial videos. However, previous works had not addressed all of these problems due to the quality and scale of the aforementioned databases.

For this study, we used four public datasets for pulse rate estimation to evaluate the performance of the proposed method. We trained X-iPPGNet on BP4D+ [START_REF] Zhang | Multimodal spontaneous emotion corpus for human behavior analysis[END_REF], a public large-scale database, while MAHNOB-HCI [START_REF] Soleymani | A multimodal database for aect recognition and implicit tagging[END_REF], UBFC-rPPG [START_REF] Bobbia | Unsupervised skin tissue segmentation for remote photoplethysmography[END_REF], and MMSE-HR [START_REF] Zhang | Multimodal spontaneous emotion corpus for human behavior analysis[END_REF] were used for testing. We briey describe each of these three datasets in the subsequent paragraphs while we present in detail the BP4D+ database as we are the rst to use it for training deep neural networks. Table 2 gives detailed comparisons between the dierent databases used in our experiments. [START_REF] Zhang | Multimodal spontaneous emotion corpus for human behavior analysis[END_REF] was collected for contactless pulse rate estimation under challenging conditions. It consists of 102 RGB facial videos recorded at 25 frames-per-second (fps) from 40 subjects (17 males and 23 females) with various ethnic/racial ancestries. The corresponding average pulse rates were gathered using a contact BVP sensor (sampling frequency: 1K HZ).

MAHNOB-HCI

MAHNOB-HCI [START_REF] Soleymani | A multimodal database for aect recognition and implicit tagging[END_REF] is a commonly used benchmark to assess the eectiveness and generalizability of non-contact pulse rate estimation methods. It includes 527 videos from 27 subjects (12 males and 15 females) along with their corresponding physiological signals. All videos are recorded at 61 fps with a resolution of 780 × 580 pixels. ECG signal has been used to calculate the ground truth pulse rate values.

UBFC-rPPG

UBFC-rPPG [START_REF] Bobbia | Unsupervised skin tissue segmentation for remote photoplethysmography[END_REF] consists of 42 videos from 42 subjects. The videos were recorded using a low-cost webcam at 30 fps and a resolution of 640 × 480 pixels. The duration of each recording varies between 50 and 90 seconds. A Contec Medical CMS50E nger pulse oximeter is synchronized with the video recordings to establish the ground truth PPG signal. 3.1.4. BP4D+ [START_REF] Zhang | Multimodal spontaneous emotion corpus for human behavior analysis[END_REF] is a large-scale public database mainly dedicated to multimodal spontaneous emotion recognition based on facial expressions and physiological parameters. It includes several physiological signals such as heart rate, respiratory rate, and blood pressure. Compared to existing pulse rate databases, BP4D+ is signicantly larger in terms of data amount and ethnic diversity (including Black, White, Asian, and Hispanic/Latino). Additionally, it was collected under challenging scenarios such as signicant head motions, wild pulse rate range, facial expressions, and occlusions. 140 subjects (82 females and 58 males) participated in ten sessions set up to elicit dierent emotions. 1400 RGB videos lasting 30 seconds to 1 minute were recorded at 25 fps. The resolution of each video is 1040 × 1392 pixels. Pulse rate and other physiological signals were collected with contact sensors at 1K Hz. Figure 2 shows the histogram of ground truth pulse rate distribution in BP4D+. Pulse rate values vary from 47 to 139 beats per minute (bpm), which almost covers the typical pulse rate range. The histogram forms an inverse Gaussian distribution because most healthy and relaxed adults have a resting heart rate comprised between 70 and 90 beats per minute (see Figure 2). On the other hand, due to a large amount of corrupted ground truth signals (see a typical example in Figure 3), we recalculated the pulse rates from the blood pressure signals available in the database. We also removed segments where facial regions are outside the image. 

Proposed framework

The general framework for pulse rate estimation from facial videos is illustrated in Figure 1. We treat this task as a one-stage regression problem that takes batches of 50 frames (corresponding to 2 seconds) as input and regresses the pulse rate value as output. First, face segmentation is performed to eliminate the background and non-skin areas [START_REF] Nirkin | On face segmentation, face swapping, and face perception[END_REF]. Then the face region is cropped from the segmented face image according to the coordinates of the rst non-zero pixel on each side of the image. Finally, the face image sequences are scaled and fed to a 3D fully convolutional neural network. We assume that the proposed architecture can automatically focus on the most vascularized areas of the face. It then learns the spatio-temporal features associated with iPPG.

Face segmentation

The extraction of regions of interest (ROI) is the rst step of almost all video-based pulse rate estimation [START_REF] Poh | Non-contact, automated cardiac pulse measurements using video imaging and blind source separation[END_REF][START_REF] Niu | Rhythmnet: End-to-end heart rate estimation from face via spatial-temporal representation[END_REF][START_REF] Tsou | Siamese-rppg network: Remote photoplethysmography signal estimation from face videos[END_REF][START_REF] Yu | Remote photoplethysmograph signal measurement from facial videos using spatio-temporal networks[END_REF][START_REF] Huang | A novel one-stage framework for visual pulse rate estimation using deep neural networks[END_REF]. It aims to maximize the signal-to-noise ratio by only keeping the skin pixels that carry the iPPG information. Several face and facial landmarks detectors have been employed to locate ROI. However, these techniques often fail in situations involving head movement, occlusion, or facial expressions. Many other factors can also aect ROI extraction, such as lighting and background. We compared the performance of the three most popular face detectors used for iPPG extraction in terms of eciency, i.e., Viola&Jones [START_REF] Viola | Rapid object detection using a boosted cascade of simple features[END_REF], Dlib [START_REF] King | Dlib-ml: A machine learning toolkit[END_REF], and MTCNN [START_REF] Zhang | Joint face detection and alignment using multitask cascaded convolutional networks[END_REF]. Table 3 illustrates the number of missed images on the MMSE-HR dataset [START_REF] Zhang | Multimodal spontaneous emotion corpus for human behavior analysis[END_REF] presented in section 3.1. MMSE-HR has been widely used as a test set in several works and contains about 108117 images. The results show that the three face detectors mentioned above fail to perform well in unconstrained scenes.

To overcome the limitations of face detectors, especially in unconstrained scenarios, we performed face segmentation using one of the state-of-the-art algorithms [START_REF] Nirkin | On face segmentation, face swapping, and face perception[END_REF] (see Table 3). This method, originally proposed for faceswapping ideally works in all conditions without missing any frames. Faces are properly segmented from backgrounds and occlusions with high accuracy. Some processed images extracted from the MMSE-HR database are shown in Figure 4. 

Face detector

Number of missed frames Viola-Jones [START_REF] Viola | Rapid object detection using a boosted cascade of simple features[END_REF] 1375

Dlib [START_REF] King | Dlib-ml: A machine learning toolkit[END_REF] 227

MTCNN [START_REF] Zhang | Joint face detection and alignment using multitask cascaded convolutional networks[END_REF] 48

Face segmentation [START_REF] Nirkin | On face segmentation, face swapping, and face perception[END_REF] 0 

Pulse rate estimation neural network

Most of the existing video-based PR estimation approaches that integrate a deep learning model rely on a VGG-style CNN. Temporal information is processed using recurrent networks [START_REF] Huang | A novel one-stage framework for visual pulse rate estimation using deep neural networks[END_REF][START_REF] Niu | Rhythmnet: End-to-end heart rate estimation from face via spatial-temporal representation[END_REF], spatio-temporal convolutions [START_REF] Bousefsaf | 3d convolutional neural networks for remote pulse rate measurement and mapping from facial video[END_REF][START_REF] Yu | Remote photoplethysmograph signal measurement from facial videos using spatio-temporal networks[END_REF], or by incorporating another temporal branch in parallel [START_REF] Chen | Deepphys: Video-based physiological measurement using convolutional attention networks[END_REF]. The VGG-style CNN is a basic architecture that uses a standard convolution stack with no residual blocks [START_REF] Simonyan | Very deep convolutional networks for largescale image recognition[END_REF]. Despite its simplicity, it is more prone to overtting. It also performs worse than other deep learning architectures on many computer vision tasks [START_REF] Zhao | A comparison of deep learning classication methods on small-scale image data set: from convolutional neural networks to visual transformers[END_REF]. In addition, standard convolution considers all spatial and color channel information together. However, previous studies showed that color channels have dierent physiological properties and that pulsatile activity varies from one color to another [START_REF] Moço | Motion robust ppg-imaging through color channel mapping[END_REF]. Although the green channel featuring the strongest plethysmographic signal and carries more PPG information compared to the other channels, the red and blue channels also contained useful and complementary plethysmographic information that should not be neglected [START_REF] Poh | Non-contact, automated cardiac pulse measurements using video imaging and blind source separation[END_REF]. Nevertheless, and to the best of our knowledge, all deep learning-based approaches have combined RGB channels. This can lead to loss of useful features across channels, aecting measurement accuracy.

In this study, we designed an end-to-end deep regression framework based on a modied Xception network [START_REF] Chollet | Xception: Deep learning with depthwise separable convolutions[END_REF]. This architecture outperforms other deep learning models in several computer vision tasks [START_REF] Zhao | A comparison of deep learning classication methods on small-scale image data set: from convolutional neural networks to visual transformers[END_REF][START_REF] Shaheed | Ds-cnn: A pre-trained xception model based on depth-wise separable convolutional neural network for nger vein recognition[END_REF]. Furthermore, it relies on depthwise separable convolution instead of standard convolution operations that require larger amounts of memory and computational cost. A depthwise separable convolution extension for 3D volumes is used 1 to learn the relevant features associated with the cardiac rhythm of each color channel separately.

The idea behind the depthwise separable convolution is that the depth and spatial dimension of a lter can be decoupled within a convolutional layer. First, the video embedding dimensions are separated and an independent spatio-temporal convolution is performed for each color channel. This operation is called depthwise convolution. It aims to extract local features from each color channel of the input image sequences separately and to capture the temporal relationships among the spatial feature sequences. Then, a pointwise convolution is performed on the convoluted tensor to merge the feature maps across channels in the embedding dimension. This eectively reduces computational costs and memory requirements.

Figure 5 presents the overall architecture of the proposed X-iPPGNet, which consists of three blocks (entry, middle, and exit). It includes 36 convolutional layers structured in 14 modules, all linked with shortcuts as in the ResNet architecture, except for the rst and last modules. Since the network is very deep, these residual connections allow reducing the impact of gradient vanishing. Each convolutional layer is followed by a batch-normalization to stabilize the training process and accelerate the convergence. ReLU activation functions are also used to perform nonlinear mapping. The features extraction output is attened and fed into two dense layers of 1024 and 1 neurons, respectively, to estimate the pulse rate value.

In summary, the proposed non-contact pulse rate estimation framework is a one-stage pipeline that predicts the average pulse rate in only 2 seconds video fragments. The input is represented as a 5-dimensional tensor (N bacth × N bf rames × ImHeight × ImW eight × Channel) (where N batch is the batch-size; N bf rames is the length of face video clip; ImHeight, ImW eight, and Channel are the size of each frame) and the output is the estimated pulse rate in beats per minute.

We consider pulse rate prediction as a one-step regression problem. Training is fully supervised where each 2-seconds video fragment takes a ground truth pulse rate obtained with a contact device as a training label. In the training phase, the network learns to associate the ground truth pulse rate value with each facial video sequence by constructing a mapping relationship between inputs and outputs, i.e., mapping of a three-dimensional tensor (video data) to a single scalar (pulse rate). After the training phase, the network would be able to estimate pulse rate within the trained pulse rate range.

Implementation Details 3.1. Training

The proposed architecture is implemented with Keras and Tensorow frameworks and trained with two Nvidia Quadro P6000s. The videos have been cut into sequences of 50 frames (corresponding to 2 seconds). The size of each frame is 160 × 120 × 3 (ImHeight × ImW eight × Channel). The total number of sequences is 39762. Inspired by the SWATS optimization procedure [START_REF] Keskar | Improving generalization performance by switching from adam to sgd[END_REF], we started training with a Rectied Adam (RAdam) optimizer [START_REF] Liu | On the variance of the adaptive learning rate and beyond[END_REF] before switching to Stochastic Gradient Descent (SGD) [START_REF] Ruder | An overview of gradient descent optimization algorithms[END_REF] when the validation accuracy stops improving. The learning rate was initially set to 10 -4 , and then decreased to 10 -6 . We train the network for about 25 epochs with a batch size of 64 (N bacth = 64) and using the mean-squared-error loss function. In addition, a dropout technique [START_REF] Srivastava | Dropout: A simple way to prevent neural networks from overtting[END_REF] is applied before the nal dense layer of the network (the dropout rate is set to 0.4). L1 and L2 regularization strategies are employed as well, which help to overcome overtting issues and improve the model generalizability to new data. 

Training set augmentation

A common problem with limited and imbalanced datasets when training a neural network is overtting and poor predictive performance, specically for minority label samples.

X-iPPGNet was rst trained without data augmentation. However, sev-eral problems that hinder the accuracy of pulse rate predictions have caught our attention. They are mainly caused by the highly imbalanced pulse rate samples in the BP4D+ database and also by the subjects skin tone [START_REF] Zhang | Multimodal spontaneous emotion corpus for human behavior analysis[END_REF]. Therefore, high and low pulse rate values and the skin color type with fewer samples are more dicult to predict. It is very challenging for a deep model to learn relevant features on poorly represented data. Neural networks tend to focus on targets with large numbers of samples. To address this issue, a data augmentation technique was applied to increase the size of the training set. Since more samples are available in the mid-pulse rates range (70, 90) bpm and less outside this range (see Figure 2), we performed threefold oine data augmentation on the video sequences associated with pulse rate values greater than 90 bpm or lower than 70 bpm. Following the same strategy presented in [START_REF] Nowara | Combining magnication and measurement for non-contact cardiac monitoring[END_REF], we performed standard geometric augmentation and video magnication to increase the training set size and improve the robustness of the model. The geometric augmentation involves image transformations such as random clockwise and counterclockwise rotations by up to 20 degrees, scaling (in and out) of up to 20%, and horizontal and vertical video image shifting by 10% of the frame's width and height. The Eulerian video magnication (EVM) technique [START_REF] Wu | Eulerian video magnication for revealing subtle changes in the world[END_REF] was used to amplify the subtle colorimetric uctuations due to iPPG in the videos. The intensity of these uctuations can be weak for pixels that cover dark skin. The EVM method has been proven eective for PR estimation [START_REF] Qiu | Evm-cnn: Real-time contactless heart rate estimation from facial video[END_REF][START_REF] Miljkovi¢ | Pulse rate assessment: Eulerian video magnication vs. electrocardiography recordings[END_REF][START_REF] Wu | Eulerian video magnication for revealing subtle changes in the world[END_REF]. This technique takes a cropped ROI video sequence as input and applies spatial decomposition followed by temporal ltering to the frames. Laplacian pyramid is used for spatial decomposition, while temporal ltering is performed by applying the Fourier transform for each pixel. The amplication factor is xed to 60 while Frequencies outside the cuto (45-240 bpm) are set to zero. Finally, the inverse Fourier transform is applied to reconstruct the frames. The resulting video is then amplied and reveals hidden subtle changes in the skin color instigated by blood ow in facial vessels.

Experiments

We aim to achieve several goals in the conducted experiments. First, we prove the possibility of measuring pulse rate with high accuracy without going through the commonly used iPPG signal extraction step. Secondly, we provide a performance comparison with various developed baseline systems as well as other deep learning approaches recently proposed for contactless pulse rate estimation using iPPG. Thirdly, we demonstrate the generalization ability of our method under challenging conditions to illustrate the proposed framework's eciency.

In order to study the generalizability and the eectiveness of the proposed X-iPPGNet presented in Section 3.2, three widely used public-domain databases are employed namely MMSE-HR [START_REF] Zhang | Multimodal spontaneous emotion corpus for human behavior analysis[END_REF], MAHNOB-HCI [START_REF] Soleymani | A multimodal database for aect recognition and implicit tagging[END_REF], and UBFC-rPPG [START_REF] Bobbia | Unsupervised skin tissue segmentation for remote photoplethysmography[END_REF]. MMSE-HR is directly used for testing without any additional processing since it was collected under the same conditions as BP4D+ (the training dataset). UBFC-rPPG and MAHNOB-HCI are downsampled from 30 fps and 61 fps to 25 fps in order to harmonize the fps of training and testing videos. For each experiment, we do not use videos of the same subject in both training and testing. We evaluate and compare the performance with other state-of-the-art techniques using dierent metrics: the standard deviation (SD), the mean absolute error (MAE, see Equation 1), the root mean square error (RMSE, see Equation 2), and the Pearson's correlation coecient (r, see Equation 3). P R i and P R i represent the ground truth and estimated pulse rate, respectively.

M AE = 1 n n i=1 |P R i -P R i | (1) 
RM SE = 1 n n i=1 P R i -P R i 2 (2) r = n i=1 (P R i -P R i )( P R i -P R i ) n i=1 (P R i -P R i ) 2 ( P R i -P R i ) 2 (3) 
4.1. Results

Evaluation on MMSE-HR

We rst evaluate the generalization ability of X-iPPGNet by training the network on BP4D+ and testing it on MMSE-HR (see section 3.1).

Table 4 gives detailed comparisons with several state-of-the-art approaches including hand-crafted methods (Li2014 [START_REF] Li | Remote heart rate measurement from face videos under realistic situations[END_REF], CHROM [START_REF] Haan | Robust pulse rate from chrominance-based rppg[END_REF], SAMC [START_REF] Tulyakov | Self-adaptive matrix completion for heart rate estimation from face 29 videos under realistic conditions[END_REF]) and deep learning-based methods (EVM-CNN [START_REF] Qiu | Evm-cnn: Real-time contactless heart rate estimation from facial video[END_REF], PhysNet [START_REF] Yu | Remote photoplethysmograph signal measurement from facial videos using spatio-temporal networks[END_REF], RhythmNet [START_REF] Niu | Rhythmnet: End-to-end heart rate estimation from face via spatial-temporal representation[END_REF] and Auto-HR [START_REF] Yu | Autohr: A strong end-to-end baseline for remote heart rate measurement with neural searching[END_REF]). The X-iPPGNet proposed in this study achieves the best performance (SD = 5.34 bpm; MAE = 4.10 bpm; RMSE = 5.32 bpm and r = 0.85), outperforming all competing methods. Comparison with the other state-of-the-art methods are taken from [START_REF] Yu | Autohr: A strong end-to-end baseline for remote heart rate measurement with neural searching[END_REF]. 

Evaluation on UBFC-rPPG

In this experiment, we followed the same strategy presented in [START_REF] Huang | A novel one-stage framework for visual pulse rate estimation using deep neural networks[END_REF]. 25 videos were randomly selected to ne-tune the model pre-trained on BP4D+. The remaining videos were reserved for testing. Since the UBFC-rPPG dataset contains very limited facial videos (only one video is recorded for each subject), we used a three-fold subject-independent cross-validation strategy. Performance comparison results with other state-of-the-art techniques are taken from [START_REF] Lee | Meta-rppg: Remote heart rate estimation using a transductive meta-learner[END_REF] and presented in Table 5. The proposed X-iPPGNet achieves good results and generalizes well in unseen domains. It should be noted that we achieved the best SD (6.25 bpm) and RMSE (6.26 bpm) among the existing methods.

Evaluation on MAHNOB-HCI

We further verify the eciency and generalizability of X-iPPGNet on MAHNOB-HCI [START_REF] Soleymani | A multimodal database for aect recognition and implicit tagging[END_REF], which is the most commonly used dataset for noncontact PR estimation. The high compression rate and spontaneous movements caused by emotional stimulation make PR estimation challenging. We used the same three-fold subject-independent cross-validation protocol as for UBFC-rPPG (see Section 4.1.2). We randomized 66% of the videos to ne-tune the model pre-trained on BP4D+ and used the remaining videos for testing. Table 6 compares the performance of X-iPPGNet with state-ofthe-art techniques, including hand-crafted and deep learning-based methods.

From the results, we can observe that the X-iPPGNet ranks rst on all metrics (SD = 3.93; MAE = 3.17; RMSE = 3.93 and r = 0.88). It is clear that our model performs very well under various image acquisition conditions and highly compressed videos.

Key Components Analysis

We also provide additional analysis to examine the impact of challenging factors, i.e., pulse rate distribution values, skin tone, gender, and head movements. All experiments have been conducted on the MMSE-HR dataset.

Impact of pulse rate distribution values

To further analyze the impact of PR distribution values on the performance of X-iPPGNet, we plot the dierences between estimated and groundtruth pulse rate versus ground-truth estimation. This BlandAltman plot (see Figure 6) shows that the distribution is concentrated inside the 95% limits of agreement (1.96 SD) for low ( < 70) and mid (70, 90) pulse rates range. However, predictions of high pulse rates exhibit some outliers ( > 90). We suppose that this observation is connected to the imbalanced training set (see gure 2). Furthermore, the error rate increases signicantly for higher pulse rates than for mid and low pulse rates due to their uctuations over the time window [START_REF] Huang | A novel one-stage framework for visual pulse rate estimation using deep neural networks[END_REF]. Moreover, the BlandAltman exhibits a marked negative trend. The model tends to over-estimate low PR and under-estimate high PR because low and high pulse rates are under-represented in the training dataset. We suppose that this observation is a direct consequence of the dataset imbalance. The model tends to produce predictions oriented towards mid-PR values. The PR dierence is therefore positive for low PR and negative for high PR.

Impact of skin tone and gender

MMSE-HR was selected to assess the generalizability of our method to dierent skin tones. This dataset is more diverse in terms of ethnicity (including black, white, Asian, and Hispanic / Latino) compared to UBFC-rPPG [48] and MAHNOB-HCI [START_REF] Soleymani | A multimodal database for aect recognition and implicit tagging[END_REF], which are highly biased towards lighter skin. Following the protocol employed by the authors of [START_REF] Liu | Metaphys: Unsupervised few-shot adaptation for non-contact physiological measurement[END_REF], which is based on the Fitzpatrick scale [START_REF] Fitzpatrick | The validity and practicality of sun-reactive skin types i through vi[END_REF], we divided the database into 4 categories according to skin tone type. In addition to types III and IV, we grouped skin types I + II and V + VI together as there were relatively few subjects in these categories. The predictions of X-iPPGNet for dierent skin tones are reported in Table 7. The proposed technique exhibits great performance for all skin types and relatively less for dark skin, considering that participants with darker skin tones are underrepresented in the training set.

We further evaluated the impact of gender on pulse rate estimation. The results obtained show dierences in performance between males and females (see Table 8). This conrms the results of previous study showing a slightly lower error rate for males than for females [START_REF] Niu | Rhythmnet: End-to-end heart rate estimation from face via spatial-temporal representation[END_REF].

Impact of head movement

Visual pulse rate estimation in unconstrained environments remains a challenging task. Besides skin color and environmental conditions, head movements and facial expressions should be considered to build a robust 20 9.

We observe a performance degradation for large movements compared to stable videos but the error remains acceptable. The time window size is an important parameter for video-based pulse rate estimation. Previous studies have reported that a longer window size leads to better performance, especially when using bandpass lter operation or power spectral density [START_REF] Yu | Remote photoplethysmograph signal measurement from facial videos using spatio-temporal networks[END_REF][START_REF] Qiu | Evm-cnn: Real-time contactless heart rate estimation from facial video[END_REF]. However, this increases the computational cost which is not suitable for real-time applications. Indeed, there is a tradeo in the size of the time window. If the time window is too large, the predicted pulse rate loses instantaneous information as we average pulse rates in the concerned video fragment. Conversely, the input video fragment may not contain a full cycle of two consecutive beats, resulting in an inaccurate pulse rate estimate. Table 10 presents the window size selected in this work in addition with state-of-the-art methods. All previous studies present much longer time windows than our method, except PRNet [START_REF] Huang | A novel one-stage framework for visual pulse rate estimation using deep neural networks[END_REF], 3DCNN [START_REF] Bousefsaf | 3d convolutional neural networks for remote pulse rate measurement and mapping from facial video[END_REF], and rPPGNet [START_REF] Yu | Remote heart rate measurement from highly compressed facial videos: an end-to-end deep learning solution with video enhancement[END_REF]. These methods used a 2-seconds video fragment to estimate pulse rate, but with a higher number of frames.

Table 11 presents computation time and accuracy by window size. It is clear that increasing the window size implies more input images and more trainable parameters, thus increasing computation time. The same applies to accuracy where MAE and RMSE raise with increasing time windows, except for 1-second window which does not cover the low-frequency interval. For this reason, the 2-seconds window has been carefully selected to have a complete cardiac cycle and to cover the entire pulse rate range. Computation times of the methods that use a 2-seconds window is reported in Table 12. X-iPPGNet achieves 140 ms inference time behind PRNet [START_REF] Huang | A novel one-stage framework for visual pulse rate estimation using deep neural networks[END_REF], which runs the fastest among the six methods. X-iPPGNet is however deeper and outperforms PRNet in terms of accuracy. rPPGNet [START_REF] Yu | Remote heart rate measurement from highly compressed facial videos: an end-to-end deep learning solution with video enhancement[END_REF] 230

PhysNet [START_REF] Yu | Remote photoplethysmograph signal measurement from facial videos using spatio-temporal networks[END_REF] 200 3DCNN [START_REF] Bousefsaf | 3d convolutional neural networks for remote pulse rate measurement and mapping from facial video[END_REF] 155 LCOMS [START_REF] Ouzar | Lcoms lab's approach to the vision for vitals (v4v) challenge[END_REF] 150

PRNet [START_REF] Huang | A novel one-stage framework for visual pulse rate estimation using deep neural networks[END_REF] 130 X-iPPGNet (Ours) 140

Discussion

This work has been undertaken to optimize and improve iPPG-based systems for pulse rate estimation. Most existing studies extract the iPPG signal using either conventional approaches [START_REF] Poh | Advancements in Noncontact, Multiparameter Physiological Measurements Using a Webcam[END_REF][START_REF] Haan | Robust pulse rate from chrominance-based rppg[END_REF][START_REF] Bousefsaf | Continuous wavelet ltering on webcam photoplethysmographic signals to remotely assess the instantaneous heart rate[END_REF][START_REF] Li | Remote heart rate measurement from face videos under realistic situations[END_REF][START_REF] Wang | A novel algorithm for remote photoplethysmography: Spatial subspace rotation[END_REF][START_REF] Wang | Algorithmic principles of remote ppg[END_REF] or deep learning-based methods [START_REF] Chen | Deepphys: Video-based physiological measurement using convolutional attention networks[END_REF][START_REF] Yu | Remote photoplethysmograph signal measurement from facial videos using spatio-temporal networks[END_REF][START_REF] Niu | Rhythmnet: End-to-end heart rate estimation from face via spatial-temporal representation[END_REF][START_REF] Yu | Autohr: A strong end-to-end baseline for remote heart rate measurement with neural searching[END_REF]. Pulse rate is usually computed as the inverse of the average time dierence between consecutive beats in the time domain, or as the frequency with the highest power spectrum energy in the frequency domain. Therefore, additional processing steps such as peak detection, Fast Fourier Transform, or Power Spectral Density are required. Moreover, the accuracy depends on the quality of the iPPG waveform and on the accuracy of the main peaks detection. Since publicly available databases are challenging and provide a large number of corrupted and poor-quality PPG signals [START_REF] Zhang | Multimodal spontaneous emotion corpus for human behavior analysis[END_REF][START_REF] Soleymani | A multimodal database for aect recognition and implicit tagging[END_REF][START_REF] Niu | Vipl-hr: A multi-modal database for pulse estimation from less-constrained face video[END_REF], this directly aects the main peak location and consequently decreases the accuracy.

The proposed approach corresponds to an end-to-end trainable neural network where pulse rate is directly predicted from facial video recordings without separate iPPG signal recovery and with no prior knowledge. X-iPPGNet merges iPPG signal extraction and pulse rate prediction in one step. We rely on the ability of deep learning models to implicitly learn useful information directly from raw data. The training is fully supervised where each 2-seconds video fragment takes a ground truth pulse rate obtained with a contact device as a training label.

The main advantages of the proposed approach lie in its simplicity and low processing latency. A short time window is used to estimate pulse rate (2 s, 50 video frames). The size of the time window has a direct impact on performances. The larger it is, the higher the error, especially when dealing with higher and sharply uctuating pulse rates (see Table 11). This is due to the loss of instantaneous information since the pulse rate is estimated by the averaging operation over the time window (As shown in Table 11). Moreover, our approach is more suitable for real-time measurement. The architecture is based on the Xception backbone that signicantly reduces the number of parameters and computational costs without any performance degradation.

Since the most important factor when dealing with deep learning-based approaches is data, X-iPPGNet has been trained on BP4D+ to operate accurately in challenging scenarios and enable more robust training. BP4D+ provides a large amount of data and ethnic diversity, as well as challenging conditions. Furthermore, data augmentation is applied to increase the amount of under-represented samples at high and low frequencies. Using such a database in conjunction with data augmentation allows automatic learning of iPPG without hand-crafted features. Additionally, advanced deep learning optimization techniques as well as regularization strategies used in our work help to overcome overtting issues and improve the model generalizability to new data.

The above experimental results verify the eectiveness of the proposed method and prove the possibility of measuring pulse rate directly from facial videos without going through iPPG signal recovery. Test results on three benchmark databases outperform existing methods and reveal the generalization ability to new data. We also examined the impact of various factors on prediction errors. The evaluation shows good performance in less-constrained scenarios such as head movement, illumination, video compression, and for dierent skin tones.

Limitations

The main limitation of our method concerns the way the pulse rate is measured. Although the framework is end-to-end trainable and superior in terms of speed and simplicity, pulse rate prediction without going through iPPG signal extraction does not allow pulse wave features extraction which is useful in medical applications [START_REF] Djeldjli | Remote estimation of pulse wave features related to arterial stiness and blood pressure using a camera[END_REF] or for aective state recognition [START_REF] Ouzar | Video-based multimodal spontaneous emotion recognition using facial expressions and physiological signals[END_REF]. Furthermore, we have identied several issues that can be improved in future studies. First, most publicly available databases are very limited in terms of amount of data [START_REF] Bobbia | Unsupervised skin tissue segmentation for remote photoplethysmography[END_REF][START_REF] Heusch | A reproducible study on remote heart rate measurement[END_REF][START_REF] Stricker | Non-contact video-based pulse rate measurement on a mobile service robot[END_REF]. This lack of data makes training deep learning models more dicult and therefore increases the probability of overtting and decreases the ability to generalize to new data. Although a few largescale databases are available [START_REF] Zhang | Multimodal spontaneous emotion corpus for human behavior analysis[END_REF][START_REF] Niu | Vipl-hr: A multi-modal database for pulse estimation from less-constrained face video[END_REF][START_REF] Soleymani | A multimodal database for aect recognition and implicit tagging[END_REF], they are not very diverse and are highly skewed towards light skin tones and mid-pulse rates. This leads to a lack of generalization and poor performance for under-represented samples. Using synthetic data [START_REF] Mcdu | Synthetic data for multi-parameter camera-based physiological sensing[END_REF][START_REF] Song | Pulsegan: Learning to generate realistic pulse waveforms in remote photoplethysmography[END_REF][START_REF] Bousefsaf | 3d convolutional neural networks for remote pulse rate measurement and mapping from facial video[END_REF][START_REF] Niu | Synrhythm: Learning a deep heart rate estimator from general to specic[END_REF] or combining multiple datasets [START_REF] Hill | Beat-to-beat cardiac pulse rate measurement from video[END_REF] can solve the problem of the limited amount of data while applying advanced data augmentation strategies can improve performances for underrepresented samples by creating additional and dierent training instances. Secondly, we noticed a high rate of corruption and poor quality ground truth PPG signals in the databases we used [START_REF] Zhang | Multimodal spontaneous emotion corpus for human behavior analysis[END_REF][START_REF] Bobbia | Unsupervised skin tissue segmentation for remote photoplethysmography[END_REF][START_REF] Soleymani | A multimodal database for aect recognition and implicit tagging[END_REF]. Data preparation and cleaning are essential to properly train the network and avoid overtting problems. Finally, existing networks often consist of a large number of parameters and require high computational costs, which greatly hampers their application on resource-limited devices such as mobile phones. Therefore, investigating lightweight network models can considerably improve the speed and accuracy while maintaining similar performance.

Conclusion and Future Works

In this paper, we proposed a novel one-stage approach (X-iPPGNet) for contactless pulse rate estimation from facial video recordings using a deep spatio-temporal network. This approach is an ecient and elegant way to predict pulse rate without separate iPPG signal extraction and with no prior knowledge. X-iPPGNet is inspired by the Xception network architecture, which has proven to be ecient for general-purpose 2D image tasks in terms of accuracy, fast convergence speed, and low computational cost. Our extensive experiments showed the eectiveness of the proposed architecture, which achieves higher accuracy and outperforms existing methods on three popular benchmark datasets such as MMSE-HR, UBFC-rPPG, and MAHNOB-HCI. The results of this study demonstrated that pulse rate can be estimated remotely from facial videos without the need for complicated hand-crafted features or iPPG signal extraction.

Looking forward to our future work, we intend to compare the performance between our one-stage-based approach and two-stage-based methods. We will further analyze the eect of combining real and synthetic data on performance. Furthermore, we envisage investigating lightweight networks to develop a faster and more suitable model for real-time applications. We would also like to investigate the eectiveness of the proposed approach for measuring other physiological parameters, such as blood pressure, respiratory rate, and oxygen saturation.

Figure 2 :

 2 Figure 2: Distribution of the ground truth pulse rates in BP4D+.

Figure 3 :

 3 Figure 3: Example of ground truth pulse rates (participant F005) showing strong inconsistencies. Red curve: ground truth pulse rate provided by the database; Blue curve: pulse rate computed from the raw blood pressure signal.

Figure 4 :

 4 Figure 4: Examples showing the ability of the face segmentation model to work in dicult scenarios. Top gures: raw images, bottom gures: corresponding segmentations.

Figure 6 :

 6 Figure 6: BlandAltman plot showing the dierences in pulse rate between ground-truth and estimated values plotted against the ground-truth measurements for the MMSE-HR dataset (see section 3.1). Mean values are represented by black dash-dot lines and 95% limits of agreement (1.96 SD) by red dashed lines.

Table 1 :

 1 A brief summary of existing iPPG-based PR estimation approaches and their pros & cons.

		Multiple stage		One stage
		Conventional	Deep learning
		Thermal [18]	Thermal [19]	R.G.B [20]
	Input	Monochromatic [21]	

Table 2 :

 2 Summary of the public-domain databases used in our experiments.

	Database	Nb of participants Nb videos FPS	Ethnicity	Task/Condition
					Latino/Hispanic, White,	
	MMSE-HR [46]	40	102	25	African American,	Emotion elicitation
					Asian, and Others	
	MAHNOB-HCI [47]	27	527	61	Caucasian and Asian	Emotion elicitation
	UBFC-rPPG [48]	42	42	30	-	Interaction
					Latino/Hispanic, White,	
	BP4D+ [46]	140	1400	25	African American,	Emotion elicitation
					Asian, and Others	
	3.1.1. MMSE-HR				
	MMSE-HR				

Table 3 :

 3 Number of missed images according to the most popular face detection algorithms.

  The input video fragment rst passes through the entry ow, then through the middle ow which is repeated eight times, and nally through the exit ow which ends with a dense layer of 1 neuron, to estimate the corresponding pulse rate.

				3D-XceptionNet	
				×8	
		Frames	Entry block	Middle block	Exit block	Pulse rate
		50×120×160×3			
		Conv_BN_ReLU 16; 3×3×3; 2×2×2	SepConv_BN_ReLU 3×3×3		SepConv_BN_ReLU 3×3×3
		Conv_BN_ReLU 32; 3×3×3; 2×2×2		Conv3D 256;
				SepConv_BN_ReLU 3×3×3	1×1×1;	SepConv_BN_ReLU 3×3×3
		SeparableConv3D, 3×3×3			s=2×2×2
	Conv3D 32; 1×1×1; s=2×2×2	SepConv_BN_ReLU 3×3×3		SepConv_BN_ReLU 3×3×3 +		AveragePool3D, 3×3×3; s=2×2×2 +
		AveragePool3D, 3×3×3; s=2×2×2		
						SepConv_BN_ReLU 3×3×3
		+			
		SepConv_BN_ReLU 3×3×3		Conv_BN_ReLU f; k; s		SepConv_BN_ReLU 3×3×3
	Conv3D 64; 1×1×1; s=2×2×2	SepConv_BN_ReLU 3×3×3		Conv3D filter:f; kernel:k; strides:s BatchNormalization		Flatten
		AveragePool3D, 3×3×3; s=2×2×2	ReLU		Dense 1024; ReLU
		+			
						Dense 1; Linear
		SepConv_BN_ReLU 3×3×3		SepConv_BN_ReLU k	
	Conv3D 128; 1×1×1; s=2×2×2	SepConv_BN_ReLU 3×3×3		BatchNormalization ReLU	
		AveragePool3D, 3×3×3; s=2×2×2	SeparableConv3D kernel:k	
		+			

Figure 5: X-iPPGNet architecture proposed in this work. It corresponds to a modied version of the Xception network. 2D depthwise separable convolution layers are replaced by 3D depthwise separable convolution to capture both spatial and temporal features across video frames. A Dense layer is used instead of a Global Average Pooling layer.

Table 4 :

 4 PR estimation results by the proposed approach and several state-of-the-art methods on MMSE-HR.

	Approach	Method	SD (bpm)	RMSE (bpm)	r
		Li2014	20.02	19.95	0.37
	Multiple stage	CHROM	14.08	13.97	0.55
	Hand-crafted	SAMC	12.24	11.37	0.71
		RhthmNet	6.98	12.76	0.78
	Multiple stage	PhysNet	12.76	13.25	0.44
	Deep learnings	AutoHR	5.71	5.87	0.89
	One stage	X-iPPGNet (Ours)	5.34	5.32	0.85

Table 5 :

 5 PR estimation results by the proposed approach and several state-of-the-art methods on UBFC-RPPG.

	Approach	Method	SD (bpm) MAE (bpm) RMSE (bpm) r
		Green	20.2	10.2	20.6	-
	Multiple stage	ICA	18.6	8.43	18.8	-
	Hand-crafted	CHROM	19.1	10.6	20.3	-
		POS	10.4	4.12	10.5	-
	Multiple stage	Meta-rPPG	7.12	5.97	7.42	0.53
	Deep learning					
		3DCNN	8.55	5.45	8.64	-
	One stage	PRNet	6.45	5.29	7.24	-
		X-iPPGNet (Ours)	6.25	4.99	6.26	0.67

Table 6 :

 6 PR estimation results by the proposed approach and several state-of-the-art methods on MAHNOB-HCI.

	Approach	Method	SD (bpm) MAE (bpm) RMSE (bpm)	r
		Poh 2011	13.5	-	13.6	0.36
	Multiple stage	CHROM	-	13.49	22.36	0.21
	Hand-crafted	Li 2014	6.88	-	7.62	0.81
		SAMC	5.81	4.96	6.23	0.83
		SynRhythm	10.88	-	11.08	-
		DeepPhys	-	4.57	-	-
		HR-CNN	-	7.25	9.24	0.51
	Multiple stage	rPPGNet	7.82	5.51	7.82	0.78
	Deep learning	RhythmNet	3.99	-	3.99	0.87
		PhysNet	7.84	5.96	7.88	0.76
		AutoHR	4.73	3.78	5.10	0.86
		PulseGAN	-	4.15	6.53	0.71
	One stage	X-iPPGNet (Ours)	3.93	3.17	3.93	0.88

Table 7 :

 7 PR MAE, RMSE and r for our method by skin type on MMSE-HR.

					5,43
			4,52	
		4,17	3,94		
		I+II	III	IV	V+VI
			Skin Type Category		
	Fitzpatrick	I+II	III	IV	V+VI
	Skin Types				
	MAE (bpm)	4.17	3.94	4.52	5.43
	RMSE	5.31	5.18	5.76	6.82
	(bpm)				
	r	0.87	0.81	0.84	0.40
	pulse rate measurement system. Pulse rate estimation error for videos with
	stable subjects and those that include facial expressions and head movements
	has been computed in order to assess how rigid movements (e.g., head tilt
	and posture changes) and non-rigid movements (e.g., facial expressions) af-
	fect the performance of X-iPPGNet. The results are presented in Table

Table 8 :

 8 Performance of our method on MMSE-HR by gender.

	Gender	Male	Female
	MAE (bpm)	3.74	4.53
	RMSE (bpm)	4.76	5.84
	r	0.79	0.85

Table 9 :

 9 Performance of our method on MMSE-HR under dierent head movement conditions.

	Head movement	Stable	Large movement
	conditions		
	MAE (bpm)	3.88	4.44
	RMSE (bpm)	4.91	5.74
	r	0.86	0.82
	4.2.4. Time window size		

Table 10 :

 10 The time window size of the input video fragment in state-of-the-art methods

	Method	Time window size
	DeepPhys [7]	30 s
	Siamese-rPPG [50]	20 s
	CHROM [52]	10 s
	POS [5]	10 s
	SynRhythm [70]	10 s
	RhythmNet [8]	10 s
	2SR [4]	6 s
	EVM-CNN [29]	4/6/8 s
	PhysNet [15]	2/4(best)/8 s
	rPPGNet [42]	2 s (64 frames)
	PRNet [20]	2 s (60 frames)
	3DCNN [24]	2 s (60 frames)
	X-iPPGNet (Ours)	2 s (50 frames)

Table 11 :

 11 Performance and computation time of our method on MMSE-HR using dierent time window sizes.

	Window size	1s	2s	3s	4s	6s
	MAE (bpm)	10.21	4.10	6.41	7.75	8.13
	RMSE (bpm)	12.89	5.32	7.98	9.77	10.02
	Computation time (ms)	120	140	160	180	220

Table 12 :

 12 Computation time of our approach compared to state-of-the-art methods that use a 2-second input window size.

	Method	Computation time (ms)

https://github.com/alexandrosstergiou/keras-DepthwiseConv3D
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