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General Methodology
Characterization and Purification Methods

TH and '3C spectra were recorded on a Bruker Avance Il spectrometer operating at 400 MHz
or 500 MHz. Spectra were obtained using solutions of ca. 10 mg in appropriate deuterated
solvents. The chemical shifts (8) are expressed in ppm relative to internal tetramethylsilane
for 'H and 3C nuclei. The coupling constants were automatically obtained by TopSpin© and
expressed in Hz. Abbreviations for signal coupling are indicated as: s = singlet; d=doublet;
dd=doublet of doublets; t=triplet; q=quartet; quin=quintet; m=multiplet; br=broad signal.
To accurate determine the molecular structure of the monomer CEIL and its intermediates
additional 2D NMR experiments (COSY, HSQC, HMBC) were performed.

High Resolution Mass Spectra HRMS was carried out on by a Micromass-Waters Q-TOF
Ultima Global by the technique of Electrospray lonization (ESI).

Thin Layer Chromatography (TLC) was run using different eluent mixtures on pre-coated
aluminum plates of silica gel 60 F-254 (Merck).
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1) NaH, THF,0°C  Br 73%
HO\/@ 2) 4-bromobenzy|gromide\©\/0\/@

0 °C to reflux, 22 h 2

4-Bromobenzyl (cyclohex-3-en-1-ylmethyl) ether (2).

Under Argon atmosphere, cyclohexen-4-ylmethanol (12.5 mL, 0.11 mol) was added
dropwise to a stirred suspension of NaH (5.6 g (60 % in mineral oil), 0.14 mol) in anhydrous
THF (200 mL) at 0 °C. After the addition, the mixture was left to stir for 30 min at 0 °C. Then,
more 200 mL of anhydrous THF was added followed by the addition of 4-
bromobenzylbromide (26.75 g, 0.12 mol). The reactional mixture was stirred for 30 min at
27 °C. Finally, the reactional mixture was heated for 22 h under reflux and Argon
atmosphere. The reaction was cooled to 0 °C and it was quenched by adding 50 g of ice
cubes. The reactional mixture was stirred for 1 h to ensure the complete quenching. The
reaction was filtered using paper filter and extracted five times with dichloromethane and
dd-water. The organic layer was dried over MgS0, and concentrated in vacuo. The product
was further purified by column chromatography using silica gel and hexane: ethyl acetate
(solvent mixture gradient from 100:0 until 95:5) as eluent. Compound 2 was obtained as a
colorless and transparent oil with 73% of yield. 'H NMR (500 MHz, Chloroform-d) §: 7.45
(d,J=8.3Hz 2H),7.22 (d,] =8.5 Hz, 2H), 5.76-5.61 (m, 2H), 4.47 (s, 2H), 3.41-3.30 (m, 2H),
2.17-2.09 (m, 1H), 2.09-2.03 (m, 2H), 1.99-1.90 (m, 1H), 1.88- 1.80 (m, 1H), 1.80 - 1.70 (m,
1H), 1.34 - 1.21 (m, 1H). 3C NMR (126 MHz, Chloroform-d) &: 138.8, 132.5, 129.3,127.2,
126.7,122.3,74.5,73.3,33.5,27.6, 24.9, 25.6.

1) n-BuLi, THF
Br 3 I
78 °C, 1h (HO)B 85%
o 2) B(Oi-Pr); )
-78 °C to rt, overnight 3

3) HCI/H,0, 0°C
4-((Cyclohex-3-en-1-ylmethoxy)methyl)phenyl)boronic acid (3).

Under Argon atmosphere, the compound 2 (13.85 g, 49.2 mmol) was dissolved in anhydrous
THF (129 mL) and mixture was cooled to -78 °C and, subsequently n-BuLi 2.5 M in hexane
(23.6 mL, 49.2 mmol) was added dropwise. The mixture was kept stirring at -78 °C for 60
min and then 17 ml (50.5 mmol) of triisopropyl borate was slowly added. The mixture was
stirred overnight from -78 °C to room temperature. The reaction was cooled to 0 °C and
quenched by adding 50 g of ice cubes followed by the slowly addition of 137 mL of
hydrochloric acid (1 M). The yielding mixture was stirred for 30 min. The aqueous layer was
extracted by dichloromethane, dried over anhydrous MgSO, and concentrated in vacuo.
Compound 3 was employed in the next step without further purification since the product
degrades in the column. The product was obtained as a off-white crystal compound. 'H NMR
(500 MHz, Chloroform-d) &: 8.21 (d, ] = 7.7 Hz, 2H), 7.48 (d, ] = 7.7 Hz, 2H), 5.88-5.46 (m,
2H), 4.61 (s, 2H), 3.52-3.32 (m, 2H), 2.28-2.12 (m, 1H), 2.12-2.08 (m, 2H), 2.05-1.95 (m,
1H), 1.95- 1.85 (m, 1H), 1.83-1.72 (m, 1H), 1.35-1.26 (m, 1H). 3C NMR (126 MHz,
Chloroform-d) &: 143.7,135.9, 133.5,127.4,126.4, 126.7,75.9, 72.8, 34.1, 28.3, 25.5, 24.4.
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Imidazol N:\

midazole

(HO)B Cul, Air Q\/N
Sl cile

Reflux, 5 h

1-(4-((Cyclohex-3-en-1-ylmethoxy)methyl)phenyl)-1H-imidazole (4).

Initially, imidazole (2.5 g, 37.2 mmol) and copper (1) iodide (236 mg, 1.4 mmol) was stirred
for 5 min in 114 ml of methanol. Subsequently, the boranic acid derivative 3 was added and
stirred overnight under reflux and bubbling air in the reactional mixture. The solution was
cooled to room temperature and filtered using a Celite® pellet and concentrated under
reduced pressure. The product was further purified by column chromatography using silica
gel and hexane: ethyl acetate (solvent mixture gradient from 70:30 until 0:100) as eluent.
Compound 4 was obtained as white crystalline powder. 'H NMR (400 MHz, Chloroform-
d) 8: 7.89 (s, 1H), 7.47 (d, ] = 8.5 Hz, 2H), 7.36 (d, ] = 8.5 Hz, 2H), 7.27 (s, 1H), 7.22 (s, 1H),
5.72-5.61 (m, 2H), 4.54 (s, 2H), 3.54-3.22 (m, 2H), 2.18-2.12 (m, 1H), 2.08-2.04 (m, 2H),
2.02-1.94 (m, 1H), 1.89-1.83 (m, 1H), 1.82-1.73 (m, 1H), 1.37-1.29 (m, 1H). 13C NMR (400
MHz, Chloroform-d) &: 138.5, 136.7, 135.6, 130.5, 128.5, 127.2, 126.2, 121.5, 118.9, 75.6,
72.2,34.5,28.4,25.7,24.3.

A A0 . ON

(o]
\ 1,4-dibromobutane Q O Q
\©\/ \/O y -
N A
CH4CN, reflux, 21 h @N%N\@JN
RS ®_

5

3,3'-(Butane-1,4-diyl)bis(1-(4-((cyclohex-3-en-1-ylmethoxy)methyl)phenyl)-1H-
imidazol-3-ium) bromide (5).

Compound 4 (6.37 g, 23.7 mmol) was solubilized in 33 mL of acetonitrile and 1,4-
dibromobutane (2.6 g, 11.87 mmol) was slowly added using a syringe and needle. The
reaction was stirred for 21 h at 80 °C. The reaction yielded an off-white precipitate that was
washed several times with cold acetonitrile. The product was filtered and dried under
vacuum resulting in a white powder. 'H NMR (400 MHz, Chloroform-d) &: 10.78 (t,] = 1.7
Hz, 2H), 8.44 (t,] = 1.3 Hz, 2H), 7.74 (d,] = 8.5 Hz, 4H), 7.62 (t,] = 1.9 Hz, 2H), 7.52 (d,] = 8.4
Hz, 4H), 5.73-5.54 (m, 4H), 4.82 (t,] = 6.3 Hz, 4H), 4.54 (s, 4H), 3.41-3.35 (m, 4H), 2.37 (t,]
= 6.3 Hz, 4H), 2.16-2.08 (m, 2H), 2.08-2.00 (m, 4H), 1.98- 1.87 (m, 2H), 1.86-1.77 (m, 2H),
1.79-1.69 (m, 2H), 1.34-1.23 (m, 2H). 13C NMR (400 MHz, Chloroform-d) &: 141.7, 135.5,
133.7,129.3,127.2,125.8,124.7,121.8,120.2, 75.7, 71.9, 49.3, 34.1, 28.5, 26.6, 25.6, 24.5.
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4N(+)
6

3,3'-(Butane-1,4-diyl)bis(1-(4-((cyclohex-3-en-1-ylmethoxy)methyl)phenyl)-1H-
imidazol-3-ium) bistrifluoromethanesulfonimidate (6).

The compound 5 (21.22 g, 28.28 mmol) was added in 400 ml of dd-water and heated to 85
°C until complete solubilization of the material. Subsequently, a LINTf, (13.52 g, 43 mmol)
solution was prepared using 1 mL of dd-water, and it was added to the previous solution.
The mixture became cloudy, and this reactional mixture was left to stir for 3h at room
temperature. The aqueous layer was extracted by dichloromethane five times, dried over
anhydrous MgS0, and concentrated in vacuo. The compound 6 was obtained as a colorless
oil (32.28 g, 27.99 mmol). 'H NMR (400 MHz, Chloroform-d) 8: 9.07 (t,] = 1.8 Hz, 2H), 7.72
(t, ] = 1.8 Hz, 2H), 7.61-7.49 (m, 10H), 5.76-5.57 (m, 4H), 4.59 (s, 4H), 4.44-4.38 (m, 4H),
3.47-3.32 (m, 4H), 2.23-2.12 (m, 6H), 2.10- 2.03 (m, 4H), 2.05-1.93 (m, 2H), 1.90-1.88 (m,
4H), 1.38-1.27 (m, 2H). 13C NMR (400 MHz, Chloroform-d) §: 142.2, 133.8, 133.5, 129.3,
127.2,125.8,123.9,122.5,121.8,119.5 (q, ] = 321.1 Hz), 75.0, 71.2, 49.3, 34.5, 28.5, 26.5,
24.6, 25.6.

f@ Q\\ d @ 98% o£> \0
Nsz NTf m- CPBA 2 NTf,
N_/»\ /wa NA /H‘;N@

CHZCIz <h

CEIL

3,3'-(Butane-1,4-diyl)bis(1-(4-(((7-oxabicyclo[4.1.0]heptan-3-
yl)methoxy)methyl)phenyl)-1Himidazol-3-ium) bistrifluoromethanesulfonimidate
(CEIL).

To obtain the final product CEIL, an adaptation of the classical Prilezhaev epoxidation
reaction! was employed. Compound 6 (9.54 g, 8.31 mmol) was solubilized in anhydrous
dichloromethane (54.41 mL) at 0 °C. Next, m-CPBA (5.97 g, 20.8 mmol) was slowly added.
The reaction was stirred at 0 °C for 3 h, and a white precipitate was formed. The reaction
mixture was concentrated under reduced pressure and filtered to eliminate the excess of
m-CPBA and its derivatives. The solution obtained from the filtration was poured in diethyl
ether (300 mL). The insoluble part was isolated by decantation and washed three times by
diethyl ether. The product was dried under vacuum and resulted in a transparent and
colorless viscous oil (9.98 g, 98%). 'H NMR (400 MHz, Acetonitrile-d3) §: 8.92-8.86 (m,
2H), 7.84-7.78 (m, 2H), 7.67-7.58 (m, 10H), 4.62- 4.54 (m, 4H), 4.35-4.57 (m, 4H), 3.41-
3.29 (m, 4H), 3.19-3.09 (m, 4H), 2.21-1.98 (m, 7H), 1.87-1.38 (m, 9H), 1.21-0.99 (m, 2H).
13C NMR (101 MHz, Acetonitrile-d3) mixture of stereoisomers3 8: 143.9, 142.9, 135.7,
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134.8,134.9,130.2,130.1,124.3,123.6,123.6,123.1,120.8 (q,] = 320.8 Hz), 76.7,76.2, 72.3,
72.2,53.1,53.3,52.2,51.7,50.6, 33.10, 31.3, 29.3, 28.2, 27.2, 25.4, 24.8, 23.7, 22.3.

NMR Spectra
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Figure S1 - '"H NMR spectrum of compound 2 (400 MHz, CDCl;, 25 °C).
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Figure S13 - Fold-deploy experiment showing the different steps. In (a) p-CEIL initial
shape, (b) bending process using a mold, (c-d) folded shape and (e) the initial shape after

the heating process.

Table S1 - Number of ions/monomers used for each system.

System CEIL ECC TFSI Total Number of Atoms
p-CEIL-ECC 240 560 480 54240

p-ECC - 1200 - 50400

p-CEIL 400 - 800 51200

Table S2 - Computed thermo-mechanical properties of each system.

p-CEIL-ECC p-ECC p-CEIL

Density / g cm 1.25 1.08 131
Density, std 0.01 0.01 0.00
Tg/°c 166.0 215.2 103.0

T,, std 44.5 18.4 11.6
CVTE, below /K | 1.99 0.60 416
CVTE, below, std 0.14 0.06 0.06
CVTE, above 2.84 1.43 6.45
CVTE, above, std 0.36 0.13 0.14
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Snapshots of the p-ECC-CEIL simulation cell CEIL from different angles.

NTf;  CELL  ECC

Figure S14 - Snapshots taken from the p-ECC-CEIL system from different angles.
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Figure S15 - Stress-strain curves for the three networks prepared by adding 2 wt% of
S7MS.

CEIL
& O/\@ %”z Q*l”g’©/\_o
=/ =/

Lewis Acid

Coordination Site
Electrophilic Phosphonium IL

Coordinating
0 -}_)f— 7 site
8o R o—r2

Figure S16 - The CEIL and phosphonium IL104 structures.

S13



484

226.1416  313.2270

409.3574

56@1{)3ct2_211202_14_GAP-p—ECC_diIiI.OOOOMeOH.d: +MS, 0.4-1.3min #25-75

L

04 — . 'Kldllllullll . LL}ALIL'M'

200 300

ol o
e

400

N
T r—t——r-rrr-rrT-rrrer T

500 600 700 800 900 mz

Intens. ]

226.1416
x106 4

0.8 1

b 210.1103
0.6

0.4 1

175.0398
90.9769
|

100

200

250

Impact2_211202 14 _GAP-p-ECC_dil10000MeOH.d: +MS, 0.4-1.3min #25-75
313.2270

278.2458
347.2309 409.3574

437.3887

300

350

400 450 mz

511.5370

541.5112

Impact2_211202_14_GAP-p-ECC_dil10000MeOH.d: +MS, 0.4-1.3min #25-75

685.4360

0.5
566.8892 603.4645  §34.8766 709.5249
0.0 e —
500 550 600 650 700 750 m'z

Figure S17 - ESI(+)-QTOF mass spectrum of degradation products of p-ECC.

Table S3 - Molecular ions obtained from ESI(+)-QTOF spectrometry of the degradation

products of p-ECC
Ion
Meas. m/z | Formula |Sum Formula m/z err [ppm] | mSigma | Adduct VA
210.1103 C;H;N,0 C,H1;1N,0 210.1098 -2.4 4.5 M+H 1+
313.227 C20H29oN,0 C20H2sN,0 | 313.2274 1.3 29 M+H 1+
409.3574 CogH4sN, CagHasN, 409.3577 0.8 34.6 M 1+
CagHysN, C2sHy4N; 409.3577 0.8 34.6 M+H 1+
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Figure S18 - ESI(+)-QTOF mass spectrum of degradation products of p-ECC-CEIL.
Table S4 - Molecular ions obtained from ESI(+)-QTOF spectrometry of the degradation
products of p-ECC-CEIL
err
Meas. m/z |lon Formula| Sum Formula m/z [ppm] |[mSigma| Adduct y/
210.1101 C,;H{,N,0 C,H11N,0 210.1098 -1.6 41 M+H 1+
249.1826 C12H21N6 C12H20N6 249.1822 -1.4 n.a. M+H 1+
313.2268 C20H29N,0 C20H2sN,0 313.2274 2 29 M+H 1+
409.357 CogHasN, CagHasN, 409.3577 1.7 35.3 M 1+
C28H45N2 C28H44N2 409.3577 1.7 35.3 M+H 1+
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Figure S19 - ESI(+)-QTOF mass spectrum of degradation products of p-CEIL.
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Table S5 - Molecular ions obtained from ESI(+)-QTOF

products of p-CEIL

spectrometry of the degradation

Sum err
Meas. m/z | Ion Formula Formula m/z [ppm] |mSigma| Adduct yA
226.1414 CgH16N70O CgH16N;0 226.1411 -1.6 49 M 1+
CgH16N,0 CgH15N,0 226.1411 -1.6 4.9 M+H 1+
313.2268 C20H29N,0 Cz0H29N,0 313.2274 2.1 28.8 M 1+
C20H29N,0 C0H26N,0 313.2274 21 28.8 M+H 1+
409.357 CagHysN, CagH4sN, 409.3577 1.8 34.9 M 1+
CagHasN, CogH44N, 409.3577 1.8 34.9 M+H 1+
527.4952 C35Hg3N,0 C35He2N,0 527.4935 -3.3 n.a. M+H 1+
539.1711 C33H23N,404 C33H2,N404 539.1714 0.5 n.a. M+H 1+
C17H23N1209 | Cy7H22N1209 539.1705 -1.1 n.a. M+H 1+
C1gH19N160s | CygH1gN1605 539.1719 1.4 n.a. M+H 1+
C20H31N;015 | Cz0H30N2045 539.1719 1.4 n.a. M+H 1+
C32H704 C32H2604 539.17 -2 n.a. M+H 1+
C34H19Ng C34H1gNg 539.1727 3 n.a. M+H 1+
C16H27NgO13 | CygH26NgO13 539.1692 -3.6 n.a. M+H 1+
C14H15N2,03 | Cy4H14N2,04 539.1692 -3.6 n.a. M+H 1+
C19H15N500 C19H14N700 539.1732 3.9 n.a. M+H 1+
C21H27NO1; | Cp1H26NgO4q 539.1732 3.9 n.a. M+H 1+
C29H19N1002 | Cz9H1gN100; 539.1687 -4.5 n.a. M+H 1+
C4H11N3,0, C4H1oN3,0, 539.1737 4.8 n.a. M+H 1+
540.8895 C2HN¢O27 C2NgOy7 540.8884 -2.1 n.a. M+H 1+
CeHs029 CeH4049 540.8911 2.9 n.a. M+H 1+
566.8889 C4H;03, C4H¢03; 566.8915 4.6 n.a. M+H 1+
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