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A NOTE ON THE LONG TIME BEHAVIOUR OF STOCHASTIC MCKEAN-VLASOV

EQUATIONS WITH COMMON NOISE

RAPHAEL MAILLET

ABSTRACT. This paper presents an investigation into the long-term behaviour of solutions to a non-
linear stochastic McKean-Vlasov equation with common noise. The equation arises naturally in the
mean-field limit of systems composed of interacting particles subject to both idiosyncratic and com-
mon noise. Initially, we demonstrate that the addition of common diffusion in each particle’s dy-
namics does not disrupt the established stability results observed in the absence of common noise.
However, our main objective is to understand how the presence of common noise can restore the
uniqueness of equilibria. Specifically, in a non-convex landscape, we establish uniqueness and con-
vergence towards equilibria under two specific conditions: (1) when the dimension of the ambient
space equals 1, and (2) in the absence of idiosyncratic noise in the system.
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1. INTRODUCTION

We consider the following non-linear Stochastic Partial Differential Equation on r0,`8q ˆ R
d,

(1) dtmt “ ∇ ¨
ˆ
σ2 ` σ2

0

2
∇mt `mtbpt, ¨,mtq

˙
dt ´ σ0Dmt ¨ dB0

t .

This SPDE is posed on a filtered probability space
`
Ω0,F

0,F0,P0

˘
, B0 is a d-dimensional F0-

Brownian motion, the drift b : r0,`8q ˆ R
d ˆ P

`
R

d
˘

Ñ R
d depends in time, space and measure,

σ and σ0 are two non-negative constants. This paper aims to study the long-term behavior of
solutions of Equation (1), and more precisely, to understand the effect of the common noise on
the asymptotic stability. We assume that the drift term b has a specific linear structure with re-
spect to the measure variable, with two continuously differentiable functions V and W such that
bpt, x, µq “ ´∇V pxq ´ ∇W ˚ µpxq, where ˚ stands for the convolution operator. This assump-
tion is typical for studying long-term behavior in McKean-Vlasov type equations, see e.g [1], [3],
[16], [33] or [46]. In the following, we are interested in getting existence and uniqueness results
for the invariant measure of the probability measure valued process pmtq. As the problem under
consideration falls within the realm of McKean-Vlasov type, one may expect existence of an in-
variant measure and uniqueness at least in some specific cases. In this paper, we verify whether,
in the case where W is convex and V is uniformly convex, the introduction of common noise
does not compromise the classical uniqueness results of [2]. When V is not convex, the matter
becomes considerably more intricate, studied so far without the presence of common noise, only
partial results are known. There exist cases in which the uniqueness of the invariant measure is
not satisfied. Unlike linear elliptic equations, the presence of nonlinearity leads to the existence
of multiple invariant measures. Specifically, it has been proven in [33] that when the confinement
potential uniformly convex outside of a ball centred in the origine, admits a double-well and
the diffusion coefficient σ is sufficiently small, there exist exactly three invariant solutions of the
following equation:

Btmt “ σ2

2
∆mt ` ∇ ¨ pmtp∇V ` ∇W ˚mtqq.

Since 2019, several papers [17], [18] or [19] investigate the restoration of uniqueness in mean-field
games derived from deterministic differential games with a large number of players by introduc-
ing an external noise. In a similar manner, this paper explores the restoration of uniqueness of
the invariant measure by introducing common noise to the system. More precisely, we prove ex-
istence and uniqueness of the invariant measure for process pmtq in the following cases: (1) when
the confinement potential V is uniformly convex and the interaction potential is convex; (2) when
the confinement potential V is not convex and the dimension of the ambiant space d “ 1; (3) when
the potential V is not convex and there is no idiosyncratic noise in the system, i.e σ “ 0.
Without uniform convexity assumptions and in higher dimension d ě 2, we can get uniqueness
of the invariant measure for solutions of

dtmt “ ∇ ¨
ˆ
σ2
0

2
∇mt `mtbpt, ¨,mtq

˙
dt´ σ0Dmt ¨ dB0

t ,(2)

whenever σ “ 0. In this case, we even get exponential rates of convergence to the invariant
measure. More precisely, we show the existence of sP P PpPpRdqq, and a constant η ą 0, such that
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for all initial condition P0, we get the existence of a constant C ą 0, such that for each time t ą 0,

d
PpRdq
1

`
Pt, sP

˘
ď Ce´ηt,

where Pt “ Lpmtq, and for any p ě 1, the Wasserstein-p distance on PpPpRdqq is defined by

dPpRdq
p pP,Qq “ inf

πPΠpP,Qq

ż

PpRdq

dR
d

p pµ, νqπpdµ, dνq,(3)

for any P,Q P PpPpRdqq, and where dp stands for the classical Wasserstein-p distance on R
d. Ob-

taining uniqueness of the invariant measure in the general case of Equation (1) without strong
convexity assumptions on the confinement potential appears to be a challenging problem which
is not solved in this paper. In fact, the long-term behaviour of solutions to SPDEs with nonlinear
drifts is still not fully understood and therefore, the uniqueness results obtained in this paper rep-
resent a step towards understanding the long-term behaviour of solutions to Equation (1), but are
far from giving a complete understanding of the asymptotic stability for that kind of Stochastic
McKean-Vlasov Equations with common noise.

Probabilistic setting & Motivation. Let us consider a filtered probability space pΩ1,F1,F1,P1q.
Then, we define the following product structure

Ω “ Ω0 ˆ Ω1, F , F, P,

where pF ,Pq is the completion of the set pF0 b F1,P0 b P
1q and F is the right continuous aug-

mentation of pF0
t b F1

t qtě0. We also consider a d-dimensional Brownian motion B0 supported by
pΩ0,F0,P0q, adapted to F

0 and another Brownian motion B supported by pΩ1,F1,P1q, adapted
to F

1 and independent of F0. Let us now consider a probability measure on the space of proba-
bility measures P0 P PpPpRdqq, we are able to define m0, a F0

0 -measurable random variable with
value in the space of probability measure PpRdq and such that Lpm0q “ P0, in the sense that for
any bounded measurable function F : PpRdq Ñ R, EP0 rF pm0qs “ xP0;F y. We can now define on
the whole probability space pΩ,F ,F,Pq a random variable X0 such that LpX0|F0

0 q “ m0 almost
surely. Let us define the stochastic process X evolving in R

d, supported by pΩ,F ,F,Pq, which
dynamic is given by

(4)
"
dXt “ ´∇V pXtqdt ´ ∇W ˚mtpXtqdt ` σdBt ` σ0dB

0
t

X|t“0 “ X0,

where mt stands for the conditional law of the random variable Xt, with respect to the σ-algebra
F0

t . Precisely, mt “ L
`
Xt|F0

t

˘
almost surely, and B is a d-dimensional F1-Brownian motion

independent of F0. The dynamic of the process pmtqtě0 is well known and given by the following
Lemma (see for example [8] among other references).

Lemma 1. The measure valued process pmtqtě0 is solution in the weak sense of the following Stochastic
Partial Differential Equation:

dtmt “ ∇ ¨
ˆ
σ2 ` σ2

0

2
∇mt `mtbpt, ¨,mtq

˙
dt ´ σ0Dmt ¨ dB0

t ,

with initial condition L pm0q “ P0.

Equation (1) connects closely to the McKean-Vlasov Equation with common noise, a common
model in stochastic dynamics. It shows how large systems of interacting particles evolve. In
mathematical finance, this model is particularly useful for situations like inter-bank borrowing
and lending systems (see [9] or [30]). Studying the long-term behavior of solutions to Equation
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(1) is important because it gives us insight of the behavior of the solution to Equation (4).

Literature. Stochastic Partial Differential Equations in the more general form,

dtmt “
”ÿ

i,j

D2

ijpaijpt, ¨,mtqmtq ` div pmtbpt, ¨,mtqq
ı
dt´ σ0pt, ¨,mtqDmt ¨ dB0

t ,(5)

have been extensively studied in recent decades as it naturally arises in several applications.
Equation (5) is linked to the stochastic scalar conservations law of the form

dtmt ` ∇ ¨ pσ0p¨, utqutq ˝ dWt “ 0,(6)

where ˝ stands for the Stratonovich stochastic integral. In the case where σ0px, µq “ σ0pµpxqq,
meaning that the diffusion coefficient depends in the measure in a local way, this class of equa-
tions has been introduced in [39] paving the way to several papers dealing with well-posedness
of solutions of (6) in various frameworks [40, 28, 26, 29, 25]. Uniqueness of the solutions to (1)
is a well known result in the class of solutions admitting a square integrale density with respect
to the Lesbegue measure, see [36], and has been shown recently without any further moments
assumptions in [13].

In a slightly different context, a series of papers demonstrated the well-posedness for a large
class of Stochastic Differential Equations similar to (1), called Mean Reflected Stochastic Differential
Equations, see [5], [6] and [4]. More precisely, [6] and [4] state conditional propagation of chaos un-
der regularity conditions on the drift and diffusion terms. This equations naturally appears when
considering interacting particle systems with constraint on the empirical measure of the systems
and then the study of such equations is particularly important for example for applications to
Mean Field Games.

In this paper, we focus on the following specific Stochastic McKean-Vlasov Equation with com-
mon noise:

dtmt “ ∇ ¨
ˆ
σ2
0

2
∇mt `mtbpt, ¨,mtq

˙
dt´ σ0Dmt ¨ dB0

t .(7)

As mentioned before, extensive research has been conducted on the equation in question, and
recent studies have made notable contributions to understanding its properties. For example
[32] explores the existence and uniqueness of solutions for McKean-Vlasov Stochastic Differential
Equations (SDEs) with common noise. Similarly, [42] proposes a regularization approach in an
infinite-dimensional setting for the McKean-Vlasov equation with Wasserstein diffusion, enhanc-
ing the understanding of solutions’ regularity properties. Additionally, [35] investigate the well-
posedness and numerical methods for McKean-Vlasov equations with common noise, providing
valuable insights on the stability and convergence of computational approaches for solving these
equations.

However, to the best of our knowledge, little is known about the asymptotic behavior of the
solutions of equations of the form (7). In the case without common noise, σ0 “ 0, where m is
a deterministic flow of measures, past research has focused on various aspects of the solutions
of (4), including existence, uniqueness ([43], [27], [31]), and stability. Over the past two decades,
significant advancements have been made in understanding the convergence to equilibrium for
solutions of the deterministic McKean-Vlasov equation. For example, see [10] or [11] for proofs of
an exponential convergence rate to equilibrium under strict convexity conditions on the potentials
V and W . The case without strict convexity assumptions is more intricate. Nevertheless, through
a thorough examination of the dissipation of the Wasserstein distance, [3] showed an exponen-
tial convergence to equilibrium in a weakly-convex case. Recently, involving a coupling method
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issued from [38], it has been shown using nice concentration properties from [22] that the conver-
gence to equilibrium holds with an exponential speed in the case of a confinement potential that
is only convex far from the origin, as seen in [21]. The latter shows uniform in time propagation
of chaos property, as introduced in [34] and [45], allowing one to conclude the uniqueness of the
invariant measure and provide a rate of convergence to equilibrium.

Organisation of the paper. This paper has three main parts and primarily uses a probabilistic
approach. In Section 2, we study the existence of an invariant measure for the process pmtqtě0,
controlled by Equation (1), and provide conditions on potentials V and W for this existence. We
also give moment estimate for the invariant measures. Section 3 examines the uniqueness of in-
variant measures under a uniformly convex confinement potential V , adapting known results
without common noise. We also discuss the Ornstein-Uhlenbeck process with common noise,
where the invariant measure can be explicitly described. In both Sections 2 and 3, we show
uniform-in-time propagation of chaos and convergence to equilibrium. Section 4 explores the
same topic for non-convex potential V when d “ 1 or σ “ 0. Technical proofs are provided in the
Appendix.

Definition and notation. Throughout the paper, for a Polish space E we write PpEq for the
space of Borel probability measures on E equipped with the topology of weak convergence and
the corresponding Borel σ-algebra. In this paper, we consider a stochastic process pmtqtě0 with
value in the space of probability measures P

`
R

d
˘
. We denote by Pt the law L pmtq of mt, for

t ě 0, which is a probability measure on the space of probability measure. Then pmtqtě0 is a
continuous P

`
R

d
˘
-valued process, and P “ pPtqtě0 belongs toC

`
r0,`8r;P

`
P
`
R

d
˘˘˘

, the space
of continuous functions from r0,`8r to P

`
P
`
R

d
˘˘

. Moreover, for P,Q P P
`
P
`
R

d
˘˘

, we denote
by Π pP,Qq the set of transport plans between P andQ, and for any distance d : PpRdqˆPpRdq Ñ
r0;`8q, we define:

(8) d
PpRdq
d pP,Qq “ inf

ΛPΠpP,Qq

ż

PpRdq

dpµ, νqΛ pdµ, dνq .

In this paper, we mainly use a probability-based approach, often switching between the measure-
valued stochastic processm and its probabilistic counterpartX , which solves Equation (4). At this
point, it is worth noting that we are concerned with a stochastic process pmtqtě0 that takes values
in the space of probability measures PpRdq. This means that at each time t ą 0, we are dealing
with measures on the space of probability, rather than on the underlying space R

d. To study this
process, we use a probability-based approach and introduce several definitions that are specific
to this setting. For instance, we define the notion of an invariant measure in PpPpRdqq, which is
a probability measure that remains invariant under the evolution of the stochastic process. We
also define the notion of a probability measure in LppPpRdqq, which is a measure that satisfies a
certain integrability condition. These definitions are essential for our analysis and detailed below.

Definition 1. Let us consider a random variable X defined on the filtered probability space pΩ,F ,F,Pq,
and P P PpPpRdqq. According to Lemma 2.4 in [8], for P0´a.e. ω0 P Ω0,Xpω0, ¨q is a random variable on
pΩ1,F1,P1q. By defining L1pXq : Ω0 Q ω0 ÞÑ LpXpω0, ¨qq, we get a random variable from pΩ0,F0,P0q
into PpRdq, providing a conditional law of X given F0. Finally, we say that LpXq “ P whenever L1pXq
is distributed with respect to P .

Definition 2 (Invariant measure). ‚ We say that sP P PpPpRdqq, is an invariant measure for the
process pmtqtě0, if whenever m0 is distributed according to sP , then at each time, the law of mt is
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independent of t. More precisely, we say that sP is an invariant measure if and only if

Lpm0q “ sP ñ Lpmtq “ sP , @t ą 0.

‚ We say that a stochastic process X on the probability space
`
Ω,F ,F “ pFtqtě0

,P
˘

admits an

invariant measure in P
`
P
`
R

d
˘˘

if and only if, the measure valued stochastic process mt “
L
`
Xt|F0

t

˘
admits an invariant measure.

Definition 3. We say that a probability measure P P LppPpRdqq for p ě 1, whenever
ż

PpRdq

ż

Rd

|x|pm pdxqP pdmq ă `8.

Definition 4. For any increasing, continuous and concave function such that fp0q “ 0, such that
px, yq ÞÑ fp|x´ y|q defines a distande on R

d, we define the following distance on PpRdq

d
PpRq
f pP,Qq “ inf

ΓPΠpP,Qq

ż

P2pRq

dRf pµ, νqΓpdµ, dνq,

with dRf pµ, νq “ infπPΠpµ,νq

ş
R
f p|x´ y|qπpdx, dyq.

1.1. The process m as a mean field limit. Thanks to the definition of the previous subsection,
we are now ready to give an interpretation of the process pmtq in terms of mean field limit for
interacting particle system. Let us consider P0 P L2pPpRdqq, let also N ě 1 be an integer, and
pX1,N

0
, . . . , X

N,N
0

q, N random variables which are conditionally independent and identically dis-
tributed with respect to F0

0 , such that LpX i,N
0

q “ P0 for all i P t1, . . . , Nu. We now define the
following interacting particle system

#
dX

i,N
t “ ´∇V pX i,N

t q ´N´1
řN

j“1
∇W pX i,N

t ´ X
j,N
t qdt ` σdBi

t ` σ0dB
0
t ,

X
i,N

|t“0
“ X

i,N
0

, @i P t1, . . . , Nu ,

where the Bi are independent d-dimensional F1-Brownian motion which are independent of F0.
Then, we consider the mean-field limit system p sX1, . . . , sXNq driven by

"
d sX i

t “ ´∇V p sX i
tq ´ ∇W ˚mt

` sX i
t

˘
dt ` σdBi

t ` σ0dB
0
t ,sX i

|t“0
“ sX i

0, @i P t1, . . . , Nu ,

where
` sX i

0

˘
i

are conditionally iid random variables with respect to F0
0 , such that L

` sX i
0

˘
“ P0,

for all i P t1, . . . , Nu. Our framework is exactly the same as the classical one for mean field games
system with common noise. However here, the law of the initial conditions is random. Then,
conditioning with respect to the σ-algebra F0

0 , we get back to a more classical framework where
the initial condition is a deterministic measure. More precisely, as stated in [8], under sufficient
regularity conditions on the transport part b mainly Lipschitz continuity with respect to the space
and measure variables, we get that for any fixed t ě 0,

lim
NÑ`8

Er| sX i
t ´X

i,N
t |2s ` ErdRd

2 pmN
t ,mtqs “ 0,

where dR
d

2 p¨, ¨q stands for the classical Wasserstein distance on R
d, and mN

t :“ N´1
řN

i“1
δ
X

i,N
t

is
the empirical measure of the interacting particle system.
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2. EXISTENCE OF AN INVARIANT MEASURE FOR THE STOCHASTIC FLOW OF MEASURES.

Let us consider a stochastic process pmtqtě0 with value in the space of probability measures
P
`
R

d
˘
, and with dynamic given by (1). Then, m is a weak solution of

dtmt “ ∇ ¨
´σ2 ` σ2

0

2
∇mt `mtp∇V ` ∇W ˚mtq

¯
dt ´ σ0Dmt ¨ dB0

t .

More precisely, for all t ě 0 and ϕ P C8
c pRdq,

dxmt, ϕy “ xmt, Lmt
ϕy dt ` σ0xmt, p∇ϕqJy dB0

t ,

where for any probability measure m P PpRdq, the operator Lm acts on a smooth function ϕ of
compact support by

Lmϕ “ ´p∇V ` ∇W ˚mq ¨ ∇ϕ ` σ2
0 ` σ2

2
∆ϕ,

where ∇,∆ respectively stands for the gradient and laplacian operator, while ¨ denotes the usual
inner product in R

d, and for any ϕ P C8
c pRdq and any probability measure m,

xm;ϕy “
ż

Rd

ϕ dm.

In this section, we aim at giving conditions on the potentials V and W to ensure existence of an
invariant measure for the process pmtq. Let us now consider the following assumptions:

Assumption (A1). (1) There exists a continuous function κ : r0,`8q Ñ R, such that

lim inf
rÑ`8

κprq ą 0,

and

p∇V pxq ´ ∇V pyqq ¨ px´ yq ě κp|x´ y|q|x´ y|2.
(2) ∇V is LV -Lipschitz continuous.

Assumption (A2). (1) W is symmetric, i.e., W pxq “ W p´xq for all x P R
d.

(2) ∇W is LW -Lipschitz continuous.

In the following, we work under the set of assumptions (A1)&(A2). Under this set of assump-
tions, both equations (4) and (1) are well-posed, as shown in [15]. The assumption regarding con-
finement potential V primarily ensures convexity at infinity, which helps keep the process within
a compact set with a high probability. We can moreover note that this implies the existence of
mV ą 0 and MV ě 0, such that

p∇V pxq ´ ∇V pyqq ¨ px´ yq ě mV |x´ y|2 ´MV .

In this section, we start with a result regarding uniform-in-time control of the process pXtqtě0

with initial condition in L2pPpRdqq dynamic given by (4). To prove the existence of an invariant
measure for pmtqtě0 solution of (1), we will use the concept of intrinsic derivative for a functional
defined on a space of measure, as seen in [7].

Definition 5. Let us define C2

b pPpRdqq as the collection of continuous, bounded functions F : PpRdq Ñ R

with the following properties:

‚ There exists a unique continuous and bounded function BmF : PpRdq ˆ R
d Ñ R such that

lim
hÑ0

F pm ` hpm1 ´mqq ´ F pmq
h

“
ż

Rd

BmF pm, vqpm1 ´mqpdvq,
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for all m,m1 P PpRdq and
ż

Rd

BmF pm, vqmp dvq “ 0, m P PpRdq;

‚ The mapping x ÞÑ BmF pm,xq is continuously differentiable with uniformly bounded gradient
DmF pm,xq in pm,xq;

‚ For any fixed x P R
d, every component of the R

d-valued function m ÞÑ DmF pm,xq satis-
fies the same conditions as the first two bullet points, resulting in a continuous and bounded
D2

mF pm,x, yq P R
dˆd;

‚ For m P PpRdq, we use DxDmF pm, vq to denote the Jacobian of the function x ÞÑ DmF pm,xq,
which is assumed to be continuous and bounded in pm,xq.

Proposition 1. Considering a measure valued process pmtq, which dynamic is given by (1), and defining
Pt “ L pmtq, we have that for any bounded and twice differentiable function F P C2

b pPpRdq,Rq:

xPt ´ P0, F y “
ż t

0

xPs,MF yds, @t ą 0,(9)

where we define, for m P PpRdq,

MF pmq :“
ż

Rd

”
DmF pm,xq ¨ bpx,mq ` σ2 ` σ2

0

2
∇ ¨ pDmF pm,xqq

ı
mpdxq

` σ2
0

2

ż

R2d

Tr
“
D2

mmF pm,x, yq
‰
mpdxqmpdyq,

and where for all measurable and bounded function Φ : PpRdq Ñ R, and all P P PpPpRdqq,

xP ; Φy “
ż

PpRdq

ΦpmqP pdmq.

Moreover, sP is an invariant measure if and only if
@ sP ,MF

D
“ 0, @F P C2

b pPpRdq,Rq.(10)

The proof of Proposition 1 is based on Section 1.2 of [37] and then postponed to the Appendix
A.1.

2.1. The existence result. We now present a result about the existence of an invariant measure for
the equation of interest, adapting classical results for McKean-Vlasov equation without common
noise where the flow of probability measures, represented as pmtqtě0 is deterministic. We begin
this section with the following Lemma, the proof of which is classical and postponed to Appendix
A.2.

Lemma 2. Under Assumptions (A1) & (A2), let us consider P0 P L2pPpRdqq. Then, denoting by pXtqt
the associated stochastic process with initial condition L pX0q “ P0 in the sense of Definition 1, and
dynamic given by (4), we have the following uniform in time moment control:

sup
tą0

E
“
|Xt|2

‰
ă `8.

Now, we are ready to state the following Proposition:

Proposition 2. Under Assumptions (A1) & (A2), the dynamical system given by (1) admits at least an
invariant measure sP P L2pPpRdqq, i.e such that

ż

PpRdq

ż

Rd

|x|2mpdxq sP pdmq ă `8.
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Proof of Proposition 2. Let us fix P0 P L2pPpRdqq, i.e such that:
ż

PpRdq

ż

Rd

|x|2mpdxqP0pdmq ă `8.

Step 1. Let us now consider a random flow of probability measures pmtqtě0 with dynamic given
by (1) and initial condition P0 P L2pPpRdqq. At each time t ě 0, we denote by Pt the law of this
measure valued process. For T ą 0, we define the process pQT qTą0

with value in L2pPpRdqq by

QT “ T´1

ż T

0

Ptdt.

This defines a sequence of probability measures on PpRdq. Let us show that pQT qTą0 admits at
least a convergent subsequence. Thanks to Prohorov theorem, we only need to show that this
sequence is tight. For R ą 0, let us consider the set

KR “
!
m P PpRdq,

ż

Rd

|x|2mpdxq ď R
)
.

This set is compact for the topology of weak convergence in PpRdq. Now, for T ą 0,

QT pKRq “ T´1

ż T

0

PtpKRqdt

“ T´1

ż T

0

ż

PpRdq

1tmPKRuPtpdmqdt

“ T´1

ż T

0

E
“
1tmtPKRu

‰
dt

ě 1 ´ c

R
,

where c “ suptą0 E
“
|Xt|2

‰
ă `8, thanks to Lemma 2. Hence, for any ε ą 0, there exists Rε ą 0

such that QT pKRε
q ą 1 ´ ε, for all T ą 0. This gives tightness of the sequence and then existence

of a converging subsequence that we keep denoting by pQT qTą0 in the following.

Step 2. Let us denote by Q the limit of this converging subsequence, and show that Q is an
invariant measure. Let T ą 0, and F P C2

b pPpRdq,Rq, thanks to Proposition 1, we get that

xQT ,MF y “
ż

PpRdq

´ż

Rd

rDmF pm,xq ¨ bpx,mq ` σ2 ` σ2
0

2
∇ ¨ pDmF pm,xqqsmpdxq

` σ2
0

2

ż

R2d

TrrD2

mmF pm,x, yqsmpdxqmpdyq
¯
QT pdmq

“ T´1

ż T

0

ż

PpRdq

´ ż

Rd

rDmF pm,xq ¨ bpx,mq ` σ2 ` σ2
0

2
∇ ¨ pDmF pm,xqqsmpdxq

` σ2
0

2

ż

R2d

TrrD2

mmF pm,x, yqsmpdxqmpdyq
¯
Ptpdmq

“ T´1xPT ´ P0, F y.

Hence, for all F P C2
b pPpRdqq, xQ,MF y “ 0. This ensures that Q is an invariant measure.
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Step 3. Finally we move on to the moment estimate. We know that there exists a subsequence
of QT which converges weakly to sP . Moreover,

ż

PpRdq

ż

Rd

|x|2mpdxqQT pdmq “ 1

T

ż T

0

ż

PpRdq

ż

Rd

|x|2mpdxqPtpdmqdt,

and

sup
Tą0

1

T

ż T

0

ż

PpRdq

ż

Rd

|x|2mpdxqPtpdmqdt ă `8,

as suptą0 E
“
|Xt|2

‰
ă `8. Moreover, the function m P P2

`
R

d
˘

ÞÑ
ş
Rd |x|2mpdxq is lower semi

continuous, and then,
ż

PpRdq

ż

Rd

|x|2mpdxq sP pdmq ď lim inf
TÑ`8

1

T

ż T

0

ż

PpRdq

ż

Rd

|x|2mpdxqPtpdmqdt ă `8.

�

From the previous result we get the following Corollary

Corollary 1. For P P L2pPpRdqq, we have that d
PpRdq
2

pP, sP q ă `8, where d
PpRdq
2

p¨, ¨q is defined in 3.

3. THE CASE OF A UNIFORMLY CONVEX CONFINEMENT POTENTIAL

In this section, we show that the process pmtqtě0, driven by equation (1), has a unique invari-
ant measure under strong convexity assumptions on the confinement potential. Moreover, our
method allows us to find exponential rates of convergence toward the invariant measure for a
specific set of initial conditions. We again consider P0 P L2pPpRdqq and a random variable X0

such that L pX0q “ P0, following Definition 1. Next, we study the stochastic process pXtq driven
by equation (4) with the initial conditionX0. In this part of the paper, we consider strict convexity
assumptions on the confinement potential V . To be specific, we adopt the following assumptions
throughout this section:

Assumption (A4). ‚ V is uniformly convex, more precisely, there exists β ą 0 such that:

∇2V ě β Id.

‚ ∇V is Lipschitz continuous.
‚ W is even, convex, and ∇W is globally Lipschitz continuous, with Lipschitz constant LW .

Thanks to the previous section, under Assumption (A4), a process X driven by equation (4)
has an invariant measure. Specifically, there exists sP P L2pPpRdqq such that the process pmtqtě0,
governed by the dynamic in Equation (1) and with an initial condition of Lpm0q “ sP , is invariant.
This section starts with a key result that states uniform propagation of chaos uniformly in time.
This result will then help us establish the uniqueness of the invariant measure and to give a rate
of convergence to equilibrium.

3.1. Uniform in time propagation of chaos. In the case without common noise, the uniqueness
of the invariant measure for the processX has been already been established see e.g [12], [41], and
[3]. In this section, our aim is to adapt this result to the case with common noise and obtain the
uniqueness of the invariant measure for the probability measure valued stochastic process pmtq,
and exponentially fast convergence to the equilibria.
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Theorem 1. Let us consider P,Q P L2pPpRdqq, and two particle systems X “ pX1, . . . , XNq and

X
N “ pX1,N , . . . , XN,Nq with dynamics,

(11) dX i
t “ ´∇V pX i

tqdt ´ ∇W ˚mtpX i
tqdt ` σdBi

t ` σ0dB
0

t , @i P t1, . . . , Nu ,

and

(12) dX
i,N
t “ ´∇V pX i,N

t qdt´ 1

N

Nÿ

j“1

∇W pX i,N
t ´X

j,N
t qdt ` σdBi

t ` σ0dB
0

t , @i P t1, . . . , Nu .

where pX i
0qiPt1,...,Nu are independent and identically distributed such that Lp sX1

0 q “ P in the sense of

Definition 1, and where the same holds for the second system withLpX1,N
0

q “ Q. Then, under assumptions
(A4), there exists a constant C ą 0 depending only on the dimension d and the probability measures P and
Q, such that

E

”
dR

d

2 pmP,N
Xt

,m
Q,N

X
N
t

q
ı

ď C
´
e´βt ` 1

2β
?
N ´ 1

¯
,

where mP,N
Xt

“ 1

N

řN
i“1

δXi
t

and mQ,N

X
N
t

“ 1

N

řN
i“1

δ
X

i,N
t

.

The proof of this result closely follows the approach presented in [2] and [41], which shows
the propagation of chaos for particle systems in cases without common noise. However, in our
situation, we need to be careful with the interaction term and its dependency on the common
noise.

Proof. We only sketch the proof, as it follows closely the proof of [41], Theorem 3.3. Let i P
t1, . . . , Nu, using Itô formula, we get

d

dt
|X i,N

t ´X i
t |2 “ ´2pX i,N

t ´X i
tq ¨ p∇V pX i,N

t q ´ ∇V pX i
tqq

´ 2

N

Nÿ

j“1

pX i,N
t ´X i

tq ¨ p∇W pX i,N
t ´X

j,N
t q ´ ∇W ˚mtpX i

tqq.

In order to control the second term, we make the following decomposition:

´2pX i,N
t ´X i

tq
´
N´1

Nÿ

j“1

∇W pX i,N
t ´X

j,N
t q ´ ∇W ˚mtpX i

tq
¯

“ ´2pX i,N
t ´X i

tq
´
N´1

Nÿ

j“1

∇W pX i,N
t ´X

j,N
t q ´N´1

Nÿ

j“1

∇W pX i
t ´X

j
t q
¯

´ 2pX i,N
t ´X i

tq
´
N´1

Nÿ

j“1

∇W pX i
t ´X

j
t q ´ ∇W ˚mtpX i

tq
¯

“ Ξ
i,N
t ` Υ

i,N
t .

Summing the first term over i shows and using the convexity of the interaction potential, we get

1

N

Nÿ

i“1

Ξ
i,N
t “ ´2N´2

Nÿ

i,j“1

pX i,N
t ´X

j,N
t ´X i

t `X
j
t qp∇W pX i

t ´X
j
t q ´ ∇W pX i

t ´X
j
t qq ď 0.
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Moreover, the second term can be decomposed into two terms

Υ
i,N
t “ ´ 2pX i,N

t ´X i
tq ¨

´
pN ´ 1q´1

Nÿ

j“1

∇W pX i
t ´X

j
t q ´ ∇W ˚mtpX i

tq
¯

´ 2pX i,N
t ´X i

tq ¨
´´ 1

N
´ 1

N ´ 1

¯ Nÿ

j“1

∇W pX i
t ´X

j
t q
¯

For the first one

Er|∇W ˚mtpX i
tq ´ 1

N ´ 1

Nÿ

j“1

∇W pX i
t ´X

j
t q|2s

“ E

”
E

”ˇ̌
ˇ∇W ˚mtpX i

t q ´ 1

N ´ 1

Nÿ

j“1

∇W pX i
t ´X

j
t q
ˇ̌
ˇ
2 ˇ̌
ˇX i

t ,F
0

t

ıı

“ E

”
Var

” 1

N ´ 1

Nÿ

j“1

∇W pX i
t ´X

j
t q
ˇ̌
ˇX i

t ,F
0

t

ıı

ď 1

N ´ 1
ErEr|∇W pX i

t ´X
j
t q|2|X i

t ,F
0

t ss, for some j ‰ i

ď L2
W

N ´ 1
ErEr|X i

t ´X
j
t |2|X i

t ,F
0

t ss

ď 2L2
W

N ´ 1
Er|X1

t |2s,

where the first inequality comes from the fact that Er∇W pX i
t ´ X

j
t q|X i

t ,F
0
t s “ ∇W ˚ mtpX i

tq.
Then, thanks to Lemma 2, there exists a constant C ą 0, such that

E

”
pX i,N

t ´X i
tq ¨

´
pN ´ 1q´1

Nÿ

j“1

∇W pX i
t ´X

j
t q ´ ∇W ˚mtpX i

tq
¯ı

ď Er|X i,N
t ´X i

t |2s1{2
E

”ˇ̌
ˇ∇W ˚mtpX i

tq ´ 1

N ´ 1

Nÿ

j“1

∇W pX i
t ´X

j
t q
ˇ̌
ˇ
2ı1{2

ď C?
N ´ 1

Er|X i,N
t ´X i

t |2s1{2.

Now,

E

”ˇ̌
ˇ

1

N ´ 1
¨ 1

N

Nÿ

j“1

∇W pX i
t ´X

j
t q
ˇ̌
ˇ
2ı

ď 2L2
W

pN ´ 1q2Er|X1

t |2s.

Finally, using once again Lemma 2 we get the existence of a constant C, such that:

Er|Υi,N
t |s ď C

´ 1

N ´ 1
` 1?

N ´ 1

¯
Er|X i,N

t ´X i
t |2s1{2.

Finally, we get that

1

N

Nÿ

i“1

d

dt
Er|X i

t ´X
i,N
t |2s ď ´2β

N

Nÿ

i“1

Er|X i
t ´X

i,N
t |2s ` C?

N ´ 1

´
N´1

Nÿ

i“1

Er|X i,N
t ´X i

t |2s
¯1{2

,
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for some constant C ą 0. Let us now denote vN ptq “ N´1
řN

i“1
Er|X i

t ´X
i,N
t |2s, then we have

v1
N ptq ď ´2βvN ptq ` C?

N ´ 1
vN ptq1{2.

This gives, using Grönwall Lemma:

(13) vN ptq1{2 ď e´βtvN p0q ` C

2β
?
N ´ 1

.

Moreover, vN p0q “ N´1
řN

i“1
Er|X i

0 ´ X
i,N
0

|2s ď Er|X i
0|2 ` |X i,N

0
|2s is bounded uniformly in N ,

and as ErdRd

2 pmN
Xt
,mN

X
N
t

qs ď vN ptq1{2, we conclude the proof of Theorem 1. �

3.2. Uniqueness of the invariant measure. The main consequence of the previous result is the
uniqueness of the invariant measure for the process pmtqtě0 driven by (1). As recalled at the
beginning of the section, we have already shown that under Assumptions (A1) and (A2), there
exists an invariant measure sP . From Theorem 1, we get the following Corollary

Corollary 2. Under Assumptions (A4), the stochastic process pmtq admits a unique invariant measure
sP P P2

`
P
`
R

d
˘˘

. Moreover, for each P0 P L2pPpRdqq, there is an exponential convergence to the invari-
ant measure:

d
PpRdq
2

pPt, sP q ď e´βtd
PpRdq
2

pP0, sP q2,
where we recall that the Wasserstein-2 distance on PpRdq is defined by in (3).

This implies uniqueness of the invariant measure and the convergence to this equilibria for a
large class of initial conditions P0. In order to prove the previous result, we begin with a technical
Lemma:

Lemma 3. Let m and ρ be two probability measures valued random variables which are F0
0 -measurable.

Then, there exists a random variable ξ defined on the space pΩ,F ,Pq and with value in PpRdq, such that
almost surely:

ξ P argmin
πPΠpm,ρq

ż

Rd

|x´ y|2πpdx, dyq.

The proof of this Lemma is postponed to Appendix A.3 and relies on mesurability arguments
for set valued functions issued from [44].

Proof of Corollary 2. The proof of this result relies on the result and the proof of Theorem 1, but the
important difference is the choice of the initial conditions. More precisely, for P0 P L2pPpRdqq, we
pick Γ P Π

`
P0, sP

˘
which is not empty. Let us consider a couple of probability measure valued

random variables pm0, sm0q, and such that L ppm0, sm0qq “ Γ. It means that Lpm0q “ P0 and
Lpm̄0q “ P̄0. Thanks to Lemma 3, we know that there exists ξ random variable such that almost
surely,

ξ P argmin
πPΠpm0,Ďm0q

ż

Rd

|x´ y|2πpdx, dyq.

We consider once again the particle system:

dX i
t “ ´∇pX i

tqdt ´ ∇W ˚mtpX i
t qdt` σdBi

t ` σ0dB
0

t , @i P t1, . . . , Nu,
and

dX
i,N
t “ ´∇pX i,N

t qdt ´ 1

N

Nÿ

j“1

∇W pX i,N
t ´X

j,N
t qdt` σdBi

t ` σ0dB
0

t , @i P t1, . . . , Nu,
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where the pX i
0, X

i,N
0

q for i P t1, . . . , Nu are independent and such that LppX i
0, X

i,N
0

q|F0
0 q “ ξ.

From Theorem 1, and more precisely Equation (13), we know that there exists a constant C ą 0,
such that:

(14) ErdRd

2 pmN
Xt
,mN

X
N
t

q2s ď e´βt
Er|X1

0 ´X
1,N
0

|2s ` CN´1{2.

Moreover, with the particular choice we made for the initial conditions, we get that

Er|X1

0 ´X
1,N
0

|2s “ ErEr|X1

0 ´X
1,N
0

|2|F0

0 ss

“ E

„ż

Rd

|x´ y|2ξpdx, dyq


“
ż

PpRdq

dR
d

2 pµ, νqΓpdµ, dνq.

Taking the infimum over all the transport plan Γ between P0 and sP in (14), we get that

(15) E

”
dR

d

2 pmN
Xt
,mN

X
N
t

q2
ı

ď e´βtd
PpRdq
2

pP0, sP q ` C?
N
.

Moreover,

(16) d
PpRdq
2

pPt, sP q ď E

”
dR

d

2 psmt,mtq2
ı
,

where psmtq is the stochastic flow of measure driven by (1) with initial condition sP and pmtq has
the same dynamic with initial condition P0. Now combining (15) and (16), taking the limit N to
infinity, we get

d
PpRdq
2

pPt, sP q ď e´βtd
PpRdq
2

pP0, sP q.
�

Remarks 1. Some remarks are in order: (1) We recall that thanks to Proposition 1, the distance d
PpRdq
2

pP0, sP q
is finite because P0 P L2pPpRdqq in the sense of Definition 3; (2) Common noise doesn’t ruin the usual
convergence results. It makes sense because the common noise mainly acts like a drift term in Equation (1)
and should not make the usual convergence results go haywire.

3.3. Example. In this section, we consider an Ornstein-Uhlenbeck process with common noise,
that is taking V : x ÞÑ |x|2{2 and W “ 0. Let X be a real valued stochastic process evolving in R

d,
driven by the following stochastic differential equation:

(17) dXt “ ´Xtdt` σdWt ` σ0dB
0

t .

Then, the process associated process pmtqtě0 is solution of

(18) dtmt “ ∇ ¨
„
σ2 ` σ2

0

2
∇mt `mtx


dt´ σ0Dmt ¨ dB0

t ,

Moreover, we consider the following initial condition L pX0q “ P0 (in the sense of Definition 1),
for some P0 P L2pPpRdqq. In this particular setting, we are able to explicitly describe the invariant
measure.

Proposition 3. The unique invariant measure sP of the process on the space PpRdq is the image, by the

function x P R
d ÞÑ Ndp´x, σ2Idq P PpRdq of the measure γσ0

; where γσ0
pdxq “ p2σ2

0q´1{2e´|x|2{2σ2

0dx,
where for all µ P R

d,Σ P MdpRq, Nd pµ,Σq denotes a gaussian distribution in dimension d centered in µ
and with variance-covariance matrix Σ.
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The fact that in this case we are able to exhibit the invariant measure comes from the linearity
of the equation and the linearity of the confinement forces which derives from a quadratic poten-
tial, as shown in the proof. The convergence to the equilibria holds at an exponential thanks to
Theorem 1.

Proof of Proposition 3. Let be the process X0 defined dynamic given by:
"
dX0

t “ ´X0
t dt´ σ0dB

0
t

L
`
X0

0

˘
“ N

`
0, σ2

0

˘
.

The initial condition is such that the process X0 is stationary. We now define the process psmtqt
with sm0, such that Lpm̄0q “ P as initial condition and staying

(19) dt smt “ ∇ ¨
”σ2 ` σ2

0

2
∇smt ` smtx

ı
dt ´ σ0D smt ¨ dB0

t .

Let us define rmt :“ pId´σ0B0
t q7smt, where 7 stands for the pushforward operator. Then, applying

Itô-Wentzell formula, we get that rmt satisfies

(20)
"

Bt rmt “ ∇ ¨ rσ2

2
∇rmt ` rmtpx`B0

t qs,
rm0 “ sm0.

Moreover, we get that mt :“ N p´pX0
t ` σ0B

0
t q, σ2Idq satisfies,

(21) dtmtpxq “ ´σ´2px`X0

t ` σ0B0

t qmtpxq dpX0

t ` σ0B
0

t q “ σ´2px`X0

t ` σ0B
0

t q ¨X0

tmtpxq dt.
Then, as

it shows that pmtqt satisfies (20) with m0 “ sm0 and then ppId`σ0B0
t q7mtqt is solution of (19) with

the same initial condition. Finally,

smtpdxq “ pId ` σ0B0

t q7mtpdxq “ c expt´|x`X0

t |2{2σ2udx.
As pX0

t qt is stationary in R
d, smt is also in PpRdq, which shows the first part of the Proposition.

The uniqueness of this invariant measure is then given by Corollary 2. �

4. THE ONE DIMENSIONAL CASE

To get uniqueness of the invariant measure when the confinement potential is not convex , we
need to establish a more advanced coupling than the one used in previous section. To do this, we
follow [21], [23], [22], or [14]. For the sake of clarity, we recall here the assumptions in dimension
d “ 1:

Assumption (A1). (1) There exists a continuous function κ : r0,`8q Ñ R, such that

lim inf
rÑ`8

κprq ą 0,

and

pV 1pxq ´ V 1pyqqpx´ yq ě κp|x´ y|q|x´ y|2.
(2) V 1 is LV -Lipschitz continuous.

Assumption (A2). (1) W is symmetric, i.e., W pxq “ W p´xq for all x P R
d.

(2) W 1 is LW -Lipschitz continuous.

Remark 1. As the function κ exhibits positive values far from the origin, its continuity implies that it
possesses a lower bound. Hence, we can ensure the boundedness of the function κ´ “ maxp´f, 0q.
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This framework allows multi-well interactions potentials for which uniqueness of the invariant
measure does not hold without common noise, see [33].

4.1. Uniform in time propagation of chaos in dimension 1. This section introduces a quantita-
tive study of the uniform propagation of chaos. Because of the non-convexity of the confinement
potential, we cannot use the classical propagation of chaos approach from Section 3. Instead, we
will apply a more advanced approximation method. However, this method does not produce
satisfactory results in dimensions d ě 2 with common noise. For this reason, in this section, we
focus on the case where d “ 1, and will explain why in more detail later.

The approximation method. Following the framework of [22], we now define the constants:

R0 “ inf ts ě 0, κprq ě 0, @r ě su ,
R1 “ inf

 
s ě R0, sps´R0qκprq ě 4σ2

0 , @r ě s
(
.

Moreover, we consider ϕ, Φ, g : r0,`8q Ñ r0,`8q defined by

ϕprq “ exp

ˆ
´ 1

2σ2
0

ż r

0

sκ´psqds
˙
,

Φprq “
ż r

0

ϕpsqds,

gprq “ 1 ´ ℓ

2

ż r^R1

0

Φpsq{ϕpsqds,

where κ´ “ maxp0,´κq and ℓ “
´şR1

0
Φpsqϕpsq´1ds

¯´1

. We now define an increasing function

f : r0,`8q Ñ r0,`8q by:

fprq “
ż r

0

ϕpsqgpsqds.

The function f that has been constructed is clearly positive, non-decreasing and concave. More-
over, it satisfies

(22) ϕpR0qr{2 ď fprq ď r.

This ensures that px, yq ÞÑ fp|x ´ y|q defines a distance which is equivalent to the Euclidean
one. Below, we will use contraction properties in Wasserstein-1 distance based on the underlying
distance fp|x´ y|q. These contraction property is a consequence of Proposition 4.

Proposition 4. The following inequalities holds for all r ą 0:

f2prq ´ 1

2σ2
0

rκprqf 1prq ď ´ℓfprq{2.

The proof of this Proposition is found in Appendix A.4. However, it is essential to empha-
size that the function f was constructed to achieve a contraction inequality, ensuring uniform
propagation of chaos over time. These techniques were greatly inspired by [38] and further de-
veloped in [22]. In that sense, let us consider P,Q P L4pPpRdqq. Let us also consider δ ą 0, and
once again two particle systems X

δ “ pX1,δ, . . . , XN,δq and X
N,δ “ pX1,N,δ, . . . , XN,N,δq with

dynamic given by:

(23) dX
i,δ
t “ ´V 1pX i,δ

t qdt ´W 1 ˚mδ
t pX i,δ

t q dt ` σ dBi
t ` σ0

!
πδ

`
EN

t

˘
dB0

t ` λδ
`
EN

t

˘
dB̃0

t

)
,
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and

(24) dX
i,N,δ
t “ ´V 1

´
X

i,N,δ
t

¯
dt´ 1

N

Nÿ

j“1

W 1
´
X

i,N,δ
t ´X

j,N,δ
t

¯
dt ` σdBi

t

` σ0

!
´πδ

´
E

N,δ
t

¯
dB0

t ` λδ

´
E

N,δ
t

¯
dB̃0

t

)
,

where:
‚ The Bi are independent Wiener processes in R, which all are independent of F0;
‚ B0 is a Wiener process, adapted to the filtration F

0 and indepependent of F1;
‚ mδ

t stands for the conditional law of each process X i,δ with respect to the σ-field F0
t , at

each time t ą 0;
‚ E

N,δ
t stands for the vector of differences at time t, more precisely, for i P t1, . . . , Nu,

E
i,N,δ
t “ X

i,δ
t ´X

i,N,δ
t .

‚ The pairs pX i,N,δ
0

, X
i,δ
0

q are conditionally independent and identically distributed with
respect to the σ-algebra F0

0 . Furthermore, for every i P t1, . . . , Nu, the law of X i
0 is P

according to Definition 1, and the law of X i,N
0

is Q, in the same manner.
‚ We define a non-decreasing and continuous function π, such that for x P R

N ,

πpxq “
#
1 if N´1

řN
i“1

|xi| ě 1

0 if N´1
řN

i“1
|xi| ď 1{2,

and, consider a non negative function λ such that

πpxq2 ` λpxq2 “ 1, @x P R
N .

Moreover, we extend π on the whole space, with the constraint that this remains a non
decreasing and Lipschitz continuous function. Finally, we define πδ : x ÞÑ π px{δq.

The condition on π and λ implies in particular that ´
şt
0
πδpEN,δ

s qdB0
s `

şt
0
λδpEN,δ

s qdB̃0
s indeed

defines a Brownian motion thanks to Levy’s characterisation of Brownian motion. Then, (23) and
(24) defines a coupling of (11) and (12). Before giving the first main result of the section, let us
introduce the quantity

(25) cpV,W, σ0q “ ℓσ2

0 ´ 4LWϕpR0q´1.

This quantity naturally appears in the result of uniform in time propagation of chaos. In order to
ensure the uniformity in time, let us denote for all V and W , the space

DV,W “ t σ0 ě 0, cpV,W, σ0q ą 0u.
Proposition 5. There exists sL ą 0, sσ0 ą 0 such that for all σ ě 0, for any W which is L-Lipschitz
continuous with L ă sL, rσ̄0;`8q Ă DV,W .

The proof of this Proposition is postponed to Appendix A.6. We are now ready to give the
main result of this section

Theorem 2. Under Assumptions (A1) and (A2) there exist two systems pX,XN q, couplings of (11) and

(12), which are susbsenquential weak limit as δ Ñ 0 of pXδ,XN,δq. Let σ ě 0, W such that LW ă sL,
and σ0 ě sσ0, where sL, sσ0 are defined in Proposition 5. Then, there exists a constant C ą 0 which does not
depend on t and N , such that:

E

”
dR

d

f pmN
Xt
,mN

X
N
t

q
ı

ď C
´
e´cpV,W,σ0qt ` 1?

N

¯
,
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where dR
d

f pµ, νq “ infπPΠpµ,νq

ş
Rd fp|x ´ y|qπpdx, dyq, and mN

Xt
(resp. mN

X
N
t

) stands for the empirical

measures of all the particles of the system X (resp. XN ) at time t.

Remark 2. Some remarks are in order: (1) As in [21], we need to consider a slight distortion of the
Wasserstein-1 distance. This allows for easy handling of the residual terms, due to the non-convexity of
the confinement potential, through a functional inequality. (2) The Lipschitz continuity assumption on
the confinment force ∇V does not help convergence toward the invariant measure and mainly comes from
technical needs. It is not a sharp condition and similar outcomes might be reached by assuming for example
that ∇V has at most a polynomial growth. (3) The first drawback of this result is the impossibility to take
advantage of the potential convexity structure of the interaction potential W , as strong interactions within
the system should ideally help in converging to equilibrium. This limit is shown by the term ´4LϕpR0q´1

in cpV,W, σ0q, which penalizes the convergence rate. (4) The main issue with this method is that it does not
work in higher dimensions. Using the same coupling techniques in dimensions d ě 2 requires a reflection

with the orthogonal matrix Id ´ 2e
i,N
t pei,Nt qt in order to ensure that both process are remaining close in

large time, as explained in [38] . However, this is not possible in our situation as we cannot use a reflection
matrix dependent on a single particle for the common noise. In the following section, we will discuss a
specific case where we can overcome this difficulty.

In order to prove the previous quantitative and uniform in time propagation of chaos result,
we begin with the following Proposition.

Proposition 6. Under Assumptions (A1) and (A2), we have the following decomposition for all i P
t1, . . . , Nu:

d|Ei,N,δ
t | “ ´ei,N,δ

t

´
V 1pX i,δ

t q ´ V 1pX i,N,δ
t q

¯
dt`A

i,N,δ
t dt ` 2σ0πδpEN,δ

t qpei,N,δ
t qT dB0

t ,

where

e
i,N,δ
t “

#
E

i,N,δ
t {|Ei,N,δ

t | if Ei,N,δ
t ‰ 0

0 otherwise
,

and

A
i,N,δ
t ď

ˇ̌
ˇW 1 ˚mδ

t pX i,δ
t q ´ 1

N

Nÿ

j“1

W 1pX i,N,δ
t ´X

j,N,δ
t q

ˇ̌
ˇ.

The result above adapts Lemma 7 from [21] for the common noise setting, and thus, the proof
is postponed to Appendix A.5. This Proposition is important as under Assumptions (A1) and
(A2) the main term helps with uniform control over time, while the secondary term is handled
as a perturbation. The two martingale terms are centered, and the other terms guarantee concen-
tration, even when the confinement potential is not convex. Now, let us present the following
Lemma.

Lemma 4. Under assumptions (A1) and (A2), for all T ą 0, there exists a positive constantC independent
of δ, such that for all 0 ă s ă t ă T ,

E

” 1

N

Nÿ

i“1

|X i,δ
t ´X i,δ

s |4 ` 1

N

Nÿ

i“1

|X i,N,δ
t ´X i,N,δ

s |4
ı

ď C|t´ s|2.

Proof of Lemma 4. Step 1. Let us begin this proof by considering the existence of a finite moment
of order 4 for every particle in both systems at all times. Let us do it only for the mean-field
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limit system as the proof is exactly the same for the interacting particle system. Then, from Itô’s
formula, we get for each i P t1, . . . , Nu
d

dt
Er|X i,δ

t |4s “ ´p
´
ErpX i,δ

t q3V 1pX i,δ
t qs ` ErpX i,δ

t q3W 1 ˚mδ
t pX i,δ

t qs
¯

` 6pσ2 ` σ2

0qErpX i,δ
t q2s

ď ´4mV ErpX i,δ
t q4s ` 4MV ErpX i,δ

t q3s ` 4ErpX i,δ
t q3sV 1p0q ´ 4ErpX i,δ

t q3W 1 ˚mδpX i,δ
t qs

` 6pσ2 ` σ2

0qpX i,δ
t q4 ` 6pσ2 ` σ2

0q.
Furthermore, we have knowledge that W 1 is Lipschitz continuous, which implies that the convo-
lution W 1 ˚mδ

t also is. Then, we get

d

dt
Er|X i,δ

t |4s ď c1Er|X i,δ
t |4s ` c2,

where c1 and c2 are two constants independent of δ and t. Using Grönwall Lemma, this gives:

Er|X i,δ
t |4s ď ec2tEr|X i,δ

0
|4s ` c2c

´1

1
ec1t.

Then, as P0, Q0 P L4pPpRdqq we get that for each T ą 0, suptPr0,T s Er|X i,δ
t |4s ă `8.

Step 2. Let us now consider T ą 0, and 0 ă s ă t ă T .

Er|X i,δ
t ´X i,δ

s |4s “ E

”ˇ̌
ˇ
ż t

s

´V 1pX i,δ
r q ´W 1 ˚mδ

rpX i,δ
r qdr ` σpBi

t ´Bi
sq

` σ0

! ż t

s

πδpEN
r qdB̃0

r `
ż t

s

λδpEN
r qdB0

r

)ˇ̌
ˇ
4ı

ď E

”ˇ̌
ˇ
ż t

s

´V 1pX i,δ
r q ´W 1 ˚mδ

rpX i,δ
r qdr

ˇ̌
ˇ
4ı

` Cpσ, σ0q|t ´ s|2,

where we used the Burkholder-Davis-Gundy inequality to obtain the constant Cpσ, σ0q, which
does not depend on δ. Controlling the residual term is a straightforward process that involves
using the result of Step 1 with the Lipschitz continuity of V 1 and W 1. Everything works exactly
the same way for the interacting particle system. �

This result mainly ensures the existence of the coupling pX,XN q of Theorem 2, which we are
now ready to prove.

Proof of Theorem 2. From Proposition 3 and using Itô’s formula applied to the previously defined
function f , we get

(26) dfp|Ei,N,δ
t |q “ ´ f 1p|Ei,N,δ

t |qei,N,δ
t pV 1pX i,δ

t q ´ V 1pX i,N,δ
t qqdt `A

i,N,δ
t f 1p|Ei,N,δ

t |qdt
` 2σ2

0f
2p|Ei,N,δ

t |qπδpEN,δ
t q2dt ` 2σ0e

i,N,δ
t f 1p|Ei,N,δ

t |qπδpEN,δ
t qdB0

t .

Moreover,

´ f 1p|Ei,N,δ
t |qei,N,δ

t pV 1pX i,δ
t q ´ V 1pX i,N,δ

t qq ` 2σ2

0f
2p|Ei,N,δ

t |qπδpEN,,δ
t q2

“ 2σ2

0

´
f2p|Ei,N,δ

t |qπδpEN,δ
t q2 ´ 1

2σ2
0

f 1p|Ei,N,δ
t |qei,N,δ

t pV 1pX i,δ
t q ´ V 1pX i,N,δ

t qq
¯

ď 2σ2

0

´
f2p|Ei,N,δ

t |qπδpEN,δ
t q2 ´ 1

2σ2
0

|Ei,N,δ
t |κp|Ei,N,δ

t |qf 1p|Ei,N,δ
t |q

¯

ď 2σ2

0

´
´ ℓ

2
fp|Ei,N,δ

t |qπδpEN,δ
t q2 ` 1

2σ2
0

|Ei,N,δ
t |κ´p|Ei,N,δ

t |qλδpEN,δ
t q2

¯
.
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thanks to Proposition 4 and the fact that π2pxq ` λ2pxq “ 1, for all x P R
N . Then, averaging over

all the particles, and using the fact that κ´ is bounded as a consequence of Remark 1, we get:

1

N

Nÿ

i“1

´f 1p|Ei,N,δ
t |qei,N,δ

t pV 1pX i,δ
t q ´ V 1pX i,N,δ

t qq ` 2σ2

0f
2p|Ei,N,δ

t |qπδpEN,δ
t q2

ď ´ ℓσ2
0

N

Nÿ

i“1

fp|Ei,N,δ
t |qπδpEN,δ

t q2 ` |κ´|8
N

Nÿ

i“1

|Ei,N,δ
t |λδpEN,δ

t q2

Plugging the last inequality into (26), we have

1

N

Nÿ

i“1

d

dt
E

”
fp|Ei,N,δ

t |q
ı

ď ´ ℓσ2
0

N

Nÿ

i“1

E

”
fp|Ei,N,δ

t |q
ı

` 1

N

Nÿ

i“1

ErAi,N,δ
t s ` ℓσ2

0δ ` |κ´|8δ.

We now need to control one last term N´1
řN

i“1
ErAi,N,δ

t s. This part of the proof follows the
same lines as the one of [21] and we get

1

N

Nÿ

i“1

Er|Ai,N,δ
t |s ď 4LWϕpR0q´1

N

Nÿ

i“1

Erfp|Ei,N,δ
t |qs `MLWN

´1{2,

for some M ą 0. The last inequality is not unexpected, as it is anticipated that the interac-
tion term in Equation 12 will converge at a rate of N1{2 towards the conditional expectation
Er∇W pX i

t ´ X̃tq|F0
t , X

i
t s for any independent replication X̃ of X i. Our objective now is to con-

sider the limit as δ tends to zero. Let us define sPN,δ
T as the law of ptX i,δ, X i,N,δui“1,...,N q on

Cpr0, T s,R2Nq. With Lemma 4 and Kolmogorov’s continuity criterion, we establish the tightness
of the sequence psPN,δ

T qδ , leading to the existence of a subsequence pδnqn that tends to zero, such
that sPN,δn

T converges to sPN
T , which is defined on Cpr0, T s,R2Nq. By a diagonalization argument

and consistency of the family of probability tPN
T , T ą 0u, we can extend this probability measure

and define sPN on Cpr0,`8q,R2Nq. Now we can define two systems of particle X “ pX1, . . . , XNq
and X

N “ pX1,N , . . . , XN,Nq with law sPN on Cpr0,`8q,R2Nq. This argument that justifies the
existence of the coupling is classical, see for example [20] or [24]. Moreover, by uniqueness in law
of the solutions, we get that pX ,XN q is a coupling of (11) and (12). Then, defining:

E
i,N
t “ X i

t ´X
i,N
t ,

and

e
i,N
t “

#
E

i,N
t {|Ei,N

t | if Ei,N
t ‰ 0

0 otherwise
,

we get

1

N

Nÿ

i“1

d

dt
Erfp|Ei,N

t |qs ď ´
´ℓσ2

0

N
´ 4LWϕpR0q´1

¯ Nÿ

i“1

Erfp|Ei,N
t |qs `MLWN´1{2

Now, as σ0 P DV,W , we can use the Grönwall lemma, and get that

1

N

Nÿ

i“1

Erfp|Ei,N
t |qs ď exp

´
´ pℓσ2

0 ´ 4LWϕpR0q´1qt
¯ 1

N

Nÿ

i“1

Erfp|Ei,N
0

|qs

`
´
ℓσ2

0 ´ 4LWϕ pR0q´1
¯´1

MLWN´1{2
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Moreover, we know that

ErdRf pmN
Xt
,mN

X
N
t

qs ď 1

N

Nÿ

i“1

Erfp|Ei,N
t |qs.

Then,

ErdRf pmN
Xt
,mN

X
N
t

qs ď e´cpV,W,σ0qt 1

N

Nÿ

i“1

Erfp|Ei,N
0

|qs ` cpV,W, σ0q´1MLWN´1{2.

and finally

(27) Erfp|E1,N
0

|qs “ ErErfp|X1

0 ´X
1,N
0

|q|F0

0 ss
ď CEr|X1,N

0
| ` |X1

0 |s ă `8,

thanks to Assumption Lemma 2, which concludes the proof. �

4.2. Uniqueness of the invariant measure. As in the previous section with convex potential, we
can deduce from the propagation of chaos result the uniqueness of the invariant measure for the
process pmtqtě0 driven by (1), whenever the intensity of the common noise is large enough.

Corollary 3. Whenever d “ 1 and Assumptions (A1) and (A2) hold, assuming thatW is such thatL ă L̄,
and σ0 ě σ̄0, where L̄ and σ̄0 are defined in Proposition 5, the stochastic process pmtq admits a unique
invariant measure sP P PpPpRqq.

Moreover, for each P0 P L4pPpRqq,we get

d
PpRq
f pPt, sP q ď e´cpV,W,σ0qtd

PpRq
f pP0, sP q,

where d
PpRq
f p¨, ¨q is defined in Definition 5.

It is interesting to highlight here that the presence of common noise allows to get uniqueness,
in fact in the case without common noise, when considering non-convex confinement potential,
it has been shown that uniqueness of the invariant measure (in PpRdq) does not hold. More
precisely, considering the deterministic flow of measure pmtqt which is weak solution of

Btmt “ σ2

2
B2

xxmt ` BxpmtpV 1 `W 1 ˚mtqq,(28)

it is known, see e.g [33], that whenever σ is small enough, there is exactly three invariant mea-
sures. This is roughly due to the fact that whenever the intensity of the noise is not important
enough, the associated process X , solution of

dXt “ ´V 1pXtqdt ´W 1 ˚mtpXtqdt` σdBt

stays stuck in the minimum of V due to the lack of convexity. Here the presence of a strong
enough common noise allows to recover uniqueness but in the space PpPpRdqq.

5. MULTIDIMENSIONAL NON-CONVEX CASE WITH σ “ 0

In this section, we return to the general dimension case where d ě 2. It turns out that in some
specific situations, we can use the presence of interaction to adapt the coupling introduced in
Section 4 and achieve an exponential rate of convergence to the unique invariant measure when
there is no idiosyncratic noise (σ “ 0). More precisely, let us consider m with dynamic given by

dtmt “ ∇ ¨
´σ2

0

2
∇mt `mtp∇V ` ∇W ˚mtq

¯
dt´ σ0Dmt ¨ dB0

t .
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In the following of the section, let us consider the following Assumption:

Assumption (A6). The potential V satisfies Assumption (A1) and there exists α ą 0, such that W pxq “
α|x|2{2.

5.1. Existence of an invariant measure. We begin this section with a non quantitative proof of
existence and uniqueness of the invariant measure.

Proposition 7. Under Assumption (A6), for α large enough, there exists a unique invariant measure sP
in the sense of Definition 1, and this measure is supported by Dirac masses. More precisely,

sP pdmq “
ż

Rd

δδam0pdaq

where m0 is the probability measure on R
d solution of ´σ2

0

2
∆m0 ´ ∇ ¨ p∇V m0q “ 0.

Proof of Proposition 7. If sP pdmq “
ş
Rd δδam0pdaq, then for all twice differentiable function in the

sense of Lions derivarives F P C2pPpRdq,Rq
(29)

IpF q :“
ż

P2pRdq

„ż

Rd

ˆ
DmF pm,xq ¨ p´∇V pxq ´ ∇W ˚mpxqq ` σ2

0

2
divxDmF pm,xq

˙
qmpdxq

`σ2
0

2

ż

R2d

Tr
“
D2

mmF pm,x, yqq
‰
mpdxqmpdyq


sP pdmq

“
ż

Rd

„
DmF pδa, aq ¨ p´∇V paqq ` σ2

0

2
divxDmF pδa, aq ` σ2

0

2
Tr

“
D2

mmF pδa, a, aq
‰
m0pdaq,

where, if we define ϕpaq “ F pδaq, then

∇ϕpaq “ DmF pδa, aq, ∆ϕpaq “ Tr
“
D2

mmF pδa, a, aq `D2

xmF pδa, aq
‰
.

Then,

(30) IpF q “
ż

Rd

„
´∇ϕpaq ¨ ∇V paq ` σ2

0

2
∆ϕpaq


m0pdaq “ 0,

as m0 is solution of σ2

0

2
∆m0 ` ∇ ¨ p∇V m0q “ 0. �

5.2. Uniqueness and convergence to the equilibirum. When σ “ 0, we can explicitly find the
unique invariant measure. Moreover, we can use the strong interaction structure to achieve ex-
ponential rates of convergence to this invariant measure. To do this, we build a coupling similar
to the one in the previous section, taking advantage of the fact that in this setting, each particle is
close to the average of all particles in the system. Consequently, we get the following result

Theorem 3. Whenever σ “ 0 and under Assumptions (A4), for any initial conditionsP0, Q0 P L4pPpRdqq,
there exists a constant C that does not depend on t such that

d
PpRdq
f pPt, Qtq ď C

´
e´ℓσ2

0
t ` e´pα´2LV qt

¯
,

where f and ℓ are defined in Section 4, and the distance d
PpRdq
f p¨, ¨q is defined in (8).

Remark 3. In the light of Remark 2, we can now observe that the rate of convergence is not penalised by
the presence of a strong interaction. In fact, in this case we are able to fully take advantage of the quadratic
structure of the interaction potential.
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The key observation to prove the previous result is that when considering an interacting parti-
cle system with each particle’s dynamic given by dynamic (23), the interaction acts like an attrac-
tor gathering all the particles together. The coupling of Section 4 fails due to the dependence of
the reflection matrix on a single particle. To address this dependence, we replace it with a depen-
dence on the empirical mean of all system particles. By showing that the resulting error becomes
negligible as the number of particles and time increase, we show the expected result.

Proof of Theorem 3. Let us consider two measures P0, Q0 on P
`
R

d
˘
, which admit a moment of

order four. In the light of the proof of Proposition 2, and Remark 2, let us introduce the two
following particle systems for δ ą 0, Xδ “ pX1,δ, . . . , XN,δq and Y

N,δ “ pY 1,N,δ, . . . , Y N,N,δq,
with dynamic

dX
i,δ
t “ ´∇V pX i,δ

t qdt ´ ∇W ˚mδ
t pX i,δ

t qdt ` σdBi
t ` σ0tπδp sEN,δ

t qdB0

t ` λδp sEN,δ
t qdB̃0

t u,(31)

and

dY
i,N,δ
t “ ´∇V pY i,N,δ

t qdt´ 1

N

Nÿ

j“1

∇W pY i,N,δ
t ´ Y

j,N,δ
t qdt ` σdBi

t

` σ0tπδp sEN,δ
t qpId ´ 2seN,δ

t pseN,δ
t qtqdB0

t ` λδp sEN,δ
t qdB̃0

t u,

where sEN,δ
t “ N´1

řN
i“1

X
i,δ
t ´N´1

řN
i“1

Y
i,N,δ
t , and

seN,δ
t “

#
sEN,δ
t {| sEN,δ

t | if | sEN,δ
t | ‰ 0

0 otherwise
.

Moreover, the functions π and λ are defined in Section 4. Finally we assume that the X i,δ
0

are con-
ditionally iid with respect to the common noise with law P0. Analogously, the same is assumed
for the Y i,N,δ with law Q0.

Proposition 8. Under Assumption (A4), we get:

Er 1
N

Nÿ

i“1

|X i,δ
t ´ sXN,δ

t |2s ď Er 1
N

Nÿ

i“1

|X i,δ
0

´ sXN,δ
0

|2se´2pα´2LV qt,

and

E

” 1

N

Nÿ

i“1

|Y i,N,δ
t ´ sY N,δ

t |2
ı

ď E

” 1

N

Nÿ

i“1

|Y i,N,δ
0

´ sY N,δ
0

|2
ı
e´2pα´2LV qt,

for α ą 2LV and where sXN,δ
t “ N´1

řN
i“1

X
i,δ
t and sY N,δ

t “ N´1
řN

i“1
Y

i,N,δ
t stand for the empirical

means of each system at time t.

The proof is straightforward using the Lipschitz continuity of ∇V and the quadratic structure
of the interacting potential.
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Proof. Let us only perform this calculation for the mean field limit system of N particles X
δ “

pX1,δ, . . . , XN,δq. Let now t ą 0 and i P t1, . . . , Nu,

d|X i,δ
t ´ X̄

N,δ
t |2 “ ´2pX i,δ

t ´ X̄
N,δ
t q ¨

´
∇V pX i,δ

t q ´ 1

N

Nÿ

i“1

∇V pX i,δ
t q

¯
dt

´ 2pX i,δ
t ´ X̄

N,δ
t q ¨

´
∇W ˚mδ

t pX i,δ
t q ´ 1

N

Nÿ

i“1

∇W ˚mδ
t pX i,δ

t q
¯
dt

ď 2LV |X i,δ
t ´ X̄

N,δ
t |2dt ` 2

LV

N

Nÿ

j“1

|Xj,δ
t ´ X̄

N,δ
t | |X i,δ

t ´ X̄
N,δ
t |dt

´ 2α|X i,δ
t ´ X̄

N,δ
t |2dt.

Then, averaging over i and using Cauchy-Schwarz inequality, we get that

d

dt

1

N

Nÿ

i“1

Er|X i,δ
t ´ X̄

N,δ
t |2s ď 2p2LV ´ αq 1

N

Nÿ

i“1

Er|X i,δ
t ´ X̄

N,δ
t |2s.

Then, one can conclude using Grönwall Lemma. �

Considering the function f introduced in Section 4, we can write:

fp|X i,δ
t ´ Y

i,N,δ
t |q ď fp|sY N,δ

t ´ Y
i,N,δ
t |q ` fp|X i,δ

t ´ sXN,δ
t |q ` fp| sXN,δ

t ´ sY N,δ
t |q.(32)

By taking the expectation and averaging, we can control the first two terms using Proposition 8.
We now need to tackle the third term. To deal with this problem, we use an approach similar
to the one employed in the proof of Theorem 2. Taking advantage of the presence of πδ , we can
again apply the stochastic dominated convergence theorem, as shown in the proof of Theorem 2.
Consequently, we obtain

d| sXN,δ
t ´ sY N,δ

t | “ ´seN,δ
t ¨

´ 1

N

Nÿ

i“1

∇V pX i,δ
t q ´ ∇V pY i,N,δ

t q
¯
dt(33)

´ seN,δ
t ¨

´ 1

N

Nÿ

i“1

∇W ˚mtpX i,δ
t q

¯
dt

` 2σ0πδp sEN,δ
t qpseN,δ

t qtdB0

t .

Now, we can write

dfp| sXN,δ
t ´ sY N,δ

t |q “ ´f 1p| sEN,δ
t |qseN,δ

t ¨
´ 1

N

Nÿ

i“1

∇V pX i,δ
t q ´ ∇V pY i,N,δ

t q
¯
dt

´ f 1p| sEN,δ
t |qseN,δ

t ¨
´ 1

N

Nÿ

i“1

∇W ˚mδ
t pX i,δ

t q
¯
dt

` 2σ0f
1p| sEN,δ

t |qπδp sEN,δ
t qpseN,δ

t qtdB0

t

` 2σ2

0f
2p| sEN,δ

t |qπδp sEN,δ
t q2dt.
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To control the first term, we carry out the following decomposition

´ f
1p| sEN,δ

t |q sEN,δ
t ¨ p

1

N

Nÿ

i“1

∇V pXi,δ
t q ´ ∇V pY i,N,δ

t qq

“ ´f
1p| sEN,δ

t |qseN,δ
t ¨

´
1

N

Nÿ

i“1

∇V pXi,δ
t q ´ ∇V p sXN,δ

t q
¯

´ f
1p| sEN,δ

t |qseN,δ
t ¨

´
1

N

Nÿ

i“1

∇V psY N,δ
t q ´ ∇V pY i,N,δ

t q
¯

´ f
1p| sEN,δ

t |qseN,δ
t ¨ p∇V p sXN,δ

t q ´ ∇V psY N,δ
t qq.

Using the fact that f 1 is globally bounded and Proposition 8, we get the existence of C1 ą 0,
independent of N, t and δ, such that

´ E

”
f 1p| sEN,δ

t |qseN,δ
t ¨

´ 1

N

Nÿ

i“1

∇V pX i,δ
t q ´ ∇V pY i,N,δ

t q
¯ı

ď C1e
´pα´2LV qt ´ E

”
f 1p| sEN,δ

t |qseN,δ
t ¨ p∇V p sXN,δ

t q ´ ∇V psY N,δ
t qq

ı
.

Finally, thanks to the law of large number, we get the existence of a constant C2 such that

E

”ˇ̌
ˇ 1
N

Nÿ

i“1

∇W ˚mtpX i,δ
t q

ˇ̌
ˇ
ı

ď C2N
´1{2.

We finally get,

d

dt
Erfp| sXN,δ

t ´ sY N,δ
t |qs ďC1e

´pα´2LV qt ` C2N
´1{2

` E

”
´ f 1p| sEN,δ

t |qseN,δ
t ¨ p∇V p sXtq ´ ∇V psYtqq

ı

` 2σ2

0

”
f2p| sEN,δ

t |qπδp sEN,δ
t q2

ı
.

Finally, using Proposition 4, we conclude that

d

dt
Erfp| sXN,δ

t ´ sY N,δ
t |qs ďC1e

´pα´2LV qt ` C2N
´1{2 ´ ℓσ2

0fp| sEN,δ
t |q ` ℓσ2

0δ ` |κ´|8δ,

Then, taking the limit δ Ñ 0 exactly as in the proof of Theorem 2, we get the existence of two
systems X and X

N which are couplings of (11) and (12), such that

d

dt
E
“
f
`
| sXN

t ´ sY N
t |

˘‰
ďC1e

´pα´2LV qt ` C2N
´1{2 ´ ℓσ2

0fp| sEN,δ
t |q.

Then, using Grönwall lemma, we get that for α large enough,

E
“
f
`
| sXN

t ´ sY N
t |

˘‰
ď C3

´
e´pα´2LV qt ` e´ℓσ2

0
t `N´1{2

¯
,

for some constant C3 that does not depends on t and N . Plugging this into Equation (32) gives

E

” 1

N

Nÿ

i“1

fp|X i
t ´ Y

i,N
t |q

ı
ď C

´
e´pα´2LV qt ` e´ℓσ2

0
t `N´1{2

¯
.

Finally, using the exact same methodology as in Corollary 2, we conclude to the expected result.
�
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APPENDIX A.

A.1. Proof of Proposition 1. Equation (9) comes from Section 1.5 in [37] (Equation (1.15)). Hence,
if pmtq is an invariant measure in the sense of Definition 2, then P̄ straightforwardly is a solution
of Equation (10). Conversly, let us consider a probability measure P̄ , solution of Equation (10).
More precisely, for all F P C2

b pPpRdqq
@ sP ,MF

D
“ 0.

Let us consider T ą 0, then
ż

PpRdq

}∇V ` ∇W ˚m}2L2pmqP̄ pdmq

ď C
´
1 `

ż

PpRdq

ż

Rd

|∇V pxq|2mpdxqP̄ pdmq `
ż

PpRdq

ż

Rd

|∇W ˚mpxq|2mpdxqP̄ pdmq
¯

ď C
´
1 `

ż

PpRdq

ż

Rd

|x|2mpdxqP̄ pdmq `
ż

PpRdq

|∇W ˚mp0q|2P̄ pdmq
¯

ď C
´
1 `

ż

PpRdq

ż

Rd

|x|2mpdxqP̄ pdmq
¯
,

for some constant C that may change from line to line and depends only on the Lipschitz constant
of ∇V and ∇W . Then using Proposition 2, we get that

ż

PpRdq

}∇V ` ∇W ˚m}2L2pmqP̄ pdmq ă `8.

Applying Theorem 1.5 in [37], we get the existence of a process pµtq P Cpr0, T s,PpRdqq such that
µ has dynamic given by (1) and for all t P r0, T s, Lpµtq “ P̄ . Then by weak uniqueness of the
solutions of (1), we get that P̄ is an invariant measure for m in the sense of Definition 2.

A.2. Proof of Lemma 2. We consider the process pXtq, driven by the dynamic (4) and with initial
condition X0 such that LpX0q “ P0, in the sense of Definition 1. Let us denote in the following
m2ptq “ E

“
|Xt|2

‰
. Then expanding using Ito formula and taking the time derivative, gives:

m1
2ptq “ ´2E rXt ¨ p∇V pXtq ` ∇W ˚mtpXtqqs ` pσ2 ` σ2

0qd
“ ´2E r Xt ¨ p∇V pXtq ´ ∇V p0qqs ´ 2∇V p0qE rXts ´ 2E rXt ¨ ∇W ˚mtpXtqs ` pσ2

0 ` σ2qd.

Moreover, if rXt an independent copy of Xt, then:

∇W ˚mtpXtq “
ż

Rd

∇W pXt ´ yqmtpdyq

“ Er∇W pXt ´ rXtq|Xt,F
0

0 s.

Now, the fact that W is even gives 2ErXt∇W ˚ mtpXtqs “ ErpXt ´ rXtq ¨ ∇W pXt ´ rXtqs. This
decomposition is the key, the end of the proof is straightforward using Assumption made on the
potential W (see Assumptions (A2)).

A.3. A measurable selection result. In this part, we will mainly prove Lemma 3:
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Lemma 5. Let m and ρ be two probability measure valued random variables which are F0
0 -measurable.

Assuming that both random measures m and ρ admit a moment of order two almost surely, then there
exists a random variable ξ, such that almost surely:

ξ P argmin
πPΠpm,ρq

ż

Rd

|x´ y|2πpdx, dyq.

Proof. The purpose of the proof is to show that there exists a measurable function φ : PpRdq ˆ
PpRdq Ñ PpRdq, such that for all pm, ρq P PpRdq ˆ PpRdq Ñ PpRdq, φpm, ρq P Πoptpm, ρq, the set
of minimizers for the transport problem. First of all, it is straightforward that Πopt is never empty.
Then, we need to show that the set valued function

Φ :
PpRdq ˆ PpRdq Ñ 2PpRdq

pm, ρq ÞÑ Πpm, ρq,
is measurable, where 2A stands for the set of subsets of A. Considering the graph ΓΦ, of Φ:

ΓΦ “ tppm, ρq, ξq , ξ P Φpm, ρqu ,
it is clear that it is a closed set, and then measurable. In particular, the multi-application Φ is
measurable. Moreover, by Lemma 12.1.7 in [44], the application Ψ which associate to any compact
set K P PpRq2 the set

ΨpKq “ arg inf
πPK

ż

R2

fp|x´ y|qπpdx, dyq

is measurable. Then the function

Λ :
PpRdq ˆ PpRdq Ñ EnspPpRdqq
pm, ρq ÞÑ Πoptpm, ρq,

is a compound of two mesurables functions. Finally by the measurable selection theorem, there
exists a measurable function φ such that for all pm, ρq P PpRdq ˆ PpRdq, φpm, ρq P Πoptpm, ρq. �

A.4. Proof of Proposition 4. This proof is given in [22], we repeat it here for the reader conve-
nience. We begin with the easy case, which is whenever r ă R1. In fact in this case we have:

f2prq “ ϕ1prqgprq ` ϕprqg1prq

“ ´ 1

2pσ2 ` σ2
0
qrκ´prqfprq ´ ℓ

2
Φprq

ď ´ 1

2pσ2 ` σ2
0
qrκ´prqfprq ´ ℓ

2
fprq.

This gives:

f2prq ´ 1

2 pσ2 ` σ2
0
qrκprqf 1prq ď ´ 1

2pσ2 ` σ2
0
qrfprq pκ´prq ` κprqq ´ ℓ

2
fprq

ď ´ ℓ

2
fprq,

because κ´prq ´ κprq ě 0. The case where r ě R1 is more intricate. We can easily see that
f2prq “ 0, and

(34) ´ 1

2pσ2 ` σ2
0
qrκprqf 1prq ď ´ 1

4pσ2 ` σ2
0
qrκprqϕpR0q

ď ´rϕpR0q pR1pR1 ´R0qq´1
.
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We easily show that the function r ÞÑ r{Φprq is non-decreasing on rR1,`8r. Then, it comes that
rR´1

1
ď ΦprqΦpR1q´1, which gives:

´ 1

2pσ2 ` σ2
0
qrκprqf 1prq ď ´ϕpR0qΦprq pΦpR1q pR1 ´R0qq´1

.

Moreover,

Φprq “
ż r

0

ϕpsqds “ pr ´R0qϕpR0q ` ΦpR0q,

and ż R1

R0

Φpsqϕpsq´1ds “ ΦpR0qϕ´1pR0qpR1 ´R0q ` 1

2
pR1 ´R0q2

“ pR1 ´R0qϕpR0q´1

ˆ
ΦpR0q ` 1

2
pR1 ´R0qϕpR0q

˙

ě pR1 ´R0qΦpR1qϕpR0q´1{2.
Finally,

´ϕpR0qΦprqpΦpR1qpR1 ´R0qq´1 ď ´1

2
Φprq

´ ż R1

R0

Φpsqϕpsq´1ds
¯´1

ď ´ ℓ

2
fprq,

because Φprq ě fprq for all r ě 0;

A.5. Proof of Proposition 6. We begin this proof with the Itô decomposition of |Ei,N
t |2:

d|Ei,N
t |2 “ ´ 2E

i,N,δ
t pV 1pX i,δ

t q ´ V 1pX i,N,δ
t qqdt

´ 2E
i,N,δ
t

´
W 1 ˚mδ

t pX i,δ
t q ´ N´1

Nÿ

j“1

W 1pX i,N,δ
t ´X

j,N,δ
t q

¯
dt

` 4σ0πδpEN,δ
t qEi,N,δ

t dB0

t ` 4σ2

0πδpEN,δ
t q2dt.

Let us now consider ψa : x ÞÑ px` aq1{2, using once again Itô formula, we get:

dψap|Ei,N,δ
t |2q “ ´ 2ψ1

ap|Ei,N,δ
t |2qEi,N,δ

t pV 1pX i,δ
t q ´ V 1pX i,N,δ

t qqdt

´ 2ψ1
ap|Ei,N,δ

t |qEi,N,δ
t

´
W 1 ˚mδ

t pX i,δ
t q ´N´1

Nÿ

j“1

W 1pX i,N,δ
t ´X

j,N,δ
t q

¯
dt

` 4σ0E
i,N,δ
t ψ1

ap|Ei,N,δ
t |2qπδpEN,δ

t qdB0

t ` 4σ2

0ψ
1
ap|Ei,N,δ

t |2qdt
` 8σ2

0 |Ei,N,δ
t |2ψ2

ap|Ei,N,δ
t |2qπδpEN,δ

t q2dt.

As |2rψapr2q| ď 1{2, we can use the dominated convergence theorem and get

lim
aÑ0

ż T

0

2ψ1
ap|Ei,N,δ

t |2qpV 1pX i,δ
t q ´ V 1pX i,N,δ

t qqEi,N,δ
t dt “

ż T

0

pV 1pX i,δ
t q ´ V 1pX i,N,δ

t qei,Nt dt.

Moreover, once again using dominated convergence theorem and the definition of πδ , we get:

lim
aÑ0

ż T

0

πδpEi,N,δ
t q2

!
4σ2ψ1

ap|Ei,N,δ
t |2q ` 8σ2|Ei,N,δ

t |2ψ2
ap|Ei,N,δ

t |2q
)
dt “ 0,
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and the same holds for the term that is issued from the common noise. The observed outcomes
may initially seem unexpected; however, the presence of πδ helps such approximations by inhibit-
ing the differential process from staying close to the origin, which explains the absence of Local
time at 0.

A.6. Proof of Proposition 5. We know that:

γ :“ lim inf
rÑ`8

κprq ą 0,

then, there exists r0 ą 0, such that κprq ě γ{2, @r ě r0. It is clear that R0 ď r0, and then

R1 ď inf
 
s ě r0, sps ´R0qκprq ě 4

`
σ2 ` σ2

0

˘(
.

Now, using the definition of r0, we get R1 ď infts ě r0, sps ´ R0q ě 8

γ

`
σ2 ` σ2

0

˘
u. This gives us

that

R1 ď R0 `
a
R2

0
` 32pσ2 ` σ2

0
q{γ

2
_ r0.

Then, as Φprq ě rϕpR0q, @r ě 0 and ϕpsq ď 1,@s ě 0, we can write that

ℓ “ p
ż R1

0

Φpsqϕpsq´1dsq´1 ě 2ϕpR0q
R2

1

.(35)

Moreover, for σ0 large enough, one can claim that

R2

1 ď 2R2

0 ` 32pσ2 ` σ2

0q{γ.(36)

Finally, combing (35) and (36), we have the following bound which is valid for σ0 large enough:

cpV,W, σ0q ě γ
`
σ2 ` σ2

0

˘

2γR0 ` 32pσ2 ` σ2
0
qϕpR0q ´ 4LWϕpR0q´1.

The right term appears to be (for each fixed values of σ) a non decreasing function of σ2
0 . Then, as

the right term converges to γ{32ϕpR0q ´ 4LWϕpR0q´1, there exists a sσ0, such that for all σ0 ě sσ0,
cpV,W, σ0q ě γ{64ϕpR0q´2LWϕpR0q´1. This allows to conclude that forLW ă sL :“ γϕpR0q2{128,
and σ0 ą sσ0, cpV,W, σ0q ą 0. Hence, σ0 P DV,W .
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