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Abstract
Allergic diseases and asthma are intrinsically linked to the environment we live in and 
to patterns of exposure. The integrated approach to understanding the effects of 
exposures on the immune system includes the ongoing collection of large-scale and 
complex data. This requires sophisticated methods to take full advantage of what this 
data can offer. Here we discuss the progress and further promise of applying artificial 
intelligence and machine-learning approaches to help unlock the power of complex 
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1  |  INTRODUC TION

Asthma and allergic diseases are prototypes of environmental-
driven diseases with the important polygenic background. Natural 
and man-made environments, such as air, water and soil quality, to-
gether with all the physical, chemical, biological, and psychosocial 
features of our surroundings, have a major influence on the control 
and severity of allergic diseases and asthma. The environmental trig-
gers are able to induce also epigenetic changes with a variable effect 
on allergic disease severity and progression. The application of envi-
ronmental science to tackle the growing burden of allergic diseases 
and asthma has been a key priority for the European Academy of 
Allergy and Clinical Immunology (EAACI) Research Agenda.

An integrated approach toward environmental and health poli-
cies is needed to tackle environmental risks, based on high-quality 
evidence in order to implement appropriate measures. This requires 
high-quality tools in a form of a framework delivered by academia 
in the format of evidence-based guidelines. The precision medicine 
approach based on big data sets has the potential to unveil causal-
ity instead of associations and to promote an integrated surveillance 
network. It is important to note that correlation does not imply cau-
sality. Causality and association are two concepts used in research 
and statistics. The main difference between the two is that causality 
implies a causal relationship between two variables, while associa-
tion simply refers to a statistical relationship or correlation between 
the variables. Causality suggests that a change in one variable causes 
a change in the other variable, whereas association means that the 
variables are related in some way.

The current report postulates the methodological approach 
based on leveraging the power of artificial intelligence (AI) through 
the use of machine-learning (ML) tools to tackle a range of questions 
about how the environment is linked to the development and exac-
erbation of allergic diseases and asthma (Figure 1).

2  |  THE RISE OF E XPOSOMIC S

During their lifetime individuals are exposed to a wide array of envi-
ronmental factors, which can have both short- and long-term effects 

on their health status. These factors include nutrition, levels of 
physical activity, social and psychological stressors, exposure to tox-
ins and pollutants, allergens, alcohol and smoking habits, and many 
more. Collectively, these are known as the exposome, and their 
study is called exposomics.1,2 An individual's contact with external 
environmental factors is known as the eco-exposome and the in-
ternal effects that occur after interaction with the exposome as the 
endo-exposome. Three domains of exposome have been defined as 
general external environment (biodiversity, climate urban environ-
ment, socioeconomic factors, professional triggers at occupational 
exposure); specific external environment (allergens, microbes, diet, 
tobacco, indoor and outdoor pollutants, and other toxic substances); 
and host-dependent internal environment (metabolic factors, hor-
mones, inflammation, and oxidative stress).

In their lifetime, people encounter many different exposures. 
Thus, collecting good-quality data sets is understandably challeng-
ing. Nevertheless, there are data collection programs underway 
aiming to help to understand the impact of exposomes on human 
health all the way down to the molecular level. The United Kingdom 
Biobank has collected a huge amount of data from 500,000 indi-
viduals during a lengthy study in which they collected a wide range 
of genetic, phenotypic, clinical, and lifestyle data.3,4 The “All of Us” 
research program is ongoing and intends to recruit a million people 
across the United States with the plan to collect a similarly broad 
and powerful data set.5 Rich data sets like these combined with the 
powerful analytical approaches provided by AI and ML will drive the 
understanding of the exposome and its impact on health in an un-
precedented manner. Data-driven approaches to health risk stratifi-
cation,6 multi-omics analysis,7,8 novel biomarker discovery,9–11 and 
causal analysis12 will invaluably contribute to the growing field of 
personalized medicine.

3  |  WHAT IS AI?

AI is an emerging field which leverages powerful computer algo-
rithms to carry out challenging tasks that surpass the human level 
intelligence to perform. An important subfield within AI known as 
ML involves the use of algorithms specially designed to ingest large 
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environmental data sets toward providing causality models of exposure and interven-
tion. We discuss a range of relevant machine-learning paradigms and models including 
the way such models are trained and validated together with examples of machine 
learning applied to allergic disease in the context of specific environmental exposures 
as well as attempts to tie these environmental data streams to the full representative 
exposome. We also discuss the promise of artificial intelligence in personalized medi-
cine and the methodological approaches to healthcare with the final AI to improve 
public health.
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amounts of complex data and automatically extract meaning and 
insights in an unbiased way. ML models “trained” on data are then 
able to carry out a range of potentially very useful tasks, such as 
estimating the risk of an outcome of interest in an individual,6 find-
ing natural groupings within the data,13 or automatically extracting 
meaning from the content of images,14,15 videos or text.16 These 
powerful analytical approaches are changing the way complex, data-
rich systems are evaluated, and the medical field is no exception. 
Comprehensive recent avenues of investigation have been develop-
ing involving the use of AI in almost all areas of our discipline.17

This report outlines how AI and ML can contribute to the under-
standing of how environmental exposures over a lifetime (known as 
the exposome) drive the inception and the severity of allergic dis-
eases and asthma and how we can use this knowledge for primary 
and secondary prevention.

4  |  T YPES OF ML

ML is the process of using mathematical models of data to help a com-
puter learn without direct instruction. This enables a computer system 
to continue learning and improving on its own, based on experience. 
Broadly speaking, there are three different ML paradigms: supervised 
learning,18 unsupervised learning19 and reinforcement learning.20 

Supervised learning involves algorithms and methods that learn the 
relationship between data points and associated labels. The unsuper-
vised learning involves a problem setup, where labels are not available 
and the ML algorithm needs to find a useful structure within a data 
set without the guidance of these explicit labels. Cluster analysis is a 
typical example of unsupervised learning.21 An important task closely 
related to unsupervised learning is dimensionality reduction.22 This is 
a way of taking high-dimensional data sets (data sets with a very large 
number of features) and finding a lower-dimensional representation of 
them that retains most of the important original information. A sim-
ple and commonly used approach is principal component analysis.23 
Following on from dimensionality reduction is the area of feature se-
lection.24 ML algorithms which are trained to predict specific labels 
from a collection of features can also be used to determine which of 
these available features are most predictive of the label under study. 
Selecting out the most useful features in this way can provide a range 
of benefits for an ML pipeline24 but can also provide insight for re-
searchers into the relative importance of the different features used in 
the predictive task – often an important result on its own.

Another useful application of ML that can be approached in ei-
ther a supervised or unsupervised way is anomaly detection.25 This 
is a problem setup where a large collection of data is available, and 
the algorithm is trained to recognize when data diverge significantly 
from a learned representation of “normal.”26

F I G U R E  1  Implementation of AI and ML in medical science. The ongoing collection of large-scale and complex data is a prerequisite 
for implementing AI/ ML in allergy and asthma. Complex exposomics-derived data processed by AI/ML tools provide causality models 
for exposure and intervention. This accounts for the novel methodological approaches in personalized and preventive medicine aiming at 
integrated management and individualized healthcare. Al, artificial intelligence; DNA, deoxyribonucleic acid; ML, machine learning
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Computer vision and natural language processing (NLP) are an 
important group of ML methods and algorithms used to automati-
cally extract the content and meaning contained within images and 
human language, respectively.27,28 Within the medical sciences, 
applications of these methods are growing in importance, with 
computer vision being applied to solve problems and automate 
processes in diagnostic imaging15 and NLP being applied to the au-
tomatic parsing of, for example, electronic health records and diag-
nostic reports.16

In the analysis of sequence-type data, ML models can be trained 
on the past behavior of a system in order to produce forecasts of 
future predicted behavior.29,30 Another application is the analysis of 
data that come in sequences such as deoxyribonucleic acid (DNA), 
ribonucleic acid (RNA), and peptide sequences.31

5  |  ML MODEL S

ML model designs can range from very simple to very complex and 
there are important trade-offs to consider when choosing one.32 
Linear models are usually considered the simplest group of models. 
These models combine available features in simple, linear ways in 
order to produce an output.33 Linear regression and logistic regres-
sion are two common examples. Increasing in complexity are tree-
based models.34 They are loosely based on the idea of decision trees 
but with a wide range of powerful extensions to improve their power 
and accuracy. Random forests (RF), for example, combine many deci-
sion trees together in principled ways to produce more accurate and 
reliable decisions.35 The ML principle of “boosting” is often applied 
to these models. Boosting involves multiple models collected in a 
group learning to anticipate and correct for the mistakes made by 
the other models in the group.36

Other important modeling approaches worth calling out include 
support vector machines (SVM)37 and K-nearest neighbors (KNN)38 
which build up an internal representation of what they learn using 
specific examples of data points pulled from the training data itself. 
SVMs also commonly perform complex nonlinear transformations of 
the space the features lie within to improve the power of the model.

The most complex and potentially powerful types of ML models 
are artificial neural networks (ANNs).39 The specific field of building 
and training ANNs with many layers of neurons is often referred to 
as deep learning (DN).40 These models are powerful and have the 
potential to extract very complex and subtle patterns in data but 
also require a very large amount of data to learn from in order to be 
effective.39 Thus, ANNs are a sensible choice only when working 
with very large data sets.

6  |  VALIDATION OF ML MODEL S

Validating the performance of an ML model and confirming any re-
lated insights obtained from the pattern of its predictions is needed 
to avoid overly optimistic conclusions. The most important thing 
that needs to be demonstrated is that the performance/behavior/

insights observed with the modeling approach applied to specific 
data will generalize to new data sets and new situations. A range of 
methods is designed to carry out performance assessments in ways 
that avoid or correct for bias: holdout test sets, cross validation,41 
leave-one-out approaches,42 or optimism correction methods.43 In 
addition, it is important to validate conclusions in other ways, fol-
lowing the model of trial results replication in other populations, 
geographical regions, etc. to demonstrate the robust nature of the 
conclusions being proposed.

7  |  AI SAFET Y CONSIDER ATIONS

7.1  |  Explaining ML model decisions

It is desirable to understand how an ML model makes a decision. Of 
note, providing the user with intelligible explanations of ML model 
decisions is often considered an important part of deploying ML 
applications in a safe and responsible way. This form of insight can 
range from simple to extremely complex to obtain depending on the 
nature of the model and the task it is performing. Explainability strat-
egies are typically divided into two categories: intrinsic and post hoc 
explainability.44 Intrinsic explainability is achieved by using a type of 
model that is sufficiently simple, or intrinsically understandable, that 
merely unpacking the internal workings of the model will provide a 
user with insight into how a model arrives at a decision.44 Many ML 
models, particularly ANNs, are internally too complex to provide this 
opportunity. These complex models are referred to as “black boxes” 
since it is difficult to look inside and understand how decisions are 
reached.45 Post hoc explainability methods like local interpretable 
model agnostic explanations (LIME)46 and shapley values47 are used 
in these situations.

Another distinction worth highlighting in this context is the dif-
ference between local and global explanations of an ML model's 
predictions.44 A local explanation provides an explanation of how a 
model arrived at a specific decision for a specific input. For example, 
this can provide an explanation for why a model predicted that an 
individual would respond well to an intervention. A global explain-
ability method would provide information more broadly about how 
the model makes decisions in general. In other words, what features 
on average push a model's decision in a certain direction. For exam-
ple, an insight provided by global model explainability might tell that 
people who are older usually (but not necessarily always) respond 
better to a certain treatment.

7.2  |  Robustness

ML models tend to provide more reliable predictions when they are 
presented with data broadly similar to what they were trained on.48 
When outside this region either unintentionally or intentionally an 
area known as an adversarial attack,49 the ML model can behave in 
unpredictable and/or underperformance ways. Mitigation strategies 
to detect or avoid these scenarios are important to plan for.
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    |  5SHAMJI et al.

7.3  |  Subgroup performance variation

For certain types of data, the performance of a model might drop 
to unacceptable levels.50 It is important to have validation steps in 
place to detect these situations and ideally also improve them, for 
example, with further model training.

7.4  |  Fairness

Fairness is the process of understanding bias introduced by data 
and ensuring that this model provides equitable predictions across 
all demographic groups. This safety feature is particularly important 
if certain groups of individuals can be significantly advantaged or 
disadvantaged by the outcome of a model's decision.51 Examples 
include ML applications in credit scoring, predictive policing, or job 
candidate assessments. There are usually a set of “protected charac-
teristics” which for ethical reasons are not allowed to contribute to 
ML decisions. Incorporating fairness into ML model decisions usu-
ally requires careful thought and sophisticated technical methodol-
ogy as the simple removal of the protected characteristics from the 
features presented in a model is often ineffective. Models are often 
able to learn about the protected characteristics indirectly from the 
other available features.52

7.5  |  Privacy

Privacy is an important consideration when working with any sort 
of personal data. The requirements set out in the relevant legal 
frameworks such as the general data protection regulation (GDPR) 
in Europe53 and the Health Insurance Portability and Accountability 
Act of 1996 (HIPPA) in the USA54 is important to adhere to when 
working with personal data, but there are some additional complexi-
ties specific to ML. In particular, it is important to ensure that an 
ML model has not “memorized” details about specific individuals in a 
way that could be subsequently extracted if the model is released to 
users unauthorized to have such information. Differential privacy in 
ML55 provides ways to avoid these problems and is an important and 
active area of ongoing research.

7.6  |  Data integrity

Accurate research results are the central element of high-
performance biomedical research. To be able to draw meaningful 
AI-based conclusions from a biomedical research data set, rigor-
ous quality procedures and standardization are needed to be im-
plemented together with an evaluation of data quality issues. This 
includes approaches for dealing with missing data using imputation 
methods. Furthermore, to ensure the integrity of data, the informa-
tion technology (IT) infrastructure and workflows onto which AI al-
gorithms are applied need stringent protection measures (e.g., data 

encryption, data separation, specific pseudonymization procedures, 
access restriction, data federation, etc.).

8  |  SPECIFIC USE C A SES OF AI/ML IN 
ENVIRONMENTAL SCIENCE FOR ALLERGIC 
DISE A SES AND A STHMA

8.1  |  Prediction of environmental exposures

8.1.1  |  Pollen count models

Accurate and up-to-date monitoring of airborne pollen grains on im-
portance due to the dramatic global rise of pollen-induced allergy 
(Figure  2). Conventionally, airborne pollen samples are collected 
and counted under the microscope, however, this is limited by the 
difficulty in identifying pollen at the species level, while requiring 
highly specialized experts. Automatic pollen recognition becomes 
thus crucial and can be efficiently solved using DL. Specifically, con-
volutional neural networks (CNNs) have been used to increase the 
accuracy of identifying and counting airborne pollen. The study in 
question used CNNs to distinguish between low-allergenic pollen 
species Urtica and allergic species Parietaria of the Urticaceae fam-
ily. One of the classes was >98% correctly identified, whereas the 
other two exhibited high error rates. This was thought to be due to 
a lack of sufficient variability in the training data.56 Another CNN 
model was trained with DL using 122,000 pollen reference samples 
to overcome the laborious and costly process of pollen analysis. This 
model resulted in high-throughput analysis processing 10,000 pol-
len grains per minute, which was increased to 600 pollen grains per 
second following training. Two types of experiments were assessed 
using the optimized model. The splitting experiment used three 
samples of two different species for training the CNN model, and 
a fraction of the same samples were used for validation. A leave-
one-out experiment used the same sample set, however, used single 
test examples and the rest of the data as training data in a sequence 
of experiments to produce validation predictions across a range of 

F I G U R E  2  Understanding the environment. Artificial 
intelligence/machine-learning applications for forecasting and 
mitigating healthcare issues.
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examples. The experiments had an overall accuracy of 0.98 and 0.41, 
respectively.57

The ability to accurately forecast the daily concentration of air-
borne pollen might also benefit from ML support. An ML predictive 
model trained with data from 24 years' worth of pollen concentra-
tion measurement in addition to atmospheric weather data robustly 
estimated the concentration of the airborne Ambrosia pollen with 
a correlation coefficient between the estimation by the model and 
actual pollen concentration of 0.82.58

8.1.2  |  Thunderstorm asthma prediction

Thunderstorm-triggered asthma (TA) is the occurrence of acute 
asthma attacks immediately following a thunderstorm during the 
pollen season.59 Different ML models have been evaluated for the 
prediction of TA occurrences. One example is a DL neural network 
(DLNN) model used to generate ≤15-h predictions of thunderstorm 
occurrences in South Texas.60 However, not enough data are pre-
sent on AI prediction models specifically for TA outbreaks, which 
can be crucial for alerting patients and medical providers prior to an 
outbreak. One study utilized social media posts on Twitter to pro-
vide early alerts for acute outbreaks of TA. The authors created a 
monitoring algorithm based on the relevance of the tweets and time-
between events. In three cases, the algorithm detected the outbreak 
before the official time, and in five cases prior to news reports.61

8.1.3  |  Wildfire risk prediction

Wildfires are increasing in frequency in different parts of the world. 
Identifying the probability of wildfire occurrence is important for 
asthmatic patients living in areas of high risk because these fires 
can trigger severe asthma symptoms. Sayad et al.62 proposed a new 
methodology for predicting the occurrence of wildfires by utilizing 
big data, remote sensing, and ML models such as ANN and SVM. 
Both models had a high prediction accuracy: 98.32% for ANN and 
97.48% for SVM. It has also been possible to use data on wildfires 
to improve our ability to anticipate changes in air pollution using so-
phisticated ML techniques.63

8.1.4  |  Air pollution risk prediction

It is well established that long-term exposure to air pollution con-
tributes to the development of and directly exacerbates a range 
of respiratory diseases. ML classifiers using electronic health re-
cords (EHR) and epidemiological data were unable to successfully 
predict the future risk of asthma attacks in 29,396 patients with 
asthma in Sweden.64 The authors suggested that additional data 
on environmental exposures including weather, pollen, and air 

pollution levels would be needed to improve prediction models. 
Indeed, a recent study demonstrated that imbalanced sampling 
ML approaches can be used to predict the association between in-
door air quality exposure and changes in peak expiratory flow rate 
(PEFR) in subjects with asthma.65 The performance of these algo-
rithms was further improved by the application of transfer learn-
ing, a DL method, which indicated the importance of particulate 
matter (PM)2.5 and carbon monoxide (CO) in predicting changes in 
PEFR. Future studies will have to link measurable asthma features 
with either local environmental exposure or, preferably, personal-
ized exposure monitoring such as used recently in Delhi with the 
AirSpec device.66 Spatial–temporal modeling of six air pollution 
parameters (CO, PM10 and PM2.5, nitrogen dioxide, sulfur diox-
ide, and ozone) using a random forest model identified PM2.5 and 
PM10

67 and distance from parks68 being associated with seasonal 
occurrences of asthma in children across Tehran, Iran. Finally, data 
from the National Air Toxics Assessment (NATA) in the USA were 
used to assess air pollution in the residential areas of patients with 
asthma who were part of the AiRway in Asthma (ARIA) cohort.69 
The ML algorithm used (Data-driven ExposurE Profile extraction, 
DEEP) identified 18 separate air-toxic molecules and 20 combi-
nations of molecules including acrylic acid, ethylidene dichloride, 
and hydroquinone as being significantly associated with asthma 
outcomes.

8.1.5  |  Dust storms prediction

One of the extreme weather events that are becoming more fre-
quent and severe due to global warming and climate change is de-
sert dust storms or sandstorms, which arise from arid regions when 
strong winds blow large amounts of loose sand and dirt into other 
areas.70 Desert dust contributes to the poor prognosis and mortality 
of chronic respiratory patients.71 In a recent study, the estimation of 
ambient PM2.5 in Iraq and Kuwait from 2001 to 2018 using machine 
learning was reported.72 Remote sensing random forest ML and a 
generalized additive mixed model to estimate daily high-resolution 
(1 km × 1 km) visibility over the region using satellite-based aerosol 
optical depth (AOD) and airport visibility data were combined. The 
spatially and temporarily resolved visibility data were then used to 
estimate PM2.5 concentrations from 2001 to 2018 by converting vis-
ibility to PM2.5 using empirical relationships derived from available 
regional PM2.5 monitoring stations.

8.2  |  Prediction of clinical outcomes linked to 
environmental exposures

AI may also be useful to identify the deleterious effects of exposure 
to environmental stressors and find interventions to reduce these 
effects using the adverse outcome pathway analysis based on very 
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large publicly available chemical libraries to generate structure ac-
tivity relationships.73

Examples of ML models that have been assessed in the literature 
and utilized for assessing the impact of different environmental fac-
tors are summarized in Table 1.

8.2.1  |  Prediction of the severity of response in 
patients with atopic dermatitis or contact dermatitis 
exposed to chemical irritants

Skin serves as a natural barrier against harmful substances, in-
cluding chemicals, UV light, and pathogens. The disruption of the 
protective function of the skin, for example, by detergents, is a 
main risk factor for the development of an epithelial barrier-linked 
disease such as allergy or asthma. Epidermal proteins such as filag-
grin, lipids like ceramide, and tight junctions play an important role 
in maintaining the skin barrier and their malfunction is associated 
with inflammatory skin diseases such atopic dermatitis (AD).79 
However, the molecular mechanisms behind the disturbance of 
the skin barrier are incompletely understood, with limited research 
on the role of genetics for dermal chemical exposure and uptake. 
Studies that are more recent suggest a substantial contribution 
of genetics in this context. In addition, as numerous microorgan-
isms colonize the human skin, many skin diseases (such as AD and 
psoriasis) are not only characterized by disrupted skin barriers, but 
also by imbalanced skin microbiota compositions.80 Although the 
human gastrointestinal microbiota has an extensive capacity to 
metabolize environmental chemicals and even contribute to toxic-
ity,81 the role of the human skin microbiota in the context of der-
mal exposure to environmental chemicals is less studied and thus, 
may be underestimated.

Large consortium projects, like the BIOMarkers in atopic der-
matitis and psoriasis (BIOMAP)82 aiming to advance personalized 
medicine for AD and psoriasis by identifying biomarkers that predict 
therapeutic response and disease progression are urgently needed. 
Predictive AI algorithms for skin barrier dysfunction will have to inte-
grate various data sets in a combinatorial approach, such as genetic, 
epigenetic, transcriptomic, proteomic, functional, and microbiota 
data. Through harmonized, huge-scale data sets such as the one 
generated in the BIOMAP approach, available on a secure, central-
ized, and access-controlled data platform, invaluable bio-resources 
are built for future research. Such quality- and access-controlled re-
sources will be instrumental not only for validating novel hypotheses 
but also for interrogating the data for predictive biomarkers via AI-
based algorithms.

The potential for novel AI-driven approaches to differentiate 
between allergic and irritant contact dermatitis has recently been 
demonstrated in the clinical patch testing model, using four contact 
sensitizers and two irritants with widely different physicochemi-
cal properties and high relevance to occupational exposures. Using 
combinatorial transcriptome analysis and AI-based ML-driven bio-
marker discovery, robust gene sets for the distinction between the 

two disease entities were identified, thus providing high-potential 
AI-based molecular biomarker candidates for further clinical 
evaluation.83

8.2.2  |  Predicting disease sub-phenotypes in 
patients with food allergy

Diagnostic oral food challenges (OFC) are the gold standard to di-
agnose food allergies like peanut allergy (PA) and to monitor the 
impact of therapeutic intervention, such as oral immunotherapy 
(OIT). To reduce the burden of potentially harmful and unnecessary 
OFC a clear need exists for the identification of ex-vivo predictive 
biomarkers.

Deep immune profiling via high-dimensional mass cytome-
try was applied to provide data-driven targets for correlation with 
clinical outcomes during OFC in pediatric PA.84 Comparing OFC-
positive and OFC-negative patients, similar immune baseline char-
acteristics were compared and allowed to identify immune changes 
in peripheral blood that was specific for allergic reactivity in peanut-
allergic reactions. Using a novel unsupervised computational anal-
ysis for clustering and dimension reduction, which is adapted for 
huge-scale data sets of >1 billion cells enabling large overcluster-
ing (1024 clusters), a high-resolution view into immune cell popu-
lations and subpopulations can be achieved without the need for 
reclustering.85 Such studies provide a comprehensive overview of 
temporal changes in immune signatures during OFC in PA, reflect-
ing dynamic processes of immune cell migration and inflammation. 
Combined with other harmonized omics and clinical data sets, such 
ML-informed huge data analysis is expected to pave the way toward 
biomarker discovery for endotyping patients and predicting clinical 
outcomes in PA and other food-allergic conditions. Of note, the anal-
ysis and visualization using such novel huge-scale clustering algo-
rithms can be performed without down-sampling, thus ensuring the 
detection of rare, but clinically important immune events.

8.3  |  AI approaches to explore the exposome and 
personalized approaches

So far, research that uses ML to explore the combination of envi-
ronmental factors simultaneously is scanty. A recent study used 
ML approaches to characterize the urban exposome predisposition 
to obesity.86 The pluralistic analysis of environmental obesogens 
strengthened the existing evidence on the role of neighborhood 
socioeconomic position, urbanicity, and air pollution. In the field 
of asthma and allergy, the approach made it possible to assess as-
sociations between a large set of exposures and asthma outcomes 
in birth cohorts. However, it cannot address complex interactions 
(i.e., of order ≥3) or a mixture of effects.87 Recently, ML took up 
the ambitious challenge of achieving precision medicine in allergy 
characterizing allergic endotypes, understanding allergic multimor-
bidity relationships, contextualizing the impact of the exposome and 
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ancestry/genetic risks, achieving actionable multi-omics integration, 
and using this information to develop adequately powered patient 
cohorts and refined clinical trials.88

The domain of unsupervised learning, and in particular the meth-
odologies provided by cluster analysis have a range of powerful ways 
to discover natural groupings in high-dimensional data sets which 
would be challenging to surface in simpler or more manual ways.21 
The natural groupings discovered in these ways can unearth previ-
ously undiscovered subtypes of disease or subgroups within expo-
sure patterns hidden in large and complex exposome data sets.89 
The real power of these insights is provided by the possibility of tai-
lored diagnosis, treatment, or prevention strategies.

These AI approaches will make it possible to unlock the com-
bined potential of clinical data and research data. Multiple data sets 
such as omics data (genomics, epigenetics, proteomics, etc.), deep 
immune profiling, and digital phenotyping (voice, mobility measure-
ment, etc.) can be interrogated together with nutrition, metagenom-
ics, and environmental exposure information to identify disease 
hubs and pathways. High-quality clinical readouts from real-world 
evidence (RWE) and patient-reported outcomes will further add to 
a better stratification of patients at risk of developing certain dis-
ease phenotypes. AI is poised to provide personalized approaches 
in many ways.

8.3.1  |  Risk stratification

One of the core functionalities provided by AI modeling is a sophis-
ticated and powerful way of producing predictions of the risk of 
certain outcomes. Clinical scoring systems estimating a risk across 
a population are to be replaced by personalized risk profiles based 
on a wide range of factors presented as features of an ML model.6 
These types of personalized risk stratifications will provide the op-
portunity to better target interventions for individuals where they 
will make the most difference.

8.3.2  |  Cluster analysis

As described above, the domain of cluster analysis, which sits within 
the unsupervised learning paradigm, provides the opportunity to au-
tomatically identify natural groupings of individuals within datasets 
which share characteristics in important and potentially complex 
ways.21 It is likely that the identification of such clusters within dis-
ease states or exposure patterns will provide opportunities to tailor 
interventions in more personalized ways for the individuals within 
these groups.

8.3.3  |  Causal analysis

Data-driven approaches that look for the underlying signatures of 
cause and effect will continue to provide vital insights into how to 

M
od

el
 ty

pe
Pr

ed
ic

tio
n 

Ta
rg

et
D

at
a 

so
ur

ce
Tr

ai
ni

ng
 d

at
a

Va
lid

at
io

n 
da

ta
Pe

rf
or

m
an

ce
 

M
et

ric
M

et
ric

 s
co

re
Re

fe
re

nc
es

•	
LR

•	
SV

M
•	

RF
•	

K
N

N
•	

XG
B-

Tr
ee

 a
nd

 
XG

B-
Li

ne
ar

Fo
re

ca
st

 th
e 

pa
tt

er
n 

of
 

de
m

an
d 

fo
r h

em
or

rh
ag

ic
 

st
ro

ke
 h

ea
lth

ca
re

 s
er

vi
ce

s 
ba

se
d 

on
 a

ir 
qu

al
ity

 
20

16
–2

01
7

H
em

or
rh

ag
ic

 s
tr

ok
e 

ev
en

ts
 

fr
om

 C
en

te
r f

or
 D

is
ea

se
 

C
on

tr
ol

 a
nd

 P
re

ve
nt

io
n 

in
 

th
e 

Lo
ng

qu
an

yi
 D

is
tr

ic
t 

of
 C

hi
na

. A
ir 

po
llu

tio
n 

da
ta

 w
er

e 
ob

ta
in

ed
 

fr
om

 th
e 

en
vi

ro
nm

en
ta

l 
m

on
ito

rin
g 

st
at

io
ns

.

M
ax

La
g-

N
 d

at
a 

su
bs

et
A

U
C

0.
79

71
77

Pr
ed

ic
t t

he
 w

ee
kl

y 
nu

m
be

r o
f c

hi
ld

ho
od

 
as

th
m

a 
ad

m
is

si
on

 in
 

th
e 

gr
ea

te
r A

th
en

s 
ar

ea
, G

re
ec

e.

D
at

as
et

s 
in

cl
ud

ed
 th

e 
ye

ar
s 

20
01

–2
00

4 
in

 G
re

at
er

 
A

th
en

s.
•	

H
ou

rly
 m

et
eo

ro
lo

gi
ca

l 
da

ta
 fr

om
 th

e 
N

at
io

na
l 

O
bs

er
va

to
ry

 o
f A

th
en

s.
•	

A
m

bi
en

t a
ir 

po
llu

tio
n 

da
ta

 
fr

om
 s

ev
en

 d
iff

er
en

t a
re

as
.

•	
M

ed
ic

al
 d

at
a 

w
er

e 
ob

ta
in

ed
 fr

om
 th

e 
th

re
e 

m
ai

n 
ch

ild
re

n'
s 

ho
sp

ita
ls

.

20
01

–2
00

3 
pe

rio
d 

da
ta

 s
et

20
04

 d
at

a 
se

t
M

ea
n 

bi
as

 e
rr

or
 

(M
BE

)
Ro

ot
-m

ea
n-

sq
ua

re
 

de
vi

at
io

n 
(R

M
SE

)
R-

sq
ua

re
d 

(R
2)

In
de

x 
of

 A
gr

ee
m

en
t 

(IA
)

M
BE

: 1
.4

RM
SE

: 6
.8

R2
: 0

.5
28

IA
: 0

.8
37

Pr
ed

ic
t t

he
 w

ee
kl

y 
nu

m
be

r o
f 

ch
ild

ho
od

 a
st

hm
a 

ad
m

is
si

on
 in

 th
e 

gr
ea

te
r A

th
en

s 
ar

ea
, G

re
ec

e.

78

A
bb

re
vi

at
io

ns
: A

N
N

, a
rt

ifi
ci

al
 n

eu
ra

l n
et

w
or

k;
 A

U
C

, a
re

a 
un

de
r a

 re
ce

iv
er

 o
pe

ra
tin

g 
ch

ar
ac

te
ris

tic
 c

ur
ve

; B
ay

es
-R

, B
ay

es
ia

n 
rid

ge
; C

N
N

, c
on

vo
lu

tio
na

l n
eu

ra
l n

et
w

or
k;

 D
N

N
, d

ee
p 

ne
ur

al
 n

et
w

or
ks

; K
N

N
, K

-
ne

ar
es

t n
ei

gh
bo

r a
lg

or
ith

m
; L

ig
ht

G
BM

, l
ig

ht
-g

ra
di

en
t b

oo
st

in
g 

m
ac

hi
ne

; L
R,

 lo
gi

st
ic

 re
gr

es
si

on
; M

LP
, m

ul
ti-

la
ye

r p
er

ce
pt

io
n;

 R
F,

 ra
nd

om
 fo

re
st

; S
V

M
, s

up
po

rt
 v

ec
to

r m
ac

hi
ne

; X
G

B,
 e

xt
re

m
e 

gr
ad

ie
nt

 b
oo

st
in

g.

TA
B

LE
 1

 
(C

on
tin

ue
d)

 13989995, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/all.15667 by B

iu M
ontpellier, W

iley O
nline L

ibrary on [28/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  11SHAMJI et al.

intervene in biological processes to promote health and to treat 
disease in individuals. For example, asthma and other allergic dis-
eases are complex multifactorial syndromes. AI has identified the 
existence of underlying causal pathways that are distinct from 
their downstream pathways related to disease symptoms in other 
complex diseases or syndromes such as rheumatoid arthritis.90,91 
This suggests that targeting the downstream pathways may treat 
symptoms but will not elicit a cure unless the upstream tissue 
remodeling pathways are targeted, that is, the precise disease 
endotypes are identified and treated. These pathways, such as 
calcium sensing pathways in the case of asthma, may link airway 
smooth muscle function with airway hyperresponsiveness and 
remodeling.92

8.3.4  |  Uplift modeling of randomized controlled 
trials (RCTs) data

When data sets are collected by investigating the causal effect of 
an intervention, usually during RCTs, an ML approach known as up-
lift modeling93 can be used to extend conclusions beyond an av-
erage treatment effect across a population to allow predictions of 
treatment effects at the individual level. This has the potential to 
massively increase the amount we can learn from such trials if they 
are sufficiently powered with large enough sample sizes to support 
these approaches. For example, demonstrated the benefits of using 
uplift modeling applied retrospectively to an RCT data set from a 
trial looking into the effects of chemotherapy agents in patients with 
colon cancer.94 They showed that the resulting AI model is able to 
predict treatment response accurately enough that it was possible 
to transform an ineffective chemotherapy agent combination into 
an effective one when its application was individually targeted using 
the trained ML model.

8.3.5  |  AI for reducing healthcare costs

There is a wide range of ways that AI-based transformation in 
healthcare will increase efficiency and drive down the costs. There 
are applications of AI that can contribute to this transformation at all 
levels of the healthcare organizational structure, from the strategic 
and operational delivery of healthcare all the way down to how we 
make decisions about individual patients.

Perhaps, the examples most relevant to AI and the exposome 
would fall into the categories of personalized preventative medi-
cine. AI will provide the opportunity to learn, on a very individual 
level, the way the exposures accumulated in life are linked to health 
problems which in turn lead to healthcare costs. These insights will 
provide the opportunity to understand how to target interventions 
in more efficient and impactful ways in order to avoid or mitigate 
these future health problems along with the associated costs of ad-
dressing them.

8.3.6  |  AI for improving patients' quality of life

The field of personalized medicine will benefit greatly from the 
insights provided by AI-powered analytical approaches.95 The 
ability to tailor treatments and interventions to the unique char-
acteristics of an individual will not only make them more effec-
tive at treating disease and disability, but also make it easier to 
avoid side effects or unintended negative consequences of these 
interventions.94 Personalized medicine, reinforced in this way will 
lead to better health outcomes and improved quality of life for 
patients.

8.4  |  AI for clinical and biomedical research

Close collaboration between researchers and healthcare profes-
sionals (HCPs) is essential for the translation of research into clini-
cal practice. This is especially importance for AI-related research 
since the deployment of AI-based solutions will involve more than 
the practicalities of distribution and deployment but also a culture 
change toward accepting AI as part of the way healthcare is man-
aged.96 Involving clinical staff in AI research and in the develop-
ment journey will help to raise awareness and understanding of AI 
among the healthcare workforce. Additionally, as with other types of 
translational research, maintaining a close collaboration between re-
searchers and HCPs will be vital to ensure the solution to the prob-
lems to deliver the best value to the clinic.

8.5  |  AI for identifying novel biomarkers

AI provides the powerful pattern recognition methodology neces-
sary to identify more complex associations between clinical states of 
interest and physiological, genetic, or biochemical markers.9 It may 
even become possible to discover more complex “meta-biomarkers” 
which would consist of complex combinations of individual bio-
markers considered together rather than in isolation. The ability of 
machine-learning approaches to identify the predictive power of 
complex patterns of features could make this possible.

A large pan-European consortium project (taxonomy, treatments, 
targets, and remission, 3TR) has recently been initiated in the field 
of immune diseases.97 As its unique aspect, the 3TR precision med-
icine project brings several medical specialties together (respiratory 
medicine, rheumatology, neurology, and gastroenterology), to study 
disease mechanisms across seven disease entities: asthma, chronic 
obstructive pulmonary disease, systemic lupus erythematosus, rheu-
matoid arthritis, multiple sclerosis, ulcerative colitis, and Crohn's 
disease. Despite the fact that these autoimmune, inflammatory, and 
allergic diseases are highly heterogeneous conditions in their clinical 
phenotype, it has been shown that they can share certain genetic and 
epigenetic risks and several disease pathways. Consequently, individ-
uals with one disease may share an inflammatory molecular pattern 
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with individuals of the other diseases, and thus may share pathways 
of response to treatment and disease progression. The 3TR project 
will generate huge amounts of molecular and clinical metadata that 
will be integrated and constantly analyzed. With the help of novel 
AI algorithms, data from one disease will be meta-analyzed across 
diseases, thus accelerating the identification of new biomarkers for 
responsiveness or nonresponsiveness to therapy or novel targets for 
therapeutic intervention based on molecular pathway similarity.

8.6  |  AI enabling the access and use of real-world 
data (RWD)

RWD collected in somewhat passive ways, such as in hospital EHR 
systems or routine public health data capturing procedures, com-
pared with the more targeted and deliberate data collection during 
clinical trials, tends to consist of much bigger datasets, often multi-
ple orders of magnitude bigger. However, these types of data sets 
are less structured (e.g., lots of information locked away in free text) 
and there are many data quality issues to be solved (e.g., missing 
data fields, anomalous data points). These problems have often ham-
pered traditional approaches to analysis, but there are ways that AI 
is beginning to help unlock the potential within these data sets. For 
example, NLP is being used to extract content and meaning from 
the unstructured free text in clinical reports and medical notes in 
automated and easily scalable ways.16 AI models can also be used 
to impute missing values in smart, more effective ways,98 as well as 
automate the identification of anomalous, likely inaccurate or mis-
leading data points using the AI approaches of anomaly detection.25

Combining AI with other technologies, the so-called AI-driven 
“game changers,” has the potential to deliver transformative solu-
tions and can be harnessed to enhance current efforts to address 
environmental issues. These game changers can be defined by five 
primary features as previously published by the World Economic 
Forum. Some of these features include transformationally impact 
(i.e., ability to completely alter or disrupt current approaches), 
adoption potential (i.e., the effect of population size toward the 
approach), and systems impact (i.e., ability to shift the dial across 
human systems). Moreover, other features of game changers in-
clude the centrality of AI to the solution and finally a realizable 
enabling environment (i.e., whereby enabling environment can be 
identified and supported). An example of such a game changer in-
cludes the Natural Capital Project and InVEST (a computer software 
program helping decision-makers) to plan cities for more natural en-
vironments and help with carbon sequestration. This program fo-
cuses on understanding human dependence and impacts on nature 
and the deep societal transformations needed to secure people 
and nature.99 The work spans fundamental research and policy-
oriented initiatives to open inclusive and green development path-
ways. InVEST identify the locations where conservation should be a 
top priority because of ecological services provide a high economic 
value. These calculations about how preserving land and the envi-
ronment provide financial benefits have played a monumental role 

in benefitting both the people and the habitat of regions around the 
world. The InVEST AI program co-develops pragmatic approaches, 
engaging with governments, multilateral development banks, inves-
tors, businesses, farmers and ranchers, communities, and nongov-
ernmental organizations (NGOs).

9  |  LIMITATIONS AND BARRIERS OF 
APPLIC ATION IN ALLERGY A STHMA 
RESE ARCH AND MANAGEMENT

AI/ML has the potential to revolutionize the field of allergy diagnosis 
and treatment, but there are also limitations to these technologies. 
One limitation is the lack of data diversity, as most current models 
are trained on data from a limited demographic, resulting in poten-
tial biases and inaccuracies when applied to diverse populations. 
Another limitation is the need for large amounts of labeled data for 
training AI/ML models, which can be difficult to obtain in the case 
of rare allergies. Additionally, there is a lack of understanding of the 
underlying mechanisms of many allergies, making it difficult to de-
velop accurate models. Finally, there is a potential for overdiagnosis 
and overtreatment if AI and ML are not properly validated and inte-
grated into clinical practice. AI and ML models may not be able to 
account for individual differences in patients, such as genetic varia-
tions, which can lead to inaccurate diagnosis and treatment. AI and 
ML models are only as good as the data they are trained on, so if the 
data are biased or not representative of the population, the models 
will also be biased and not generalizable.

10  |  WHAT THE FUTURE HOLDS?

The application of AI to the domain of exposomics has the potential 
to unlock a whole range of impactful insights from the large amount 
of complex data. The power of ML to investigate the impact of ex-
posome will continue to expand as the power of hardware used to 
train and run ML models and the sophistication of the modeling ap-
proaches to solve problems improves exponentially.

There are some challenges for AI. AI is still a fairly nascent field 
and there is a degree of trust and acceptance that still needs to be 
achieved, especially in high-stake domains like health and biomedical 
research.96 This will likely come in time as the field matures and fur-
ther awareness of and research goes into the principles of AI safety.

The understanding and assessing the outcomes of AI research 
applied to exposomic data requires a degree of understanding of AI 
methodology which is not universally present in the healthcare com-
munity yet. We hope that articles like this one which introduce and 
explain the underlying concepts can make the field more accessible 
to a wider audience.

Another issue to consider is that the size and complexity of 
both the data and the models being used to carry out the anal-
ysis will become more difficult in practice.100 Moving toward a 
research culture in which open access to both the code and data 
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will likely help to make this more achievable. It may even be possi-
ble for research groups to publish the trained models themselves 
to demonstrate the behavior they claim. However, all this will be 
done in a way that assures the privacy of any sensitive data in-
volved – a complication likely to pose its own challenges down 
the road.

Finally, the power of AI and ML to investigate the exposome is 
directly related to the quality of analyzed data. It is key to drive for-
ward scalable ways to collect large, high-quality data sets to support 
this type of research.101 Centralised models of data collection like 
those ones demonstrated by the UK Biobank4 and the “All of Us” 
research program5 are good examples. More such programs will be 
vital to provide opportunities to unlock the power of data hungry AI 
in the future.
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