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Université Paris-Saclay, CNRS, Inria

91400 Orsay France

Editor:
Abstract

In this article, we study Euler characteristic techniques in topological data analysis. Point-
wise computing the Euler characteristic of a family of simplicial complexes built from data
gives rise to the so-called Euler characteristic profile. We show that this simple descriptor
achieve state-of-the-art performance in supervised tasks at a very low computational cost.
Inspired by signal analysis, we compute hybrid transforms of Euler characteristic profiles.
These integral transforms mix Euler characteristic techniques with Lebesgue integration to
provide highly efficient compressors of topological signals. As a consequence, they show
remarkable performances in unsupervised settings. On the qualitative side, we provide nu-
merous heuristics on the topological and geometric information captured by Euler profiles
and their hybrid transforms. Finally, we prove stability results for these descriptors as well
as asymptotic guarantees in random settings.

Keywords: Topological Data Analysis, Machine Learning, Multiparameter Persistence,
Euler characteristic profiles, Hybrid transforms

1. Introduction

Extracting topological information from data of various natures follows a machinery that
finds its origins in the works of Edelsbrunner et al. (2000). The main idea consists of building
a one-parameter family of topological spaces on top of data and tracking the evolution of its
topology, typically via homological computations. This multi-scale topological information
is recorded in the form of what is called a persistence diagram; see Edelsbrunner et al. (2000);
Edelsbrunner and Harer (2022). The space of persistence diagrams is a metric space for
the so-called bottleneck distance, (Cohen-Steiner et al., 2007), but it cannot be isometrically
embedded into a Hilbert space (Carrière and Bauer, 2018; Bubenik and Wagner, 2020).
At the cost of losing some information, these diagrams are still often turned into vectors
to perform various learning tasks such as classification, clustering, or regression. Most
commonly used techniques include persistence images (Adams et al., 2017), landscapes
(Bubenik et al., 2015), and more recently measure-oriented vectorizations in Royer et al.
(2021) and neural network methods from Carrière et al. (2020); Reinauer et al. (2021). An
overview of topological methods in machine learning has been presented in the survey of
Hensel et al. (2021). These methods have demonstrated their efficiency in a wide variety of
applications and types of data, such as health applications (Rieck et al., 2020; Fernández
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and Mateos, 2022; Aukerman et al., 2021), biology (Ichinomiya et al., 2020; Rabadán and
Blumberg, 2019) or material sciences (Lee et al., 2017; Hiraoka et al., 2016).

In many practical scenarios, it is natural to look at data with more than one parame-
ter, i.e., to consider multi-parameter families of topological spaces instead of one-parameter
ones. It allows one to cope with outliers by filtering the space with respect to an esti-
mated local density, or to deal with intrinsically multi-parameter data, such as blood cells
with several biomarkers. However, there does not exist a complete combinatorial descriptor
similar to the persistence diagram that could make them usable in practice (Carlsson and
Zomorodian, 2009). One of the main objectives of this field is to build informative descrip-
tors of such families. Although not intrinsically multi-parameter, persistence landscapes
have successfully been generalized to the multi-parameter setting in Vipond (2020) and
persistence images to the two-parameter setting in Carrière and Blumberg (2020). Besides
their high level of sophistication, the main limitation of these tools is their computational
cost; see Carrière and Blumberg (2020, Table 2) and Section 4.5.

In contrast, some topological methods do not compute homological information—thus
bypassing the computation of persistence diagrams—but rather compute the Euler charac-
teristic of the topological spaces at hand. The Euler characteristic of a simplicial complex
is a celebrated topological invariant that is simply the alternated sum of the number of sim-
plices of each dimension. Considering the pointwise Euler characteristic of a one-parameter
family of simplicial complexes gives rise to a functional multi-scale descriptor called the
Euler characteristic curve.

Though Euler characteristic-based descriptors may appear coarse, we highlight four
main reasons to use them. First, they have demonstrated a good predictive power in
various settings (Worsley et al., 1992; Richardson and Werman, 2014; Smith and Zavala,
2021; Jiang et al., 2020; Amézquita et al., 2022). Second, the simplicity of these descriptors
translates into a reduced computational cost. They can be computed in linear time in
the number of simplices in a simplicial filtration instead of typically matrix multiplication
time for persistence diagrams (Milosavljević et al., 2011). Moreover, the locality of the
Euler characteristic can be exploited to design highly efficient algorithms computing Euler
curves, as in Heiss and Wagner (2017). Third, there are several known theoretical results on
the Euler characteristic of a random complex. Mean formulae for the Euler characteristic
of superlevel sets of random fields are proven in Adler and Taylor (2009), and asymptotic
results of the Euler characteristic of a complex built on a Poisson process are established in
Corollary 4.2 of Bobrowski and Adler (2014) and Corollary 6.2 of Bobrowski and Weinberger
(2017). Furthermore, Euler curves associated with random point clouds are proven to be
asymptotically normal for a well-chosen sampling regime in Krebs et al. (2021), where the
authors also apply this construction to bootstrap. Fourth, they naturally generalise to the
multi-parameter setting, becoming so-called Euler characteristic surfaces (Beltramo et al.,
2022) and profiles (D lotko and Gurnari, 2022).

We demonstrate that these tools reach state-of-the-art performance at a minimal compu-
tational cost when coupled with a powerful classifier such as a gradient boosting or a random
forest. However, due to their simplicity, these descriptors do not manage to linearly separate
the different classes or be competitive on unsupervised tasks. Inspired by signal analysis, we
cope with these limitations by studying integral transforms of Euler characteristic curves
and profiles. More precisely, we consider a general notion of integral transforms mixing
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Lebesgue integration and Euler characteristic techniques recently introduced in Lebovici
(2022) under the name of hybrid transforms. In the one-parameter case, hybrid transforms
are classical integral transforms of Euler curves. Similarly, hybrid transforms depend on a
choice of kernel which offers a wide variety of possible signal decompositions. Yet, hybrid
transforms differ from classical integral transforms in general. In so doing, they enjoy many
specific appealing properties, such as compatibility with topological operations from Euler
calculus (Lebovici, 2022, Section 5). Most importantly, in the context of multi-parameter
sublevel-sets persistence, hybrid transforms can be expressed as one-parameter hybrid trans-
forms of Euler curves associated with a linear combination of the filtration functions. As a
consequence, mean formulae for hybrid transforms associated with Gaussian random fields
are derived in (Lebovici, 2022, Section 8), and we prove here a law of large numbers in
a multi-filtration set-up. Studying the asymptotic behaviour of topological descriptors of
random complexes is a deeply-studied question in the one-parameter setting; see Bobrowski
and Kahle (2018) for a survey. Together with the works of Botnan and Hirsch (2022), our
results form the first occurrence of limiting theorems in a multi-persistence framework in
the literature.

Contributions and outline. In this article, we show that Euler characteristic profiles
and their hybrid transforms are informative and highly efficient topological descriptors.
Throughout the paper, we use classical methods based on persistence diagrams as a base-
line for our descriptors. After introducing the necessary notions in Section 2, we provide
heuristics on how to choose the kernel of hybrid transforms and give many examples of the
type of topological and geometric behaviour Euler curves and their integral transforms can
capture from data in Section 3. Most importantly, our main contributions are the following:

• We demonstrate that Euler profiles achieve state-of-the-art accuracy in supervised
classification and regression tasks when coupled with a random forest or a gradient
boosting (Sections 4.1, 4.2 and 4.4) at a very low computational cost (Section 4.5).
Note that the multi-parameter nature of our tools and their computational simplicity
allows us to use up to 5-parameter filtrations to classify graph data. They typically
outperform persistence diagrams-based vectorizations, both in terms of accuracy and
computational time.

• We demonstrate that hybrid transforms act as highly efficient information compres-
sors and typically require a much smaller resolution than Euler profiles to reach a
similar performance. They can also outperform Euler profiles in unsupervised classi-
fication tasks and in supervised tasks when plugging a linear classifier (Figure 7 and
Sections 4.1 to 4.3). In Section 4.3, we illustrate their ability to capture fine-grained
information on a real-world data set.

• We provide several theoretical guarantees for these descriptors. First, we prove sta-
bility properties that clarify the robustness of our tools with respect to perturbations
(Section 5). Expressed in terms of L1 norms, these are also hints of the sensitivity
of our tools to the underlying geometry of the data at hand. Similarly to persistence
diagrams, we can establish the pointwise convergence of hybrid transforms associated
with random samples and their asymptotic normality for a specific filtration function.
We also establish a law of large numbers in a multi-filtration set-up (Section 6).

Finally, Section 7 is devoted to the proofs of the results stated in Sections 5 and 6.
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2. Topological descriptors

This section presents all the necessary notions from simplicial geometry and the construction
of the topological descriptors used throughout the article. Let us first introduce some
conventions.

(i) The dual of a vector space V is denoted by V∗, and Rm will always be identified with
its dual under the canonical isomorphism. For ξ ∈ Rm∗ and t ∈ Rm, we often denote
ξ · t = ξ(t).

(ii) We denote by Rm
+

∗ the cone of linear forms on Rm that are non-decreasing with respect
to the coordinatewise order on Rm, or equivalently that have non-negative canonical
coordinates.

(iii) Let I be an interval of R and denote by L1(I) the space of absolutely integrable
complex-valued functions on I.

(iv) Let p ∈ [1,∞] and let f : Rm → C be locally p-integrable. We denote by ∥f∥p,M the
p-norm of f · 1[−M,M ]m . If f is p-integrable, we denote its p-norm by ∥f∥p.

(v) We always consider the coordinatewise order on Rm.

2.1 Simplicial complexes, filtrations

A (finite) abstract simplicial complex K, or simply simplicial complex, is a finite collection
of finite sets that is closed under taking subsets. An element σ ∈ K is called a simplex, and
subsets of σ are called faces of σ. The inclusion between simplices induces a partial order
on K that we denote simply by ≤. The dimension of a simplex with k elements is equal to
k − 1. The Euler characteristic of a simplicial complex K is the integer:

χ(K) =
∑
σ∈K

(−1)dimσ.

Until the end of this section, we let K be a finite simplicial complex. An m-parameter
filtration of K is a family F = (Ft)t∈Rm of subcomplexes Ft ⊆ K that is increasing with
respect to inclusions, i.e., such that Ft ⊆ Ft′ for any t, t′ ∈ Rm with t ≤ t′. From now on,
we do not refer explicitly to K when it is clear from the context. Many filtrations can be
introduced by considering sublevel sets of functions:

Example 1 Let f : K → Rm be a non-decreasing map for the inclusion of simplices,
i.e., such that f(σ) ≤ f(τ) for any σ ≤ τ ∈ K. The map f induces an m-parameter
filtration of K called sublevel-sets filtration, denoted by Ff , and formed by the subcomplexes
(Ff )t = {f ≤ t} := {σ ∈ K : f(σ) ≤ t} for any t ∈ Rm. We sometimes refer to the function
f as the filter of Ff .

A popular example of simplicial complex is the Čech complex of a point cloud, that is,
a finite subset of Rd. This complex captures a lot of information on the geometry of the
point cloud.

Example 2 Let X ⊆ Rd be finite. The Čech complex at scale t ≥ 0 is the simplicial
complex Č(X, t) defined such that for (x0, . . . , xk) ∈ Xk+1, the simplex {x0, . . . , xk} is in
Č(X, t) if the intersection of closed balls ∩k

l=0B(xl, t) is non-empty. The Čech filtration,
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is defined at each t ∈ R as the Čech complex at scale t for t ≥ 0, and as the empty set
for t < 0. For computational reasons, we rather use a homotopy equivalent complex in
numerical experiments, called the alpha filtration, which is a subcomplex of the Delaunay
triangulation; see Bauer and Edelsbrunner (2017). See Figure 1 for an illustration.

The properties of the Čech complex of a random point cloud have been deeply studied
theoretically. We refer to Bobrowski and Kahle (2018) and Owada (2022) for the most
recent results. When doing multi-parameter persistence, a common technique is to couple
the Čech complex with some function on the data. Typically, we cope with outliers by
coupling a Čech filtration with a density estimator built from the data at hand. This falls
under the framework of function-Čech filtrations:

Example 3 Let X ⊆ Rd be finite and f = (f1, . . . , fm) : X → Rm be a bounded function.
The function-Čech filtration is the (m + 1)-parameter filtration Č(X, f) of 2X defined for
r ∈ R and t = (t1, . . . , tm) ∈ Rm by:

Č(X, f)(r,t) =
{
σ ∈ Č(X, r) : σ ⊆ f−1

i (−∞, ti], 1 ≤ i ≤ m
}
.

Again, we rather use function-alpha filtration in numerical experiments, which are defined
similarly using alpha complexes.

Let F be an m-parameter filtration and σ ∈ K. The support of σ is the set supp(σ) :=
{t ∈ Rm : σ ∈ Ft}. A filtration is called finitely generated if the support of any simplex
appearing in the filtration is either empty or has a finite number of minimal elements;
see Figure 2a for an illustration. Moreover, if the support of any simplex has at most
one minimal element, then the filtration is called one-critical. In that case, one denotes
by t(σ) the minimal element of supp(σ). For instance, function-Cech and function-alpha
filtrations are one-critical. On the contrary, the degree-Rips bifiltration is not (Lesnick
and Wright, 2016). Note that sublevel-sets filtrations are one-critical. Conversely, any
one-critical filtration is a sublevel set filtration for the function f : σ ∈ K 7→ t(σ).

2.2 Persistence diagrams

Given a filtration of a simplicial complex, we want to extract multi-scale topological infor-
mation from data. This is the objective of persistent homology, which constitutes the main
tool of topological data analysis. It has found many practical applications (Rieck et al.,
2020; Fernández and Mateos, 2022; Aukerman et al., 2021; Ichinomiya et al., 2020; Rabadán
and Blumberg, 2019; Lee et al., 2017; Hiraoka et al., 2016) as well as applications to other
fields of theoretical mathematics, such as symplectic geometry (Polterovich et al., 2020).
This section introduces the basic objects of persistent homology as introduced in classical
textbooks; see Edelsbrunner and Harer (2022); Oudot (2017). We try to keep the notions
as intuitive as possible and do not lay out the technical details of homology theory.

The central tool of persistence theory is homology. Intuitively, given a topological space
X, the k-th homology of X is a vector space whose dimension is equal to the number of inde-
pendent k-dimensional holes of X. By 0-dimensional (resp. 1-dimensional, 2-dimensional)
holes, we mean connected components (resp. cycles, voids). These k-dimensional holes are
often called homological features of X. One can also define the homology of a simplicial
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(a) t = 0.4 (b) t = 1.5 (c) t = 2.1 (d) Persistence diagram

Figure 1: Balls with varying radius t > 0 centered at each point of a finite subset X ⊆ R2.
These balls are used to define the Čech filtration Č(X) and its corresponding persistence
diagrams of dimension 0 (in red) and 1 (in blue).

complex K, denoted by Hk(K) for each integer k ≥ 0, in such a way that they coincide with
the above intuition when looking at the geometric realisation of the simplicial complex K.

Given a one-parameter filtration F of a simplicial complex K, one of the main properties
of homology implies that for any t ≤ t′ in R, the inclusion of complexes Ft ⊆ Ft′ induces
a linear map Hk(Ft) → Hk(Ft′). The idea of persistent homology is to keep track of
homological features appearing in the filtration through these maps. Each generator appears
at some a ∈ R called its birth and disappears at some b > a called its death. The couple
[a, b) is called the bar of the corresponding homological feature. The multiset of bars [a, b)
for each homological feature appearing in the filtration is called the degree k persistence
barcode of F . One can also represent this barcode as a multiset of points (a, b) ∈ R2

called the degree k persistence diagram of F . We give an example of the construction of
the persistence diagram of the Čech filtration in Figure 1d. In this case, the persistence
diagram gives a lot of information on the topology and the geometry of the underlying point
cloud. Here, when the radius of the balls is smaller than the smallest distance between any
two points, we have as many connected components as points. As the radii of the balls
grow, connected components of the union of balls merge (or die) one by one, except for
one that never dies. Therefore, the degree 0 persistence diagram has only points born at
0. As for the degree 1 persistence diagram, a cycle appears when the radius of the balls
is large enough and is filled approximately at the radius of the underlying circle, hence a
single point in the persistence diagram.

2.3 Euler characteristic tools

In this section, we recall the definitions of the descriptors of filtered simplicial complexes
we use to perform topological data analysis. These invariants are defined using Euler
characteristic profiles (Beltramo et al., 2022; D lotko and Gurnari, 2022) and topological
and hybrid transforms of constructible functions (Schapira, 1995; Ghrist and Robinson,
2011; Lebovici, 2022). While these tools can be defined in the more general setting of
o-minimal geometry, we focus on filtered simplicial complexes.

Given an m-parameter filtration, computing the Euler characteristic for every value of
the parameter t ∈ Rm gives an integer-valued function on Rm that is a multi-scale descriptor
of the evolution of the filtration with respect to t.
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Definition 1 The Euler characteristic profile of an m-parameter filtration F is the map:

χF : t ∈ Rm 7→ χ(Ft).

The map χF is usually refered to as the Euler characteristic curve (ECC) of F when m = 1
and as the Euler characteristic surface (ECS) of F when m = 2; see Beltramo et al. (2022);
D lotko and Gurnari (2022).

Figure 2 shows an Euler characteristic surface computed on an elementary example.
Widely used in data analysis (Smith and Zavala, 2021; D lotko and Gurnari, 2022; Beltramo
et al., 2022; Jiang et al., 2020), this simple descriptor has proven to be efficient in captur-
ing meaningful information on the data at hand. However, as illustrated in the following
sections, we are interested in more robust descriptors built from integral transformations.

(a) F (b) χF

Figure 2: A finitely generated 2-parameter filtration (a) and its associated Euler character-
istic surface (b). All vertices have one birth time, while all other simplices have two.

Before introducing the other descriptors considered, we define the pushforward operation
from Euler calculus; see Schapira (1988-1989); Viro (1988):

Definition 2 Let F be a one-critical m-parameter filtration and ξ ∈ Rm
+

∗. The pushfor-
ward of F along ξ is the one-parameter family defined for any s ∈ R by:(

ξ∗F
)
s

=
⋃
ξ·t≤s

Ft.

The pushforward of χF along ξ is the Euler characteristic curve of ξ∗F . We denote this
curve by ξ∗χF . In other words, we have ξ∗χF = χξ∗F . Writing the one-critical filtration as
a sublevel-sets filtration, the pushforward operation has a simple expression:

Example 4 Let f : K → Rm be a non-decreasing map and ξ ∈ Rm
+

∗. The Euler charac-
teristic profile of Ff is denoted by χf . It is an easy exercise to check that ξ∗Ff = Fξ◦f
and ξ∗χf = χξ◦f .

Hybrid transforms mixing Euler calculus and classical Lebesgue integration have been
introduced in Lebovici (2022). These transforms are continuous and piecewise smooth
and enjoy several beneficial properties, such as index theoretic formulae in the context of
sublevel-sets persistence; see Propositions 4.1 and 4.2 and Theorem 8.3 in loc. cit.. In the
present context, they can be defined as follows:
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Definition 3 Let F be a one-critical m-parameter filtration and κ ∈ L1(R). The hybrid
transform with kernel κ of χF is the map:

ψκ
F : ξ ∈ Rm

+
∗ 7→

∫
R
κ(s)ξ∗χF (s) ds.

The following lemma is an obvious consequence of Example 4. It states that any m-
parameter hybrid transform restricted to an open half-line can be expressed as a one-
parameter hybrid transform. It will be key to the proof of a law of large numbers for
m-parameter hybrid transforms (Theorem 13).

Lemma 4 Let F be a one-critical m-parameter filtration, let κ ∈ L1(R) and ξ ∈ Rm
+

∗. For
any λ > 0, one has:

ψκ
F (λξ) = ψκ

ξ∗F (λ).

Euler characteristic profiles and hybrid transforms constitute the two data descriptors
we will use to perform topological data analysis. We give explicit expressions of these
descriptors in specific cases below. These formulae will allow us to design algorithms to
compute them in Section 3.1 and to build intuition on the type of behaviour they capture
all along the paper.

One-critical filtrations. Up to reducing K, one can assume that for any σ ∈ K, there is
t ∈ Rm with σ ∈ Ft. Then, one has:

χF =
∑
σ∈K

(−1)dimσ1Qt(σ)
, (2.1)

where Qu := {t ∈ Rm : t ≥ u} for any u ∈ Rm.

Let κ ∈ L1(R). Denote by κ the primitive of κ whose limit at +∞ is 0. The hybrid
transform with kernel κ of χF is:

ψκ
F : ξ ∈ Rm

+
∗ 7−→ −

∑
σ∈K

(−1)dimσκ (ξ · t(σ)) . (2.2)

Remark 5 We often define hybrid transforms by specifying the primitive κ of the kernel κ
whose limit at +∞ is 0. We call κ the primitive kernel of the hybrid transform.

Finally, in the case of a one-parameter filtration, hybrid transforms naturally appear
as classical integral transforms of the Euler curve, making them a natural tool to extract
information from the Euler curve and compress it into a small number of relevant coefficients.

Connection with classical transforms. Let F be a one-critical m-parameter filtration.
First, assume that m = 1. For any ξ ∈ R∗

+ and any s ∈ R, one has (ξ∗F)s = Fs/ξ and
hence ξ∗χF (s) = χF (s/ξ). A change of variables then ensures that the hybrid transform
with kernel κ ∈ L1(R) is equal to the rescaled classical transform:

ψκ
F : ξ ∈ R∗

+ 7→ ξ ·
∫
R
κ(ξ · s)χF (s) ds. (2.3)
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Assume now that m ≥ 2. The hybrid transform with kernel κ differs from the classical
integral transform:

ξ ∈ Rm
+

∗ 7→
∫
Rm

κ(ξ · x)χF (x) dx.

We refer to Lebovici (2022, Example 3.18) for a counter-example. In some special cases,
however, such as when κ(t) = exp(−t), hybrid transforms and classical transforms coincide
up to a rescaling (Lebovici, 2022, Examples 5.12 and 5.17). The interest in hybrid transforms
over classical transforms can be motivated by the following example:

Example 5 The one-parameter hybrid transform with kernel κ(t) = exp(−t) is also known
as the persistent magnitude (Govc and Hepworth, 2021). It is used in O’Malley et al.
(2023) as a new measure for estimating fractal dimensions of finite subsets X ⊆ Rn.

2.4 Comparison of Euler characteristic tools with persistence diagrams

Suppose that F is a one-parameter filtration. In this case, Euler characteristic curves and
hybrid transforms can simply be written as statistics of persistence diagrams. Denote the
degree k persistence diagram of F by Dk = {(ai, bi)}nk

i=1 where −∞ < aki < bki ≤ ∞ and an
integer nk ≥ 0. There exists k0 such that persistence diagrams Dk are empty for all k ≥ k0.
It is then straightforward to check that:

χF =
∑
k≥0

nk∑
i=1

(−1)k1[aki ,bki )
. (2.4)

Let κ ∈ L1(R) and consider a primitive κ of κ. The hybrid transform with kernel κ of χF
therefore writes as:

ψκ
F : ξ ∈ R∗

+ 7→
∑
k≥0

nk∑
i=1

(−1)k
(
κ
(
ξ · bki

)
− κ

(
ξ · aki

))
, (2.5)

with the convention that κ(ξ · bki ) is the limit of κ at +∞ when bki = +∞. This connection
between persistence diagrams and the one-parameter descriptors used in this article will be
used for interpretation and in the asymptotic results of Section 6.

As we can see from (2.4) and (2.5), considering Euler curves and hybrid transforms
instead of persistence diagrams implies a loss of information. More precisely:

• Both Euler characteristic curves and hybrid transforms can be written as an alternated
sum over all homological degrees. As a consequence, the information contained in
persistence diagrams is summed up across all homological degrees and reduced to a
single descriptor.

• Even if only one persistence diagram is non-empty, the birth-death pairing of the
points is lost while computing the Euler characteristic curve or hybrid transforms. In
other words, Euler curves and hybrid transforms only depend on the sets {aik} and
{bik} of all births and deaths respectively.

• Worse still, Euler curves are defined using indicator functions. As a consequence, the
persistence diagrams {(0, 1)} and {(0, 1/2), (1/2, 1)} share the same Euler curve and
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the same hybrid transforms for all kernels. Therefore, the lifetime of a feature b− a,
usually used as an indicator of the significance of the point (a, b) in the diagram is
inaccessible.

The purpose of the following sections is to show that this loss of information does not
result in a loss of accuracy when using Euler curves and hybrid transforms in machine
learning tasks. Moreover, we show that the computation time is greatly reduced. This is
due to the fact that Euler curves and hybrid transforms are computed using (2.1) and (2.2),
bypassing the computation of homology and of persistence diagrams. This theoretical fact
is backed up by experiments in Section 4.5. Finally, we use the fact that Euler curves and
hybrid transforms can naturally be adapted to filtrations with more than one parameter,
while there is no analogues of (2.4) and (2.5) in this case. We believe that these major gains
indicate that such descriptors should be preferred over persistence diagrams when tackling
machine learning problems.

3. Method

In this section, we describe the algorithms used to compute our descriptors and their im-
plementation. We also give some intuition on choosing the kernel of hybrid transforms.
Finally, we give heuristics on the type of information captured by Euler curves and their
transforms on synthetic data sets.

3.1 Algorithm

In every experiment, and hence in our implementation, we restrict ourselves to one-critical
filtrations. In that case, formulae (2.1) and (2.2) can readily be turned into algorithms
computing Euler characteristic profiles and their hybrid transforms. Each algorithm takes
as input a grid of size d1 × . . .× dm on which the Euler characteristic profile or the hybrid
transform is evaluated. The output array of size d1 × . . . × dm is an exact sampling of
the descriptor. Therefore, our topological descriptors vectorize m-parameter filtrations into
d1 × . . .× dm arrays that can be used as input to any classical machine learning algorithm.

Complexity. The algorithm computing Euler characteristic profiles with resolution d1 ×
. . . × dm has time complexity O(|K| + d1 · . . . · dm) in the worst case. The algorithm
computing hybrid transforms with the same resolution has a worst-case time complexity of
O(|K| · d1 · . . . · dm). In comparison, computing a persistence diagram has time complexity
O(|K|ω) in the worst case where 2 ≤ ω < 2.373 is the exponent for matrix multiplication;
see Milosavljević et al. (2011).

Implementation. A Python implementation of our algorithms is freely available online on
our GitHub repository: https://github.com/vadimlebovici/eulearning. In practice,
our implementation allows for two different ways of choosing a sampling grid. The first
method takes as input bounds [(a1, b1), . . . , (am, bm)] and a resolution d1 × . . . × dm. We
then compute a sampling of our descriptors on a uniform discretization of the subset [a1, b1]×
. . .× [am, bm] ⊆ Rm. This method has the disadvantage of requiring prior knowledge about
the data. For Euler characteristic profiles, the second method consists in giving as input a
list [(p1, q1), . . . , (pm, qm)] with real numbers 0 ≤ pi < qi ≤ 1. The algorithm then computes
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(a) κ(s) = exp(−s4) (b) κ(s) = s4 · exp(−s4) (c) κ(s) = s8 · exp(−s8)

Figure 3: Hybrid transforms of χF = 1[a,b) for several choices of kernel κ

the pi-th and the qi-th percentiles of the i-th filtration for each i = 1, . . . ,m. Finally, the
Euler profiles are uniformly sampled on a d1 × . . .× dm grid ranging from the lowest to the
highest percentile on each axis. For the hybrid transforms, we provide a list [p1, . . . , pm] of
real numbers 0 ≤ pi ≤ 1 and a positive real number α. The algorithm then computes the
pi-th percentiles vi of the i-th filtration for each i = 1, . . . ,m. The integral transforms are
uniformly sampled on a d1× . . .×dm grid ranging from 0 to α/vi on each axis. This method
does not require any prior knowledge of the data but depends on a choice of parameters.
More importantly, doing as such is justified for primitive kernels κ : s 7→ exp(−xp) and
κ : s 7→ xp exp(−xp) by the paragraph Kernel choice below.

Kernel choice. To interpret integral transforms of Euler curves, we set m = 1 and com-
pute them on the simple function χF = 1[a,b) with a < b ∈ (0,+∞). Recall that the hybrid
transform has the simple expression (2.5). Figure 3 shows the hybrid transforms for several
kernels. For every p > 0, the hybrid transform with primitive kernel κ : s 7→ − exp(−sp) has

a minimum in p

√
p(log(b)−log(a))

bp−ap , which tends to 1/b as p→ ∞. As a consequence, transforms

of this type yield smoothed versions of the curve t 7→ χF (1/t), that is, of an Euler curve with
inverted scales. Similarly, the hybrid transform with primitive kernel κ : s 7→ −sp exp(−sp)
has a minimum that tends to 1/a and a maximum that tends to 1/b as p → ∞, with a
spikier aspect as p → ∞. Transforms of this type record the variations of the Euler char-
acteristic curve with inverted scales. We refer to the following section for more involved
experiments on synthetic data.

3.2 Heuristics for the Euler curves and their transforms

In this section, we assume that m = 1 and study the Euler characteristic curves associated
with the filtered Čech complex of a point cloud and the hybrid transforms of these curves.
We overview how these descriptors can extract information about the input data’s topology,
geometry, and sampling density. As already mentioned in Example 2, we instead use alpha
filtration in numerical experiments for computational reasons.
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Poisson and Ginibre point processes

While apparently coarse descriptors as opposed to persistence diagrams, Euler characteristic
curves allow us to extract relevant scales at which topological differences between two
different processes are revealed. To illustrate this claim, we try to discriminate between
two types of point processes: a Poisson point process (PPP) and a Ginibre point process
(GPP). This setup has been introduced in Obayashi et al. (2018). Ginibre processes imply
repulsive interactions between points. While a standard PPP could have some very small
and very large cycles, we expect the GPP to have more medium-sized cycles since points
tend to be well dispersed. Ginibre point processes are generated using Decreusefond and
Moroz (2021). We classify this toy data set with a random forest classifier and select the
two scales corresponding to maxima of the feature importance function of the classifier. In
Figure 4, we plot two examples of point clouds together with their alpha complexes at these
scales.

(a) PPP (b) GPP (c) PPP (d) GPP

Figure 4: Examples of alpha complexes on PPP and GPP point clouds at two scales t1
(Figures (a) and (b)) and t2 (Figures (c) and (d)) with t1 < t2.

We plot Euler curves in Figure 5a. The Euler curves suggest that these classes differ at
different scales, as it was visible in Figure 4:

• The Euler curves of the PPP class decrease in a steeper way. Indeed, a GPP has
repulsive interactions between the points. Therefore, the pairwise distance between
points tends to be larger and connected components do not die too early.

• The global minimum for the GPP class is lower.
• Compared to curves of the GPP class, the curves of the PPP class tend to stay negative

for a longer time. Indeed, PPP allows for very large cycles to exist since there will
typically be some large zones without any point, which is proscribed by GPP.

We remark that as opposed to persistence diagrams, our approach uses the birth times of
edges instead of the usual degree 1 homological features. It seems that this information
suffices to discriminate between the two classes.

We plot the transforms of these curves for several kernels in Figures 5b and 5c. Choosing
the primitive kernel κ : s 7→ exp(−s) emphasises the small scales of the Euler curves
in the larger scales of the transform. Such a descriptor separates well the two classes
due to the earlier death of connected components for the PPP class. The primitive kernel
κ : s 7→ exp(−s4) also extracts this information. In addition, it has a higher global maximum
for the GPP class that also enables distinction between the two classes. This maximum is
created by the global minimum of the Euler curves. This experiment is a piece of evidence
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that this kernel carries more information than the exponential kernel and will therefore be
preferred for applications.

(a) ECC (b) HT, κ(s) = exp(−s) (c) HT, κ(s) = exp(−s4)

Figure 5: Euler characteristic curves and their transforms for PPP VS GPP data set

Different samplings on a manifold

We now show an experiment where we can illustrate how our various descriptors can discrim-
inate between samplings and characterize the shape of a manifold, offering a finer analysis
than persistence diagrams where all sampling-effects are represented as a jumbled clump of
points near the diagonal. We consider two set-ups. The first one consists of clouds of 500
points sampled in two different ways on a torus embedded in R3. The first sampling is a
uniform sampling (Diaconis et al., 2013). The second is a non-uniform sampling where we
draw (θ, φ) uniformly in [0, 2π]2 and obtain a point on the torus through the embedding
ΨT2 : (θ, φ) 7→ (x1, x2, x3) where:

x1 = (2 + cos(θ)) cos(φ),
x2 = (2 + cos(θ)) sin(φ),
x3 = sin(θ).

The second set-up consists of clouds of 500 points drawn in two ways on the unit sphere of
R3. The first sampling is uniform. The second sampling is a non-uniform sampling where
we draw θ uniformly on [0, π] and φ according to a normal distribution centred on π. We
obtain a point on the sphere via the classical spherical coordinates parametrization ΨS2 :
(θ, φ) 7→ (x1, x2, x3) where: 

x1 = sin(θ) cos(φ),
x2 = sin(θ) sin(φ),
x3 = cos(θ).

In Figures 6a and 6b, we show the Euler curves and their hybrid transforms with primitive
kernel κ : s 7→ cos(s) for these two classes of samplings on the torus. Up to a rescaling, this
corresponds to a Fourier sine transform. In Figure 6c, we show the hybrid transforms for
the two classes of samplings on the sphere.

In both cases, Euler curves associated with data drawn on the same manifold all have
the same profile, with a minimum value that tends to be lower for the uniform sampling.
Similarly, the oscillations of the transforms are in phase and have the same amplitude.
However, from one manifold to another, the phase and amplitude of the oscillations of
the transforms differ significantly. This suggests that they are related to global quantities
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and are signatures of the support manifold. In contrast, the sampling scheme shows up in
the vertical shifts of the oscillations of the transforms. This interpretation allows us to go
beyond the classical signal/noise dichotomy of persistence diagrams. Although it makes no
doubt that this sampling information can be retrieved from the points close to the diagonal
in the diagram, it is still unclear how to untangle the information on the sampling density
itself and its support. We claim this is another step towards a more thorough analysis of
the geometric quantities involved in the low-persistence features.

(a) ECC, torus data (b) HT, torus data (c) HT, sphere data

Figure 6: ECC and HT, two sampling on the torus and the sphere

Signal in clutter noise

In this final illustrative experiment, we try to distinguish patterns in a heavy clutter noise.
One class has one line hidden in the noise, while the other has two. Each line will induce
a very dense zone creating early dying connected components. In Figure 7, we plot two
examples of point clouds, the Euler curves of each class, and their hybrid transform with
primitive kernel κ : s 7→ exp(−s4). We also provide PCA plots of these two descriptors.
The difference between the two classes is visible at the beginning of the Euler characteristic
curves. However, looking at the full curve does not allow us to correctly see this difference,
as shown by the PCA plot. On the contrary, the transform puts a strong emphasis on the
beginning of the Euler curves, leading to a direct linear separation of the two classes. As
a final sanity check, we ran a k-means algorithm to cluster between the two classes and
reached an accuracy of 99% for the hybrid transforms and only 52.5% for the Euler curves.

4. Experiments

In this section, we present all quantitative experiments conducted on synthetic and real-
world point cloud data and on real graph data sets. Material to reproduce our experi-
ments is available online on our GitHub repository: https://github.com/vadimlebovici/
eulearning. Our timing experiments have been run on a workstation with an Intel(R)
Core(TM) i7-4770 CPU (8 cores, 3.4GHz) and 8 GB RAM, running GNU/Linux (Ubuntu
20.04.1).

4.1 Curvature regression

We consider a set-up from Bubenik et al. (2020) where we draw 1000 points uniformly at
random on the unit disk of a surface of constant curvature K and try to predict K in a
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(a) raw data, one hidden line (b) ECC (c) PCA on ECC

(d) raw data, two hidden lines (e) HT, κ(s) = exp(−s4) (f) PCA on HT

Figure 7: Pattern hidden in clutter noise

supervised fashion. Recall that if K > 0 (resp. K = 0, K > 0), the corresponding surface
is a sphere (resp. the Euclidean plane, the hyperbolic plane). We observe 101 samples from
the unit disk of the space with curvature [−2,−1.96, . . . , 1.96, 2] and validate our model on
a testing set of 100 point clouds sampled from the disk of the space with random curvature
drawn uniformly in [−2, 2]. We compare the R2 scores in Table 1 with that of the original
paper, which uses persistent landscapes (PL) along with a support vector regressor (SVR)
and with Persformer (Reinauer et al., 2021). Note that since we are trying to tackle a
regression problem, we use an SVR or a random forest regressor to predict the curvature
from our vectorization.

Method PL+SVR Persformer ECC+SVR ECC+RF HT+SVR HT+RF

R2 score 0.78 0.94 0.70 0.93 0.79 0.89

Table 1: R2 score for curvature regression data

First, we remark that the ECC descriptor combined with a random forest has an accu-
racy comparable to state-of-the-art methods using persistence diagrams. We also remark
that taking a transform does not improve the regression accuracy when considering a robust
classifier such as RF but does improve the accuracy when using a linear regressor (SVR).
Note that hybrid transforms combined with a linear regressor have an accuracy similar to
that of persistent landscapes. However, persistent landscapes require the computation of
the entire persistence diagrams, while hybrid transforms bypass this costly operation.

15



4.2 ORBIT5K data set

Supervised classification. The ORBIT5K data set is often used as a standard benchmark
for classification methods in topological data analysis (Adams et al., 2017; Carrière et al.,
2020; Reinauer et al., 2021). This data set consists of subsets of a thousand points in the
unit cube [0, 1]2 generated by a dynamical system that depends on a parameter ρ > 0.
To generate a point cloud, an initial point (x0, y0) is drawn uniformly at random in [0, 1]2

and then the sequence of points (xn, yn) for n = 0, . . . , 999 is generated recursively via the
dynamic:

xn+1 = xn + ρyn (1 − yn) mod 1,

yn+1 = yn + ρxn+1 (1 − xn+1) mod 1.

In Figure 8, we illustrate typical orbits for ρ ∈ {2.5, 3.5, 4.0, 4.1, 4.3}.

(a) ρ = 2.5 (b) ρ = 3.5 (c) ρ = 4.0 (d) ρ = 4.1 (e) ρ = 4.3

Figure 8: Examples of point clouds from the ORBIT5K data set.

Given an orbit of 1000 points, we try to predict the value of the parameter ρ, which takes
value in {2.5, 3.5, 4.0, 4.1, 4.3}. We generate 700 training and 300 testing orbits for each class.
We compare our accuracy scores with standard classification methods using persistence
diagrams in Table 2. The results are averaged over ten runs. Sliced Wasserstein kernels
(SW-K) and Persistence Fisher kernels (PF-K) are the two state-of-the-art kernel methods
on persistence diagrams taken respectively from Carriere et al. (2017) and Le and Yamada
(2018). Perslay and Persformer are two methods that use a neural network architecture
to vectorize persistence diagrams (Carrière et al., 2020; Reinauer et al., 2021). The Euler
characteristic curves and one-parameter hybrid transforms (HT1) are computed on the
alpha filtration of the point cloud. The Euler characteristic surfaces and two-dimensional
hybrid transforms (HT2) are computed using a function-alpha filtration associated with a
kernel density estimator post-composed with a decreasing function. The decreasing function
is x 7→ −x for the ECSs and x 7→ exp(−x2) for the HTs. All descriptors have a resolution
of 900 (hence of 30 × 30 for two-parameter ones) and were classified using the XGBoost
classifier (Chen and Guestrin, 2016). We select the hyperparameters of our descriptors by
cross-validation:

• For the ECC, the quantiles (see Implementation in Section 3.1) are selected in {(0.1, 0.9),
(0.2, 0.8), (0.3, 0.7)}.

• For the ECS, the quantiles are selected in the same set as for the ECC for both
parameters.

• For the HT1, the range is selected in {[0, 50], [0, 100], [0, 500], [0, 1000]} and the prim-
itive kernel κ in {s 7→ exp(−s4), s 7→ s4 exp(−s4), s 7→ s8 exp(−s8)}.
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• For the HT2, the primitive kernel and the range for the first parameter are the same
as for the HT1, and the range for the second parameter is selected in {[0, 50], [0, 80],
[0, 100], [0, 500]}.

We show in Figure 9 some examples of each descriptor renormalized by the number
of points for the classes ρ = 2.5 and ρ = 4.3, where the HT2 is computed with κ : s 7→
s4 exp(−s4).

(a) ECS

(b) HT2

Figure 9: Examples of 2D descriptors

Method SW-K PF-K Perslay Persformer

Accuracy 83.6 ± 0.9 85.9 ± 0.8 87.7 ± 1.0 91.2 ± 0.8

Method ECC + XGB HT1 + XGB ECS + XGB HT2 + XGB

Accuracy 83.8 ± 0.5 82.8 ± 1.4 91.8 ± 0.4 89.9 ± 0.5

Table 2: Classification scores for the ORBIT5K data set

One-parameter descriptors have accuracy similar to kernel methods on persistence di-
agrams at a reduced computational cost, while two-parameter descriptors compete with
neural network-based vectorization methods. We make our claims on computational times
more precise in Section 4.5.
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Ablation study. We also study the role of the dimension of the feature vector in the
supervised classification task. The results are shown in Figure 10. When plugging a ran-
dom forest classifier, all descriptors are robust to a decrease in the size of the feature
vector. However, hybrid transforms seem to maintain a competitive accuracy for low-
dimensional features, especially the two-parameter ones. When using an SVM classifier for
the one-parameter descriptors, the gain from considering a hybrid transform is clear, and
the accuracy of the SVM benefits from this strong dimension reduction. Evaluating hybrid
transforms at only three values of ξ ∈ R∗

+ yields feature vectors achieving approximately
80% accuracy, demonstrating the compression properties of this tool.

(a) one-parameter, RF classi-
fier

(b) two-parameter, RF classi-
fier

(c) one-parameter, SVM clas-
sifier

Figure 10: Accuracy with respect to feature dimension.

4.3 Sidney object recognition data set

The Sidney urban objects recognition data set consists of 3D point clouds of everyday
urban road objects scanned with a LIDAR (De Deuge et al., 2013) traditionally used for
multi-class classification. Likewise to Section 4.2, all descriptors are computed using a
function-alpha filtration associated with a kernel density estimator post-composed with a
decreasing function.

Unsupervised setting. In Figure 11, we show a PCA of the ECSs and HTs on the classes
4-wheeler vehicles (labelled 0), buses (2), cars (3), and pedestrians (4). In this case, the
ECSs separate the class of pedestrians from all the vehicle classes. The same separation
is achieved by the HTs with primitive kernel κ : s 7→ s4 exp(−s4). In contrast, HTs with
primitive kernel κ : s 7→ exp(−s4) separate buses from other classes. These experiments
illustrate the flexibility provided by a broad choice of kernels for the hybrid transforms.

Supervised setting. Even more striking are the experiments from Figure 12. We perform
a Linear Discriminant Analysis for classes cars (3), pedestrians (4), and vans (13) to embed
the HTs and ECSs in R2. All the classes are separated by the HTs with primitive kernel
κ : s 7→ s4 exp(−s4). In comparison, the ECSs only manage to separate the pedestrian class
from the two motor-vehicle classes.
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(a) ECS (b) HTs, κ(s) = exp(−s4) (c) HTs, κ(s) = s4 exp(−s4)

Figure 11: PCA plots of ECSs and HTs for the Sidney object recognition data set.

(a) ECS (b) HTs, κ(s) = s4 exp(−s4)

Figure 12: LDA plots of ECSs and HTs for the Sidney object recognition data set.

4.4 Graph data

We have applied our method to the supervised classification of graph data. To build
sublevel-sets filtrations of graphs, we consider the heat-kernel signature introduced in Sun
et al. (2009) and defined as follows. For a graph G = (V,E), the HKS function with diffusion
parameter t is defined for each v ∈ V by:

hkst(v) =

|V |∑
k=1

exp(−tλk)ψk(v)2,

where λk is the k-th eigenvalue of the normalized graph Laplacian and ψk the corresponding
eigenfunction. We consider the HKS with parameters t = 1 and t = 10 as filtrations. We
also consider the 1/2−Ricci and Forman curvatures (Samal et al., 2018), centrality, and
edge betweenness on connected graphs. In addition, some data sets (proteins, cox2,
dhfr) come with functions defined on the graph nodes. We can use several combinations of
these functions to define sublevel-sets filtrations of graphs and compute Euler characteristic
profiles (ECP) and hybrid transforms (HTn).

For this set of experiments, we cross-validate over several combinations of the filtration
functions proposed above, several truncations of the vectorization (which had little impact in
practice), and a primitive kernel chosen among {s 7→ cos(s), s 7→ cos(s2), s 7→ exp(−s4), s 7→
s4 exp(−s4)} for HTn. We report our scores in Table 3. The first four methods are state-
of-the-art classification methods on graphs that use kernels or neural networks. We report
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Method mutag cox2 dhfr proteins collab imdb-b imdb-m nci1

SV 88.2(0.1) 78.4(0.4) 78.8(0.7) 72.6(0.4) 79.6(0.3) 74.2(0.9) 49.9(0.3) 71.3(0.4)

RetGK 90.3(1.1) 81.4(0.6) 81.5(0.9) 78.0(0.3) 81.0(0.3) 71.9(1.0) 47.7(0.3) 84.5(0.2)

FGSD 92.1 - - 73.4 80.0 73.6 52.4 79.8

GIN 90(8.8) - - 76.2(2.6) 80.6(1.9) 75.1(5.1) 52.3(2.8) 82.7(1.6)

Perslay 89.8(0.9) 80.9(1.0) 80.3(0.8) 74.8(0.3) 76.4(0.4) 71.2(0.7) 48.8(0.6) 73.5(0.3)

Atol 88.3(0.8) 79.4(0.7) 82.7(0.7) 71.4(0.6) 88.3(0.2) 74.8(0.3) 47.8(0.7) 78.5(0.3)

ECC 1D 87.2(0.7) 78.1(0.2) 79.4(0.5) 74.7(0.4) 77.3(0.2) 72.4(0.4) 48.5(0.3) 74.4(0.2)

HT 1D 87.4(0.8) 78.1(0.2) 77.9(0.4) 73.3(0.4) 78.2(0.2) 73.9(0.4) 49.7(0.4) 73.9(0.2)

ECV 90.0(0.8) 80.3(0.4) 82.0(0.4) 75.0(0.3) 78.3(0.1) 73.3(0.4) 48.7(0.4) 76.3(0.1)

HT nD 89.4(0.7) 80.6(0.4) 83.1(0.5) 75.4(0.4) 77.6(0.2) 74.7(0.5) 49.9(0.4) 76.4 (0.2)

Table 3: Mean accuracy and standard deviation for graph data.

the scores from the original papers, Tran et al. (2019); Zhang et al. (2018); Verma and
Zhang (2017); Xu et al. (2019). Perslay (Carrière et al., 2020), and Atol (Royer et al., 2021)
are topological methods that transform the graphs into persistence diagrams using HKS
functions. It is known that Atol performs especially well on large data sets (both in terms
of number of data and graphs size), i.e., collab and NCI1. Still, we reach a similar to
better accuracy for all the other data sets.

Besides highly competitive classification scores, our method has two advantages over the
other topological methods. First, we bypass the computation of persistence diagrams and
thus classify with lower computational cost; see Sections 3.1 and 4.5. Second, as opposed to
other invariants such as multi-parameter persistent images (Carrière and Blumberg, 2020),
our method naturally generalizes to m-parameter persistence with m ≥ 3 at a very low
computational cost. To our knowledge, this is the first time a topology-based method
uses more than 3 filtration parameters. This results in an increase in accuracy since each
filtration function leverages information on the graph-data structures.

Note that the methods SV, FGSD, and GIN do not average ten times and rather consider
a single 10-fold sample which can slightly boost their accuracies.

4.5 Timing

In this section, we compare the computational cost of our different methods to that of
persistence images, a well-known vectorization of persistence diagrams introduced in Adams
et al. (2017) and generalized to the multi-parameter setting in Carrière and Blumberg
(2020). We choose to compare the computational cost of our methods to that of persistence
images as they appear to be a faster vectorization method than persistence kernels and
persistence landscapes; see (Carrière and Blumberg, 2020, Table 2).

Constant resolution. We report in Table 4 the time to compute our descriptors and
persistent images on the full ORBIT5K data set with a fixed resolution of 900. We assume that
simplex trees are precomputed1 using the Gudhi library (Rouvreau, 2015). Our descriptors
are computed using the parameters achieving the highest accuracy for the classification

1. Note that computing simplex trees takes around 66s in the one-parameter setting and around 420s in
the two-parameter setting; the difference lies in the cost of computing codensity on point clouds.
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task; see Section 4.2. Persistence images are computed with the Gudhi library for one-
parameter filtrations and with the MMA package for two-parameter filtrations (Loiseaux et al.,
2022b) with default parameters and the same resolution as our two-parameter descriptors,
i.e., 30 × 30. To compute persistence images, one first needs to compute the persistence
diagrams of simplex trees in the one-parameter case or persistence approximations in the
two-parameter case (Loiseaux et al., 2022a, Section 3). We include these additional costs
in the computational times of persistent images. However, the time to compute the PI1
descriptor on the full ORBIT5K data set breaks down to 5 seconds to compute the persistence
diagrams and 134 seconds for the persistence images themselves.

ECC HT1 PI1 ECS HT2 PI2

16 719 139 144 805 2034

Table 4: Computation times (s) for ORBIT5K with constant resolution.

As expected from the time complexities of the algorithms (Section 3.1), Euler charac-
teristic profiles are at least ten times faster than persistence images to compute, and hybrid
transforms are four times faster in the two-parameter case. One-parameter hybrid trans-
forms may appear costly to compute, but this point will be mitigated in the next paragraph.
Finally, we point out that we implemented our tools in Python and not in C++, which is
very likely to result in longer computation times. On the contrary, persistence images in
one and two parameters both benefit from a C++ implementation.

Constant accuracy. We report in Table 5 the time to compute our descriptors on the
full ORBIT5K data set with the lowest resolution before accuracy drop-out as reported in
Figure 10. More precisely, we chose the lowest possible resolutions to ensure a classification
accuracy of 82% for one-parameter descriptors and of 89% for two-parameter descriptors,
that is, a resolution of 30 for ECC, of 9 for HT1, of 20 × 20 for ECS and of 6 × 6 for
HT2. Other parameters remain unchanged. The interest in using hybrid transforms over
Euler characteristic profiles is now clear: the concentration of information provided by
hybrid transforms makes it possible to classify the data set with feature vectors of reduced
dimension, which considerably speeds up the computations.

ECC HT1 ECS HT2

16 5 135 69

Table 5: Computation times (s) for ORBIT5K with smallest resolution before accuracy drop-
out.

4.6 Take-home message

The experiments from this section suggest that Euler characteristic profiles are very pow-
erful descriptors since they allow for state-of-the-art accuracy when coupled with a robust
classifier (XGB or RF) at a very competitive computational cost. Hybrid transforms have
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similar accuracy but are more costly to compute, especially in the one-parameter setting;
see Table 4. The motivation to use hybrid transforms is two-fold:

• In an unsupervised setting or when plugging a linear classifier, the lack of diversity
in Euler characteristic profiles can be detrimental to the separation of classes. In
contrast, hybrid transforms are competitive descriptors in such tasks due to the wide
diversity in the choice of kernels and their sensitivity to slight variations in Euler
characteristic profiles.

• Hybrid transforms provide a very powerful compression of the signal from the Euler
profiles (Figure 10) at a meagre computational cost (Table 5). This makes hybrid
transforms robust descriptors combining dimension reduction and feature extraction.

Theoretically, multi-parameter hybrid transforms benefit from their expression as one-
parameter ones (Lemma 4). This allows us to prove almost sure convergence results under
some mild assumptions in Section 6.

4.7 Extensions

We have validated our method on simplicial complexes built on point clouds and graph data.
Nonetheless, the methodology described in this paper can be extended into two directions.

First, when dealing with images or 3D volumes, it is common to build cubical complexes
from data. In this context, Euler characteristic curves have been used as a vectorization
of the data in Smith and Zavala (2021); Jiang et al. (2020). As there are a vast number
of filtration functions one can consider on images, it is worth investigating the predictive
power of the Euler characteristic profiles in this setting. While several applications are
considered in Richardson and Werman (2014); Beltramo et al. (2022); D lotko and Gurnari
(2022), a thorough benchmark against other persistence methods and state-of-the-art image
processing methods is still missing. Moreover, hybrid transforms have still not been studied
in this context.

Second, the methodology developed here applies to filtrations F = (Ft)t∈Rm that are
not necessarily non-decreasing with respect to inclusions. This extends the potential range
of applications of our tools, notably to the study of time-varying simplicial complexes, as
done in Xian et al. (2022).

5. Stability properties

The success of topological data analysis inherits from the stability theorem for persistence
diagrams from Cohen-Steiner et al. (2007). Loosely speaking, it means that under mild
assumptions, small changes in the filtration function imply small changes in the diagram.
Such results are crucial to designing consistent estimators; see, for instance, Bobrowski
et al. (2017). Over the past decade, more distances on persistence diagrams have been
introduced. Inspired by optimal transport theory, the notion of p-Wasserstein distance is
introduced by Cohen-Steiner et al. (2010) where a stability result is also proven. A finer
stability result for the p-Wasserstein distance can be found in Skraba and Turner (2020). In
addition, several stability results for Euler characteristic tools have been derived in Curry
et al. (2022); D lotko and Gurnari (2022); Perez (2022).
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In this section, we state stability results for our topological descriptors. Our results
compare the L1 norm between Euler characteristic profiles to the signed 1-Wasserstein dis-
tance between their so-called signed barcodes. As a corollary, we bound the Lq norms of
hybrid transforms by the same quantity. To continue our comparison with persistence dia-
grams, we prove that in the one-parameter case, the signed 1-Wasserstein distance between
signed barcodes is bounded from above by the well-known 1-Wasserstein distance between
persistence diagrams.

The notions of signed barcodes and of signed 1-Wasserstein distance have been intro-
duced in Oudot and Scoccola (2021) and are recalled below. We follow the same conventions
as in Oudot and Scoccola (2021, Section 2) for the definitions of multisets and bijections
between them. The rest of the section is devoted to the statement of our stability results.
All proofs are written in Section 7.1.

Signed 1-Wasserstein distance. The distance we use to state our stability results is
defined on the class of finitely presented functions over Rm, that is, which can be written as
a finite Z-linear combination of indicator functions 1Qu for some u ∈ Rm. These functions
include Euler characteristic profiles of finitely generated filtrations (Lemma 14). We denote
by FP(Rm) the group of finitely presented functions over Rm. These functions have a kind of
diagram (or barcode) that can be used to define an analogue of the 1-Wasserstein distance.
A decomposition of φ ∈ FP(Rm) is a couple (B+,B−) of finite multisets of points in Rm

such that:

φ =
∑
u∈B+

1Qu −
∑
v∈B−

1Qv .

Such a decomposition always exists, and there is a unique B = (B+,B−) such that B+∩B− =
∅, called the signed barcode of φ; see (Oudot and Scoccola, 2021, Proposition 13). While
two different notions of signed barcode are defined in loc. cit., we focus here on the so-called
minimal Hilbert decomposition signed barcode.

Let C and C′ be two finite multisets of points in Rm with the same cardinality and h : C →
C′ be a bijection between them. The cost of h is the real number cost(h) =

∑
u∈C ∥u−h(u)∥1.

For any two finitely presented functions φ and φ′ with respective signed barcodes (B+,B−)
and (B′+,B′−), the signed 1-Wasserstein distance between them is:

d̂1
(
φ,φ′) = inf

{
ε > 0 : ∃ bijection h : B+ ∪ B′− → B− ∪ B′+ with cost(h) ≤ ε

}
.

Hence, one has d̂1
(
φ,φ′) ∈ [0,+∞]. Note that bijections do not allow for unmatched bars,

as it is common in the persistence literature. In loc. cit., the signed 1-Wasserstein distance
is defined on signed barcodes. Our definition is essentially equivalent since signed barcodes
are in one-to-one correspondence with finitely presented functions up to forgetting the order
in the multisets.

Stability results. We prove stability results involving functional norms on Euler charac-
teristic profiles and their hybrid transforms. The case m = 1 is well known for 1-Wasserstein
distance on persistence diagrams; see Curry et al. (2022, Lemma 4.10), D lotko and Gurnari
(2022, Proposition 3.2).
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Proposition 6 Let F and F ′ be two finitely generated m-parameter filtrations of simplicial
complexes K and K′ respectively. For any M > 0, we have that

∥χF − χF ′∥1,M ≤ (2M)m−1 d̂1(χF , χF ′) .

In particular, if m = 1:

∥χF − χF ′∥1 ≤ d̂1(χF , χF ′) .

This stability result for Euler characteristic profiles implies a similar stability result for
hybrid transforms, as stated in the following corollary.

Corollary 7 Let K be a compact subset of Rm
+

∗ and q ∈ [1,∞]. Let F and F ′ be one-
critical m-parameter filtrations of simplicial complexes K and K′ respectively. Let κ ∈
L1(R) ∩ L∞(R). There exists a constant CK,q depending only on K and q such that:

∥ψκ
F − ψκ

F ′∥Lq
K
≤ CK,q ∥κ∥∞ d̂1(χF , χF ′) .

Now, we prove two connections of the signed 1-Wasserstein distance with more classical
distances between filtrations. The first connection is made with the 1-Wasserstein between
persistence diagrams (Cohen-Steiner et al., 2010). We start by recalling it. Denote by D
and D′ the degree k persistence diagrams of F and F ′. The p-Wasserstein distance between
D and D′ is defined as:

Wp(D,D′) = inf
η

(∑
x∈D

∥x− η(x)∥p
)1/p

where the infimum is taken over all bijections η : D∪∆ → D′ ∪∆ where ∆ = {(s, s)|s ∈ R}
is the diagonal of R2. This definition allows for matchings between diagrams with different
number of points. We can now state the following connection between the 1-Wasserstein
distance on diagrams and the signed 1-Wasserstein on Euler characteristic curves.

Lemma 8 Let F and F ′ be two finitely generated one-parameter filtrations of respective
simplicial complexes K and K′. Denote their respective persistence diagrams D and D′.
Then,

d̂1(χF , χF ′) ≤ 2
∑
k≥0

W1

(
D,D′).

Combined with Proposition 6 and Corollary 7, this lemma ensures that L1 norms of Euler
characteristic curves and Lq norms of their hybrid transforms are controlled by a classical
distance between their persistence diagrams. This is another element of comparison be-
tween Euler characteristic tools and persistence diagrams. It is important to note that all
homology degrees have to be taken into account for the result to hold.

The second connection is established between the signed 1-Wasserstein distance on Euler
characteristic profiles and L1 norms on filtration functions defined on the same simplicial
complex, as stated by the lemma below. It has already been formulated in a slightly different
form in D lotko and Gurnari (2022, Proposition 3.4). Let K be a finite simplicial complex,
and f : K → Rm a non-decreasing map. We define the 1-norm of f as ∥f∥1 =

∑
σ∈K ∥f(σ)∥1.
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Lemma 9 Let K be a finite simplicial complex and f, g : K → Rm be non-decreasing maps.
We have that

d̂1(χf , χg) ≤ ∥f − g∥1.

The above lemma clarifies the robustness of our descriptors with respect to perturbations
of filtrations defined on a fixed simplicial complex. This includes, for instance, density
estimators on point clouds or Ricci curvature and HKS functions on graphs. The fact
that these descriptors are controlled by the L1 distance and not the L∞ distance between
functions is an indicator of their sensitivity to the underlying geometry. Persistent images
(Adams et al., 2017) share this property, while persistence landscapes (Bubenik et al., 2015;
Vipond, 2020) do not, as they are controlled by the L∞ distance between functions.

6. Statistical properties

This section provides statistical guarantees for our descriptors computed on a random sam-
ple, as the sample size tends to infinity.

6.1 Limit theorems for one-parameter hybrid transforms

This section is devoted to limit theorems for the hybrid transforms of the Čech complex of
an i.i.d. sample in Rd. Theorem 10 is a pointwise law of large numbers, while Theorem 12
establishes a functional central limit theorem for the hybrid transforms of compactly sup-
ported kernels. The purpose of this section is two-fold: we state that under some mild
assumptions, hybrid transforms are universal in the sense that they converge to an object
that depends only on the kernel, the filtration, and the sampling scheme. In addition, we
demonstrate that as the sampling density appears explicitly in Theorems 10 and 12, hy-
brid transforms can, at least asymptotically, be used to discriminate between samples from
different probability densities.

Theorem 10 Let X1, . . . , Xn be an i.i.d. sample drawn according to an a.e. continuous
bounded Lipschitz density g on Rd. Consider a sequence (rn)n∈N such that nrdn → 0 and

nk+2r
d(k+1)
n → ∞ as n → ∞ for all k in J0, d − 1K. We denote by Fn the Čech filtration

associated with the rescaled sample 1
rn

(Xi)
n
i=1. Let T, a > 0 and κ ∈ L1(R). Further assume

that κ is supported on [0, T ]. Then there exist functions A0, . . . , Ad−1 on R∗
+ that depend

only on κ such that for every ξ > a,

1

nk+2r
d(k+1)
n

· ψκ
Fn

(ξ) −→
n→∞

d−1∑
k=0

(−1)k

(k + 2)!
·Ak(ξ) ·

∫
Rd

gk+2(x) dx a.s..

We defer the proof to Section 7.2. Note that a law of large numbers for the Euler charac-
teristic curve has been established in Corollary 6.2 of Bobrowski and Weinberger (2017) for
all possible regimes and could be integrated to derive a similar result for hybrid transforms.
However, this result is only established for the Čech filtration over a uniform sampling on
the flat torus. As we want to show the dependency over the sampling density, we have
adapted the stronger limit results of Owada (2022) for persistence diagrams. It is therefore
a key assumption that we are in the so-called sparse regime, that is, nrdn → 0. To make this
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law of large numbers more understandable, we make a further assumption that we are in

the so-called divergence regime, that is nk+2r
d(k+1)
n → ∞ for all k ∈ J0, d−1K. The sequence

defined by rn = n−α for 1
d < α < 1

d + 1
d2

verifies these two assumptions. Similar results can

be derived for other subcases of the sparse regime: the Poisson regime nk+2r
d(k+1)
n → c > 0

and the vanishing regime nk+2r
d(k+1)
n → 0.

Theorem 10 shows that the pointwise limit of the hybrid transform depends on the
sampling only through the quantities

∫
Rd g

k+2 for k = 0, 1, . . . , d− 1 and they can therefore
discriminate between different samplings as soon as n is large enough. In addition to this
law of large numbers, a finer limit result for the Euler characteristic curve is proven in
Krebs et al. (2021), which we recall hereafter for the sake of completeness. First, recall that

a function h on Rm is blocked if it can be written h =
∑md

i=1 bi1Ai where b1, . . . , bmd are
non-negative real numbers and the Ai are axis-aligned rectangles in Rm. Moreover, recall
that the Skorohod J1-topology on the space of càdlàg functions D([0, T ]) is the topology
induced by the metric:

dJ1(f, g) := inf
λ

{
∥f ◦ λ− g∥∞ + ∥λ− Id[0,T ] ∥∞

}
,

where the infimum is taken over all increasing continuous bijections of [0, T ].

Theorem 11 (Krebs et al., 2021, Theorem 3.4) Let T > 0 and X1, . . . , Xn be sam-
pled according to a bounded density g on [0, 1]d. Denote by Fn the Čech complex associated
with the point cloud n1/d(Xi)

n
i=1. Assume that blocked functions can uniformly approxi-

mate g. There is a Gaussian process G : [0, T ] → R such that for t ∈ [0, T ],
√
n
(
χFn(t) − E[χFn(t)]

)
−→
n→∞

G(t),

in distribution in the Skorohod J1-topology. Furthermore, there exist two real-valued func-
tions γ and α such that the covariance of the limiting process is defined by:

E[G(s)G(t)] = E
[
γ
(
g(Z)1/d(s, t)

)]
− E

[
α
(
g(Z)1/ds

)]
E
[
α
(
g(Z)1/dt

)]
,

where Z is a random variable with density g.

We refer to Krebs et al. (2021) for the expression of the two functions γ and α. Here
again, the distribution of the points appears in the limiting object and, more precisely,
in its covariance function. We can adapt this theorem to show that hybrid transforms of
compactly supported kernels are also asymptotically normal.

Theorem 12 Consider the setting of Theorem 11. Let a,M > 0 and κ ∈ L1(R). Further
assume that κ is supported on [0, T ]. Then, there is a Gaussian process G̃ : [a,M ] → R
such that: √

n
(
ψκ
Fn

− E
[
ψκ
Fn

])
−→
n→∞

G̃ a.s.,

in
(
C0[a,M ], ∥ · ∥∞

)
. Furthermore, the covariance of the limiting process is defined by:

E
[
G̃(ξ1)G̃(ξ2)

]
= ξ1ξ2

∫ T/ξ1

0

∫ T/ξ2

0
κ(ξ1t)κ(ξ2s) cov

(
G(s),G(t)

)
ds dt,

where G is the Gaussian process defined in Theorem 11.
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6.2 Limit theorem for multi-parameter hybrid transforms

Here, we adopt the sampling model of Hiraoka et al. (2018). Consider a point process Φ
on Rd and its restriction ΦL to [−L/2, L/2]d. Let S(Rd) be the collection of all finite (non-
empty) subsets in Rd, to be thought of as the set of all simplices. Let f = (f1, . . . , fm) :
S(Rd) → [0,∞]m be a measurable function, non-decreasing with respect to the inclusions
of faces. According to Example 1, f induces a filtration on every simplicial complex of
Rd. The following theorem derives a law of large numbers for the hybrid transform in the
multi-parameter case.

Theorem 13 Assume that Φ is a stationary ergodic point process having finite moments.
Let T, a > 0 and κ ∈ L1(R). Assume that κ is supported on [0, T ]. We denote by FL the
filtration induced by the sublevel sets of f on ΦL. Assume that there exists an increasing
function ρ such that there exists i ∈ J1,mK such that for all (x, y) ∈ (Rd)2,

∥x− y∥ ≤ ρ (fi({x, y})) . (6.1)

Under these assumptions, there exists a function H : Rm
+

∗ × R+ → R that depends only on
κ and f such that, for all ξ = (ξ1, . . . , ξm) ∈ Rm

+
∗ and λ > a,

1

Ld
ψκ
FL

(λξ) −→
L→∞

H(ξ, λ) a.s..

This limit theorem is a direct consequence of the results from Hiraoka et al. (2018) for
persistence diagrams of a large class of filtration functions. We refer to Section 3 of loc. cit.
for the definition of a stationary ergodic point process. Note that this encompasses most
cases of usual point processes such as Poisson, Ginibre, or Gibbs. This result makes use of
the smoothness properties of the hybrid transforms and follows directly from Lemma 4 that
expresses restrictions of multi-parameter hybrid transforms to lines as one-parameter hybrid
transforms. Similar results cannot be derived that easily for Euler characteristic profiles, as
one would need to consider the joint law of several one-parameter filtrations. In addition,
deriving a multi-dimensional central limit theorem from Penrose and Yukich (2001) would
require the filter ξ · f to verify some translation invariance property. In practice, this very
strong assumption is verified only by Čech and Vietoris-Rips filtrations as well as marked
processes; see Botnan and Hirsch (2022). Alpha and function-Čech filtrations that we used
in our experiments do not verify this assumption.

As pointed out in Hiraoka et al. (2018, Example 1.3), Čech and Vietoris-Rips filtrations
satisfy (6.1) for ρ : t 7→ 2t. We provide below two examples of families a broad family of
multi-parameter filtrations satisfying (6.1).

Example 6 It is easy to check that the function-alpha filtration considered in the applica-
tions of Sections 4.2 and 4.3 satifies (6.1).

We give another class of filtrations satisfying (6.1) that contains in particular the
distance-to-measure (DTM) filtrations (Anai et al., 2020).
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Example 7 Let h be a positive and bounded function from Rd to R. The weighted Čech
complex introduced in Anai et al. (2020) is defined as follows. For every x ∈ Rd and real
number t ≥ 0, we define:

rx(t) =

{
−∞ if t < h(x),

t− h(x) otherwise.

We denote by Bh(x, t) = B (x, rx(t)) the closed Euclidean ball of center x and radius rx(t).
A simplex {x0, . . . , xk} in some finite set X belongs to the weighted Čech complex at scale
t ≥ 0 if the intersection of closed balls ∩k

l=0Bh(xl, t) is non-empty. Considering the weighted
Čech complex for all scales t defines a filtration of 2X called weighted Čech filtration. The
weighted Čech filtration satisfies (6.1) for ρ : t 7→ max(maxh, 2t).

7. Proofs

In this section, we prove the results stated in Sections 5 and 6.

7.1 Proofs of stability results

In the following proofs, we make constant use of the fact that the distance d̂1 may be
computed on any decomposition of the functions and not only on minimal ones, that is,
on signed barcodes. More precisely, for any decompositions (C+, C−) and (C′+, C′−) of two
finitely presented functions φ and φ′ respectively, one has:

d̂1
(
φ,φ′) = inf

{
ε > 0 : ∃ bijection h : C+ ∪ C′− → C− ∪ C′+ with cost(h) ≤ ε

}
. (7.1)

7.1.1 Profiles of finitely generated filtrations are finitely presented

The following lemma is well-known. We prove it for completeness. Recall that the k-th
Betti function of a finitely generated filtration F is defined as the function βF ,k : t ∈ Rm 7→
dimHk(Ft).

Lemma 14 Let F be a finitely generated m-parameter filtration. The k-th Betti function
βF ,k is finitely presented and χF =

∑
k∈Z(−1)kβF ,k. In particular, the Euler characteristic

profile of F is finitely presented.

Proof The fact that βF ,k is finitely presented follows from the fact that the family of
vector spaces (Hk(Ft))t∈Rm forms a finitely presented m-parameter persistence module (see
Lemma A). This last fact is well known but goes beyond the scope of the paper and is not
explicitly written elsewhere in the literature. We provide a proof in Appendix A. The equal-
ity between the alternated sum of Betti functions of F and its Euler characteristic profile
follows from the classical formula for the Euler characteristic of any simplicial complex K
stating that:

χ(K) =
∑
k≥0

(−1)k dimHk(K).

The fact that χF is finitely presented is then straightforward.
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The signed 1-Wasserstein distance between Euler characteristic profiles is bounded from
above by the same distance between Betti functions, as stated in the lemma below. It will
be crucial to proving the other results.

Lemma 15 Let F and F ′ be two finitely generated m-parameter filtrations of simplicial
complexes K and K′ respectively. Then,

d̂1(χF , χF ′) ≤
∑
k≥0

d̂1
(
βF ,k, βF ′,k

)
.

Proof By Lemma 14, the functions βF ,k and βF ′,k are all finitely presented. A collec-
tion of decompositions (B+

k ,B
−
k ) of βF ,k for all k ∈ N induces a decomposition (B+,B−) =

(∪kB+
k ,∪kB−

k ) of χF . A similar decomposition (B′+,B′−) of χF ′ is induced by decompo-
sitions (B′+

k ,B
′−
k ) of βF ′,k for all k ∈ N. Moreover, a collection of bijections of multisets

hk : B+
k ∪B

′−
k → B−

k ∪B
′+
k for all k ∈ N induces a bijection of multisets h : B+∪B′− → B−∪B′+

with cost(h) =
∑

k∈N cost(hk). Taking the infimum over all bijections hk yields the result
by (7.1).

7.1.2 Proof of Lemma 8

The degree k persistence diagram of F is given by Dk =
{(
aki , b

k
i

)}
i=1,...,nk

for real num-

bers −∞ < aki < bki ≤ ∞ and an integer nk ≥ 0. This diagram induces a decom-
position (Ak,Bk) = ({aki }i, {bki }i) of βF ,k. Similarly, the degree k persistence diagram

D′
k =

{(
a′kj , b

′k
j

)}
j=1,...,n′

k

of F ′ induces a decompositon (A′
k,B′

k) = ({a′kj }j , {b′kj }j) of

βF ′,k. Moreover, a partial matching M between Dk and D′
k induces a bijection of mul-

tisets h : A′
k ∪ Bk → Ak ∪ B′

k defined by h(a′) = a and h(b) = b′ when ((a, b), (a′, b′)) ∈M ,
by h(b) = a when (a, b) is unmatched and by h(a′) = b′ when (a′, b′) is unmatched. More-
over, the cost of the matching M and the cost of the bijection h satisfy cost(h) ≤ 2 cost(M).
Taking the infimum over all partial matching M , one has d̂1

(
βF ,k, βF ′,k

)
≤W1(HkF , HkF ′).

Lemma 15 yields the result.

7.1.3 Proof of Proposition 6

Recall that m ≥ 1. Consider decompositions (B+,B−) and (B′+,B′−) of χF and χF ′ re-
spectively. Assume there is a bijection h : B+∪B′− → B−∪B′+. If no such bijection exists,
then d̂1(χF , χF ′) is infinite, and the inequality trivially holds. One has:

χF − χF ′ =
∑

u∈B+∪B′−

1Qu −
∑

v∈B−∪B′+

1Qv =
∑

u∈B+∪B′−

1Qu − 1Qh(u)
.

Therefore,

∥χF − χF ′∥1,M ≤
∑

u∈B+∪B′−

∥1Qu − 1Qh(u)
∥1. (7.2)

By an elementary induction on m ≥ 1, we can prove that for all u, v ∈ Rm,

∥1Qu − 1Qv∥1,M ≤ (2M)m−1∥u− v∥1.
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This conludes the proof.
Assume now that m = 1. The existence of h ensures that ∥χF − χF ′∥1 is finite and the

result follows from (7.2) and the fact that ∥1[u,v)∥1 = |u− v|.

7.1.4 Proof of Corollary 7

It follows from the definition of hybrid transforms that:

∥ψκ
F − ψκ

F ′∥Lq
K
≤


∥κ∥∞

∫
K

∫
R
|ξ∗χF (s) − ξ∗χF ′(s)|dsdξ if q ∈ [1,∞),

∥κ∥∞ sup
ξ∈K

∫
R
|ξ∗χF (s) − ξ∗χF ′(s)|ds if q = ∞.

Moreover, Proposition 6 with m = 1 ensures that for any ξ ∈ K,

∥ξ∗χF − ξ∗χF ′∥1 ≤ d̂1(ξ∗χF , ξ∗χF ′) .

To prove the desired inequality, we will prove that d̂1(ξ∗χF , ξ∗χF ′) ≤ ∥ξ∥∞ d̂1(χF , χF ′) for
any ξ ∈ Rm

+
∗. The result then follows from computing the q-norm on both sides. Con-

sider decompositions (B+,B−) and (B′+,B′−) of χF and χF ′ respectively. They induce
decompositions (ξ∗B+, ξ∗B−) and (ξ∗B′+, ξ∗B′−) of ξ∗χF = χξ∗F and ξ∗χF ′ = χξ∗F ′ re-
spectively by the formula ξ∗B± = {ξ · u : u ∈ B±} and a similar one for F ′. Consider
a bijection of multisets h : B+ ∪ B′− → B− ∪ B′+. It induces a bijection of multisets
ξ∗h : ξ∗B+ ∪ ξ∗B′− → ξ∗B− ∪ ξ∗B′+ defined by ξ · u 7→ ξ · h(u) with cost:

cost(ξ∗h) =
∑

t∈ξ∗B+∪ξ∗B′−

∥t− ξ∗h(t)∥1 =
∑

u∈B+∪B′−

∥ξ · u− ξ · h(u)∥1 ≤ ∥ξ∥∞ · cost(h).

Taking the infimum over all bijections h yields d̂1(ξ∗χF , ξ∗χF ′) ≤ ∥ξ∥∞ d̂1(χF , χF ′) by (7.1).

7.1.5 Proof of Lemma 9

The couple Cf =
(
{f(σ)}dimσ even, {f(σ)}dimσ odd

)
is a decomposition of χf . There is a

similar decomposition Cg of χg. Moreover, the mapping f(σ) 7→ g(σ) induces a bijection of
multisets h : Cf → Cg with cost cost(h) =

∑
σ∈K ∥f(σ) − g(σ)∥1 = ∥g − f∥1. The result

follows from (7.1).

7.2 Proofs of statistical results

In this section, we prove the asymptotic results for the hybrid transforms stated in Section 6.

7.2.1 Proof of Theorem 10

Let X1, . . . , Xn be an i.i.d. sample drawn according to an a.e. continuous bounded Lipschitz

density g on Rd. Consider a sequence (rn)n∈N such that nrdn → 0 and nk+2r
d(k+1)
n → ∞ as

n→ ∞.
Let us define ∆ := {(x, y) : 0 ≤ x ≤ y < ∞} ∪ {(x,∞) : 0 ≤ x < ∞} and for

every (s, t, u, v) such that 0 ≤ s ≤ t ≤ u ≤ v ≤ ∞, denote by Rs,t,u,v the rectangle (s, t] ×
(u, v] of ∆. Recall that a finite persistence diagram D = ∪l

i=1(ai, bi) can be turned into a
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discrete measure µ =
∑l

i=1 δai,bi on ∆. Denote by µk,n the k-th persistence diagram of the
Čech filtration of 1/rn(Xi)

n
i=1, seen as a discrete measure on ∆.

Theorem 3.2 of Owada (2022) ensures that for every k ∈ J0, d− 1K there exists a unique
Radon measure µk on ∆ such that we have the following vague convergence:

1

nk+2r
d(k+1)
n

µk,n
v−→

n→∞

1

(k + 2)!

(∫
Rd

gk+2(x) dx

)
µk a.s., (7.3)

where for every 0 ≤ s ≤ t ≤ u ≤ v ≤ ∞, there is an indicator geometric function Hs,t,u,v on
Rd(k+2) defined in (Owada, 2022, Sec. 3.1), which does not depend on g and such that the
measure µk is defined by:

µk(Rs,t,u,v) =

∫
Rd(k+1)

Hs,t,u,v(0, y1, . . . , yk+1) dy1 . . . dyk+1.

Recall that the primitive kernel κ is such that κ(x) → 0 when x → +∞. Therefore, the
fact that κ is supported on [0, T ] implies that the primitive κ is also supported on [0, T ].
For ξ > a, denote by hξ : (x, y) ∈ ∆ 7→ κ(ξy) − κ(ξx). According to (2.5), one has:

ψκ
Fn

(ξ) =
d−1∑
k=0

(−1)k⟨µk,n, hξ⟩.

Since hξ is continuous and supported on [0, T/a]2, we have by the vague convergence in (7.3)
that:

1

nk+2r
d(k+1)
n

ψκ
Fn

(ξ) −→
n→∞

d−1∑
k=0

(−1)k

(k + 2)!

(∫
Rd

gk+2(x)dx

)
Ak(ξ) a.s.,

where Ak(ξ) =
∫
∆ hξdµk.

7.2.2 Proof of Theorem 12

Let T > 0 such that κ is supported in [0, T ]. Let a,M > 0 and let ξ ∈ [a,M ]. According
to (2.3), we have that:

ψκ
F (ξ) = ξ

∫ T/ξ

0
κ(ξ · t)χF (t)dt,

and similarly for χFn . Since κ is in L1, the mappings ψκ
F and ψκ

Fn
are continuous on [a,M ].

According to Theorem 11, there is a Gaussian process G : [0, T/a] → R+ such that for all
t ∈ [0, T/a], we have that:

√
n
(
χFn(t) − E[χFn(t)]

)
−→
n→∞

G(t), (7.4)

in distribution in the Skorohod J1-topology. Therefore, by linearity of the mapping χ 7→
ξ
∫ T/ξ
0 κ(ξ · t)χ(t)dt, we have that:

√
n
(
ψκ
Fn

− E
[
ψκ
Fn

])
= ξ

∫ T/ξ

0
κ(ξ · t)

[√
n
(
χFn(t) − E[χFn(t)]

)]
dt
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Denote by φ the mapping from the space of càdlàg functions D([0, T ]) with Skorohod J1-
topology to (C0([a,M ]), ∥ · ∥∞) defined by:

φ : χ 7→

(
ξ 7→ ξ

∫ T/ξ

0
κ(ξ · t)χ(t)dt

)
.

We, therefore, have that:

√
n
(
ψκ
Fn

− E
[
ψκ
Fn

])
= φ

(√
n (χFn − E[χFn ])

)
.

It is easy to check that:

∥φ(χ1) − φ(χ2)∥∞ ≤ M

a
∥χ1 − χ2∥∞

∫ T

0
|κ(u)|du,

so that the mapping φ is Lipschitz and, therefore, continuous. Thus, the continuous mapping
theorem along with (7.4) yields that almost surely, one has the following convergence in
(C0([a,M ]), ∥ · ∥∞),

√
n
(
ψκ
Fn

− E
[
ψκ
Fn

])
−→
n→∞

G̃(ξ) := ξ

∫ T/ξ

0
κ(ξ · t)G(t) dt.

The covariance of the limiting process G̃ follows immediately from that of G.

7.2.3 Proof of Theorem 13

Let ξ = (ξ1, . . . , ξm) ∈ Rm
+

∗. Denote by µξ∗Fk,L the measure associated with the k-th persis-
tence diagram of ΦL for the filtration function ξ ·f =

∑m
i=1 ξifi. By hypothesis, there exists

i ∈ J1,mK such that for all (x, y) ∈ (Rd)2, ∥x − y∥ ≤ ρ (fi({x, y})). Let ρ′ : x 7→ ρ(x/ξi).
Therefore, as the filtration functions are non-negative and ρ and ρ′ are increasing, we have
that:

ρ′

 m∑
j=1

ξjfj({x, y})

 ≥ ρ′(ξifi({x, y}) ≥ ρ(fi({x, y})) ≥ ∥x− y∥. (7.5)

The filtration function ξ · f therefore verifies all the hypotheses of Theorem 1.5 of Hiraoka
et al. (2018), which states that there exists a Radon measure νk such that almost surely,

we have the vague convergence 1
Ldµ

ξ∗F
k,L

v→ νξ·fk as L → ∞. Note that in loc. cit., the
authors make the additional hypothesis that the filtration function is translation invariant.
However, this assumption is only needed to derive a central limit theorem on persistent
Betti numbers but not required for the above law of large numbers, for which we only
need (7.5) to hold. As in the proof of Theorem 10, we introduce a continuous function
hλ : (x, y) ∈ ∆ 7→ κ(λy) − κ(λx). This function is supported on [0, T/a]2. According
to (2.5) together with Lemma 4, we have that:

ψκ
FL

(λξ) =

d−1∑
k=0

(−1)k⟨µξ∗Fk,L , hλ⟩.

Hence the result, by the vague convergence 1
Ldµ

ξ∗F
k,L

v→ νξ·fk for every k ∈ J0, d− 1K.
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Appendix A

In this appendix, we prove that a finitely generated filtration has finitely presentable per-
sistent homology. As explained in Section 7.1, this fact is well-known. Its proof is included
for completeness. We follow the same notations and conventions as in Oudot and Scoccola
(2021, Section 2).

Lemma A Let F be a finitely generated m-parameter filtration of a simplicial complex
K and let k ≥ 0. The m-parameter persistence module Hk(F) is finitely presentable. In
particular, its Hilbert function is finitely presented.

Proof Since F is finitely generated, the support of any σ ∈ K has a finite number of minimal
elements. The set of these elements is called the births of σ and denoted by birth(σ). Since
K is finite and F is finitely generated, there is a finite subset G = I1 × . . .× Im ⊆ Rm such
that birth(σ) ⊆ G for any σ ∈ K.

Given a persistence module M over Rm, we denote by r(M) its restriction to G. Given
a persistence module N over G, the extension of N is the persistence module e(N) over Rm

defined by:
e(N)(t) = N (max{g ∈ G : g ≤ t}) .

This defines functors r and e between the category of persistence modules over Rm to the
category of persistence modules over G and conversely. It is an easy exercise to check that
these functors are exact.

We prove that Hk(F) ≃ e ◦ r(Hk(F)). It is well known—see Bauer and Scoccola (2022,
Lemma 5) for a proof—that this implies that Hk(F) is finitely presentable. Recall that
barcodes of free persistence modules are defined in Oudot and Scoccola (2021, Section 2)
and denote by Ci(F) the free persistence module with barcode

⋃
σ birth(σ) where the union

is taken over all simplices σ ∈ K of dimension i. Consider the diagram:

Ck+1(F) Ck(F) Ck−1(F),
∂k ∂k−1

where the maps ∂k and ∂k−1 are induced by the boundary operator from simplicial homology.
The persistence module Hk(F) is then the homology of the above diagram, i.e.,

Hk(F) = Im(∂k)/Ker(∂k−1).

For any i ∈ N, the definition of G and of Ci(F) implies that Ci(F) ≃ e ◦ r(Ci(F)). The
result then follows from the fact that e ◦ r is an exact functor and hence commutes with
computing homology.
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We are left to prove that the Hilbert function of Hk(F) is finitely presented. Since the
persistence module Hk(F) is finitely presentable, it admits a finite free resolution:

0 → Fm → · · · → F0 → Hk(F) → 0. (A.1)

See for instance Botnan and Lesnick (2022, Section 7.2) for more details. Each free module
with barcode B(Fi) has a finitely presented Hilbert function:

Hil(Fi) =
∑

t∈B(Fi)

1Qt .

Now, exactness of the sequence (A.1) ensures that:

Hil(Hk(F)) =

m∑
i=0

(−1)iHil(Fi),

hence the result.
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