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Abstract. Micro-electro-mechanical system-based (MEMS-based) tri-
axial accelerometers are fundamental components of Inertial Measure-
ment Units, and their use is widespread across various fields, such as
the entertainment industry, robotics, and navigation systems. Various
applications require that the cost of the sensor is not too high, which
makes MEMS-based sensors a sensible choice. Unfortunately, low-cost
MEMS are affected by relevant systematic errors which are time and
environmental-condition dependent and thus require frequent re-calibration.
Thus, simple calibration or identification methods, that a non-expert
user can perform in the field without requiring costly equipment, are
of interest. In this paper, we present an in-field identification procedure
for MEMS-based triaxial accelerometers based on the linear Total Least
Squares method.

Keywords: MEMS, Accelerometers, in-field calibration, in-field identi-
fication, Total Least Squares

1 Introduction

Triaxial accelerometers are sensors capable of converting a physical acceleration
input into a voltage output. The relationship between input and output can be
described by a linear function, which allows to define a mathematical model for
the sensor [8]. Along with triaxial gyroscopes, accelerometers are widely used as
components of Inertial Measurement Units (IMUs). IMUs are employed in many
applications where the position and attitude of a body need to be estimated:
civilian navigation systems, medical applications, robotics, but also commercial
portable devices like computers and smartphones [10].

In order to satisfy large-scale demand, low-cost sensors based on micro-
electro-mechanical systems (MEMS-based) are preferred, since they are typically
more affordable than optical ones. However, the technologies and processes used
for low-cost MEMS fabrication produce sensors with uncertain model param-
eters, which the manufacturer only estimates on batches [8]. If manufacturer-
provided parameters are used in the sensor model, slight to large measurement
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errors can be expected; when these measurements are to be post processed (as
in IMUs), the errors are possibly further propagated and amplified [1].

Sensor errors can be divided into two categories: systematical and random
errors. Systematical ones can be minimized by calibrating the sensor model pa-
rameters; essentially, the best fit between the mathematical model output and a
known reference is sought. Calibration techniques for MEMS-based accelerome-
ters can be divided into Laboratory and In-Field ones. The formers require high-
precision instruments, such as mechanical rotating tables, in order to provide a
known physical reference for the mathematical model output [8], whereas the
latter do not require precision instrumentation, but the sensor must be placed in
several orientations according to a predefined logic [5]. In-Field calibration meth-
ods are preferred for the frequent re-calibration of MEMS-based accelerometers.

In-Field calibration methods assume that the Euclidean norm of the accel-
eration measured by the sensor (am) is constant and equal to the gravitational
one (g), in static conditions. Most methods require measuring sensor outputs
by placing the accelerometer in different orientations, and to minimize a cost
function G(θ) =

∑N
i=1(∥g∥22 − ∥am,i(θ)∥22)2, where N is the number of different

orientations used, ∥.∥2 the Euclidean norm of a vector, and θ the array collecting
the model parameters to be found; the problem is usually solved with Non-Linear
Least Squares (NL-LS) methods [9,11]. These methods do not require placing
the sensor in specific orientations, which enhances usability, but they suffer from
two main drawbacks: (i) they are based on non-linear optimization algorithms
and consequently require a tentative initial parameter array, and (ii) the calibra-
tion output could be poor depending on the random orientations chosen by the
user. A pre-calibration aiming to determine a valid initial guess for the iterative
method was proposed in [13], but such a solution is quite time-consuming.

Methods for linear and non-iterative in-field calibration, which do not require
any previous knowledge of the parameters to be calibrated, can be classified as
identification methods and are naturally desirable. They were proposed in [3,5],
but they can only be used under strict assumptions, such as (i) a surface orthog-
onal to earth gravity is available, and (ii) sensor parameters are within known
bounds. Other classes of identification methods [14,15,7] are based on a suitable
non-linear change of variables in the sensor model, which allows reformulating
the classical NL-LS of [9,11] into linear ones. On the other hand, once the coeffi-
cients are found, the inverse transformation of the non-linear change of variables
needs to be performed, numerically propagating the errors in the estimated pa-
rameters.

In this paper, we propose an in-field identification method based on (i) a
predetermined sequence of rotations, used to acquire sensor outputs, and (ii) the
solution of a Total Least Squares (TLS ) problem. The sensor is placed in a 3D-
printed multifaceted housing which is rotated with respect to a sloped surface
used as a reference. The TLS approach ensures that potential errors in the
rotations are accounted for while calibrating. The rest of the paper is organized
as follows: Sec. 2 presents the description of the identification algorithm, while
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experiments on ADXL335 sensor are presented in Sec. 3. Section 4 concludes
the paper.

2 Identification Algorithm Descrtiption

The mathematical model of a triaxial accelerometer, which correlates the ac-
celeration in a frame attached to the sensor a′ ∈ R3×1 with the voltage signal
generated by the sensor v = [vx, vy, vz]

T , is given by [8,10]:

v = S′a′ + b′ + ϵ′ (1)

where S′ ∈ R3×3 is a scale factor matrix, b′ ∈ R3×1 is a vector containing bias
terms and ϵ′ ∈ R3×1 is an array containing measurement noise. Although this
model can well represent the physical behavior of the accelerometer, its inverse
model is more convenient for practical uses:

a′ = S(v + ϵ) + b (2)

where S = S′−1,b = −S′−1b′, ϵ = −ϵ′. The aim of sensor identification is to
determine the elements of matrix S and vector b, so that voltage measurements
v can be transformed into accelerations a′. We assume S to be symmetric, and
noise terms to be white Gaussian with zero mean [8]. The diagonal terms of S
are referred to as sensitivities, while the off-diagonal terms as cross sensitivities.
Cross sensitivities are non-zero when the three sensing axes in the accelerometer
are not perfectly orthogonal with each other, and allow to account for this type
of non-ideality, which is frequent in low-cost sensors [10]. Under such hypotheses,
the model relies on 9 unknown parameters.

The proposed identification method requires placing the sensor inside a mul-
tifaceted housing, and re-orient such housing with respect to (w.r.t.) a reference
surface in a predefined order. Such a surface is, in general, sloped; that is, our
method does not require the reference to have a known orientation w.r.t. earth
gravity, which is the main shortcoming of known identification methods [3,5].
Let Oxyz be a fixed coordinate system attached to the reference surface, with
z being the direction normal to the reference, and O′x′y′z′ a mobile system,
attached to the accelerometer’s theoric triad. When the identification procedure
starts, the sensor housing (and thus the mobile frame) is aligned with the fixed
frame, namely Oxyz ≡ O′x′y′z′. If we assume earth gravity to have a constant
magnitude equal to g, we can define the acceleration perceived by the sensor in
the start configuration as:

a′s = gns (3)

where ns = [nsx, nsy, nsz]
T is a unit vector (i.e. its Euclidean norm is one)

expressing earth gravity direction in the mobile frame. ns is generally unknown
since the orientation of the reference w.r.t. earth gravity is random, and it will
be calculated as a subproduct of the identification problem. To calibrate the
sensor, its voltage outputs for different orientations need to be acquired. If r
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re-orientations of the sensor are performed, the i-th acceleration perceived by
the sensor, with i = 1, ..., r is:

a′i = Ria
′
s (4)

where Ri is a rotation matrix defined by a sequence of rotations performed w.r.t.
the fixed frame, which in practice is achieved by placing the sensor housing on
each of its facets sequentially. If we substitute Eq. (4) into Eq. (2), we can
correlate the measured voltage with the acceleration in the start configuration
as:

a′i = Ria
′
s = S(vi + ϵi) + b (5)

Since the noise is generally well-modeled as white, additive, and Gaussian, we
can mitigate its effect in Eq. (5) by considering the average voltage v̄i over k
consecutive measurements in the same orientation is considered, namely:

v̄i =

∑k
j=1(vi,j + ϵi,j)

k
, k ≫ 1 (6)

and, finally, the noiseless mathematical model is obtained as:

a′i = Ria
′
s = Sv̄i + b (7)

Rearranging Eq. (7) so as to highlight known quantities and unknown parameters
to be calibrated, yields:

Miθ = 03×1 (8)

where:

Mi =

v̄ix v̄iy v̄iz 0 0 0 1 0 0 −Ri,11 −Ri,12 −Ri,13

0 v̄ix 0 v̄iy v̄iz 0 0 1 0 −Ri,21 −Ri,22 −Ri,23

0 0 v̄ix 0 v̄iy v̄iz 0 0 1 −Ri,31 −Ri,32 −Ri,33

 (9)

θ =
[
S11 S12 S13 S22 S23 S33 bx by bz nsx nsy nsz

]T (10)

and Ri,uw and Suw are the elements in the u-th row and w-th column of Ri and
S respectively. According to our identification method, the gravity direction in
the start configuration ns, expressed in the mobile frame, is also unknown and
included in the parameters to be determined. By stacking Eq. (8) for i = 1, . . . , r
measurements, we obtain an homogeneous system of 3r linear equations in 12
unknowns, which is overdetermined if r > 4:M1

...
Mr

θ = Mθ = 03r×1,M ∈ R3r×12 (11)

Equation (11) can be solved for θ with the linear TLS method (see [12] for the
theoretical foundations, or [6,4] for practical applications). Please note that θ
contains the actual parameters needed by the model, and not a combination
of them, which is the second shortcoming of previous works [7,14,15]. In ideal
conditions, namely, without any measurement noise or model error, M should
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be full-column rank deficient, namely rank(M) < 12, and a solution to Eq. (11)
different to the trivial one (which is θ = 0) could be found. In real applications,
it is necessary to address a compatible system that is closest to Eq. (11) in terms
of the Frobenious norm:

M̂θ̂ = 0 (12)

where θ̂, which is the solution to Eq. (11), contains the unknown parameters
estimations and M̂ has rank 11 and minimizes ∥M̂ − M∥F , where ∥.∥F is the
Frobenius norm. M̂ can be computed by means of the "economy size" singular
values decomposition of M, given by

M = U

[
diag(δl)

0

]
VT (13)

where U ∈ R3r×3r and V ∈ R12×12 are orthonormal matrices and diag(δl) ∈
R12×12 is a diagonal matrix containing the singular values δl, for l = 1, . . . , 12
of M sorted in decreasing order. M̂ can be obtained as

M̂ = M− δ12U12V
T
12 (14)

being δ12 the smallest singular value of M, and U12,V12 the 12-th columns of
U and V, respectively. A solution to Eq. (12) is given by θ̂ = V12. The solution
to the proposed identification problem is obtained by normalizing θ̂ so that its
last three elements have unitary Euclidean norm, namely:

θ =
θ̂

∥θ̂10:12∥2
(15)

where θ̂10:12 is the array collecting the last three elements of θ̂.
The accuracy of the obtained results can be inferred by estimating the per-

centage relative standard deviations of the identified parameters. The estimation
is performed according to the TLS techniques, and by assuming nsz as the ele-
ment having the maximum accuracy. Accordingly, the covariance matrix of the
TLS solution may be approximated as [12]:

Cθ = σ̂2
M (1 + ∥θ1:11∥22)(M̂

T

1:11M̂1:11)
−1 (16)

where σ̂M is

σ̂M =
δ12√

3r − 12
(17)

and M̂1:11 is obtained by discarding the last column of M̂, whereas θ1:11 is the
array containing the first 11 elements of θ. We finally obtain the percentage
relative standard deviation estimations as [4]:

σ%,θl = 100

√
Cθ(l, l)

|θl|
, l = 1, . . . , 11 (18)

where Cθ(l, l) is the l-th diagonal term of Cθ and θl the l-th element of θ.
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Algorithm 1 Rotation matrices com-
putation for parallelepiped housing

i = 0;
for α = 0, α+ = π

2 , α ≤ 3
2π do

for γ = 0, γ+ = π
2 , γ ≤ 3

2π do
i = i + 1;
Ri = (R′

i(α, 0, γ))
T ;

end for
end for
for β = π

2 , β+ = π, β ≤ 3
2π do

for γ = 0, γ+ = π
2 , γ ≤ 3

2π do
i = i + 1;
Ri = (R′

i(0, β, γ))
T ;

end for
end for

Algorithm 2 Rotation matrices com-
putation for 18-Faced housing

i = 0;
for α = 0, α+ = π

4 , α ≤ 7
4π do

if α ̸= π
2 , 3

2π then
for γ = 0, γ+ = π

2 , γ ≤ 3
2π do

i = i + 1;
Ri = (R′

i(α, 0, γ))
T

end for
end if

end for
for β = 0, β+ = π

4 , β ≤ 7
4π do

if β ̸= 0, π
2 , π, 3

2π then
for γ = 0, γ+ = π

2 , γ ≤ 3
2π do

i = i + 1;
Ri = (R′

i(0, β, γ))
T

end for
end if

end for
for β = 0, β+ = π

4 , β ≤ 7
4π do

for γ = 0, γ+ = π
2 , γ ≤ 3

2π do
i = i + 1;
Ri = (R′

i(
π
2 , β, γ))T

end for
end for

3 Experimental Results

The proposed method was tested by producing simple 3D-printed sensor hous-
ings (where the sensor was rigidly attached) and references. Such equipment
consists of a regular rectangular prism sensor housing (Fig. 1a), an 18-faced sen-
sor housing (Fig. 1b) (obtained by chamfering the edges of the former housing at
45°), a reference with three orthogonal surfaces and a base parallel to one of the
surfaces (Fig. 1c), and a reference with three orthogonal surfaces, and a sloped
base (Fig. 1d). A re-orientation scheme is defined for each housing. Since the
sensor is rigidly attached to the housing, Ri matrices can be computed as ro-
tations about fixed frame axes, consisting in placing the sensor housing in each
possible orientation where three of its faces are in contact with the reference
surfaces. Consequently, r = 24 and r = 72 orientations can be achieved with the
prismatic and 18-faced housing, respectively.

It is important that the sequence of rotation is always the same, thus the se-
quence of rotations used in this paper are described in Algorithms 1 and 2, where
R′

i(αi, βi, γi) = Rz(γi)Ry(βi)Rx(αi), and Rx, Ry, Rz are elementary rotation
matrices about x′, y′ and z′ axis, respectively. Please note that R′

i(αi, βi, γi) rep-
resents physical re-orientations, where the housing is first rotated about the fixed
x axis, then about the y axis, and lastly about the z axis, and thus transforms a
vector expressed in the moving frame into a vector expressed in the fixed frame.
Since Eq. (7) requires the acceleration to be expressed in the moving frame,
Ri = R′ T

i .
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(a) Prismatic
housing (b) 18-faced housing

(c) Non-sloped
reference (d) Sloped reference

Fig. 1: 3D-printed equipments

The re-orientation procedure is simpler for the prismatic housing since it has
fewer faces. However, if a reference non-sloped w.r.t. g is used (e.g. the one in Fig.
1c), this re-orientation scheme is hardly optimal. In fact, if the reference rests
on a surface reasonably orthogonal to g, one of the sensor axes would be almost
parallel to g, and the others almost orthogonal: the measures obtained on each
channel would be whether near the maximum possible or near zero, meaning that
they would be characterized by high noise-to-signal ratio (NSR). To overcome
this problem, one can: (i) use a sloped reference, so that all axes measurements
have low NSR, or (ii) use a housing characterized by more possible orientations.
Thus, experiments on all four possible combinations of references surface and
housings were carried out. For each of the r configurations, we acquired k = 1000
samples at 1kHz from the three analog channels of an Analog Devices ADXL335
accelerometer, using a 12-bit Analog to Digital Converter and a STM32-L432KC
Micro Controller Unit.

Identification results are shown in Table 1. Elements of matrix S are ex-
pressed in [g/mV], while those of b and ns are in [g], thus they are normalized
with respect to the modulus of the gravitational acceleration. For the tested
sensor, we obtained negligible values for off-diagonal elements of S w.r.t. diag-
onal ones, which means that the sensor’s axes are well-aligned and there is no
relevant cross-sensitivity effect between analog channels. Consequently, relative
standard deviations associated with these parameters are really high (a param-
eter is considered well-identified if the percentage standard deviation is below
5%); namely, they are non-essential parameters for the specific sensor tested.
Parameters identification best practice suggests excluding non-essential param-
eters from the model and performing a second identification with the simplified
model, which does not include them [4]. Results for the identification of essen-
tial parameters are shown in Table 2. As we expected, experiments involving
the 18-faced housing and the sloped reference gave the best results: in fact, they
present the lowest relative standard deviation estimations among all the tests
performed. However, we can say that, for each of the tests performed, all the
essential parameters showed a small relative standard deviation estimation, less
than the acceptability threshold of 5%, and are thus well identified.
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θl S11 S12 S13 S22 S23 S33 bx by bz nsx nsy

θ̂l 2.89e-03 -2.91e-05 2.43e-06 2.91e-03 -3.94e-06 2.89e-03 -4.73 -4.75 -5.03 4.37e-03 1.56e-02
σ%,θl 0.41 28.67 342.48 0.41 211.54 0.41 0.59 0.59 0.56 53.78 15.08

(a) Non-sloped reference, prismatic housing

θl S11 S12 S13 S22 S23 S33 bx by bz nsx nsy

θ̂l 2.89e-03 -3.04e-05 1.82e-06 2.91e-03 -4.96e-06 2.88e-03 -4.72 -4.74 -5.03 -3.90e-01 -4.91e-01
σ%,θl 0.44 27.03 449.92 0.44 165.73 0.44 0.61 0.61 0.58 0.67 0.56

(b) Sloped reference, prismatic housing

θl S11 S12 S13 S22 S23 S33 bx by bz nsx nsy

θ̂l 2.89e-03 -3.04e-05 2.15e-06 2.90e-03 -5.32e-06 2.89e-03 -4.72 -4.73 -5.05 1.82e-02 8.51e-03
σ%,θl 0.14 9.38 132.29 0.14 53.63 0.14 0.20 0.20 0.19 4.41 9.44

(c) Non-sloped reference, 18-faced housing

θl S11 S12 S13 S22 S23 S33 bx by bz nsx nsy

θ̂l 2.89e-03 -2.95e-05 3.31e-06 2.90e-03 -5.34e-06 2.88e-03 -4.73 -4.73 -5.05 -3.88e-01 -4.94e-01
σ%,θl 0.16 10.01 89.00 0.16 55.19 0.16 0.22 0.22 0.21 0.24 0.20

(d) Sloped reference, 18-faced housing

Table 1: Results - Well-aligned sensor, all parameters

Finally, we cross-validated the identification results reported in Table 2d, by
using the data sets acquired while performing the experiments relative to Tables
2a, 2b and 2c. For each data set, we computed M as in Eq. (9) and (11), and
obtained the corresponding model error η as η = Mθ. For the data sets involving
the non-sloped reference, the last three elements of θ were set [0, 0, 1]T , while
they were set to [nsx, nsy, nsz]

T for the data sets involving the sloped reference
(nsz is obtained by imposing ∥ns∥2 = 1, and nsx, nsy are in Table 2d).

Cross-validation standard deviations σ′ are obtained as [6]:

σ′ =

√
ηTη

3r
(19)

where 3r = 72 for data sets with the prismatic housing and 3r = 216 for the
18-faced ones. The worst-case standard deviation is σ′ = 0.0211g. Additionally,
we also evaluated a cross-validation standard deviation by using manufacturer-
provided sensor parameters. Accelerometer’s datasheet [2] only reports ranges of
values for the sensor’s model parameters so, without further information avail-
able, we adopted mean values of those ranges, i.e. sensitivities S11 = S22 =
S33 = 1

300g/mV , and biases bx = by = bz = −5g according to the model of Eq.
(2), with cross sensitivities equal to 1% of sensitivities. The best-case standard
deviation, in this case, is σ′

=0.525g, which is 25 times the one obtained with the
parameters identified by our method. It is thus clear that our method is a valid
choice to improve accelerometers’ accuracy at no relevant cost.
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θl S11 S22 S33 bx by bz

θ̂l 2.89e-03 2.91e-03 2.89e-03 -4.78 -4.80 -5.03
σ%,θl 0.55 0.55 0.55 0.56 0.56 0.56

(a) Non-sloped reference, prismatic housing - essential parameters

θl S11 S22 S33 bx by bz nsx nsy

θ̂l 2.89e-03 2.91e-03 2.88e-03 -4.77 -4.80 -5.04 -3.90e-01 -4.91e-01
σ%,θl 0.48 0.48 0.48 0.49 0.49 0.49 0.73 0.61

(b) Sloped reference, prismatic housing - essential parameters

θl S11 S22 S33 bx by bz

θ̂l 2.89e-03 2.90e-03 2.89e-03 -4.77 -4.79 -5.05
σ%,θl 0.30 0.30 0.30 0.30 0.30 0.30

(c) Non-sloped reference, 18-faced housing - essential parameters

θl S11 S22 S33 bx by bz nsx nsy

θ̂l 2.89e-03 2.90e-03 2.88e-03 -4.77 -4.78 -5.05 -3.88e-01 -4.94e-01
σ%,θl 0.19 0.19 0.19 0.20 0.20 0.20 0.29 0.24

(d) Sloped reference, 18-faced housing - essential parameters

Table 2: Results - Well-aligned sensor, essential parameters

4 Conclusions

In this paper, we proposed an in-field identification procedure for MEMS-based
accelerometers. Our method can be performed using simple 3D-printed equip-
ment and without prior knowledge of the reference orientations w.r.t. g, and
requires performing a set of predefined re-orientation of the sensor, and the use
of the linear TLS method. Experimental results showed that the sensor’s model
parameters can be correctly estimated by our method, and the accuracy of the
sensor model is severely increased with respect to using manufacturer-provided
model parameters. In the future, our method will be extended to gyroscope
parameter identification, so as to provide a general identification method for
IMUs.
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