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ASYMPTOTIC ANALYSIS OF THE CHARACTERISTIC POLYNOMIAL FOR

THE ELLIPTIC GINIBRE ENSEMBLE

QUENTIN FRANÇOIS AND DAVID GARCÍA-ZELADA

Abstract. We consider the Elliptic Ginibre Ensemble, a family of random matrix models that inter-
polate between the Ginibre Ensemble and the Gaussian Unitary Ensemble and such that its empirical
spectral measure converges to the uniform measure on an ellipse. We show the convergence in law of
its normalised characteristic polynomial outside of this ellipse. Our proof contains two main steps. We
first show the tightness of the normalised characteristic polynomial as a random holomorphic function
using the link between the Elliptic Ginibre Ensemble and Hermite polynomials. This part relies on the
uniform control of the Hermite kernel which is derived from the recent work of Akemann, Duits and
Molag. In the second step, we identify the limiting object as the exponential of a Gaussian analytic
function. The limit expression is derived from the convergence of traces of random matrices, based on
an adaptation of techniques that were used to study fluctuations of Wigner and deterministic matrices
by Male, Mingo, Péché and Speicher. This work answers the interpolation problem raised in the work
of Bordenave, Chafäı and the second author of this paper for the integrable case of the Elliptic Ginibre
Ensemble and is therefore a fist step towards the conjectured universality of this result.
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1. Introduction and main result

1.1. The model of the Elliptic Ginibre Ensemble (EGE). The random matrices that we con-
sider in this paper are called Elliptic Ginibre Ensemble. This model is parameterized by t ∈ [0, 1] and
interpolates between the Ginibre Ensemble and the Gaussian Unitary Ensemble (GUE) for t = 0 and
t = 1 respectively. This ensemble has been studied extensively; see for instance [2], [20]. The generic
law for any t ∈ [0, 1] is induced by the following construction.

Consider Xn and Yn independent random matrices sampled from the Gaussian Unitary Ensemble
of size n ≥ 1. The law of the Elliptic Ginibre Ensemble at t ∈ [0, 1] is the law of the matrix

(1.1) An,t =

√
1 + t

2
Xn + i

√
1− t
2

Yn,

1
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where i2 = −1. Equivalently, the density of An,t is proportional to the function, see [1, eq. (4)],

(1.2) exp

(
− 1

1− t2
Tr

[
M∗M − t

2
(M2 + (M∗)2)

])
dM

where dM =
∏

1≤i,j≤n dMi,j is the product Lebesgue measure on the entries of the matrix. Many re-
sults are known for EGE matrices. In particular, the limiting eigenvalue distribution has been proved
to be the uniform law on the ellipse centered at the origin with half long axis 1 + t and short axis
1− t. We refer to [14] and [32] for the study of this model.

In the recent work [12], it has been proved that the spectral radius of matrices with i.i.d coeffi-
cients, called Girko matrices, converges in probability to 1 under the minimal assumption of a second
moment on its entries. In order to derive this result, the authors considered the reciprocal character-
istic polynomial associated to such matrices defined by qn(z) = znpn

(
1
z

)
for z ∈ D where pn is the

characteristic polynomial. The main result of [12] is the convergence in law, for the topology of local
uniform convergence, of the sequence of functions {qn}n≥1 to a random function which is universal, in
the sense that its expression involves only the second moment of the entries of the matrix. Our result
aims at deriving the convergence of the normalised characteristic polynomial in the case of the EGE
(1.1) at each t ∈ [0, 1] and at identifying the limiting object in the conjectured universality.

1.2. Main result. Let n ≥ 1 and t ∈ [0, 1]. Consider pn,t(z) = det(z − 1√
n
An,t), the characteristic

polynomial of a scaling by 1√
n
of a matrix An,t from the Elliptic Ginibre Ensemble (1.1). Define the

normalised characteristic polynomial of An,t by

fn,t : D −→ C

z 7−→ det

(
1 + tz2 − z√

n
An,t

)
e−

ntz2

2 .(1.3)

Our main result is the following convergence.

Theorem 1.1 (Convergence of the normalised characteristic polynomial for the EGE). Let t ∈ [0, 1]
and consider the sequence of random holomorphic functions {fn,t}n≥1 as in (1.3). Then, as n→∞,

fn,t
law−−→ ft = κte

−Ft

for the topology of uniform convergence on compact subsets of D, where the function Ft is a Gaussian
analytic function given by

(1.4) Ft(z) =
∑
k≥1

Xk,t
zk√
k

for a family (Xk,t)k≥1 of independent complex Gaussian random variables such that E[Xk,t] = 0,

E[X2
k,t] = tk and E[|Xk,t|2] = 1, and the function κt is given by

(1.5) κt(z) = exp

−1

2

∑
k≥1

hk,t
k
z2k

 · exp( tz2

2(1− tz2)

)
,

where the real coefficients {hk,t}k≥1 are given in (5.10).

Let us give some explanations on (1.3). In the case t = 0, the matrix An,0 belongs to the Ginibre
Ensemble, which is a particular case of Girko matrices. For such matrices, we have exactly the
reciprocal characteristic polynomial of [12],

qn,0 : D −→ C
z 7−→ qn,0(z) = znpn,0(g0(z))

where g0 : z 7→ 1
z is the conformal mapping that sends the unit disk to its complementary. One can

think of the choice of g0 as the following. We know that the empirical measure of eigenvalues of a
Girko matrix converges weakly to the uniform measure on the unit disk D, see [11] for complements
on this universal result known as the circular law. One therefore chooses a mapping g0 that sends
D to the complementary of the support of the limiting eigenvalue measure so that pn,0 ◦ g0 does not
vanish on the unit disk. Driven by this intuition, we construct fn,t by composing the characteristic
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polynomial by a function that sends D\{0} to C\Et where Et is the support of the limiting eigenvalue
distribution for the EGE with parameter t.

For t ∈ [0, 1], it has been proven in [32] that the average eigenvalue distribution for the Elliptic
Ginibre Ensemble converges to the uniform distribution on the ellipsoid Et given by the equation

(1.6) Et =

{
x+ iy ∈ C :

(
x

1 + t

)2

+

(
y

1− t

)2

≤ 1

}
.

For t = 1, we define E1 to be the interval [−2, 2] and the corresponding limiting distribution to be
the semi-circle distribution in accordance with Wigner’s theorem. Since the function gt : z 7→ 1

z + tz
maps D \ {0} to C \ Et, a natural candidate for the normalised characteristic polynomial would be

the mapping z 7→ znpn,t ◦ gt(z). To have a convergence, it is necessary to add the factor exp
(
−ntz2

2

)
which gives our expression of fn,t in (1.3). We refer the reader to Remark 5.13 for an explanation
on this factor. Using these notations, from Theorem 1.1 we obtain the convergence of the normalised

characteristic polynomial p̃n,t(u) = (g−1
t (u))ne−nt(g

−1
t (u))2/2pn,t(u)

p̃n,t
law−−→ (κt ◦ g−1

t )e−Ft◦g−1
t

in the topology of uniform convergence on compact sets of C\Et. This is, in fact, equivalent to Theorem
1.1 due to the holomorphicity of fn,t at zero. It explains the notation “normalised characteristic
polynomial” since fn,t and p̃n,t are the same functions in different coordinate systems.

Figure 1. Illustration of Theorem 1.1. Phase portrait of the normalised characteristic
polynomial of an EGE matrix of size 250 for different values of t: 0 (top left), 0.3 (top
right), 0.6 (bottom left) and 1 (bottom right).

1.3. Method of proof. We will follow the same proof structure as for [12, Theorem 1.2], which was
inspired by [9] and [16]. In order to prove the convergence in law for the topology of local uniform
convergence, we will use [12, Lemma 3.2] which is close to [30, Proposition 2.5].
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Lemma 1.2 (Tightness and convergence of coefficients imply convergence of functions). Let {fn}n≥1

be a sequence of random elements in H(D) and denote the coefficients of fn by (ξ
(n)
k )k≥0 so that for

all z ∈ D, fn(z) =
∑

k≥0 ξ
(n)
k zk. Suppose also that the following conditions hold.

(a) The sequence {fn}n≥1 is tight in H(D).
(b) For every m ≥ 0, the vector (ξ

(n)
0 , . . . , ξ

(n)
m ) converges in law as n → ∞ to (ξ0, . . . , ξm) for a

common sequence of random variables (ξk)k≥0.

Then, f(z) =
∑

k≥0 ξkz
k is a well-defined function in H(D) and fn converges in law towards f in

H(D) for the topology of local uniform convergence.

The first part of our proof of Theorem 1.1 is to show, for every fixed value of t ∈ [0, 1], the tightness
(a) of the family of random functions {fn,t}n≥1. To do so, we will use the known properties of the
Elliptic Ginibre Ensemble and its relation to scaled Hermite polynomials. A local uniform control is
derived from the recent work [1]. This local uniform control allows us to derive tightness thanks to
Lemma 2.2 below.

The second part of the proof consists in proving a convergence in distribution of the coefficients
appearing in the functions {fn,t}n≥1. We reduce the former to proving convergence of traces of poly-
nomials in An,t, which is classic in random matrix theory and is done by a combinatorial argument
using the method of moments. The study we conduct will follow the lines developed in [21] in which
the authors studied the asymptotic fluctuations of Wigner and deterministic matrices. As in [21], we
will not use the Gaussian nature of An,t but only the fact that all its moments are finite.
The use of the method of moments to derive a CLT for traces of random matrices was initiated by
the work [19] in the context of Gaussian Wishart matrices. Using similar techniques, the authors in
[31] derived a CLT for traces of Wigner matrices, together with a universality result on the limiting
Gaussian distribution. Another approach leading to CLT for traces of random matrices is the resolvent
method. For instance, one is able to prove CLT for functions that are analytic inside the support of
the limiting eigenvalue distribution. We refer the reader to [8] for the case of Wigner matrices and [7]
for Wishart matrices for a use of these techniques. For a more complete review on techniques leading
to CLT, see also the introduction of [5] and references therein.

Finally, since the way we show tightness is by controlling the second moment of fn,t and since this sec-
ond moment depends only on the first four moments of An,t, tightness of fn,t still holds for the model
described in Subsection 1.4.1 for coefficients (aij)i,j≥1 whose first four moments coincide with those
of the EGE. Moreover, the method of moments proof of the convergence of traces can be adapted to
the case where the coefficients have all moments finite and Theorem 1.1 holds for coefficients (aij)i,j≥1

with all moments finite and whose first four moments coincide with those of the EGE.

1.4. Open questions and comments.

1.4.1. Minimal moment condition and universality. As conjectured in [12], the convergence in The-
orem 1.1 of the normalised characteristic polynomial is believed to hold under the minimal moment
condition

(1.7) E
[
|a1,2|2|a2,1|2

]
<∞

on the entries (ai,j)i,j≥1, which gives a condition of a fourth order moment for Wigner matrices and
second order moment for Girko matrices. The more general context of condition (1.7) seems adapted
to the model of elliptic random matrices. This model was introduced by Girko in [14] and [15]. A
version of this consists of matrices having the following dependence relations be found in [26, Definition
1.3]. Fix some random vector (ξ1, ξ2) in C2 with zero mean such that E[|ξ1|2] = E[|ξ2|2] = 1. A matrix
An = (ai,j)1≤i,j≤n is said to be elliptic with atom distribution (ξ1, ξ2) if

• (ai,i, 1 ≤ i), ((ai,j , aj,i), 1 ≤ i < j) are independent families.
• ((ai,j , aj,i), 1 ≤ i < j) consists of i.i.d copies of (ξ1, ξ2).
• (ai,i, 1 ≤ i) are i.i.d with zero mean and finite variance.

Convergence of the average eigenvalue distribution towards the uniform distribution on a rotated
version of the ellipse (1.6) where t = |E[ξ1ξ2]| has been proved, under different conditions on the
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variables, in [26, 28, 25]. We expect a version of Theorem 1.1 to hold for the general elliptic matrices
described above. This is work in progress.

1.4.2. Matrices with entries in {0, 1}. In the recent work [13], a convergence of the reciprocal char-
acteristic polynomial for matrices with independent Bernoulli entries with non-zero expectation has
been proved. The limiting random function can be expressed using Poisson random variables, see [13,
Theorem 2.3]. One could ask for an analogue of the Elliptic Ginibre Ensemble for such matrices and
the convergence of its normalised characteristic polynomial.

1.4.3. Fluctuations of the extreme eigenvalue. For both Ginibre and GUE cases, one knows the law of
the fluctuations of the largest eigenvalue around its limit. For the Ginibre Ensemble, one has Gumbel
fluctuations for the maximum modulus around 1, see [29], whereas for the GUE, one has Tracy-Widom
fluctuations for the maximum eigenvalue around 2, see [34] and references therein. In [17], we may
find a family of determinantal processes that interpolates between a Poisson process with intensity e−x

and the Airy process. The distribution function of its last particle interpolates between the Gumbel
and Tracy-Widom distributions, see [17, Theorem 1.3]. As a two-dimensional version, [10] considered
the Elliptic Ginibre Ensemble and an interpolating determinantal processes to prove scaling limits for
the eigenvalue point process.

1.4.4. Determinantal Coulomb gases. As explained in 1.4.1, this work can be thought of as a first
step towards the convergence of the characteristic polynomial outside the support of the equilibrium
measure for general elliptic random matrices. Nevertheless, we could have followed a different path,
which is to look the Elliptic Ginibre Ensembles as a particular case of a determinantal Coulomb gas.
In this vein, it may be possible to show the convergence of the traces by adapting results from [4] and
to show tightness of the characteristic polynomial outside the support of the equilibrium measure for
more general determinantal Coulomb gases by using, for instance, the results from [3].

2. Tightness of the normalised characteristic polynomial

This section is devoted to the proof of the following theorem.

Theorem 2.1 (Tightness). For every t ∈ [0, 1], the sequence {fn,t}n≥1 is tight, viewed as random
elements of H(D), the set of holomorphic functions on D.

Since the case t = 0 is treated in [12], we will assume for the rest of this section that t ∈ (0, 1].
Recall that for z ∈ D, n ≥ 1 and t ∈ [0, 1],

fn,t(z) = det
(
1 + tz2 − z√

n
An,t

)
e−

ntz2

2 .

For our purposes, we will only be interested in the holomorphic function fn,t from D to C. Equip the
set H(D) with the topology of uniform convergence on compact sets. Lemma 2.2 below reduces the
proof of tightness to a uniform control on compact subsets of D.

Lemma 2.2 (Reduction to uniform control). Fix t ∈ [0, 1]. Suppose that for every compact K ⊂ D,
the sequence (||fn,t||K)n≥1 is tight, where ||fn,t||K = maxz∈K |fn,t(z)|. Then, {fn,t}n≥1 is tight.

Proof. It is a consequence of Montel’s theorem. See, for instance, [30, Proposition 2.5]. □

Remark 2.3. By the subharmonicity of |fn,t(z)|2, saying that {E[∥fn,t∥2K ]}n≥1 is a bounded sequence
for every compact K ⊂ D is equivalent to say that {supz∈K E[|fn,t(z)|2]}n≥1 is a bounded sequence
for every compact K ⊂ D. See, for instance, [30, Lemma 2.6]. In the Girko case of [12], one had a
remarkable orthogonality of the sub-determinants which led to an upper bound on the desired quantity.
As we no longer have this property, our proof is based on the article [2], which exploits the integrability
of the Elliptic Ginibre Ensemble.

The main result of this subsection is Proposition 2.7, proved in Section 4.3. Its proof is based on
Lemma 2.5 below which expresses the quantity E[|fn,t(z)|2] in terms of Hermite polynomials. This
lemma is proved in Section 4.1.

Definition 2.4 (Hermite polynomials). The Hermite polynomials {Hen}n≥0 are the monic orthogonal

polynomials with respect to the measure e−x
2/2dx on R so that∫

R
Hen(x)Hem(x)e

−x2

2 dx =
√
2πn!δn,m.
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Recall that for t ∈ [0, 1] and z ̸= 0, we have gt(z) = z−1 + tz.

Lemma 2.5 (Hermite expression of the characteristic polynomial). For n ≥ 1, t ∈ (0, 1] and z ∈
D \ {0}, one has the following expression

(2.1) E[|fn,t(z)|2] =
n!|z|2n

nn

∣∣∣e−ntz2∣∣∣ n∑
k=0

tk

k!

∣∣∣∣Hek (√n

t
gt(z)

)∣∣∣∣2 .
With the help of the expression (2.1) and using the results from [1], we will control E[|fn,t(z)|2]
uniformly on bounded sets from above and from below. In fact, [1] allows us to give an explicit
expression for the limit of E[|fn,t(z)|2] but since we do not need it, we will only state the following.

Lemma 2.6 (Convergence of the second moment). Fix t ∈ (0, 1]. There exists a continuous function
F : D \ {0} → (0,∞) such that, uniformly on compact sets,

E[|fn,t|2] −−−→
n→∞

F .

But, since fn,t is holomorphic on the whole disk D, the origin was never actually an issue so that one
can extend the control on any Dr for r ∈ (0, 1). This is written in the next proposition.

Proposition 2.7 (Uniform control). Fix t ∈ (0, 1]. Then, for every r ∈ (0, 1) there exists Cr > 0
such that, for every n ≥ 1,

E[∥fn,t∥2Dr
] ≤ Cr.

Proposition 2.7 proves Theorem 2.1 thanks to Lemma 2.2 and Remark 2.3. The proof of the tightness
(a) in Lemma 1.2 is thus complete.

3. Convergence of the coefficients

In this section, we will prove the (b) part of Lemma 1.2. We thus have to study the convergence
in law of the coefficients appearing in fn,t. We will give a new expression of these coefficients, using a
family of polynomials that we call the modified Chebyshev polynomials introduced in Definition 3.1.

Definition 3.1 (Modified Chebyshev polynomials). For t ∈ [0, 1], the modified Chebyshev polynomials

are the polynomials
{
P

(t)
k

}
k≥0

satisfying the recurrence relation

(3.1) P
(t)
k+1 = XP

(t)
k − tP

(t)
k−1, P

(t)
0 = 2, P

(t)
1 = X.

One has an alternative expression for fn,t given by the following proposition, proved in Section 5.1.

Proposition 3.2 (Trace expression). For all n ≥ 1, t ∈ [0, 1] and z ∈ D close to the origin,

(3.2) fn,t(z) = exp

−∑
k≥1

U
(n)
k,t

zk

k

 ,

where

(3.3) U
(n)
k,t = Tr

[
P

(t)
k

(
An,t√
n

)]
+ ntδk=2.

By Proposition 3.2, the coefficients (ξ
(n)
0,t , . . . , ξ

(n)
m,t) of Lemma 1.2 (b) associated to fn,t can be expressed

as polynomials (which do not depend on n) of coefficients (U
(n)
0,t , . . . , U

(n)
m,t) and vice versa. Thus,

showing the convergence in law of
{
ξ
(n)
k,t

}
k
is equivalent to showing the convergence in law of

{
U

(n)
k,t

}
k
.

Since it is easier to deal with traces, we will study U
(n)
k,t . This is done in two steps, we study the

convergence of the expectation in Lemma 3.3 and the convergence of fluctuations in Proposition 3.4
below. These statements are proved in Sections 5.3 and 5.4 respectively.

Lemma 3.3 (Convergence of the expectation). For all k ≥ 1, denote e
(n)
k,t = E

[
U

(n)
k,t

]
. Then,

e
(n)
2k,t = −kt

k + hk,t +O

(
1

n

)
(3.4)

e
(n)
2k+1,t = o(1)(3.5)

as n→∞. The explicit expression of hk,t can be found in (5.10).
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Proposition 5.4 below shows that the variables
{
V

(n)
k,t = U

(n)
k,t − E

[
U

(n)
k,t

]}
k≥0

converge in law to a

Gaussian family.

Proposition 3.4 (Convergence of the fluctuations). For every t ∈ [0, 1], the family
{
V

(n)
k,t

}
k≥0

converges in law to a family {Vk,t}k≥0 of centered and independent complex Gaussians such that

E[V 2
k,t] = ktk and E[|Vk,t|2] = k.

Proposition 3.4 together with Lemma 3.3 show the convergence in distribution of
(
U

(n)
0,t , . . . , U

(n)
m,t

)
to

(V0,t, . . . , Vm,t) + (e
(∞)
0,t , . . . , e

(∞)
m,t ) where e

(∞)
2k,t = −kt

k + hk,t and e
(∞)
2k+1,t = 0 for k ≥ 1. By Lemma 1.2,

the limit of fn,t is the well-defined function ft ∈ H(D) given, for z small, by

(3.6) ft(z) = exp

−∑
k≥1

Vk,t
zk

k

 exp

−∑
k≥1

e
(∞)
k,t

zk

k

 = κt(z)e
−Ft(z),

where

Ft(z) =
∑
k≥1

Vk,t
zk

k
and(3.7)

κt(z) = exp

−1

2

∑
k≥1

hk,t
z2k

k

 · exp( tz2

2(1− tz2)

)
(3.8)

which is the limit function in Theorem 1.1 with Xk,t =
1√
k
Vk,t. The series for Ft defines a holomorphic

function on the whole disk but it may not be clear that
∑

k≥1 e
(∞)
k,t

zk

k also does. Since ft(0) = 1, we may

take a holomorphic logarithm and notice that
∑

k≥1 e
(∞)
k,t

zk

k converges for z small, but we may have a

problem for z far from the origin. Nevertheless, κt is well defined as fte
Ft and it is deterministic on D

since we have the deterministic expression near the origin given by (3.8). To show that
∑

k≥1 e
(∞)
k,t

zk

k

converges for z ∈ D, it would be enough to show that fte
Ft has no zeros since, in that case, we can take

a holomorphic logarithm of fte
Ft which would coincide, up to an additive constant, with

∑
k≥1 e

(∞)
k,t

zk

k

near the origin. That κt = fte
Ft has no zeros can be seen by using Lemma 2.6 which implies that

0 < E[|ft(z)|2] = |κt(z)|2E[|e−Ft(z)|2]
for z ∈ D \ {0}.

4. Proofs of statements used for tightness

4.1. Proof of Lemma 2.5. In the case of the Elliptic Ginibre Ensemble given by (1.1), the matrix
An,t has the following density, which can be found in [1, eq. (4)].

(4.1) dP(M) =

(
1

π
√
1− t2

)n2

exp

(
− 1

1− t2
Tr

[
MM∗ − t

2
(M2 + (M∗)2)

])
dM

which has the form dP(M) = w(M,M∗)dM associated to the weight function

wt(z) =
1

π
√
1− t2

exp

(
− 1

1− t2

(
|z|2 − t

2
(z2 + z2)

))
=

1

π
√
1− t2

exp

(
−
(

x2

1 + t
+

y2

1− t

))
with x = Re(z) and y = Im(z). In order to use the main theorem of [2], we should compute the
orthonormal polynomials with respect to wt(z)dz. Using results in [1, eq. (3)], these polynomials are
{Pn}n≥0 given by

(4.2) Pn(z) =

√
tn√
n!
Hen

(
z√
t

)
.

Define Rn(z) =
√
tnHen

(
z√
t

)
and cn = n!. The family {Rn}n≥0 are the monic orthogonal polynomials

with respect to wt(z)dz. Using results of [2], one has for M sampled from (4.1) and u, v ∈ C, one has
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(4.3) E
[
det(u−M)det(v −M)

]
= cN

N∑
k=0

Pk(u)Pk(v).

Since fn,t(z) = e−
ntz2

2

(
z√
n

)n
det
(√
n(z−1 + tz)−An,t

)
, setting u = v = gt(z) =

√
n(z−1 + tz) gives

E|fn,t(z)|2 =
n!|z|2n

nn

∣∣∣e−ntz2∣∣∣ n∑
k=0

tk

k!

∣∣∣∣Hek (√n

t
gt(z)

)∣∣∣∣2
which is the desired expression of E|fn,t(z)|2 in terms of Hermite polynomials.

4.2. Proof of Lemma 2.6. Recall the function gt : D → C \ Et given by gt(z) =
1
z + tz and define

Ln : C \ Et → [0,∞) by

Ln(u) =

n−1∑
k=0

tk

k!

∣∣∣∣Hek (√n

t
u

)∣∣∣∣2 .
By using the contour integral representation around a small loop enclosing the origin,

Ln(u) =
1

2πi

∮
0

enFu(s)

t− s
ds√
1− s2

, with Fu(s) =
s

t

(
Re(z)2

1 + s
+

Im(z)2

1− s

)
− log s+ log t,

the following has been proved in [1, Theorem II.12, (i)] and [1, Theorem II.13, (i)] in the case t = 1
for u ∈ C \ Et and z = g−1

t (u),

(4.4) Ln(u) =
1

2π

√
2π

nF ′′
u (t|z|2)

enFu(t|z|2)√
1− t2|z|4

1

t(1− |z|2)

(
1 +O

(
1

n

))
,

where the error term is uniform on compact sets of C \ Et. In our case we need to control

E[|fn,t(z)|2] =
n!|z|2n

nn
e−ntRe(z2)

n∑
k=0

tk

k!

∣∣∣∣Hek (√n

t

(
1

z
+ tz

))∣∣∣∣2
=
n!|z|2n

nn
e−ntRe(z2)Ln+1

(√
n

n+ 1
gt(z)

)
.

The term Fu(t|z|2) in (4.4) can be explicitly calculated by using [1, eq. (32)] or, in a more direct way,

Fu(t|z|2) = |z|2
(
Re
(
1
z + tz

)2
1 + t|z|2

+
Im
(
1
z + tz

)2
1− t|z|2

)
− log(t|z|2) + log t

= |z|2
(
Re
(
1
z + tz̄

)2
1 + t|z|2

+
Im
(
1
z − tz̄

)2
1− t|z|2

)
− log(|z|2)

= |z|2
( (

1 + t|z|2
)
Re(1/z)2 +

(
1− t|z|2

)
Im(1/z)2

)
− log(|z|2)

= 1 + t(zz̄)2Re(1/z)2 − t(zz̄)2Im(1/z)2 − log(|z|2)
= 1 + tRe(z̄)2 − tIm(z̄)2 − log(|z|2)
= 1 + tRe(z2)− log(|z|2).

By (4.4) and Stirling’s formula, we immediately notice that

n!|z|2n

nn
e−ntRe(z2)Ln(gt(z))

converges uniformly on compact sets of D \ {0} towards
1√

2πF ′′
u (t|z|2)(1− t2|z|4)t(1− |z|2)

.

It is now enough to notice that
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Ln+1

(√
n
n+1gt(z)

)
Ln(gt(z))

converges uniformly on compact sets towards a nowhere zero function, the only possible problem being

the exponential term exp((n + 1)G(
√

n
n+1u) − nG(u)), where G(w) = Fw(t|g−1

t (w)|2). But we have

the convergence for u uniformly on compact sets of C \ Et

e(n+1)G(
√

n
n+1

u)−nG(u) −−−→
n→∞

eG(u)− 1
2
⟨∇G(u),u⟩

so that the proof is complete.

4.3. Proof of Proposition 2.7. By Lemma 2.6, we have a bound for E[|fn,t(z)|2] on compact sets of
D \ {0}. This is the same as a bound for E[∥fn,t∥2K ] for compact sets K ⊂ D \ {0} by Remark 2.3. We
may obtain a bound for E[∥fn,t∥2Dr

] for r ∈ (0, 1) by using that ∥fn,t∥Dr ≤ ∥fn,t∥∂Dr by the maximum
modulus principle.

5. Proofs of statements used for the convergence of coefficients

This section aims at proving the results stated in Section 3. One first proves that the contributions
can be parameterised by families of graphs defined in Section 5.2 below. To prove the convergence to
a Gaussian family, we will show that asymptotic contributions come from pairings of specific graphs
hence the Gaussian aspect using Wick’s formula. Furthermore, we compute the limiting covariance
function and prove that it is diagonal for the family of modified Chebyshev polynomials defined in
(3.1).

5.1. Proof of Proposition 3.2. We begin by the following lemma which expresses the modified
Chebyshev polynomials in terms of the usual Chebyshev polynomials.

Lemma 5.1 (Scaling relations for Chebyshev polynomials). Let {Tk}k≥0 be the Chebyshev polynomials
of the first kind, i.e., polynomials satisfying the recurrence relation

(5.1) Tk+1 = 2XTk − Tk−1

with T0 = 1 and T1 = X. For t ∈ (0, 1] and w ∈ C, one has

(5.2) P
(t)
k (w) =

√
t
k
P

(1)
k

(
w√
t

)
= 2
√
t
k
Tk

(
w

2
√
t

)
.

Proof. The sequences
{
P

(t)
k

}
k≥0

,
{√

t
k
P

(1)
k

(
.√
t

)}
k≥0

and
{
2
√
t
k
Tk

(
.

2
√
t

)}
k≥0

satisfy the same re-

currence relation (3.1). □

From the generating function of the Chebyshev polynomials {Tk}k≥0 one has, see [33, eq. (4.7.25)],

(5.3)
∑
k≥1

2Tk(w)
zk

k
= − log(1 + w2 − 2zw).

Using (5.2), one gets

∑
k≥1

P
(t)
k (w)

zk

k
=
∑
k≥1

2Tk

(
w

2
√
t

)
(
√
tz)k

k
= − log(1 + tz2 − zw).

Therefore, for n ≥ 1 and z close enough to the origin, one can write(
1−

(
An,t√
n

)
z + tz2

)
= exp

−∑
k≥1

P
(t)
k

(
An,t√
n

)
zk

k

 ,

which is valid for diagonalizable matrices and extended to any matrix by continuity. Since det expM =
expTr[M ], the proof of Proposition 3.2 is complete.
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5.2. Graph encoding of traces. For an integer m, we use the notation [m] = {1, . . . ,m}. For a
square matrix A of order n and for k ≥ 1 one has

Tr[Ak] =
∑

(i1,...,ik)∈[n]k
ai1,i2ai2,i3 . . . aik−1,ikaik,i1 .

Each tuple i = (i1, . . . , ik) ∈ [n]k can be viewed as a function i : [k] → [n] defined by i(j) = ij for
every j ∈ [k]. To a function ψ : [k] → [n], we associate the directed multigraph Gψ with vertex set
V = ψ([k]) = Im(ψ) and edge multiset E = (ψ(1), ψ(2)), . . . , (ψ(k), ψ(1)). There might be loops or
multiple edges between vertices. For a directed graph G = (V,E) with vertex V ⊂ [n], we associate its
weight aG =

∏
e∈E as(e),t(e), where s(e) (respectively t(e)) denote the source (respectively the target)

of the directed edge e ∈ E. Thus,

Tr[Ak] =
∑

i=(i1,...,ik)

ai1,i2ai2,i3 . . . aik−1,ikaik,i1 =
∑

i:[k]→[n]

ai

where for a tuple i = (i1, . . . , ik), we denote by ai the weight of the graph Gi. Thus, the trace of
Ak can be seen as a graph-indexed sum of random variables induced by k-tuples. We now give some
definitions on directed graphs that were introduced in [21].

Definition 5.2. Let G = (V,E) be a directed multigraph. For vertices u ̸= v, we say that two distinct
directed edges with both endpoints in {u, v} are twins. If two twin edges have the same source (or
equivalently the same target), then they are called parallel. Otherwise, they are called opposite. If
the number of edges between u and v counted with multiplicities is two, the edges (u, v) and (v, u) are
both called double, double parallel or double opposite if one wants to make the distinction. An edge is
called simple if it has no twin edge and multiple otherwise.

Definition 5.3. Let G = (V,E) be a directed multigraph. We associate the undirected graph G with
same vertex set V and edge set E such that for u, v ∈ V, {u, v} ∈ E ⇐⇒ (u, v) or (v, u) ∈ E.
Furthermore, to the graph G, we associate the pair (q1, q2) defined by

q1 = |E| −
|E|
2

and(5.4)

q2 = |V | − |E|.(5.5)

The construction G 7→ G turns a directed graph into an undirected graph where edge multiplicities and
orientations are forgotten. Values of q2 in {0, 1} characterise the graph G = (V,E) by the following
proposition. We refer the reader to [27] for the proofs of these characterisations.

Proposition 5.4. Consider an undirected graph G = (V,E). Then,

(i) G is a tree if and only if |V | = |E|+ 1.
(ii) G is unicyclic (i.e has only one cycle) if and only if |V | = |E|.

We now introduce three types of graphs that will play a fundamental role in our analysis.

Definition 5.5 (Types of graphs). Let G = (V,E) be a connected directed graph. One says that

• G is of double tree type whenever (q1, q2) = (0, 1).
• G is of double unicyclic type whenever (q1, q2) = (0, 0).
• G is of 2-4 tree type whenever (q1, q2) = (−1, 1).

We denote by T (n)
k the set of double tree type graphs G with k edges on vertex set V ⊂ [n]. Note that

T (n)
k is empty if k is odd. Define C(n)k the directed cycles on k vertices.

Finally, we say that G is a double unicyclic tree if

• q2 = 0, which is equivalent to say that G is unicyclic.
• Edges of the cycle of G form a directed cycle of simple edges in G .
• Edges outside the cycle of G are double opposite edges in G.

We say that a double unicyclic tree has parameters (k, q) if its cycle has length k − 2q ≥ 1 and has q

double opposite edges. Let UC(n)(k, q) be the set of double unicyclic trees with parameters (k, q).

In the case of even multiplicities, one has the following descriptions of the graphs in Definition 5.5.
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Proposition 5.6 (Characterisation of graphs). Let G = (V,E) be a connected directed graph. Assume
that each edge of E has multiplicity at least two, so that G has no simple edge. Then,

(i) G is of double tree type if and only if G is a tree and each edge of E has multiplicity two.
(ii) G is of double unicyclic type if and only if G is unicyclic and each edge of E has multiplicity

two.

Furthermore, if edges of E have even multiplicities, then

(iii) G is of 2-4 tree type if and only if G is a tree and each edge of E has multiplicity two, except
for one edge with multiplicity four.

Proof. The statements about G being a tree or a unicyclic graph do not require the multiplicity
assumption and are consequences of Proposition 5.4 together with the definition of q2. For e ∈ E,
denote me the multiplicity of e in E which is at least two by assumption. If q1 = 0, then |E| = 2|E| =∑

e∈Eme so that me = 2 for all e ∈ E which proves (i) and (ii). In the case of even multiplicities and

q1 = −1 one has |E| = 2|E|+ 2. For k ≥ 1, let x2k ≥ 0 be the number of edges in E with multiplicity
2k in E. Then, |E| =

∑
k≥1 x2k and |E| =

∑
k≥1 2kx2k so that

(5.6) 2
∑
k≥1

x2k + 2 =
∑
k≥1

2kx2k

which gives

(5.7)
∑
k≥2

(k − 1)x2k = 1

and therefore, x2k = 0 if k ≥ 3 and x4 = 1. There is exactly one edge with multiplicity four and all
other edges have multiplicity two which proves (iii). □

The following proposition asserts that if the graph Gi associated to a k-tuple i = (i1, . . . , ik) is of
double tree type, then every edge of Gi is double opposite.

Proposition 5.7 (Double tree types have opposite branches). Let i = (i1, . . . , ik) be a k-tuple such
that Gi is of double tree type. Then, each edge of Gi is double opposite.

Proof. Let us prove that each edge of Gi has multiplicity at least two. Denote G = (V,E) the
associated graph from Definition 5.3.
Let e = (ir, ir+1) be a directed edge in Gi. Then, as (ir, ir+1, . . . , ik, i1, i2, . . . ir−1) forms a directed
cycle in Gi, there must exists an edge (is, is+1 = ir) for some s ∈ [k]. Consider the first such s in the
ordered set {r+1, . . . , k, 1, 2, . . . , r−1}. If is ̸= ir+1, then there is a cycle (ir, ir+1, . . . , is) in Gi which
would give a cycle in G which would not be a tree. This would contradict the assumption that q2 = 1
and by extension that Gi is of double tree type. Therefore, is = ir+1 which implies that every edge of
Gi has multiplicity at least two. Since q1 = 0, each edge has exactly multiplicity two by Proposition
5.6 (i) and the two edges twin edges are e = (ir, ir+1), e

′ = (is = ir+1; ir) which are opposite. □

Remark 5.8. By the same argument, one can prove that if Gi is of 2-4 tree type, then double edges
are double opposite and the quadruple edge consists of two pairs of opposite edges.

By extension of the mapping i = (i1, . . . , ik) 7→ Gi, we say that a k-tuple i has double tree type
(respectively a double unicyclic type, 2-4 tree type) if the corresponding graph Gi has. The same

applies to being a double unicyclic tree. We identify the directed k-cycles with UC(n)(k, 0) the set
of double unicyclic trees having no tree branches outside its cycle. Likewise, for even values of k, we

identify T (n)
k with UC(n)(k, k2 − 1) thanks to Proposition 5.7.

For future asymptotics, we are interested in computing the number of k-tuples i such that Gi ∈ T (n)
k .

Lemma 5.9 (Double tree type enumeration). Let k = 2m be an even integer. Then,

(5.8) Card
(
{i : [k]→ [n] | Gi ∈ T (n)

k }
)
= n(n− 1) . . . (n−m)Cm := (n)m+1Cm.

where Cm = 1
m+1

(
2m
m

)
is the m-th Catalan number.

Proof. The result is a direct consequence of [6, Lemma 2.2 and Lemma 2.4], as graphs Gi of double
tree type are exactly the Γ1(2m) graphs considered in [6]. □
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5.3. Proof of Lemma 3.3. This section is dedicated to the proof of Lemma 3.3 using the graph
encoding of the previous section. Before we compute the expectation of traces involving the modified
Chebyshev polynomials, let us prove the convergence for the expectation of monomials. This is the
purpose of Lemma 5.10 proved below.

Lemma 5.10 (Monomial expectation). Let m ≥ 1. Then, as n→∞,

(i) E
[
Tr

[(
A√
n

)2m]]
= n−m(n)m+1Cmt

m + l
(U)
m,t +O

(
1
n

)
.

(ii) E
[
Tr

[(
A√
n

)2m+1
]]

= o(1).

where l
(U)
m,t is a constant that only depends on m and t.

From the recurrence relation (3.1), one notices that the polynomials
(
P

(t)
2k

)
k
are even and

(
P

(t)
2k+1

)
k

are odd. We give an explicit formula for the coefficients that will be helpful later.

Lemma 5.11 (Coefficients of modified Chebyshev polynomials). For k ≥ 1, t ∈ [0, 1] and 0 ≤ j ≤ k/2,
let α

(k,t)
k−2j be the coefficient of Xk−2j in P

(t)
k , so that P

(t)
k =

∑
j≥0 α

(k,t)
k−2jX

k−2j. Then,

(5.9) α
(k,t)
k−2j =

{
(−t)j k

k−j
(
k−j
j

)
if k − 2j ≥ 0

0 otherwise.

Proof. The result is a direct consequence of the recurrence relation (3.1) since we have

∀ 0 ≤ 2j ≤ k + 1 : α
(k+1,t)
k+1−2j = α

(k,t)
k−2j − tα

(k−1,t)
k+1−2j .

□

Before turning to the proof of Lemma 3.3, we will need the following lemma which is proved in Section
5.3 that gives the leading term in the development of the modified Chebyshev polynomial. By Lemma

5.10, each even monomial has an asymptotic leading term of order n which factors in P
(t)
k . However,

Lemma 5.12 shows that algebraic relations in coefficients of the Chebyshev polynomials make this
diverging contribution vanish.

Lemma 5.12 (Double tree type contribution to expectation). Let k = 2m be an even integer. Then,

m∑
q=0

α
(2m,t)
2m−2qn

−m+q
(
tm−q(n)m−q+1Cm−q

)
+ ntδm=1 = l

(T )
m,t +O

(
1

n

)
where for m ≥ 1,

l
(T )
m,t = −

1

2

m∑
q=0

α
(2m,t)
2m−2qt

m−qCm−q(m− q + 1)(m− q) = −mtm.

We now prove Lemma 3.3, using the Lemmas 5.10 and 5.12.

Proof of Lemma 3.3. By linearity, one has

e
(n)
k,t =

⌊k/2⌋∑
q=0

α
(k,t)
k−2qn

− k
2
+qE

[
Tr
[
Ak−2q
n,t

]]
+ ntδk=2.

By Lemma 5.10 applied to each monomial n−
k
2
+qE

[
Tr
[
Ak−2q
n,t

]]
, one has

e
(n)
2m+1,t = o(1)

e
(n)
2m,t =

m∑
q=0

α
(2m,t)
2m−2q

(
n−m+qtm−q(n)m−q+1Cm−q + l

(U)
2m−2q,t +O

(
1

n

))
+ ntδm=1

=

m∑
q=0

(
α
(2m,t)
2m−2qn

−m+qtm−q(n)m−q+1Cm−q

)
+ ntδm=1 + hm,t +O

(
1

n

)
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where

(5.10) hm,t =
m∑
q=0

α
(2m,t)
2m−2ql

(U)
2m−2q,t

(we recall that α, l(U) are defined respectively in (5.9) and (5.12)). By Lemma 5.12, we get

(5.11) e
(n)
2m,t = l(T )m + hm,t +O

(
1

n

)
= −mtm + hm,t +O

(
1

n

)
from which one derives Lemma 3.3. □

Remark 5.13 (On the multiplicative factor exp(−ntz2/2)). Lemma 3.3 shows that in order to have

convergence, one needs to consider the expectation of the random variables

(
Tr

[(
A√
n

)2m]
+ ntδm=1

)
.

The term ntδm=1 corresponds to the additional factor exp(−ntz2/2) in our definition of the normalised
characteristic polynomial (1.3) that did not appear in the Girko setup of [12] since the latter corresponds

to the case t = 0. One could have seen this additional term for k = 2 by hand as P
(t)
2 = X2 − 2t and

1

n
Tr[A2] =

1

n

n∑
i=1

a2i,i +
2

n

∑
i<j

ai,jaj,i.

The first sum converges almost surely to E[a21,1] by the law of large numbers. Since E[ai,jaj,i] = t,

2

n

∑
i<j

ai,jaj,i =
2

n

∑
i<j

(ai,jaj,i − t) +
2

n

n(n− 1)

2
t.

One sees the diverging term 2
n
n(n−1)

2 t ∼ nt as n→∞. Thus,

Tr

[
P

(t)
2

(
An,t√
n

)]
+ nt =

1

n

n∑
i=1

a2i,i +
2

n

√(
n

2

)
· 1√(

n
2

)∑
i<j

(ai,jaj,i − t) +
2

n

n(n− 1)

2
t− 2nt+ nt.

The first right-hand side term converges almost surely to the constant E[a21,1] while the sum of the three
last terms is the constant −t. By the central limit theorem, the middle term converges in distribution

to a normal distribution. Thus, Tr
[
P

(t)
2

(
An,t√
n

)]
+nt converges in distribution to a complex Gaussian

random variable ξ with parameters E[ξ] = E[a21,1] − t = 0, E[ξ2] = 2(E[a21,2a22,1] − t2) = 2t2 and

E[|ξ|2] = 2(E[|a1,2a2,1|2] − t2) = 2. Note that this is exactly the result stated in Proposition 3.4 for
k = 2. Remark furthermore that one needs to have E[|a1,2|2|a2,1|2] < ∞ for the variance of ξ to be
defined. This is the conjectured optimal moment condition for the normalised characteristic polynomial
to converge given in Subsection (1.4.1).

We now turn to the proofs of Lemma 5.10 and Lemma 5.12.

Proof of Lemma 5.10. Let us take k ≥ 1 and write

ETr

[(
A√
n

)k]
= n−k/2

∑
i:[k]→[n]

E[ai].

As coefficients are centered, the only k-tuples i such that E[ai] is non-vanishing are tuples for which
the associated graph Gi has no simple edge. Consider such a directed graph G = (V,E) and denote
G = (V,E) the corresponding undirected graph of Definition 5.3. The number of k-tuples for which

Gi is G is of order O(n|V |). To have a non-vanishing contribution, we should have |V | ≥ k
2 . As there

is no simple edge, we have |E| ≤ k
2 . Thus,

k

2
− 1 ≤ |V | − 1 ≤ |E| ≤ k

2
.

For odd values of k, there is only one integer between k
2 − 1 and k

2 so that k−1
2 = |E| = |V | − 1 and G

is a tree. Since edges are multiple and there are k in total, Gi necessarily has a triple edge while all
other edges are double. Since E[a21,2a2,1] = 0, this leads to a vanishing contribution. The next highest

order term is O(n−
1
2 ), which proves (ii). We now assume that k = 2m for some integer m ≥ 1. Two
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possibilities can happen, either |E| = m or |E| = m− 1.

Suppose first that |E| = m. Then, q1 = 0 so that all edges in Gi are double.

• If |V | = m+1 then q2 = 1 which means that Gi is a tree. By Proposition 5.6, Gi ∈ T (n)
k is of double

tree type with m opposite double edges. Each double tree gives a contribution of E[ai] = tm.

• If |V | = m, then q2 = 0 which means that Gi is unicyclic and Gi is of double unicyclic type with
opposite edges outside its cycle. The cycle Gi can consist in either parallel or opposite edges.
Denote

ηm = number of non-isomorphic unicyclic graph on m vertices.

The number of tuples i : [k]→ [n] such that Gi has double opposite edges and that Gi is unicyclic is
(n)mηm. Since E[a21,2] = 0, the only non-vanishing contributions are those of graph having double
opposite edges in their cycle. Each such graph gives a contribution of tm and therefore the next
order non-vanishing contribution is ηmt

m.

Suppose now that |E| = m − 1. Then q1 = −1. We must have |V | = m to have a non-vanishing
contribution so that q2 = 1. Thus, G is of 2-4 tree type so that G is a tree and the corresponding
graph G has double tree type except for two vertices between which there are two pairs of opposite
edges forming a quadruple edge. Denote

η′m = number of non-isomorphic 2-4 trees on m vertices.

Each such graph gives a contribution of E[ai] = tm−2 · E[a21,2a22,1] = 2tm. Thus, using Lemma 5.9,

ETr

[(
A√
n

)2m
]
= n−m(n)m+1Cmt

m + (ηm + 2η′n)t
m +O

(
1

n

)
which proves (i) with

(5.12) l
(U)
m,t = (ηm + 2η′n)t

m

and ends the proof of Lemma 5.10. □

Proof of Lemma 5.12. Let us take k = 2m even. We want to compute

k
2∑

q=0

n−
k
2
+qα

(k,t)
k−2q

(
t
k
2
−q(n) k

2
−q+1C k

2
−q

)
=

m∑
q=0

n−m+qα
(2m,t)
2m−2q

(
tm−q(n)m−q+1Cm−q

)
=: Sm.

One has

(n)m−q+1 = n(n− 1) . . . (n− (m− q)) = nm−q+1 − nm−q
m−q∑
k=1

k +O(nm−q−1),

so that

Sm = n
m∑
q=0

α
(2m,t)
2m−2qt

m−qCm−q −
m∑
q=0

α
(2m,t)
2m−2qt

m−qCm−q
(m− q + 1)(m− q)

2
+O

(
1

n

)
.

Consider the first sum S′
m =

∑m
q=0 α

(2m,t)
2m−2qt

m−qCm−q. Recall that the Catalan number Cl is the 2l-th

moment of the semi-circular distribution : Cl =
∫
|x|<2 x

2l 1
2π

√
4− x2dx. Denote dµ2

√
t the probability

distribution having density 1
2tπ

√
4t− x2dx on [−2

√
t, 2
√
t]. By a linear change of variables, one derives∫

|x|<2
√
t
xk−2qdµ2

√
t(x) =

∫
|x|<2

√
t
xk−2q 1

2tπ

√
4t− x2dx = C k

2
−qt

k
2
−q.
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One can then identify S′
m as the integral of the k = 2m-th modified Chebyshev polynomial P

(t)
k with

respect to the distribution µ2
√
t. Thus, using that P

(t)
2m is even,

S′
m =

∫ 2
√
t

−2
√
t
P

(t)
2m(x)dµ2

√
t(x)

=
4

π

∫ 1

0
P

(t)
2m(2

√
ty)
√

1− y2dy

=
4

π

∫ π
2

0
P

(t)
2m(2

√
t cos(θ))sin2(θ)dθ.

Inspired from the classic equality Tk(cos θ) = cos kθ satisfied by the ordinary Chebyshev polynomials,

let us prove that P
(t)
k (2
√
t cos(θ)) = 2

√
t
k
cos kθ. One checks that the previous holds for k = 0 and

k = 1. We prove it by induction for general k using the recurrence relation (3.1) which gives

P
(t)
k (2
√
t cos(θ)) = 2

√
t cos(θ)P

(t)
k−1(2

√
t cos(θ))− tP (t)

k−2(2
√
t cos(θ))

= 2
√
t cos(θ)(2

√
t
k−1

cos(k − 1)θ)− 2t
√
t
k−2

cos(k − 2)θ

= 2
√
t
k
cos kθ.

Therefore,

S′
m =

4

π

∫ π
2

0
2tm cos(2mθ)sin2(θ)dθ =

8

π
tm
∫ π

2

0
cos(2mθ)sin2(θ)dθ.

Moreover, ∫ π
2

0
cos(kx)sin2(x)dx =

(k2 − 2)

k(k2 − 4)
sin

kπ

2

which is zero for even values of k greater or equal to 4. For k → 2, the right hand side converges to
−π

8 so that S′
m = −tδ1,m. Therefore,

k
2∑

q=0

n−
k
2
+qα

(k,t)
k−2q

(
t
k
2
−q(n) k

2
−q+1C k

2
−q

)
= −ntδ2,k + l

(T )
k
2

+O

(
1

n

)
where, for m ≥ 1,

l
(T )
k
2

= l(T )m = −1

2

m∑
q=0

α
(2m,t)
2m−2qt

m−qCm−q(m− q + 1)(m− q).

It remains to prove that l
(T )
m = −mtm. Let m ≥ 1.

m∑
q=0

α
(2m,t)
2m−2qt

m−qCm−q(m− q + 1)(m− q)

= 2mtm
m∑
q=0

(−1)q 1

2m− q

(
2m− q
q

)
1

m− q + 1

(
2m− 2j

m− j

)
(m− q + 1)(m− q)

= 2mtm
m∑
q=0

(−1)q m− q
2m− q

(
2m− j
j

)(
2m− 2q

m− q

)

= 2mtm
m∑
q=0

(−1)q m− q
2m− q

(
m

j

)(
2m− q
m− q

)
= 2mtm

m−1∑
q=0

(−1)q m− q
2m− q

(
m

j

)(
2m− q
m− q

)

= 2mtm
m−1∑
q=0

(−1)q
(
m

j

)(
2m− q − 1

m− q − 1

)
= 2mtm

m−1∑
q=0

(−1)q
(
m

j

)(
2m− q − 1

m

)
.

Since
(
2m−q−1

m

)
is the coefficient of zm in (1 + z)2m−q−1, the last sum is the coefficient of zm in the

polynomial
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m−1∑
q=0

(−1)q
(
m

j

)
(1 + z)2m−q−1 = (1 + z)2m−1

((
1− 1

1 + z

)m
−
(

1

1 + z

)m)
= (1 + z)m−1(zm − 1)

so that this coefficient is 1, which gives the result, after multiplying by −2mtm

2 .
□

5.4. Proof of Proposition 3.4.

5.4.1. Strategy of proof. The previous section showed that in order to understand the limiting function,
one has to study the convergence of the centered variables

(5.13) V
(n)
k,t = U

(n)
k,t − E

[
U

(n)
k,t

]
= Tr

[
P

(t)
k

(
An,t√
n

)]
− E

[
Tr

[
P

(t)
k

(
An,t√
n

)]]
.

The study of random variables of the form (5.13) is known as second order asymptotics, which is the
analogue of the Central Limit Theorem for random matrices. This study was initiated by the work
of Johansson [18] for random matrices sampled from β-ensembles. In particular, see [23, Section 5.1],
for f a polynomial such that

1

2π

∫ 2

−2
f(x)

√
4− x2dx = 0

and {An} be scaled GUE matrices of size n, then {Tr[Ck(An)]}k≥0 converges to independent Gaussians
with limn→∞Tr[Ck(An)] having zero mean and variance k, where {Ck}k≥0 are the Chebyshev polyno-
mials scaled to [−2, 2]. Those scaled Chebyshev polynomials {Cn}n≥0 are defined by the recurrence
relation Cn+1 = xCn − Cn−1 with C0 = 2 and C1 = X. Comparing with (3.1), one sees that the
polynomials which diagonalize the covariance for GUE matrices are exactly the modified Chebyshev

polynomials {P (1)
n }n≥0. We give the following definition in [23, Definition 5.2] of having a second order

distribution for a family of random matrices.

Definition 5.14. Let {XN}N be a sequence of random matrices. We say that {XN}N has a second
order limiting distribution if there are sequences {αk}k and {αp,q}p,q such that

• ∀k, limN→∞ E[ 1NTr[Xk
N ]] = αk.

• ∀p, q, limN→∞ cov
(
Tr[Xp

N ],Tr[X
q
N ]
)
= αp,q.

• ∀r > 2,∀p1, . . . , pr ≥ 1 : limN→∞ kr(Tr[X
p1
N ], . . . ,Tr[Xpr

N ]) = 0.

where kr denotes the r-th cumulant.

In [23], the authors proved that GUE matrices have a second-order limiting distribution with explicit
coefficients {αk}k and {αp,q}p,q that can be expressed via non-crossing partitions. In the recent paper
[21] on second order fluctuations, the authors computed the limiting covariance of Wigner matrices
with some additional hypotheses, see the introduction therein. The limiting second-order covariance
depends on the parameters θ = E[a21,2], η = E[a21,1] and k4 = E[a21,2a21,2]−2−|E[a21,2]|2 of the Wigner ma-
trix and can be expressed using non-crossing partitions of annulus just as in the case of GUE matrices.

On the other hand, in [12, Lemma 3.4 and 3.5], the authors proved the convergence of the variables{
Tr

[(
An√
n

)k]}
k

for Girko matrices to some independent Gaussian random variables whose parame-

ters depend on η = E[a21,1]. Thus, the polynomials {Xk}k≥0 diagonalize the limiting covariance for
Girko matrices. Remark that those polynomials correspond to the modified Chebyshev polynomials

{P (0)
n }n≥0 at the other endpoint of our interpolation. The statement of Proposition 3.4 can be seen

as an extension of the two previous diagonalizations, namely by ordinary Chebyshev polynomials for
t = 1 and monomials for t = 0, of a limit covariance structure that we will now compute.
Recall that for k ≥ 1:

Tr[Ak] =
∑

i:[k]→[n]

ai.
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Let P(k) be the set of partitions of [k]. To a function i : [k] → [n], we associate the partition

ker i ∈ P(k) by the relation u
ker i∼ v ⇐⇒ i(u) = i(v), which regroups the index set [k] in blocks

having the same image by i. For two functions such that ker i = kerh, we have E[ai] = E[ah].

Let us fix integers k1, . . . , km, conjugating exponents s1, . . . , sm ∈ {0, 1} and k = (k1, . . . , km). Denote

k = k1 + · · ·+ km. With the convention that x(0) = x and x(1) = x, let us consider

(5.14) M
(n)
k,t := n−

k
2E

 m∏
j=1

(
Tr(A

kj
n,t)− E[Tr(Akjn,t)]

)(sj) .
The proof of Proposition 5.4 consists in two part. We first prove the convergence of M

(n)
k,t to

E[Z(s1)
k1,t

. . . Z
(s1)
km,t

] where {Zk,t}k are Gaussian random variables, see Proposition 5.15 below. Then,

we prove that the covariance of the family {Zk,t}k is diagonalized by the modified Chebyshev poly-
nomials of Definition 3.1, which is Proposition 5.16 below. Propositions 5.15 and 5.16 are proved in
Sections 5.4.3 and 5.4.4 respectively.

Proposition 5.15 (Convergence to a Gaussian family). Fix t ∈ [0, 1].

The family
{
n−

k
2 (Tr(Akn,t)− E[Tr(Akn,t)])

}
k≥0

converges to a centered Gaussian family {Zk,t}k≥0.

Let φ(t) and φ
(t)
c be defined by φ(t)(Xp, Xq) = E[Zp,tZq,t] and φ

(t)
c (Xp, Xq) = E[Zp,tZq,t]. This

notation extends by linearity of φ(t), φ
(t)
c in both arguments to φ(t)(P,Q) and φ

(t)
c (P,Q) for polynomials

P,Q ∈ C[X].

Proposition 5.16 (Diagonal covariance for modified Chebyshev polynomials). For all k, l ≥ 1,

(5.15) φ(t)(P
(t)
k , P

(t)
l ) = ktkδk=l.

and

(5.16) φ(t)
c (P

(t)
k , P

(t)
l ) = kδk=l.

which means that the modified Chebyshev polynomials diagonalize the limiting covariance for the El-
liptic Ginibre Ensemble.

Note that Proposition 5.15 together with Proposition 5.16 prove Proposition 3.4. Before turning to the
proof of Proposition 5.15, we introduce some definitions and notations to study products of variables
{Tr(Akn,t)− E[Tr(Akn,t)]}k.

5.4.2. Rearrangement of contributions. The main result of this section is Proposition 5.18 below,
inspired by [21, Proposition 22], which gives another expression of (5.14) in order to prove the con-
vergence to a Gaussian family. We introduce the necessary material here. For each 1 ≤ j ≤ m,

Tr[A
kj
n,t]− E[Tr(Akjn,t)] =

∑
ψj :[kj ]→[n]

(aψ − E[aψ])

where for notation convenience, we dropped the dependence in t in the products aψ. Thus,

M
(n)
k,t = n−

k
2

∑
ψ1,...,ψm

E

 m∏
j=1

(aψj
− E[aψj

])(sj)

 .
Consider the directed graphs G1, . . . , Gm associated to each of the functions ψ1, . . . , ψm (i.e., for all j,
Gj = (Vj , Ej) with Vj = Im(ψj)) and Ej = {(ψj(1), ψj(2)), . . . , (ψj(kj − 1), ψj(kj)), (ψj(kj), ψj(1))}).
Define ψ : [k]→ [n] by

∀j ∈ [m], ∀l ∈ [kj ] : ψ

l + j−1∑
p=0

kj

 = ψj(l).

The next lemma shows that terms can be grouped by the induced partition kerψ ∈ P(k).
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Lemma 5.17 (Grouping contributions by their partitions). Let ψ1, . . . , ψm and ϕ1, . . . , ϕm functions
such that the associated functions ψ and ϕ from [k] to [n] verify kerψ = kerφ. Then,

(5.17) E

 m∏
j=1

(aψj
− E[aψj

])(sj)

 = E

 m∏
j=1

(aϕj − E[aϕj ])
(sj)

 .
Proof. For ψ, ϕ : [k] → [n] such that kerψ = kerϕ, there exists σ ∈ Sn such that ψ = σ ◦ ϕ. By the
dependence structure of coefficients (au,v)u,v≥1,

E

 k∏
j=1

aψ(j),ψ(j+1)

 =
∏

(u,v)∈[n]2
E

 ∏
j∈I(u,v,ψ)

aψ(j),ψ(j+1)

 ,
where I(u, v, ψ) = {j ∈ [k] : (ψ(j), ψ(j+1)) ∈ {(u, v), (v, u)}} with the convention that the expectation
is one if I(u, v) = ∅. Thus, I(u, v, ϕ) = I(σ(u), σ(v), ψ) and since the pairs {(au,v, av,u)}u,v are
identically distributed,

E

 k∏
j=1

aϕ(j),ϕ(j+1)

 =
∏

(u,v)∈[n]2
E

 ∏
j∈I(u,v,ϕ)

aϕ(j),ϕ(j+1)


=

∏
(u,v)∈[n]2

E

 ∏
j∈I(u,v,ψ)

aψ(j),ψ(j+1)

 = E

 k∏
j=1

aψ(j),ψ(j+1)

 .
□

For π ∈ P(k), denote ak,t(π) the value of (5.17) for any functions {ψj : [kj ] → [n], 1 ≤ j ≤ m} such
that kerψ = π. We now have,

M
(n)
k,t =

∑
π∈P(k)

n−
k
2 c

(n)
k (π)ak,t(π)

where, for π ∈ P(k), c(n)k (π) is the number of maps (ψ1, . . . , ψm), ψj : [kj ]→ [n], 1 ≤ j ≤ m such that
kerψ = π. For π ∈ P(k), denote #π its number of blocks. By choosing an image for each block, one

has c
(n)
k (π) = (n)#π = n(n − 1) . . . (n − #π + 1). Note that this number is well-defined if #π ≤ n,

which holds for n large enough as π ∈ P(k) implies that #π ≤ k.

For π ∈ P(k), denote Gπ,k = (Vπ, Eπ) the union graph ∪mj=1Gj associated to any function ψ : [k]→ [n]
such that kerψ = π. This means that Gπ,k is the union of m directed graphs which can be constructed
from restricted maps ψj as above. Thus, one has

Vπ = Im(ψ) = ψ([k]).

Eπ = E(1)
π ∪ · · · ∪ E(m)

π where for each j ∈ [m].

E(j)
π = {(ψ(kj−1 + 1), ψ(kj−1 + 2)), . . . , (ψ(kj−1 + kj − 1), ψ(kj−1 + kj)), (ψ(kj−1 + kj), ψ(kj−1 + 1)))}

= {(ψj(1), ψj(2)), . . . , (ψj(kj − 1), ψj(kj)), (ψj(kj), ψj(1))}.
By definition, |Eπ| = k and |Vπ| = #π. The dominating power of n in M is thus

q(π) = |Vπ| −
|Eπ|
2

=

(
|Eπ| −

|Eπ|
2

)
︸ ︷︷ ︸

q1

+(|Vπ| − |Eπ|)︸ ︷︷ ︸
q2

,

where we used the notation G = (V,E) where edge multiplicities are forgotten introduced in Definition
5.3 above. Suppose that Gπ,k has connected components (Γi = (Vi, Ei))i∈I . Then, one can define
qi(π) = qi,1 + qi,2 for each connected component by the same formula as in Definition 5.3 above
restricted to Γi = (Vi, Ei). There are now two different families of graphs:

• The graphs (Gj)j∈[m] which are directed graphs with kj edges whose union is Gπ,k.
• The connected components (Γi)i∈I of the graph Gπ,k.
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Denote D the set of partitions such that the connected components are either double unicyclic or 2-4
tree type. We now state Proposition 5.18, adapted from [21, Proposition 22].

Proposition 5.18 (Principal contributions are double unicyclic graphs and 2-4 trees). As n → ∞,
one has

(5.18) M
(n)
k,t =

∑
π∈D

ak,t(π) + o(1).

The proof of Proposition 5.18 is based on the same arguments as in [21] and relies on the series of
lemmas below which are adaptations of the results in [21].
An example of configuration giving a term in the sum on the right hand side of (5.18) is given in
Figure 2 below. Here, we have m = 4 directed cycles which give |I| = 2 connected components for
Gπ,k.

Figure 2. Four directed cycles giving two connected components: one double unicyclic
(left) and one 2-4 tree (right).

Lemma 5.19 (Contributing graphs have multiple edges). If ak,t(π) ̸= 0, edges of Gπ,k are multiple.

Proof. If one edge (u, v) is single in Gπ,k, the random variable au,v in centered and independent of the
others so that ak,t(π) = 0. □

Lemma 5.20 (Graph characterisation of qi,1, qi,2). Suppose that ak,t(π) ̸= 0. For each connected
component Γi:

(a) qi,1 ≤ 0 with equality if and only if each edge in Γi is double.

(b) qi,2 ≤ 1 with equality if and only if Γi is a tree.

Proof. Since each edge should be multiple by Lemma 5.19, to each edge in Γi corresponds at least two
edges in Γi, so that |Ei| ≥ 2|Ei|. The equality case follows when every edge in Γi gives exactly two
edges in Γi which proves (a). The result (b) is a direct consequence of Proposition 5.4 (i). □

Lemma 5.21 (Even multiplicity of disconnecting edges). Let e ∈ Gπ,k corresponding to a set of
twin edges in some connected component Γi. If the removal of the edges of e disconnects Γi, then the
multiplicity of edges in e coming from each graph Gj is an even number, with an equal number of edges
in each direction.

Proof. The proof uses the same arguments as in the proof of [21, Lemma 20]. Assume that a graph
Gj has p ≥ 1 twin edges in the group e that disconnects Γi, for some j ∈ [m] and i ∈ I.
Let us prove that p > 1. Assume that e0 ∈ Gj is the only one edge of e coming from Gj . The graph
Gj \ e0 is connected by construction of Gj . Then, in Γi \ e the source and target of e0 are connected
by the path in Gj \ e0 which contradicts the assumption that e is disconnecting. Thus, p > 1.
Assume p ≥ 2. Start a walk in Gj from the source of e0 and consider e1 its first twin edge in Gj met
after e0. Then, e0 and e1 are opposite. Indeed, if they were parallel, removing e0 and e1 would not
disconnect Gj . This would imply that removing e in Gπ,k would not disconnect Γi, leading to the
same contradiction as in (i). Thus, e0 and e1 are opposite. Remove the loop from the source of e0 to
the target of e1 in Gj . The remaining graph has now p− 2 directed edges in e. Using induction, one
derives that the number of edges in e coming from Gj is even with an equal number in each direction.

□
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Lemma 5.22 (Characterisation of non-vanishing connected components). If ak,t(π) ̸= 0, then for
every connected component Γi of Gπ,k, one has qi,1+ qi,2 ≤ 0 with equality if and only if the connected
component is either double unicyclic of 2-4 tree type.

Before turning to the proof of Lemma 5.22, we will need the following lemmas.

Lemma 5.23 (Connectivity condition). If there exists j ∈ [m] and i ∈ I such that Gj = Γi, then
ak,t(π) = 0.

Proof. For such j ∈ [m] and i ∈ I such that Gj = Γi, the random variable (aψj
−E[aψj

]) is independent
of the other random variables {(aψl

− E[aψl
]) : l ∈ [m], l ̸= j} and thus ak,t(π) = 0. □

Lemma 5.24 (Double tree type components have vanishing contribution). If some connected compo-
nent Γi is of double tree type, then ak,t(π) = 0.

Proof. Assume that Γi is a connected component of double tree type. Let E(Γi) be the edges of Γi,
each one corresponding to double opposite edges in Gπ,k. By Lemma 5.21, to each edge e ∈ E(Γi),
one can associate some j ∈ [m] such that the pair of opposite edges composing e comes from Gj only.

Denote this map h : E(Γi)→ [m]. If h has more than one image point, say j ̸= l then (aψj
− E[aψj

])
and (aψl

−E[aψl
]) are independent of all other random variables and thus ak,t(π) = 0. If the image of

h contains only one integer j ∈ [m], we would have Γi = Gj so that ak,t(π) = 0 by Lemma 5.23. □

Proof of Lemma 5.22. By the Lemmas 5.20 and 5.24 excluding double tree types, any connected com-
ponent of a non-vanishing contribution satisfies Γi satisfies qi,1 + qi,2 < 1. The next possible value

would be qi,1 + qi,2 = 1
2 if (qi,1, qi,2) = (−1

2 , 1). Should the previous hold, the graph Γi would thus be
a tree and Γi would only have double edges except for an edge with multiplicity three, contradicting
Lemma 5.21 as this group of edges would disconnect Gπ,k and have an odd cardinal. Thus, we have
qi,1+qi,2 ≤ 0, with equality cases corresponding to π ∈ D by the characterisations of Lemma 5.22. □

Proof of Proposition 5.18. . The leading order of n inM
(n)
k,t is q(π) =

∑
i∈I qi(π) =

∑
i∈I qi,1+qi,2 ≤ 0.

By Lemma 5.22, the contribution of π is non-vanishing if and only if each of its connected components
are double unicyclic or 2-4 type which proves Proposition 5.18. □

5.4.3. Convergence to a Gaussian family. This section is devoted to the proof of Proposition 5.15. To

prove that the limiting family is Gaussian, let us write M
(n)
k,t as a Wick product. This is the statement

of Proposition 5.26 below which is the analogue of [21, Proposition 33]. Such an expression implies
that the family is Gaussian and thus proves Proposition 5.15. Our proof structure follows again the
lines of [21].

Definition 5.25. For any pair of indexes {j, l}, denote P(j, l) the set of partitions π of {kj−1 +
1, . . . , kj ]} ∪ {kl−1 + 1, . . . , kl} such that

(1) Either the graph Gj ∪Gl is of double unicyclic type and both graphs Gj, Gl are unicyclic. This
happens when both graphs Gj and Gl are double unicyclic trees with the same cycle, by pairing
the edges in the common cycle.

(2) Either Gj ∪Gl is of 2-4 tree type and both graphs Gj, Gl are double trees. A pair of twin edges
in Gj and a pair of twin edges Gl are thus paired to form the group of edges of multiplicity
four in Gj ∪Gl.

The following proposition shows that graphs contributing to the limit in M
(n)
k,t are obtained by pairing

the graphs {Gj}1≤j≤m.

Proposition 5.26 (Wick product expression of M
(n)
k,t ). We have

(5.19) M
(n)
k,t =

∑
σ∈P2(m)

∏
(j,l)∈σ

Mt(j, l) + o(1)

as n→ +∞, with

(5.20) Mt(j, l) =
∑

π∈P(j,l)

at(π)

where at(π) is the common value for E
[
(aψj

− E[aψj
])(sj)(aψl

− E[aψl
])(sl)

]
for ψj , ψk such that the

associated partition of {kj−1 + 1, . . . , kj} ∪ {kl−1 + 1, . . . , kl} is π.
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The proof of Proposition 5.26 relies on Lemma 5.27 that we state below. Recall that by Proposition
5.18, the only graphs G1, . . . , Gm that can contribute are those for which their union graph has
connected components of either double unicyclic or 2-4 type. As products are centered, each such
connected component should come from at least two of the Gi’s. The next lemma adapted from [21,
Lemma 35] shows that each connected component comes from exactly two of the Gi’s, which is where
the pairings appear.

Lemma 5.27 (Graph pairings). Consider π ∈ P(k) such that ak,t(π) ̸= 0 and assume that Γi is of
double cycle type. Then, there are two different cycles Gj, Gl such that each group of twin edges in
the cycle of Γi consists in an edge from Gj and an edge from Gl.

Proof. Denote E0 the set of groups of twin edges in the cycle of Γi. Assume that some Gj has exactly
one edge in a group e ∈ E0. Suppose for the sake of a contradiction that there is another group of
edge e′ ∈ E0 coming from two other cycles Gj′ , Gj′′ with j

′ ̸= j ̸= j′′. The removal of e disconnects
Gπ,k \ e′ (which is connected). The fact that only one edge of e comes from Gj would contradict 5.21.
Thus, Gj has one edge in every element of E0 and since Γi is a double cycle, there is some other cycle
Gl with the same property. Let us show that this other cycle cannot be Gj .
Assume now that each group in E0 comes from only a single cycle Gj . Then, the component Γi would
come from this cycle Gj and thus Gj would be X disconnected from Gπ,k giving ak,t(π) = 0. □

Proof of Proposition 5.26. . Assume that some component Γi of Gπ,k is made from at least three
cycles among G1, . . . , Gm. We will show that ak,t(π) = 0.

• If Γi is a 2-4 type, by Lemma 5.21, the edge of multiplicity four can only come from two graphs
Gj , Gl and one of the (at least) three graphs would be disconnected leading to a vanishing
contribution.
• If Γi is double unicyclic, Lemma 5.27 shows that there are two graphs that are paired to
constitute its cycle. Since every other edge has multiplicity two outside the cycle, one would
also have at least one disconnected graph and a vanishing contribution.

Thus, the only non-vanishing contributions come from a pairing of unicyclic double trees Gj , Gl paired
together to form either a double unicyclic graph and a 2-4 tree. □

By Iserlis-Wick’s lemma, the proof of Proposition 5.15 is complete.

5.4.4. Computation of the limiting covariance. To prove Proposition 5.16, we need to compute the
asymptotic covariance of the previous Gaussian family and show that it is diagonal for the modified
Chebyshev polynomials. Let us take m = 2 and consider π ∈ P(1, 2) a partition associated to any
function ψ such that the associated union graph Gπ,k = Gk1 ∪Gk2 is a double unycylic graph or a 2-4
tree. Let us compute the value of

at(π) = E
[
(aψ1 − E[aψ1 ])

(s1)(aψ2 − E[aψ2 ])
(s2)
]
.

If Gπ,k is of double unicycle type, then Gk1 and Gk2 are unicyclic double trees with the same cycle,
either in the same direction or opposite. If they are opposite (respectively parallel), we say that
π ∈ DUopp (respectively π ∈ DUpar).

Lemma 5.28 (Covariance φ(t)(Xk1 , Xk2)). Let us fix s1 = s2 = 0 and suppose that Gπ,k is a double
unicyclic graph with a cycle of length l ≥ 1.

(i) If π ∈ DUopp, at(π) = t(k1+k2)/2.

(ii) If π ∈ DUpar, at(π) = t(k1+k2)/2δl=1.

(iii) If π ∈ FT, at(π) = t(k1+k2)/2.

Proof. Suppose that Gπ,k ∈ DUopp. Then, the cycle length l is at least 3 since a cycle of length
2 would only belong to one of the graphs Gk1 , Gk2 and the two graphs would be independent of
each other. Each of Gk1 and Gk2 both have l simple edges so that E[aψ1 ] = E[aψ2 ] = 0. Moreover,

aψ1aψ2 is the product of k1+k2
2 independent variables with the same distribution as a1,2a2,1 which

gives (i). For Gπ,k ∈ DUpar, if l ̸= 1, since E[a21,2] = 0, one would have at(π) = 0. The only parallel

contribution comes from l = 1 where the cycle of Gπ,k is a double loop edge which gives E[a21,1] = t

and thus at(π) = t · t(k1+k2)/2−1 = t(k1+k2)/2 proving (ii). If Gπ,k ∈ FT , the quadruple edge gives
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a contribution of E[a21,2a22,1] = 2t2 while other opposite edges give a contribution of t. Therefore,

E[aψ1aψ2 − E[aψ1aψ2 ]] = (2t2 − t2)t(k1+k2)/2−2 which proves (iii). □

Lemma 5.29 (Covariance φ
(t)
c (Xk1 , Xk2)). Let us fix s1 = 0 and s2 = 1. We have, where l is the

common cycle length.

(i) If π ∈ DUopp, at(π) = 0.

(ii) If π ∈ DUpar, at(π) = t(k1+k2)/2−l.

(iii) If π ∈ FT, at(π) = t(k1+k2)/2−2.

Proof. We have E[a1,2a2,1] = 0 so any opposite cycle has zero expectation proving (i). For Gπ,k ∈
DUpar, since E[a1,2a1,2] = E|a1,2|2 = 1 = E|a1,1|2 and the rest of the double edges outside the
cycle have expectation t, one derives (ii). If Gπ,k ∈ FT , the quadruple edge gives a contribution of

E[|a1,2|2|a2,1|2] = 1 + t2 so that at(π) = t(k1+k2)/2−2(E[|a1,2|2|a2,1|2]− t2) = t(k1+k2)/2−2. □

We are now interested in the number of partitions in P(i, j). In [21, Lemma 39], the authors introduced
a bijection that allows us to count the number of double unicyclic graphs as well as the number of 2-4
trees. Let us first assume that k1 and k2 are both even. Recall that they necessarily have the same
parity. Define G2l the set of all possible graphs obtained which are of double unicyclic type having a
cycle length of 2l for l ≥ 1. We state the result of [21, Lemma 39], as well as its extension to 2 − 4
tree types as discussed after [21, Definition 40].

Lemma 5.30 (Non-crossing annular pairings enumeration). For each l ≥ 1, there is a bijection from

G2l to the set NC
(l)
2 (k1, k2) of non crossing pairings of the k1, k2 annulus with l through strings.

Furthermore, there is a bijection from FT to the set NC
(2)
2 (k1, k2) of non crossing pairings of the

k1, k2 annulus with 2 through strings.

Denote nc(l)(p, q) the cardinal of NC
(l)
2 (p, q). By [22, Proof of Lemma 22] and reference [24] therein

one can have an explicit expression of this quantity given by

(5.21) nc(l)(p, q) = l

(
p
p−l
2

)(
q
q−l
2

)
.

We summarise the results of this section for the value of Mt(k1, k2) in the table below.

s0 = s1 = 0 s0 = 0, s1 = 1

k1, k2 even
∑k1/2

l=1 nc(2l)(k1, k2)t
(k1+k2)/2

∑k1/2
l=1 nc(2l)(k1, k2)t

(k1+k2)/2−2l

k1, k2 odd
∑(k1+1)/2

l=1 nc(2l−1)(k1, k2)t
(k1+k2)/2

∑(k1+1)/2
l=1 nc(2l−1)(k1, k2)t

(k1+k2)/2−2l+1

Table 1. Values of Mt(k1, k2).

To end the proof of Proposition 5.16, we need to compute φ(t)(P
(t)
k , P

(t)
l ) and φ

(t)
c (P

(t)
k , P

(t)
l ) to show

that those quantities vanish when k ̸= l. For any t ∈ [0, 1] and k ≥ 0, we have

P
(t)
k =

k/2∑
j=0

α
(k,t)
k−2jX

k−2j ,

where the coefficients
(
α
(k,t)
k−2j

)
k,j

are those of (5.9) Recall the followings facts:

• φ(1) is diagonalized by the usual Chebyshev polynomials {P (1)
k }k≥1, see [23, Theorem 5.1], so

that one has:

(5.22) φ(1)(P
(1)
k , P

(1)
l ) = kδk=l.

• We have the scaling relation: P
(t)
k (x) =

√
t
k
P

(1)
k

(
x√
t

)
, so that α

(k,t)
k−2j =

√
t
2j
α
(k,1)
k−2j .
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Since φ(t)(Xp, Xq) =
√
t
p+q

φ(1)(Xp, Xq) = nc(p, q)
√
t
p+q

, for every k, l ≥ 1 one has,

φ(t)(P
(t)
k , P

(t)
l ) =

∑
i,j

α
(k,t)
k−2iα

(l,t)
l−2jφ

(t)(Xk−2i, X l−2j)

=
∑
i,j

α
(k,t)
k−2iα

(l,t)
l−2j

√
t
k+l−2i−2j

φ(1)(Xk−2i, X l−2j)

=
∑
i,j

α
(k,1)
k−2iα

(l,1)
l−2j

√
t
k+l

φ(1)(Xk−2i, X l−2j)

=
√
t
k+l

φ(1)(P
(1)
k , P

(1)
l )

= k
√
t
k+l

δk=l

which proves (5.15). It remains to prove (5.16). Suppose that k1 ← 2k1 and k2 ← 2k2 are both even.
Then,

φ(t)
c (P

(t)
2k1
, P

(t)
2k2

) =
∑
r,s≥0

α
(2k1,t)
2k1−2rα

(2k2,t)
2k2−2sφ

(t)
c (X2k1−2r, X2k2−2s)

=
∑
r,s≥0

α
(2k1,t)
2k1−2rα

(2k2,t)
2k2−2s

∑
l≥1

nc(2l)(2k1 − 2r, 2k2 − 2s)t
2k1+2k2

2
−(r+s+2l)

=
∑
l≥1

tk1+k2−2l
∑
r,s≥0

α
(2k1,1)
2k1−2rα

(2k2,1)
2k2−2snc

(2l)(2k1 − 2r, 2k2 − 2s).

Let l ≥ 1 be fixed. For r ≤ k1 − l, s ≤ k2 − l using (5.21), the innermost sum is

∑
r,s≥0

α
(2k1,1)
2k1−2rα

(2k2,1)
2k2−2snc

(2l)(2k1 − 2r, 2k2 − 2s)

= (2k1 · 2k2 · 2l)
∑
r,s≥0

(−1)r+s

(2k1 − r)(2k2 − s)

(
2(k1 − r)
k1 − r − l

)(
2(k2 − s)
k2 − s− l

)(
2k1 − r

r

)(
2k2 − s

s

)

= 8lk1k2

(
k1−l∑
r=0

(−1)r

(2k1 − r)

(
2(k1 − r)
k1 − r − l

)(
2k1 − r

r

))(k2−l∑
s=0

(−1)s

(2k2 − s)

(
2(k2 − s)
k2 − s− l

)(
2k2 − s

s

))
.(5.23)

We claim that if k1 ̸= k2, one of the two sums in (5.23) is zero. Let us take k ≥ l + 1. One has

k−l∑
r=0

(−1)r

(2k − r)

(
2(k − r)
k − r − l

)(
2k − r
r

)
=

k−l∑
r=0

(−1)r

(2k − r)

(
k − l
r

)(
2k − r
k − l

)
(5.24)

=
1

k − l

k−l∑
r=0

(−1)r
(
k − l
r

)(
2k − r − 1

k + l − r

)
.(5.25)

The binomial coefficient
(
2k−r−1
k+l−r

)
is the coefficient of zk+l−r in the development of (1+z)2k−r−1. Thus,

the sum (5.25) is the coefficient of zk+l in the development of Q(z) =
∑k−l

r=0(−1)r
(
k−l
r

)
(1+ z)2k−r−1zr.

However,

Q(z) = (1 + z)2k−1
k−l∑
r=0

(
k − l
r

)(
−z
1 + z

)r
= (1 + z)k+l−1

so that the coefficient of zk+l in Q(z) is zero. If k1 = k2 = l, the two sums in (5.23) are equal to 1
2l so

that

(5.26) φ(t)
c (P

(t)
2k1
, P

(t)
2k2

) = (2k1)δk1=k2
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which is (5.16) for even indexes. The computations are essentially the same for odd values of k1 ←
2k1 + 1 and k2 ← 2k2 + 1:

φ(t)
c (P

(t)
2k1+1, P

(t)
2k2+1) =

∑
r,s≥0

α
(2k1+1,t)
2k1+1−2rα

(2k2+1,t)
2k2+1−2sφ

(t)
c (X2k1+1−2r, X2k2+1−2s)

(5.27)

=
∑
l≥1

tk1+k2−2l+2
∑
r,s≥0

α
(2k1+1,1)
2k1+1−2rα

(2k2+1,1)
2k2+1−2snc

(2l−1)(2k1 + 1− 2r, 2k2 + 1− 2s).(5.28)

For a fixed value of l ≥ 1, the innermost sum is∑
r,s≥0

α
(2k1+1,1)
2k1+1−2rα

(2k2+1,1)
2k2+1−2snc

(2l−1)(2k1 + 1− 2r, 2k2 + 1− 2s) = (2k1 + 1)(2k2 + 1)(2l − 1)×

∑
r,s≥0

(−1)r+s

(2k1 + 1− r)(2k2 + 1− s)

(
2(k1 − r) + 1

k1 + 1− r − l

)(
2(k2 − s) + 1

k2 + 1− s− l

)(
2k1 + 1− r

r

)(
2k2 + 1− s

s

)

=

(
k1+1−l∑
r=0

(−1)r

(2k1 + 1− r)

(
2(k1 − r) + 1

k1 + 1− r − l

)(
2k1 + 1− r

r

))(k2+1−l∑
s=0

(−1)s

(2k2 − s)

(
2(k2 − s) + 1

k2 + 1− s− l

)(
2k2 + 1− s

s

))(5.29)

× (2k1 + 1)(2k2 + 1)(2l − 1).

Using the same argument as above, the two sums in (5.29) vanish, except when k1 + 1 = k2 + 1 = l
where they are both equal to 1

2l+1 . Therefore,

(5.30) φ(t)
c (P

(t)
2k1+1, P

(t)
2k2+1) = (2k1 + 1)δk1=k2 ,

which ends the proof of statement (5.16) in Proposition 5.16.

Remark 5.31. Let us verify that for t = 0, one finds the result of [12]. We have that

φ(t)(P
(t)
k , P

(t)
l ) = 0

according to Proposition 5.16 which is indeed equal to E[a21,2]k = 0. On the other hand,

φ(t)
c (Xp, Xq) = nc(p)(p, q)δp,q = pδp,q

where the last equality comes from the fact that a non-crossing pairing of the (p, p) annulus with p

through strings is determined by the choice of one though string only. Thus, (V
(n)
k )k converges to

a Gaussian family (Vk)k of independent centered variables with parameters E[|Vk|2] = k, E[V 2
k ] = 0

which coincides with the Gaussian family in [12, Theorem 1.2].
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