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Synthesis, Characterisation and Biological Evaluation of Monometallic Re(I) and 
Heterobimetallic Re(I)/Fe(II) Complexes with a 1,2,3-Triazolyl Pyridine Chelating 
Moiety 
Silvio Jakopec,a,† Lisa Gourdon-Grünewaldt,b,† Ivona Čipor,c,† Andrijana Meščić Macan,a Berislav Perić,d Ivo Piantanida,c Kevin 
Cariou,b Gilles Gasser,b,* Srećko I. Kirind,* and Silvana Raić-Malića,* 

Bioorganometallic complexes have attracted considerable interest and have shown promise for potential application in the treatment and diagnosis of cancer, 
as well as bioimaging agents, some acting as theranostic agents. The series of novel ferrocene, benzimidazo[1,2-a]quinoline and fluorescein derivatives with 
bidentate pyridyl-1,2,3-triazole and 2,2’-dipyridylamine and their tricarbonylrhenium(I) complexes were prepared and fully characterised by NMR, single-
crystal X-ray diffraction, UV-Vis and fluorescence spectroscopy in biorelevant conditions. The fluorescein and benzimidazo[1,2-a]quinoline ligands and their 
complexes with Re(I) showed interactions with ds-DNA/RNA and HSA, characterised by thermal denaturation measurements, fluorimetric and circular 
dichroism titrations. The binding constants revealed that addition of Re(I) increases affinity of fluorescein but decreases affinity of benzimidazo[1,2-
a]quinoline. The complexation of Re(I) had opposite effect on fluorescein and benzimidazo[1,2-a]quinoline ligands fluorimetric sensitivity upon 
biomacromolecules binding, Re(I) fluorescein complex emission being strongly quenched by DNA/RNA or HSA, while emission of Re(I) benzimidazo[1,2-
a]quinolone complex was enhanced, particularly for HSA, making it promising fluorescence probe. Some mono- and heterobimetallic complexes showed 
considerable antiproliferative activity on colon cancer cells (CT26 and HT29), with ferrocene dipyridylamine complexes exhibiting the best inhibitory activity, 
comparable to cisplatin. The correlation of the cytotoxicity data with the linker type between the ferrocene and the 1,2,3-triazole ring suggests that direct 
binding of the metallocene to the 1,2,3-triazole is favourable for antitumor activity. The Re(I) benzimidazo[1,2-a]quinolone complex showed moderate 
antiproliferative activity, in contrast to the Re(I) fluorescein complex, which exhibited weak activity on CT26 cells and no activity on HT29 cells. The 
accumulation of the Re(I) benzimidazo[1,2-a]quinolone complex in the lysosomes of CT26 cells indicates the site of its bioactivity, thus making this complex a 
potential theranostic agent. 

Introduction 
Platinum coordination compounds cisplatin (I), carboplatin (II) and oxalilplatin (III) (Figure 1), that are used worldwide in cancer 

chemotherapy,1,2 are known to be non-specific and target random DNA regions leading to extensive side effects and development 
of secondary malignancies.3 Chemoresistance of cancer cells to cisplatin-based chemotherapy presents another serious healthcare 
issue and limits its clinical use.4 Following the success of platinum-based drugs and with the aim of developing drugs with fewer 
side-effects and less prone to induce drug resistance, an important number of metal-containing compounds were investigated.5–

10  
A breakthrough in organometallic chemistry occurred with the discovery of ferrocene and the antiproliferative properties of 

ferrocenium salts.11 Ferrocene is particularly attractive because of its stability in aqueous media, favourable electrochemical 
properties, nontoxicity, and ease of substitution at the cyclopentadienyl rings.12–14 Ferrocene has been integrated into the 
structure of established anticancer and antimalarial pharmaceuticals with the purpose of increasing their bioactivity (Figure 1).15,16 
Thus, ferrocifens, ferrocene analogues of tamoxifen (IV), showed anticancer activity against breast cancer cells superior to the 
parent drug.17,18 A ferrocene-chloroquine conjugate, ferroquine is an antimalarial drug candidate in phase II clinical trials19,20 that 
has also shown antitumor activity.21 In addition, a series of ferrocene-containing heterometallics have been prepared as potential 
anticancer chemotherapeutics.22 For example, the organometallic rhodium-ferrocene complexes V showed cytotoxicity in prostate 
cancer cells similar to cisplatin but with a different pathway of cell death.22 Conjugate of ferrocene and cyretrenyl connected by 
the imine linker (VI) showed antitumor activity superior to cisplatin against hormone-dependant (MCF-7) and hormone-
independent (MDA-MB-231) breast cancer cells, along with cisplatin-resistant colon (HCT-116) cancer cell lines, but was also 
cytotoxic to normal human skin fibroblast (BJ) cells.23 Tricarbonylrhenium(I) complexes have found potential application as 
catalysts in various organic reactions,24,25 photosensitizers in photodynamic cancer therapy,26,27 probes in fluorescent cell 
imaging,28–30 and antiproliferative agents.6–8,31–34 For example, rhenium(I) bipyridinyl complexes VII and VIII showed strong 
inhibition of colorectal cancer and appeared to be safer and more effective than sunitinib, doxorubicin or cisplatin. In the zebrafish 
xenograft model of colorectal carcinoma, the complexes inhibited tumor growth, vascularization and tumor cells metastasis 
without inducing cardio-, hepato-, and myelotoxicity.35 A series of water-coordinated Re(I) complexes proved effective against 
cervical carcinoma (HeLa), several wild-type and cisplatin-resistant cell lines, with the 2,9-dimethyl-1,10-phenanthroline complex 
IX being the most active, and were also less toxic to human fibroblast cells compared to cisplatin.36 

 



  

  

 

 

 
Figure 1. Examples of antitumor organometallic complexes. 

There is an increasing interest in the development of bi-, tri- and polydentate ligand architectures incorporating 1,2,3-triazolyl 
based donor ligands37,38 that can coordinate metals at the N-3, N-2 and C-5 donor sites.39,40 For example, several luminescent 
tricarbonylrhenium(I) complexes (X), with the lipophilic aliphatic side chains at the ligand proved effective against breast cancer 
(MDA-MB-231) cells, with the positive correlation of cytotoxicity with the permeability.41 

Exploitation of luminescent organometallic complexes for cell imaging is a rapidly developing research field, which has received 
attention in the last few years.30,42 Most fluorescent probes are highly conjugated fused heterocyclic derivatives.43 The octahedral 
Re(I) complexes with bidentate nitrogen ligands, showed luminescence and good physicochemical properties, pointing out the 
potential use as fluorescent dyes for cell imaging.44–47 

Detailed studies of interactions of novel organometallic complexes with biomolecules are useful for providing information on 
potential targets of these compounds48 and these interactions, mainly with DNA, can be correlated with antiproliferative 
activities.49 Three main ways in which compounds can reversibly bind to polynucleotides are intercalation, minor/major groove 
binding or through electrostatic interactions.50 Transition metal complexes have been extensively studied in this area of 
research.51–53 For example, coumarin derived rhenium (I) complexes were shown to be minor groove binders,49 while 1,10-
phenanthroline-5,6-dione Re(I) complexes interacted with the major groove of DNA, showing that both ligands and geometrical 
orientation of organometallic complexes can direct the binding mode and in turn alter the biological activity.54 



    

 

 

 
Figure 2. Design of 1,2,3-triazolyl pyridine tricarbonylrhenium(I) complexes containing ferrocene, and fluorescein and ring-fused biheterocyclic55 pharmacophore. 

In our previous study,56 we described Cu(II) complexes of a series of ferrocene and aromatic amine conjugates linked by 1,2,3-
triazole (Figure 2) that showed increased antiproliferative activity against cervical (HeLa), ovarian (MES-OV), non-small cell lung 
(A549) and breast (MDA-MB-231) cancer cell lines compared to the activity of the parent ligand molecules. Fluorescein, that is 
commonly employed in cellular biology as a tracer, after photoactivation showed to significantly decrease the viability of human 
hepatoblastoma HepG2 cells,57 while benzimidazo[1,2-a]quinoline derivatives showed pronounced antiproliferative activity, 
particularly on colon cancer (HCT116) cell lines.55,58 

Within the context above, we have designed ferrocene-appended tricarbonylrhenium(I) complexes with the pyridyl-1,2,3-
triazolyl, dipyridylamine and dipyridylamine-1,2,3-triazolyl chelating moiety (Figure 2), which coordinates the Re(I) metal centre, 
with the aim to evaluate their antiproliferative activity. In order to assess interactions of the synthesised compounds with 
biomolecules and cell imaging, structural analogues of heterobimetallic Re(I) complexes in which the ferrocene moiety was 
replaced by fluorescein and a benzimidazo[1,2-a]quinoline fluorophore and their monometallic fluorescent Re(I) complexes were 
synthesized (Figure 2).  

 
 

Results and discussion 
Synthesis 

The target ferrocene-appended 1,2,3-triazolyl pyridine ligands (2a–2c, 3 and 4a–4b) and their rhenium(I) complexes (2aRe–2cRe, 
3Re and 4aR–4bRe) were synthesised following procedures depicted in Scheme 1. The 1,2,3-triazole ligands with the 2-pyridyl 
substituent attached at C-4 position (2a,59 2b,60 2c) were synthesised by copper-catalysed azide-alkyne cycloaddition reaction 
(CuAAC) of 2-ethynylpyridine with the corresponding ferrocene azide (1a–1c).61 Copper(II) acetate monohydrate was reduced in 
methanol to provide copper(I) catalyst for the CuAAC reaction. 2-Picolyl-substituted 1,2,3-triazole ligand 360 was prepared from 2-
picolylazide and ethynylferrocene using the same method. The reaction was completed within 0.5 h. This rapid azide-alkyne 
cycloaddition can be explained by the ability of 2-picolylazide to form a complex with Cu(II) ions which leads to an accelerated 

azide-alkyne cycloaddition.62 The dipyridylamine ligands 4a–4b (dpa) were prepared following a previously reported procedure,56 
which included alkylation of 2,2’-dipyridylamine with propargyl bromide and sodium hydride, followed by CuAAC reaction with 
corresponding ferrocenyl azide 1a–1b.  
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Scheme 1. Synthesis of heterobimetallic Re(I) complexes. Reagents and reaction conditions: (i) Cu(OAc)2∙H2O, MeOH, r. t., 20–24 h; (ii) Re(CO)5Cl, CHCl3, 60 °C, 24 h; (iii) 
AgOTf, ACN, 14 h 

 
Rhenium(I) complexes were prepared by the complexation reaction of ligands with pentacarbonylrhenium(I) chloride as the 

metal precursor. Complexation reactions and the purification of metal complexes was performed in the dark because of the 
photosensitive nature of Re(I) complexes (see the General remarks section for more details). Bidentate coordination of metal ion 
in complexes 2aRe–2cRe and 3Re occurs by pyridine and N-3 and N-2 1,2,3-triazole nitrogen atoms, respectively. On the other hand, 
coordination of Re(I) in 4aRe–4bRe by 2,2’-dipyridylamine (dpa) group is preferred over coordination of 1,2,3-triazole nitrogen atom. 
Coordination by dpa prompted us to perform an anion exchange reaction in which the chloride anion is replaced by a triflate. The 
reaction is accompanied by a change of the coordination mode from bidentate to tridentate, along with the formation of positively 
charged complex cations 4aRe∙OTf and 4bRe∙OTf.  

Contrary to previous reports on fluorescent Re(I) complexes of related structure,41,63,64 complexes 2aRe–2cRe, 3Re, 4aRe–4bRe and 
their triflate analogues 4aRe∙OTf–4bRe∙OTf did not exhibit luminescent properties. This can be rationalised by the well-known 
fluorescence quenching effect of ferrocene.65 Thereafter, the ferrocene moiety was replaced with fluorescein and a ring-fused 
biheterocyclic fluorophore. The propargyl intermediate 5 was prepared by a previously published two-step synthesis66 which 
included the esterification of fluorescein in methanol under acidic conditions and subsequent alkylation of the product with 
propargyl bromide and potassium carbonate as a base (Schemes 2, top and S1).  

Click reaction of the alkyne 6 with 2-picolylazide yielded the corresponding 1,2,3-triazole ligand 6a. By complexation of 6a with 
Re(CO)5Cl in chloroform, rhenium(I) complex 6aRe was obtained. Regarding the synthesis of complex 9Re, benzimidazo[1,2-
a]quinoline core was prepared by a multi-step synthesis reported earlier.55 The azide intermediate 8 was prepared from 5-
chlorobenzimidazo[1,2-a]quinoline-6-carbonitrile (7) by nucleophilic aromatic substitution with sodium azide in acetonitrile 
(Scheme 2, bottom). The 1,2,3-triazole linker was subsequently formed by the CuAAC reaction of the azide 8 and 2-ethynylpyridine 
which afforded ligand 9. Complex 9Re was prepared by complexation reaction of ligand 9 with Re(CO)5Cl in chloroform.  

Solid state characterisation  



    

 

 

Single crystals of two ligands, isomers 2b and 3, suitable for structure determination by single-crystal X-ray diffraction were 
obtained by slow evaporation from dichloromethane : methanol solutions (Figure S3). 1,2,3-Triazole derivative 2b is substituted 
by 1-ferrocenemethyl group at the C-1 and 2-pyridyl substituent at N-1 of the heterocyclic core. Pyridine atom NPy is in the trans-
conformation to the 1,2,3-triazole ring. Ligand 3 differs from its isomer 2b in configuration around the linker ring, where the former 
has ferrocene substituent attached at the C-4 of 1,2,3-triazole core and N-1 substituent is 2-picolyl group. As opposed to the 
previous example, occupancy of NPy of the picolyl group in the ligand 3 is 72% for the cis-conformation (towards the 1,2,3-triazole), 
and 28% for the trans-conformation. Crystals of 2aRe, 3Re and 4aRe were obtained by slow evaporation from dichloromethane : 
methanol solutions, while 4bRe∙OTf crystallizes from CDCl3 (Figure 3). In 2aRe, 3Re and 4aRe the ligands coordinate the metal ion in 
bidentate fashion, with octahedral geometry and a N2C3Cl coordination sphere around Re(I). Fac-stereochemistry was observed in 
the crystal structures of the complexes, owing to the back-bonding influence of the CO ligands.67 The metal centre is coordinated 
by NPy and N-3 of the triazole ring in 2aRe, and by NPy and N-2 of the triazole in the isomeric complex 3Re. 

 

 
 

Scheme 2. Synthesis of fluorescent rhenium(I) complexes (6aRe and 9Re). Reagents and conditions: i) H2SO4, MeOH, 14 h, 85 °C; ii) propargyl bromide, K2CO3, r. t., 24 h; 
iii) 2-picolylazide for 6a, 2-ethynylpyiridine for 9, Cu(OAc)2∙H2O, MeOH, r. t., 20–24 h; iv) Re(CO)5Cl, CHCl3, 60 °C, 14 h; v) NaN3, MeCN, 4 h, 80 °C 

 

 
Figure 3. Crystal structures of complexes 2aRe, 3Re, 4aRe and 4bRe∙OTf. For 3Re only one symmetry independent molecule and only position of Re atom with occupancy > 
90% is shown. The full labelling schemes are shown in Figure S4. Colour scheme: brown–Fe; grey–Re; green–Cl, red–O; blue -N and black–C and H (small circles). 

In the complex 4aRe, Re(I) ion is coordinated by two NPy donors of dpa. Chloride ion is covalently bonded to the metal centre in 
aforementioned complexes. Exchange of chloride with triflate counterion to obtain 4bRe∙OTf, containing a cationic complex, 
promotes coordination of Re(I) by NTz donor. Fac-stereochemistry of the complex is retained. Geometry of 4bRe∙OTf is distorted 
octahedral, with one pyridine coordinated axially and the other coordinated equatorially, similarly to the structure of 4aRe. 



  

  

 

 

Contrary to our previously reported structure of [Cu(4a)2]OTf256 in which Py rings arrange in equatorial positions and the triazole 
ring is coordinated in apical coordination site, one pyridine and triazole of dpa in 4bRe∙OTf are coordinated at an equatorial site, 
while the second pyridine is bonded axially to the metal centre. 

Spectroscopic characterisation 

The 1H NMR spectra of ligands 2a–2c, 3, 4a–4b show characteristic signals for corresponding protons of the ferrocene ring, as 
well as downfield resonances of H5-triazole and pyridine protons (Figures S28–S46). Chemical shifts of protons of fluorophores in 
6a, 6b and 9 correspond to previously published spectral data.55,68  

Compared to the free ligand, the 1H NMR and 13C NMR spectra of rhenium(I) complexes show downfield shifts due to the 
deshielding effect of a metal ion. Expectedly, for complexes in which the 1,2,3-triazole ring is included in chelation of rhenium(I), 
the largest shifts were observed for proton of the triazole ring (∆δ ≈ 0.5 ppm) and the pyridine proton in ortho position to the N-
donor atom (∆δ ≈ 0.3 ppm). In addition to the downfield shift of the methylene protons, in the 1H NMR spectrum of 3Re and 6aRe 
the two α-CH2 protons are no longer equivalent and show two doublets with large geminal coupling (J = 16 Hz). Figure 4 illustrates 
the trends in chemical shifts upon coordination of 4b with the Re(I) ion. Both triazole and pyridine protons experience strong 
deshielding effects, with the ortho pyridine shifting for ∆δ = 0.6 ppm and triazole proton for ∆δ = 0.4 ppm. Interestingly, in the 
spectrum of the triflate salt (4bRe∙OTf) the values of chemical shifts of H5 and H5’ protons (green) are significantly increased. 13C 
NMR spectra of metal complexes show three signals at 197-189 ppm, corresponding to carbon atoms of the carbonyl group, 
indicating presence of [Re(CO)3Cl] in the structures of the metal complexes.  

 
Figure 4. Comparison of proton NMR spectra of ligand 4b and its complexes (CDCl3) 

In the IR spectra of Re(I) complexes (Figures S47–S65), three bands in the region of 2030–1890 cm-1 are observed for symmetric 
and asymmetric stretching of carbonyl groups, which are indicative of the fac-stereochemistry of carbonyl groups around the metal 
centre.69 UV-Vis spectra of ferrocene ligands and complexes (Figures S66–S70) show an absorption peak at about 450 nm, owning 
to d-d transitions or by a metal-ligand charge transfer process, characteristic for ferrocene derivatives.59,70,71 Derivatives 6a, 6b 
and complex 6aRe show absorption maxima at λmax = 431, 454 and 484 nm, while benzimidazo[1,2-a]quinoline 9 and its metal 
complex 9Re show absorption maximum at λmax = 272 and 363 nm in the UV region, along with a shoulder at λsh = 414 nm in the 
visible part of the spectrum (Figures S66-S70).  

Spectroscopic characterisation and interactions of 6a, 6aRe, 9 and 9Re with biomolecules  

Fluorescent rhenium(I) complexes 6aRe and 9Re and their ligands 6a and 9 were chosen due to their structural and emissive 
properties for detailed study of interactions with ds-DNA or ds-RNA and proteins, namely the model protein human serum albumin 
(HSA). First, ligands 6a and 9, as well as their rhenium(I) complexes 6aRe and 9Re were spectroscopically characterised. Stock 
solutions of 6a, 9, 6aRe and 9Re were prepared in DMSO at c = 1 × 10-3 M and kept at 4 °C, being stable for more months. Working 
aliquots were prepared prior to any experiment from stock solutions and kept at 25 °C.  



    

 

 

 
Figure 5. UV/Vis (A, c = 2 × 10-6 M) and fluorescence spectra (B, c = 2 × 10-6 M) of studied compounds in water, normalised to maximum emission of ligands 6a and 9, 
and spectra of 6aRe and 9Re divided by difference in fluorescence quantum yield from ligand values (ΦF, Table 1). 

Absorbance of aqueous solutions of all compounds and Re(I) complexes was proportional to concentration up to c = 2 × 10-5 M 
(Figure S72-76), yielding molar extinction coefficients (Table 1, ε) and excluding intermolecular interactions or aggregation of 
compounds. The UV/Vis spectra of complexes 6aRe and 9Re differed from spectra of ligands (Figure 5A), demonstrating change of 
electronic properties for chromophores upon complexation of Re(I). UV/Vis spectra of complexes were strongly dependent on 
temperature (Figure S79), suggesting decomposition of complexes at high temperature.  
Studied ligands 6a and 9 and their Re(I) complexes showed emission maximums around 520 nm, regardless of the structure (Figure 
5B). However, the fluorescein 6a and its analogue 6aRe showed higher quantum yield values (Table 1) in respect to 9 and 9Re, while 
the latter showed larger Stokes shifts (Table 1). Fluorescence intensity changes were linear with an increase in concentration 
(Figure S80) and dependent on temperature (Figure S81), irreversibility of emission upon cooling back to room temperature 
attributed to the Re(I) complex decomposition at higher temperatures. The quantum yield values of both ligands are higher than 
that of their complexes and fluorescence decay times became shorter upon Re(I) complexation (Table 1), suggesting that 
rhenium(I) enables non-radiative decay and thus quenches the fluorescence of these ligands.  

Fluorimetric titrations 

Taking advantage of the fluorescence of studied compounds and their Re(I) complexes, we performed fluorimetric titrations 
to investigate the interactions with biomacromolecules. Namely, we have chosen ct-DNA as representative of ds-DNA B-helical 
structures and poly A–poly U as representative of ds-RNA A-helical structures. Further, we studied interactions with human serum 
albumin (HSA), as one of the most abundant protein in plasma, acting as a carrier for a variety of small molecules, including 
hormones, fatty acids but also drugs and toxins.72  

The addition of ds-polynucleotides to aqueous solutions of compounds resulted in the strong quenching of fluorescence 
emission (Figure 6). The titration data fitting to Scatchard equation,73 yielded binding constants (Table 2, log Ks).  
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Table 1. Electronic absorption and emission data of 6a, 6aRe, 9 and 9Re in water 

Compound λmax/ nm λem/nm cε/M-1cm-1 aΦF/% 
Stokes 

shift/nm 
bτ/ns χ2 

6a 
454 
479 

520 
26962 
30046 

42.1 41 2.72 1.096 

6aRe 460 520 18139 15.8 60 
0.42 
2.67 

1.094 

9 
368 
272 

518 
9038 

24044 
6.2 150 

0.88 
4.4 

15.75 
1.141 

9Re 
376 
278 

520 
13048 
29768 

1.1 144 
0.16 
0.99 
3.37 

0.984 

aAbsolute fluorescence quantum yield was determined by integrating sphere SC-30, Edinburgh Inst., for Argon purged solutions, by λmax of the longest 
wavelength maximum (λmax), at pH 7.0, sodium cacodylate buffer, I = 0.05 M. 
 bSolutions were purged by argon and excited by pulsing diode at 405 (9,9Re) or 450 (6a,6aRe) nm. The measurements were performed three times and the 
average values are reported. The associated errors correspond to the maximum absolute deviation, at pH 7.0, sodium cacodylate buffer, I = 0.05 M. 
cIn water. 

 

 
Figure 6. A) changes in fluorescence spectrum of 6aRe (c = 1 × 10-6 M, λexc = 460 nm, λem = 520 nm) upon titration with ctDNA at pH 7.0, sodium cacodylate buffer, I = 
0.05 M; inset–dependence of 6aRe intensity at λmax = 520 nm on c(ct-DNA), at pH 7.0, sodium cacodylate buffer, I = 0.05 M fit to Scatchard equation, B) dependence of 
6aRe and 9 intensity at λmax = 520 nm on c(polynucleotide), at pH 7.0, sodium cacodylate buffer, I = 0.05 M 

 

Table 2. Binding constants (log Ks) and emission quenching efficiency (ΔInta) for 6a, 6aRe, 9 and 9Re with polynucleotidesb and HSAc, determined from fluorimetric titrations, done in 
sodium cacodylate buffer (pH = 7.0, I = 0.05 M). 

Compound  bct-DNA apApU cHSA 

6a 
log Ks d d 4.2 
ΔInt - - 0.2 

6aRe 
log Ks 6.2 5.4 6.1 
ΔInt 0.5 0.6 0.6 

9 
log Ks 6.1 6.8 5.8 
ΔInt 0.5 0.8 0.2 

9Re 
log Ks 5-6c d 4.1 
ΔInt - - 4.7 

aΔInt = Int/Int0, bProcessing of titration data by Scatchard equation gave values of ratio n[bound dye]/[polynucleotide] = 0.2 and 0.3. For ease of comparison, 
all log Ks values were recalculated for fixed n = 0.2. Correlation coefficients were >0.99 for all calculated Ks. cThe best fit obtained for 1:1 stoichiometry 
dye:HSA, dtoo small changes for accurate processing.  

Intriguingly, the complexation of Re(I) had opposite effect on fluorimetric response of ligands. The emission of fluorescein 6a 
only negligibly changed upon addition of ds-DNA or ds-RNA (Figures S82, S83), whereas emission of analogue complex 6aRe was 
strongly quenched (Figure 8A, Figure S85). Opposite effect was observed for benzimidazo[1,2-a]quinoline derivative 9, whereby 



    

 

 

ligand 9 responded to addition of ds-DNA/RNA by strong emission quenching but Re(I) complex 9aRe showed only very weak 
emission increase (Figures S87, S88, S90, S91). Calculated binding constants (Table 2) were in line with emission intensity change, 
being higher for 9aRe in comparison to ligand 9, whereas it was not possible to determine interaction of ligand 6 with DNA/RNA. 
Therefore, complexation of Re(I) can work in both ways, depending on the structure of the ligand. 

Interactions with protein HSA even more stressed the importance of Re(I) complexation. For instance, addition of HSA induced 
strong emission quenching of ligand 9 (Figure S89), while its complex 9Re showed increase in emission upon binding to HSA (Figure 
S92). Adversely, addition of HSA to aqueous solutions of 6a and 6aRe resulted in quenching of their emission (Figure S84, S86). The 
obtained binding constants (Table 2) revealed that addition of Re(I) increases the affinity of 6a but decreases the affinity of 9. 
 
CD experiments 
To further analyse the binding modes, circular dichroism measurements were performed. Circular dichroism is a sensitive 
spectroscopic method which can show subtle changes in the secondary structures of DNA/RNA, as well as changes occurring upon 
the formation of polynucleotide/small molecule complexes.74 Small achiral molecules can acquire an induced circular dichroism 
spectrum (ICD) upon binding to chiral polynucleotides, which in turn can suggest the dominant mode of interaction.75 
The compounds 9 and 9Re only influence the spectra of DNA or RNA in the range of 260 to 300 nm (Figures S94, S95), suggesting a 
decrease of polynucleotide helical chirality, more pronounced for RNA than DNA. Addition of the fluorescein ligand 6a also induced 
a similar small decrease in the CD spectrum of DNA/RNA (260 to 300 nm) accompanied by a very weak negative ICD band around 
450–460 nm, in agreement with the maximum of fluorescein absorbance (Figure S93). This could be indicative of intercalative 
binding.75 Addition of the complex 6aRe induced comparable change in the 260–300 nm range, thus confirming binding to ds-
DNA/RNA (Figure S93), although the absence of ICD bands points out that complexation of Re(I) changed the geometry of the 
ligand and that 6aRe has different orientation in the binding site, with respect to the polynucleotide chiral axis. 
 
Thermal melting experiments 

Thermal dissociation of ds-DNA/RNA is a well-defined process occurring at a specific temperature (Tm value) and as such can 
be implemented for the characterisation of polynucleotide/small molecule complexes and polynucleotide related processes.76 The 
addition of small molecules to ds-polynucleotides can result in the stabilisation (increase) or destabilisation (reduction) of Tm value. 
The difference in Tm value of free polynucleotides and Tm values of polynucleotides with non-covalently bound small molecules 
(ΔTm value) can be used in characterisation of the binding mode. For example, moderate to strong stabilisation (ΔTm > 5 °C) 
supports minor-groove binding or intercalative interactions,77 while weak to moderate stabilisation (ΔTm = 0–5 °C) indicates a 
binding process driven by weak H-bonding, hydrophobic effects or electrostatic interactions or any combination of these 
interactions.  

Table 3. ΔTm values for different ratios ar of the dyes added to polynucleotide obtained through thermal melting experiments 

Compound ar ΔTm ct-DNA ΔTm pApU 

6a 
0.1 +1± 0.5 °C - 
0.2 -0.6± 0.5 °C - 

6aRe 
0.1 - - 
0.2 +2.6± 0.5 °C -1.5 ± 0.5 °C 

9 
0.1 +3.1± 0.5 °C +1.6± 0.5 °C 
0.2 +1.4± 0.5 °C - 

9Re 
0.1 +1.3± 0.5 °C +1.2 ± 0.5 °C 
0.2 +2.3± 0.5 °C +2± 0.5 °C 

ar = [compound]/[polynucleotide] 

Thermal denaturation measurements were performed in ratios r = 0.1 or r = 0.2 for all the studied compounds with both 
polynucleotides. The results show only minor stabilisation of ds-polynucleotides for ligand 9 and its complex 9Re, while 6a and 6aRe 
showed no effect on stabilisation of ds-RNA (Table 3, Figures S96–S100). For ds-DNA, 6a showed negligible effect, while complex 
6aRe increased the stability of ds-DNA by 2.6 °C at a ratio of 0.2 (Table 3, Figure S96). These results agree well with fluorimetric 
titrations (Table 2), thus pointing out that ligand 6 does not interact with ds-DNA or ds-RNA, whereas its Re(I) complex 6aRe showed 
biorelevant interactions. Consequently, ICD signals obtained in circular dichroism studies observed for 6a do not stem from 
intercalation into DNA, but more likely from non-specific hydrophobic aggregation along the polynucleotide. On the other hand, 
all results obtained for derivatives 9 and 9Re support interaction with ds-DNA and ds-RNA, the absence of specific ICD signals 
suggesting heterogeneous binding within DNA/RNA grooves.  

Cytotoxicity evaluations on 2D monolayer cells 

Cytotoxicity activity of Re(I) complexes (2aRe–2cRe, 3Re, 4aRe–4bRe, 4aRe∙OTf–4bRe∙OTf, 6aRe and 9Re) was determined by the resazurin 
assay on murine (CT26) and human (HT29) colorectal carcinoma cells. Cytotoxicity of the most active complexes 4aRe and 4bRe, as 



  

  

 

 

well as the fluorescent complex 9Re was also investigated on human retinal pigment epithelial-1 (RPE-1) cells to assess if some 
degree of selectivity towards cancer cells existed (Figures S101–124). Cisplatin (CDDP) was used as a reference compound. The 
results are presented in Table 4. 

Table 4. The cytotoxic activity of complexes 2aRe–2cRe, 3Re, 4aRe–4bRe, 4aRe∙OTf, 4bRe∙OTf, 6aRe and 9Re towards CT26, HT29 and RPE-1 cell lines 

Complex 
IC50 ± SD /µM 

CT26 HT29  RPE-1 
2aRe 11.7 ± 0.3 34.0 ± 1.0 – 
2bRe 19.9 ± 2.5 49.9 ± 1.9 – 
2cRe 13.5 ± 2.3 54.8 ± 0.2 – 
3Re 22.7 ± 1.6 53.8 ± 0.9 – 

4aRe 5.1 ± 0.9 44.4 ± 1.2 10.6 ± 0.1 
4bRe 5.6 ± 1.4 35.4 ± 1.9 16.0 ± 0.6 

4aRe∙OTf 12.6 ± 1.2 40.4 ± 0.7 – 
4bRe∙OTf 13.1 ± 0.5 36.5 ± 1.6 – 

6aRe 40.3 ± 1.4 >100 – 
9Re 13.8 ± 0.9 43.4 ± 0.9 8.0 ± 0.1 

CDDPb 6.8 ± 0.1 10.2 ± 0.6 46.5 ± 3.1 

a50% inhibitory concentration or compound concentration required to inhibit tumor cell proliferation by 50%. Data represent the mean IC50 (μM) value of 
three independent experiments each evaluated on 3 replicates ± SD (IC50 µM ± SD). bCDDP–cisplatin 

The difference between the cytotoxic activities of the tested complexes was dependant on both bidentate or tridentate 
coordination and type of the coordinating group (Figure 7). The most active compounds were dipyridylamine complexes 4aRe and 
4bRe, with IC50 values on CT26 cell line in the range of cisplatin. This antiproliferative effect was not specific to cancer cells: 4aRe 

and 4bRe showed similar IC50 values on RPE-1 healthy cell line. Complexes 2aRe–2cRe with bidentate ligands showed moderate 
cytotoxic activity. Similar activity is exhibited by positively charged complexes 4aRe∙OTf and 4bRe∙OTf. 

  

 
Figure 7. Decreasing from left to right: the antiproliferative activity of Re(I) complexes towards CT26 cell line. 

 

Changing the coordination mode from bidentate in 4aRe and 4bRe to tridentate in 4aRe∙OTf and 4bRe∙OTf decreased the 
antiproliferative effect of the 4aRe∙OTf and 4bRe∙OTf complexes on CT26 cells, which may be related to their conformationally 
restricted structures due to the coordination of both the dipyridylamine and 1,2,3-triazole units. Antiproliferative evaluation of 
ligands 4a and 4b for the most active complexes (4aRe, 4bRe, 4aRe∙OTf and 4bRe∙OTf) on cervical carcinoma (HeLa), ovarian cancer 
(MES-OV), non-small cell lung cancer (A549) and breast carcinoma (MDA-MB-231) cell56 showed that ligands 4a and 4b exhibited 
low inhibitory effect on evaluated carcinoma cell lines, thus confirming that coordination of the ferrocene-appended 1,2,3-triazolyl 
pyridine ligands with rhenium(I) improved antiproliferative activity compared to the parent ligands. 
The type of linker between ferrocene and the 1,2,3-triazole moiety also affected the antiproliferative activity, showing that 
metallocene directly attached to 1,2,3-triazole is favourable for the activity. The comparable cytostatic effects of 2bRe and 3Re 
complexes suggest that the mode of coordination with N-3 and N-2 donor atoms (regular vs. inverse)78 of the 1,2,3-triazole ring 
has a negligible influence on the cytostatic activity. Chosen representatives of studied Re-complexes (4aRe, 4bRe, 6aRe and 9Re) were 



    

 

 

additionally evaluated for their stability in cell culture medium, showing no significant changes in their UV/Vis spectra over 24 h 
(Figures S125–128). 

Generally, all tested complexes showed more than three-fold lower activity on human HT29 cells compared to that on CT26 
cells, with IC50 values in the range 34.0-54.8 µM towards HT29 cells. For example, complexes 2aRe and 4bRe exerted moderate 
activity on HT29 cells with IC50 values of 34.0 and 35.4 µM, respectively.  

Among the fluorescent complexes, 9Re showed notable inhibitory activity against CT26 cell line, about twice the IC50 of cisplatin. 
However, the cytotoxicity on RPE-1 healthy cells was found to be in the same concentration range, showing no selectivity towards 
cancer cells. Fluorescein derivative 6aRe exhibited low cytotoxic activity on CT26 cells and no activity on HT29 cells. 

Confocal microscopy 

The localization of the most cytotoxic, fluorescent complex 9Re was established by confocal microscopy (Figure 8, Figures 
S129−S132). Confocal imaging allowed us to show that the complex is localized in lysosomes. This localization of the complex can 
be explained by the neutral, lipophilic and slightly basic structure of the ligand 9. It can be assumed that once in the lysosome, the 
complex is protonated (lysosomes being acidic), which would then prevent the compound from crossing the membrane and leave 
the organelle.79,80 

Conclusions 
Pyridine (2a–2c, 3) and 2,2'-dipyridylamine (4a–4b) ligands were prepared by cycloaddition of 2-ethynylpyridine and N-

propargyl-2,2'-dipyridylamine with ferrocene azides catalyzed by copper(I) and subsequently used as ligands for the synthesis of 
heterobimetallic complexes with Re(I). Fluorescein (6a) and benzimidazo[1,2-a]quinoline (9) ligands were additionally prepared 
and used in the synthesis of monometallic tricarbonylrhenium(I) complexes. Crystal structures of isomers 2b and 3 and complexes 
2aRe, 3Re and 4aRe with bidentate coordination and complex 4bRe∙OTf with tridentate coordination were determined. Crystal 
structures confirmed the ML stoichiometry and fac-stereochemistry; the latter can be attributed to the influence of π-back 
donation of CO ligands. Dipyridylamine complexes 4aRe and 4bRe showed the most prominent antiproliferative activity against CT26 
cell line, similar to that of reference cisplatin. On the contrary, pyridine triazole complexes 2aRe–2cRe showed moderate inhibitory 
activity. The type of the linker between the ferrocene and the 1,2,3-triazole ring had an influence on cytotoxicity, indicating that 
the direct binding of metallocene to 1,2,3-triazole is favourable for the antitumor activity. The benzimidazo[1,2-a]quinoline 
complex 9Re showed moderate antiproliferative activity, while the fluorescein (6aRe) exhibited weak activity on CT26 cells and no 
activity on HT29 cells. 

Detailed analysis of interactions of 9Re and 6aRe with biomacromolecules revealed that both Re(I) complexes interact with ds-
DNA, ds-RNA and HSA with biorelevant affinity. Of particular interest was the opposite fluorescence response of ligand 9 
(quenching) and complex 9Re (emission increase) to HSA, which could be used in detection of Re(I) in plasma. 

The 9Re colocalisation in CT26 cells with LysoTracker™ points out to the possible site of its antiproliferative activity, suggesting 
that it does not target nuclear DNA as potential mechanism of action. Further design of benzimidazo[1,2-a]quinoline analogues by 
means of ring-fused biheterocyclic Re(I) complexes may lead to the development of novel theranostic lysosome-targeting 
anticancer agents. 
To the best of our knowledge, complexes 4aRe and 4bRe are the first examples of heterobimetallic Re(I) complexes containing 
ferrocene that strongly affected the viability of colorectal carcinoma cells, while monometallic complex 9Re is the first metal-based 
compound with benzimidazo[1,2-a]quinoline pharmacophore. 
 
 



  

  

 

 

 
Figure 8. Confocal imaging in a CT26 cell line after 3 h of incubation with 7 μM of 9Re complex (magenta). Cells were labeled with LysoTracker™ Deep Red (cyan). All 
scale bars: 10 μm. On the left: Lysotracker fluorescence. In the middle: 9Re fluorescence (7 µM). On the right: overlay. 

 

Experimental section 

General remarks 

Reactions were carried out in ordinary glassware, and chemicals were purchased from commercial suppliers and used without 
further purification. Precoated Merck (Darmstadt, Germany) silica gel 60F-254 plates were used for thin-layer chromatography 
and the spots were detected under UV light (254 and 366 nm). Column chromatography was done using Fluka (Buchs, Switzerland) 
silica gel (0.063-0.2 mm). Glass columns were slurry-packed under gravity. 1H and 13C NMR spectra were acquired on a Bruker 300 
and 600 MHz NMR spectrometer (Bruker Biospin, Rheinstetten, Germany). Chemical shifts were referenced to the signal of DMSO-
d6 at δ = 2.50 ppm (1H NMR) and δ = 39.50 ppm (13C NMR), CDCl3 at δ = 7.26 ppm (1H NMR) and δ = 77.16 ppm (13C NMR) and 
CD3CN at δ = 1.94 ppm (1H NMR) and δ = 118.26 ppm (13C NMR). Individual resonances were assigned on the basis of their chemical 
shifts, signal intensities, multiplicity of resonances and H−H coupling constants. Elemental composition analyses were performed 
on Perkin Elmer 2400 Series II CHNS analyser. Compositions of all novel compounds were within 0.4% of the calculated values. 
Melting points (uncorrected) were determined with Kofler hot-stage microscopy (Reichert, Wien, Austria). IR spectra were 
recorded using KBr pellets with a Bruker Alpha FT-IR spectrometer, in the 4000−350 cm−1 region or PerkinElmer Spectrum ONE FT-
IR with Universal UATR Sampling Accessory, in the 4000−650 cm−1 region. UV/Vis absorption spectra of ligands and their rhenium(I) 
complexes were recorded at the concentration of 1 x 10-3 mol dm-3 and 2 x 10-5 mol dm-3 in acetonitrile (HPLC grade) using a Varian 
Cary 50 spectrophotometer operated in double-beam mode at 25 ◦C. The covered wavelength range was 200–500 nm. Quartz cells 
of 1 cm path length were used and absorbancies were sampled at 0.1 nm intervals. 

Synthesis of precursors and derivatives 1a-1c61, 2-picolyl azide81, 2a59, 2aRe82, 2b60, 360, 4a56, 4b56, 568 and 855 was described 
previously in the literature. Precursors were prepared according to the previously described procedures, while ligands and metal 
complexes were prepared according to modified procedures.  

The synthesis and isolation of rhenium(I) complexes were performed in the dark due to the photosensitivity of the compounds. 
For this purpose, the used glassware was wrapped in aluminium foil while performing complexation reactions, isolating the 
complex by column chromatography and removing the solvent by vacuum evaporation. Complexes were stored in the dark. 

General procedure for the synthesis of ligands  

The alkyne (1 equiv.) and copper(II) acetate monohydrate (0.05 equiv.) were added to the solution of the corresponding azide (1-
1.1 equiv.) in methanol (5 ml). The reaction mixture was stirred at room temperature for 20-24 h. After the reaction was completed 
the solvent was evaporated under reduced pressure. The product of the reaction was isolated by column chromatography. 
1-Ferrocenyl-4-(2-pyridyl)-1,2,3-triazole (2a).59 Compound 2a was synthesised according to the general procedure using 1-
azidoferrocene (1a, 200 mg, 0.88 mmol, 1 equiv.), 2-ethynylpyridine (90 μl, 0.88 mmol) and Cu(OAc)2∙H2O (8 mg, 0.04 mmol, 0.05 
equiv.) in methanol (5 ml). Mobile phase for column chromatography was dichloromethane : methanol = 50 : 1. Yield: 2a (0.55 
mmol, 63%), yellow crystals (m. p. > 200 °C). 1H NMR (300 MHz, DMSO) δ 9.08 (s, 1H, H5-triaz.), 8.65 (d, J = 4.6 Hz, 1H, Ar-H), 8.09 
(d, J = 7.9 Hz, 1H, Ar-H), 7.93 (t, J = 8.5 Hz, 1H, Ar-H), 7.46–7.32 (m, 1H, Ar-H), 5.24–5.07 (m, 2H, Fc-H), 4.44–4.32 (m, 2H, Fc-H), 
4.22 (s, 5H, Fc-H). 13C NMR (151 MHz, DMSO) δ 149.55, 137.26, 133.30, 132.14, 123.17, 122.16, 119.63, 93.31, 69.93, 66.67, 61.60. 
IR (ATR)/cm-1: 3080, 1735, 1605 (sp2 C=N stretch), 1516 (sp2 C=C Ar stretch), 1467 (sp2 C=C Ar stretch), 1426 (sp2 C=C Ar stretch), 
1395, 1239, 1150, 1102, 1029, 999, 872, 811, 778, 743, 737, 712.  



    

 

 

1-Ferrocenemethyl-4-(2-pyridyl)-1,2,3-triazole (2b).60 Compound 2b was synthesised according to the general procedure using 1-
azidomethylferrocene (1b, 200 mg, 0.58 mmol, 1 equiv.), 2-ethynylpyridine (59 μl, 0.58 mmol) and Cu(OAc)2∙H2O (5 mg, 0.029 
mmol, 0.05 equiv.) in methanol (5 ml). Mobile phase for column chromatography was dichloromethane : methanol = 50 : 1. Yield: 
2b (0.35 mmol, 60%), yellow crystals (m. p. = 179–180 °C). Needle-like orange crystals of 2b suitable for crystal structure 
determination were obtained by slow evaporation from a dichloromethane : methanol solution. 1H NMR (300 MHz, CD3CN) δ 8.57 
(d, J = 4.5 Hz, 1H, Ar-H), 8.21 (s, 1H, H5-triaz.), 8.07 (d, J = 7.9 Hz, 1H, Ar-H), 7.83 (td, J = 7.8, 1.8 Hz, 1H, Ar-H), 7.33–7.25 (m, 1H, 
Ar-H), 5.38 (s, 2H, CH2), 4.46–4.32 (m, 2H, Fc-H), 4.23 (s, 6H, Fc-H), 4.06 (s, 1H, Fc-H). 13C NMR (75 MHz, DMSO) δ 149.94, 149.54, 
147.17, 137.14, 122.90, 122.71, 119.32, 82.30, 68.71, 68.63, 68.40, 49.13. IR (ATR)/cm-1: 3089 (sp2 C-H stretch), 2968 (sp3 C-H 
stretch), 1746 (sp2 C=N stretch), 1592 (sp2 C=C Ar stretch), 1470 (sp2 C=C stretch), 1467 (sp2 C=C Ar stretch), 1454 (sp2 C=C Ar 
stretch), 1417, 1366, 1334, 1220, 1193, 1193, 1146, 1076, 1072, 1041, 998, 925, 845, 819, 774, 746, 721.  
1-(1-Ferroceneethyl)-4-(2-pyridyl)-1,2,3-triazole (2c). Compound 2c was synthesised according to the general procedure using 1-
azidomethylferrocene (1c, 200 mg, 0.56 mmol, 1 equiv.), 2-ethynylpyridine (57 μl, 0.56 mmol) and Cu(OAc)2∙H2O (5 mg, 0.03 mmol, 
0.05 equiv.) in methanol (5 ml). Mobile phase for column chromatography was dichloromethane : methanol = 50 : 1. Yield: 2c (0.40 
mmol, 71%), yellow crystals (m. p. = 162–164 °C). 1H NMR (300 MHz, DMSO) δ 8.57 (d, J = 4.9 Hz, 2H, Ar-H and H5-triaz.), 8.01 (d, 
J = 7.9 Hz, 1H, Ar-H), 7.87 (td, J = 7.8, 1.6 Hz, 1H, Ar-H), 7.38–7.26 (m, 1H, Ar-H), 5.76 (q, J = 7.0 Hz, 1H, CH), 4.44 (s, 1H, Fc-H), 4.28 
(s, 1H, Fc-H), 4.18 (s, 7H, Fc-H), 1.91 (d, J = 7.0 Hz, 3H, CH3). 13C NMR (75 MHz, DMSO) δ 149.99, 149.49, 146.96, 137.14, 122.88, 
121.23, 119.30, 88.41, 68.73, 68.20, 67.78, 67.40, 66.23, 55.90, 20.65. IR (ATR)/cm-1: 3093 (sp2 C-H stretch), 2988 (sp3 C-H stretch), 
2937 (sp3 C-H stretch), 1734 (sp2 C=N stretch), 1605 (sp2 C=C Ar stretch), 1568, 1547, 1471, 1418, 1382, 1353, 1301, 1247, 1220, 
1155, 1102, 1037, 1025, 993, 914, 846, 817, 779, 746, 723, 708.  
4-Ferrocenyl-1-(2-picolyl)-1,2,3-triazole (3).60 Compound 3 was synthesised according to the general procedure using 2-
picolylazide (160 mg, 1.20 mmol, 1 equiv.), ethynylferrocene (252 mg, 1.20 mmol, 1 equiv.) and Cu(OAc)2∙H2O (11 mg, 0.06 mmol, 
0.05 equiv.) in methanol (5 ml). Mobile phase for column chromatography was dichloromethane : methanol = 50 : 1. Yield: 3 (1.00 
mmol, 83%), orange crystals (m. p. = 160–162 °C). Needle-like orange crystals of 3 suitable for crystal structure determination were 
obtained by slow evaporation from a dichloromethane : methanol solution. 1H NMR (300 MHz, CD3CN) δ 8.56 (d, J = 4.3 Hz, 1H, 
Ar-H), 7.86 (s, 1H, H5-triaz.), 7.77 (td, J = 7.7, 1.7 Hz, 1H, Ar-H), 7.31 (dd, J = 7.2, 5.0 Hz, 1H, Ar-H), 7.24 (d, J = 7.8 Hz, 1H, Ar-H), 5.64 
(s, 2H, CH2), 4.73–4.66 (m, 2H, Fc-H), 4.31–4.25 (m, 2H, Fc-H), 4.03 (s, 5H, Fc-H). 13C NMR (151 MHz, CD3CN) δ 156.23, 150.59, 
147.25, 138.23, 124.17, 122.99, 121.69, 76.93, 70.31, 69.36, 67.47, 55.94. IR (ATR)/cm-1: 3109 (sp2 C-H stretch), 3073 (sp2 C-H 
stretch), 2918 (sp3 C-H stretch), 2847 (sp3 C-H stretch), 1592 (sp2 C=N stretch), 1437 (sp2 C=C Ar stretch), 1345, 1227, 1152, 1107, 
1050, 1000, 878, 808, 752, 712.  
N,N-di-2-pyridyl-((1-ferrocenyl-1,2,3-triazol-4-yl)methyl)amine (4a).56 Compound 4a was synthesised according to the general 
procedure using 1-azidoferrocene (1a, 85 mg, 0.38 mmol, 1 equiv.), N-propargyl-di(2-pyridyl)amine (85 mg, 0.41 mmol, 1.1 equiv.) 
and Cu(OAc)2∙H2O (4 mg, 0.02 mmol, 0.05 equiv.) in methanol (7.5 ml). Mobile phase for column chromatography was 
cyclohexane:ethyl acetate = 1:1. Yield: 4a (0.23 mmol, 60 %), yellow powder (m. p. = 154–155 °C). 1H NMR (400 MHz, DMSO) δ 
8.37–8.29 (m, 2H, Ar-H), 8.20 (s, 1H, H5-triaz.), 7.72–7.62 (m, 2H, Ar-H), 7.30 (d, J = 8.4 Hz, 2H, Ar-H), 7.03–6.93 (m, 2H, Ar-H), 5.46 
(s, 2H, CH2), 4.97 (pt, J = 1.9 Hz, 2H, Fc-H), 4.28 (pt, J = 1.9 Hz, 2H, Fc-H), 4.05 (s, 5H, Fc-H). 13C NMR (101 MHz, DMSO) δ 156.14, 
147.83, 145.30, 137.59, 122.89, 117.41, 114.65, 93.36, 69.72, 66.41, 61.70, 42.93. IR (ATR)/cm-1: 2966 (sp3 C-H stretch), 2931 (sp3 
C-H stretch), 2875 (sp3 C-H stretch), 1703 (sp2 C=N stretch), 1564 (sp2 C=C Ar stretch), 1467 (sp2 C=C Ar stretch), 1435 (sp2 C=C Ar 
stretch), 1373, 1206, 1157, 1058, 993, 880, 773, 754, 664. 
N,N-di-2-pyridyl-((1-ferrocenemethyl-1,2,3-triazol-4-yl)methyl)amine (4b).56 Compound 4b was synthesised according to the 
general procedure using 1-azidomethylferrocene (1b, 180 mg, 0.75 mmol, 1.1 equiv.), N-propargyl-di(2-pyridyl)amine (122 mg, 
0.67 mmol, 1 equiv.) and Cu(OAc)2∙H2O (7 mg, 0.04 mmol, 0.05 equiv.) in methanol (6 ml). Mobile phase for column 
chromatography was cyclohexane:ethyl acetate = 1:1. Yield: 4b (0.29 mmol, 43 %), yellow powder (m. p. = 90–92 °C). 1H NMR (400 
MHz, DMSO) δ 8.41–8.18 (m, 2H, Ar-H), 7.84 (s, 1H, H5-triaz.), 7.72–7.57 (m, 2H, Ar-H), 7.26 (d, J = 8.4 Hz, 2H, Ar-H), 7.03–6.88 (m, 
2H, Ar-H), 5.38 (s, 2H, CH2), 5.20 (s, 2H, CH2), 4.21 (pt, J = 1.9 Hz, 2H, Fc-H), 4.12 (pt, J = 1.9 Hz, 2H, Fc-H), 4.07 (s, 5H, Fc-H). 13C 
NMR (101 MHz, DMSO) δ 156.63, 148.31, 145.29, 138.06, 123.40, 117.86, 115.00, 83.34, 69.02, 68.84, 68.59, 49.08, 43.66. IR 
(ATR)/cm-1: 3158, 3052 (sp2 C-H stretch), 2965 (sp3 C-H stretch), 2918 (sp3 C-H stretch), 2856 (sp3 C-H stretch), 1704 (sp2 C=N 
stretch), 1659 (sp2 C=N stretch), 1563 (sp2 C=C Ar stretch), 1471 (sp2 C=C Ar stretch), 1430 (sp2 C=C Ar stretch), 1381, 1327, 1203, 
1149, 1106, 1048, 979, 873, 750.  
Methyl 2-(6-((1-(2-picolyl)-1,2,3-triazol-4-yl)methoxy)-3-oxoxanthen-9-yl)benzoate (6a). Compound 6a was synthesised 
according to the general procedure using 2-picolylazide (39 mg, 0.29 mmol, 1.1 equiv.), propargyl derivative 5 (100 mg, 0.26 mmol, 
1 equiv.) and Cu(OAc)2∙H2O (2 mg, 0.01 mmol, 0.05 equiv.) in methanol (7 ml). Mobile phase for column chromatography was 
dichloromethane : methanol = 30 : 1. Yield: 6a (0.17 mmol, 65%), red crystals (m. p. = 149–150 °C). 1H NMR (300 MHz, DMSO) δ 
8.54 (d, J = 4.1 Hz, 1H, H5-triaz.), 8.38 (s, 1H, Ar-H), 8.27–8.17 (m, 1H, Ar-H), 7.94–7.69 (m, 3H, Ar-H), 7.57–7.46 (m, 1H, Ar-H), 7.41 
(d, J = 2.3 Hz, 1H, Ar-H), 7.39–7.26 (m, 2H, Ar-H), 6.96 (dd, J = 8.9, 2.3 Hz, 1H, Ar-H), 6.89–6.74 (m, 2H, Ar-H), 6.40 (dd, J = 9.7, 1.9 
Hz, 1H, Ar-H), 6.26 (d, J = 1.9 Hz, 1H, Ar-H), 5.75 (s, 2H, CH2), 5.35 (s, 2H, CH2), 3.59 (s, 3H, OCH3). IR (KBr)/cm-1: 3055 (sp2 C-H 
stretch), 2951 (sp3 C-H stretch), 2924 (sp3 C-H stretch), 2850 (sp3 C-H stretch), 1726 (ester C=O stretch), 1642 (sp2 C=N stretch), 



  

  

 

 

1595 (sp2 C=C Ar stretch), 1514 (sp2 C=C Ar stretch), 1481 (sp2 C=C Ar stretch), 1456, 1416, 1383, 1276 (C-O stretch), 1255 (C-O 
stretch), 1211, 1127, 1108, 1082, 1002, 854, 756.  
5-(2-Pyridynyl)-1,2,3-triazol-1-yl)benzimidazo[1,2-a]quinoline-6-carbonitrile (9). Compound 9 was synthesised according to the 
general procedure using the azide 8 (127 mg, 0.44 mmol, 1 equiv.), 2-ethynylpyridine (50 μl, 0.49 mmol, 1.1 equiv.) and 
Cu(OAc)2∙H2O (4 mg, 0.02 mmol, 0.05 equiv.) in methanol (6 ml). Mobile phase for column chromatography was dichloromethane 
: methanol = 100 : 1. The isolated product was triturated with cold solvents (n-hexane, ethanol and methanol). Yield: 9 (0.21 mmol, 
47 %), yellow powder (m. p. > 250 oC). 1H NMR (600 MHz, DMSO) δ 9.42 (s, 1H, H5-triaz.), 9.06 (d, J = 8.6 Hz, 1H, Ar-H), 8.89 (dd, J 
= 6.6, 2.4 Hz, 1H, Ar-H), 8.76–8.67 (m, 1H, Ar-H), 8.26 (d, J = 7.9 Hz, 1H, Ar-H), 8.19–8.10 (m, 2H, Ar-H), 8.04 (td, J = 7.8, 1.8 Hz, 1H, 
Ar-H), 7.75–7.65 (m, 3H, Ar-H), 7.54 (dd, J = 8.2, 1.2 Hz, 1H, Ar-H), 7.51-7.46 (m, 1H, Ar-H). 13C NMR (151 MHz, DMSO) δ 149.95, 
148.82, 148.06, 144.26, 143.35, 141.66, 137.58, 135.85, 134.92, 130.58, 126.68, 126.50, 126.08, 125.82, 124.67, 123.81, 120.71, 
120.13, 118.26, 116.63, 115.26, 112.24, 100.84. IR (KBr)/cm-1: 3113, 2923 (sp2 C-H stretch), 2851, 2377, 2345, 2319 (C≡N), 2240, 
1641 (sp2 C=N stretch), 1632 (sp2 C=C Ar stretch), 1611, 1449, 1420, 1384, 1286, 1255, 1023, 798, 749.   

General procedure for the synthesis of metal complexes  

To the solution of the ligand (1 equiv.) in chloroform was added Re(CO)5Cl (1 equiv.) and the reaction mixture was stirred in dark 
at the reflux temperature for 14 h. After completion of the reaction the solvent was evaporated under reduced pressure. The 
product was isolated by column chromatography with a dichloromethane : methanol mixture as a mobile phase.  
Complex 2aRe. Ligand 2a (100 mg, 0.30 mmol, 1 equiv.), Re(CO)5Cl (109 mg, 0.30 mmol, 1 equiv.) and chloroform (20 ml) were used 
for the synthesis. Mobile phase for column chromatography was dichloromethane : methanol = 50 : 1. Yield: 2aRe (0.22 mmol, 73 
%), yellow crystals (m. p. > 200 °C). Needle-like yellow crystals of 2aRe suitable for crystal structure determination were obtained 
by slow evaporation from a dichloromethane : methanol solution. 1H NMR (300 MHz, CD3CN) δ 8.99 (d, J = 5.4 Hz, 1H, Ar-H), 8.94 
(s, 1H, H5-triaz.), 8.19 (td, J = 7.8, 1.4 Hz, 1H, Ar-H), 8.09 (d, J = 7.9 Hz, 1H, Ar-H), 7.55 (ddd, J = 7.2, 5.6, 1.3 Hz, 1H, Ar-H), 5.10–5.02 
(m, 2H, Fc-H), 4.49–4.43 (m, 2H, Fc-H), 4.33 (s, Fc-H). 13C NMR (151 MHz, DMSO) δ 197.44 (Re-CO), 196.53 (Re-CO), 189.47 (Re-
CO), 153.00, 148.61, 148.42, 140.58, 126.53, 125.38, 122.75, 99.43, 92.36, 70.42, 67.68, 67.63, 62.94, 62.88. IR (ATR)/cm-1: 2031 
(M-C≡O sym. stretch), 1911 (M-C≡O asym. stretch), 1893 (M-C≡O asym. stretch), 1614 (sp2 C=N stretch), 1583 (sp2 C=C Ar stretch), 
1515 (sp2 C=C Ar stretch), 1458, 1414, 1267, 1151, 1106, 1089, 1046, 1004, 876, 819, 780, 729. Calc. for C20H14ClFeN4O3Re: C, 
37.78; H, 2.22; N, 8.81, exp. C, 37.56; H, 2.11; N, 8.60. 
Complex 2bRe. Ligand 2b (100 mg, 0.29 mmol, 1 equiv.), Re(CO)5Cl (105 mg, 0.29 mmol, 1 equiv.) and chloroform (20 ml) were 
used for the synthesis. Mobile phase for column chromatography was dichloromethane : methanol = 50 : 1. Yield: 2bRe (0.20 mmol, 
70 %), yellow crystals (m. p. = 199–201 °C). 1H NMR (300 MHz, CD3CN) δ 8.94 (d, J = 5.4 Hz, 1H, Ar-H), 8.50 (s, 1H, H5-triaz.), 8.11 
(td, J = 7.9, 1.3 Hz, 1H, Ar-H), 8.00 (d, J = 7.9 Hz, 1H, Ar-H), 7.50 (ddd, J = 7.2, 5.6, 1.2 Hz, 1H, Ar-H), 5.45 (s, 2H, CH2), 4.42 (d, J = 1.7 
Hz, 2H, Fc-H), 4.34–4.28 (m, 2H, Fc-H), 4.25 (s, 5H, Fc-H). 13C NMR (151 MHz, DMSO) δ 197.61 (Re-CO), 196.75 (Re-CO), 189.53 (Re-
CO), 152.96, 148.67, 148.12, 140.57, 126.41, 125.35, 122.70, 80.58, 68.91, 68.83, 68.81, 68.75, 51.07. IR (ATR)/cm-1: 3083 (sp2 C-
H stretch), 2973 (sp3 C-H stretch), 2019 (M-C≡O sym. stretch), 1919 (M-C≡O asym. stretch), 1885 (M-C≡O asym. stretch), 1736 (sp2 
C=N stretch), 1614 (sp2 C=C Ar stretch), 1448 (sp2 C=C Ar stretch), 1375, 1262, 1220, 1106, 1044, 997, 831, 809, 777, 735. Calc. for 
C21H16ClFeN4O3Re: C, 38.81; H, 2.48; N, 8.62, exp. C, 38.85; H, 2.36; N, 8.82. 
Complex 2cRe. Ligand 2c (100 mg, 0.28 mmol, 1 equiv.), Re(CO)5Cl (101 mg, 0.28 mmol, 1 equiv.) and chloroform (20 ml) were used 
for the synthesis. Mobile phase for column chromatography was dichloromethane : methanol = 50 : 1. Yield: 2cRe (0.14 mmol, 50 
%), yellow crystals (m. p. = 163–165 °C). 1H NMR (300 MHz, CD3CN) δ 8.94 (d, J = 5.4 Hz, 1H, Ar-H), 8.52 (d, J = 2.8 Hz, 1H, H5-triaz.), 
8.11 (td, J = 7.8, 1.2 Hz, 1H, Ar-H), 7.99 (d, J = 7.9 Hz, 1H, Ar-H), 7.54–7.45 (m, 1H, Ar-H), 5.89 (p, J = 6.9 Hz, 1H, CH), 4.43–4.37 (m, 
1H, Fc-H), 4.32–4.25 (m, 3H, Fc-H), 4.25–4.14 (m, 5H, Fc-H), 2.00 (dd, J = 7.0, 1.5 Hz, 3H, CH3). 13C NMR (151 MHz, DMSO) δ 197.61 
(Re-CO), 196.76 (Re-CO), 189.55 (Re-CO), 152.97, 148.76, 148.73, 147.97, 147.95, 140.57, 126.40, 124.20, 124.05, 122.61, 122.58, 
87.52, 87.34, 68.95, 68.92, 68.56, 68.47, 68.17, 68.10, 67.02, 66.39, 66.33, 58.29, 58.25, 20.89, 20.81. IR (ATR)/cm-1: 3092 (sp2 C-H 
stretch), 2980 (sp3 C-H stretch), 2016 (M-C≡O sym. stretch), 1911 (M-C≡O asym. stretch), 1872 (M-C≡O asym. stretch), 1740 (sp2 
C=N stretch), 1610 (sp2 C=C Ar stretch), 1584 (sp2 C=C Ar stretch), 1458, 1368, 1233, 1120, 1025, 1025, 1003, 828, 771, 744. Calc. 
for C22H18ClFeN4O3Re: C, 39.80; H, 2.73; N, 8.44, exp. C, 39.91; H, 2.84; N, 8.31.  
Complex 3Re. Ligand 3 (100 mg, 0.29 mmol, 1 equiv.), Re(CO)5Cl (105 mg, 0.29 mmol, 1 equiv.) and chloroform (20 ml) were used 
for the synthesis. Mobile phase for column chromatography was dichloromethane : methanol = 50 : 1. Yield: 3Re (0.18 mmol, 62 
%), yellow crystals (m. p. > 200 °C). Needle-like yellow crystals of 3Re suitable for crystal structure determination were obtained by 
slow evaporation from a dichloromethane : methanol solution. 1H NMR (300 MHz, CD3CN) δ 9.10 (d, J = 4.7 Hz, 1H, Ar-H), 8.15 (s, 
1H, H5-triaz.), 8.09 (td, J = 7.7, 1.5 Hz, 1H, Ar-H), 7.76 (d, J = 7.7 Hz, 1H, Ar-H), 7.65–7.50 (m, 1H, Ar-H), 6.13 (d, J = 15.8 Hz, 1H, 
CH2), 5.64 (d, J = 15.8 Hz, 1H, CH2), 4.73 (s, 2H, Fc-H), 4.37 (s, 2H, Fc-H), 4.11 (s, 5H, Fc-H). 13C NMR (151 MHz, DMSO) δ 196.36 (Re-
CO), 195.44 (Re-CO), 190.39 (Re-CO), 156.96, 152.52, 147.64, 140.81, 126.93, 126.42, 125.13, 73.51, 69.45, 68.99, 68.96, 67.22, 
67.07, 55.02. IR (ATR)/cm-1: 3114 (sp2 C-H stretch), 3004 (sp3 C-H stretch), 2024 (M-C≡O sym. stretch), 1931 (M-C≡O asym. stretch), 
1904 (M-C≡O asym. stretch), 1581 (sp2 C=N stretch), 1433 (sp2 C=C Ar stretch), 1305, 1105, 1076, 1037, 1000, 880, 819, 765, 737, 
711. Calc. for C21H16ClFeN4O3Re: C, 38.81; H, 2.48; N, 8.62, exp. C, 38.99; H, 2.56; N, 8.51.  



    

 

 

Complex 4aRe. Ligand 4a (150 mg, 0.34 mmol, 1 equiv.), Re(CO)5Cl (122 mg, 0.34 mmol, 1 equiv.) and chloroform (20 ml) were used 
for the synthesis. Mobile phase for column chromatography was dichloromethane : methanol = 50 : 1. Yield: 4aRe (0.26 mmol, 76 
%), yellow crystals (m. p. = 139–140 °C). Platelet yellow crystals of 4aRe suitable for crystal structure determination were obtained 
by slow evaporation from a dichloromethane : methanol solution. 1H NMR (300 MHz, DMSO) δ 8.66 (d, J = 4.9 Hz, 2H, Ar-H), 8.34 
(s, 1H, H5-triaz.), 8.17 (t, J = 7.4 Hz, 2H, Ar-H), 7.84 (d, J = 8.4 Hz, 2H, Ar-H), 7.41 (t, J = 6.5 Hz, 2H, Ar-H), 5.54 (s, 2H, CH2), 4.87 (s, 
2H, Fc-H), 4.32 (s, 2H, Fc-H), 4.04 (s, 5H, Fc-H). 13C NMR (151 MHz, DMSO) δ 196.71 (Re-CO), 192.53 (Re-CO), 155.73, 153.29, 
141.76, 141.13, 124.57, 121.45, 117.44, 92.89, 69.79, 66.73, 61.90, 45.76. IR (ATR)/cm-1: 3051 (sp2 C-H stretch), 2957 (sp3 C-H 
stretch), 2917 (sp3 C-H stretch), 2864 (sp3 C-H stretch), 2013 (M-C≡O sym. stretch), 1919 (M-C≡O asym. stretch), 1855 (M-C≡O 
asym. stretch), 1566 (sp2 C=N stretch), 1461 (sp2 C=C Ar stretch), 1436 (sp2 C=C Ar stretch), 1363, 1216, 1040, 996, 867, 787. Calc. 
for C26H20ClFeN6O3Re: C, 42.09; H, 2.72; N, 11.33, exp. C, 42.23; H, 2.83; N, 11.45.  
Complex 4bRe. Ligand 4b (140 mg, 0.31 mmol, 1 equiv.), Re(CO)5Cl (112 mg, 0.31 mmol, 1 equiv.) and chloroform (20 ml) were used 
for the synthesis. Mobile phase for column chromatography was dichloromethane : methanol = 50 : 1. Yield: 4bRe (0.25 mmol, 81 
%), yellow crystals (m. p. = 225–227 °C). 1H NMR (600 MHz, DMSO) δ 8.62 (d, J = 4.9 Hz, 2H, Ar-H), 8.11 (t, J = 7.3 Hz, 2H, Ar-H), 
7.92 (s, 1H, H5-triaz.), 7.81 (d, J = 8.4 Hz, 2H, Ar-H), 7.37 (t, J = 6.4 Hz, 2H, Ar-H), 5.48 (s, 2H, CH2), 5.23 (s, 2H, CH2), 4.12 (d, J = 2.3 
Hz, 4H, Fc-H), 3.99 (s, 5H, Fc-H). 13C NMR (151 MHz, DMSO) δ 196.85 (Re-CO), 192.40 (Re-CO), 155.73, 153.19, 141.01, 140.84, 
124.58, 121.43, 117.36, 82.54, 68.42, 68.07, 68.01, 48.76, 45.84. IR (ATR)/cm-1: 3091 (sp2 C-H stretch), 2958 (sp3 C-H stretch), 2919 
(sp3 C-H stretch), 2012 (M-C≡O sym. stretch), 1901 (M-C≡O asym. stretch), 1851 (M-C≡O asym. stretch), 1736 (sp2 C=N stretch), 
1585 (sp2 C=C Ar stretch), 1457 (sp2 C=C Ar stretch), 1432, 1371, 1336, 1216, 1138, 1124, 1105, 1047, 999, 903, 872, 812, 789, 758. 
Calc. for C27H22ClFeN6O3Re: C, 42.90; H, 2.93; N, 11.12, exp. C, 43.04; H, 2.98; N, 11.21. 
Complex 6aRe. Ligand 6a (52 mg, 0.10 mmol, 1 equiv.), Re(CO)5Cl (36 mg, 0.10 mmol, 1 equiv.) and chloroform (20 ml) were used 
for the synthesis. Mobile phase for column chromatography was dichloromethane : methanol = 30 : 1. Yield: 6aRe (0.07 mmol, 70 
%), orange powder (m. p. = 222–224 °C). 1H NMR (600 MHz, DMSO) δ 9.01 (dd, J = 5.6, 1.2 Hz, 1H, Ar-H), 8.76 (d, J = 1.9 Hz, 1H, 5H-
triaz.), 8.22 (ddd, J = 7.7, 4.5, 1.8 Hz, 2H, Ar-H), 7.90–7.85 (m, 2H, Ar-H), 7.79 (td, J = 7.7, 1.3 Hz, 1H, Ar-H), 7.70 (ddd, J = 7.4, 5.7, 
1.4 Hz, 1H, Ar-H), 7.51 (d, J = 7.5 Hz, 1H, Ar-H), 7.44 (d, J = 2.4 Hz, 1H, Ar-H), 6.96 (dt, J = 9.0, 2.4 Hz, 1H, Ar-H), 6.86 (d, J = 8.9 Hz, 
1H, Ar-H), 6.81 (d, J = 9.8 Hz, 1H, Ar-H), 6.43 (dd, J = 15.9, 2.1 Hz, 1H, CH2), 6.40 (dd, J = 9.8, 1.9 Hz, 1H), 6.25 (d, J = 1.9 Hz, 1H), 
5.70 (d, J = 15.8 Hz, 1H, CH2), 5.45 (s, 2H, CH2), 3.58 (d, J = 0.5 Hz, 3H, OCH3). 13C NMR (151 MHz, DMSO) δ 196.19 (Re-CO), 195.27 
(Re-CO), 190.10 (Re-CO), 183.81, 165.15, 162.15, 158.31, 156.98, 153.41, 152.31, 149.94, 143.88, 140.85, 133.79, 133.19. IR 
(KBr)/cm-1: 2951 (sp3 C-H stretch), 2922 (sp3 C-H stretch), 2851, 2027 (M-C≡O sym. stretch), 1926 (M-C≡O asym. stretch), 1900 (M-
C≡O asym. stretch), 1723 (ester C=O stretch), 1640 (sp2 C=N stretch), 1600 (sp2 C=C Ar stretch), 1512 (sp2 C=C Ar stretch), 1480, 
1457, 1435, 1384, 1284 (C-O stretch), 1209, 1129, 1109, 1081, 1010, 962, 934, 918, 853, 767, 703. Calc. for C33H22ClN4O8Re: C, 
48.09; H, 2.69; N, 6.80, exp. C, 48.26; H, 2.82; N, 6.79. 
Complex 9Re. Ligand 9 (31 mg, 0.08 mmol, 1 equiv.), Re(CO)5Cl (30 mg, 0.08 mmol, 1 equiv.) and chloroform (8 ml) were used for 
the synthesis. Mobile phase for column chromatography was dichloromethane : methanol = 50 : 1. Yield: 9Re (0.07 mmol, 91 %), 
orange powder (m. p. > 250 °C). 1H NMR (600 MHz, DMSO) δ 10.00 (s, 1H, H-triaz.), 9.27–9.07 (m, 2H), 9.02–8.83 (m, 1H), 8.56 (dd, 
J = 4.9, 4.0 Hz, 1H), 8.40 (td, J = 7.8, 1.5 Hz, 1H), 8.26–8.04 (m, 2H), 7.86–7.69 (m, 4H), 7.56 (d, J = 7.7 Hz, 1H) ppm. 13C NMR (151 
MHz, DMSO) δ 197.40 (Re-CO), 196.34 (Re-CO), 189.24 (Re-CO), 153.32, 149.45, 147.95, 144.34, 143.20, 140.84, 139.73, 136.01, 
135.18, 130.60, 129.27, 127.20, 126.15, 126.00, 125.82, 124.96, 123.64, 120.87, 117.71, 116.82, 115.35, 111.75, 102.07 ppm. IR 
(KBr)/cm-1: 3444, 3066 , 3047 (sp2 C-H stretch), 2958 (sp3 C-H stretch), 2923 (sp3 C-H stretch), 2851 (sp3 C-H stretch), 2377, 2353 
(C≡N), 2311, 2239, 2031 (M-C≡O sym. stretch), 1922 (M-C≡O asym. stretch), 1732, 1619 (sp2 C=N stretch), 1607 (sp2 C=C Ar stretch), 
1470, 1434, 1384, 1288, 1273, 1257, 1184, 1161, 1126, 1101, 1043, 977, 876, 841, 781, 755, 643. Calc. for C26H15ClN7O3Re: C, 44.93; 
H, 2.18; N, 14.11, exp. C, 44.99; H, 2.11; N, 14.08.  

General procedure for the counterion exchange 

To the solution of the complex (1 equiv.) in acetonitrile was added AgCF3SO3 (1 equiv.) and the reaction mixture was stirred in dark 
at the reflux temperature for 14 h. After completion of the reaction the solvent was evaporated under reduced pressure. The 
product was isolated by column chromatography with dichloromethane : methanol = 20 : 1 mixture as a mobile phase.  
Complex 4aRe∙OTf. Complex 4aRe (34 mg, 0.046 mmol, 1 equiv.), AgCF3SO3 (12 mg, 0.046 mmol, 1 equiv.) and acetonitrile (5 ml) 
were used for the synthesis. Yield: 4aRe∙OTf (0.033 mmol, 72 %), orange powder (m. p. = 139–140 °C). 1H NMR (300 MHz, CDCl3) δ 
8.90 (d, J = 5.5 Hz, 2H, Ar-H), 8.30 (s, 1H, H5-triaz), 8.23–8.00 (m, 4H, Ar-H), 7.42 (t, J = 6.4 Hz, 2H, Ar-H), 5.43 (s, 2H, CH2), 4.86 (d, 
J = 1.7 Hz, 2H, Fc-H), 4.31 (d, J = 1.7 Hz, 2H, Fc-H), 4.25 (s, 5H, Fc-H). 13C NMR (151 MHz, CDCl3) δ 194.20, 193.94, 157.01, 153.93, 
148.98, 143.61, 126.13, 124.70, 124.65, 120.87 (q, J = 320.5 Hz, CF3SO3-), 70.65, 67.57, 63.06. IR (KBr)/cm-1: 3445, 3113 (sp2 C-H 
stretch), 2958 (sp3 C-H stretch), 2925 (sp3 C-H stretch), 2853 (sp3 C-H stretch), 2034 (M-C≡O sym. stretch), 1912 (M-C≡O asym. 
stretch), 1709 (sp2 C=N stretch), 1670 (sp2 C=N stretch), 1605 (sp2 C=C Ar stretch), 1472 (sp2 C=C Ar stretch), 1411, 1385, 1263, 
1224, 1157, 1106, 1091, 1071, 1030, 879, 811, 866, 638, 534, 517, 485. Calc. for C27H20F3FeN6O6ReS: C. 37.90; H. 2.36; N. 9.82, exp. 
C. 38.03, H. 2.52, N. 9.71. 
Complex 4bRe∙OTf. Complex 4bRe (31 mg, 0.041 mmol, 1 equiv.), AgCF3SO3 (10.5 mg, 0.041 mmol, 1 equiv.) and acetonitrile (5 ml) 
were used for the synthesis. Yield: 4bRe∙OTf (0.017 mmol, 41 %), orange powder (m. p. = 189–190 °C). Rod-like orange crystals of 



  

  

 

 

4bRe∙OTf suitable for crystal structure determination were obtained by slow evaporation from a dichloromethane : methanol 
solution. 1H NMR (600 MHz, CDCl3) δ 8.84 (dd, J = 5.6, 1.2 Hz, 2H, Ar-H), 8.13–8.07 (m, 2H, Ar-H), 8.06 (d, J = 7.8 Hz, 2H, Ar-H), 7.89 
(s, 1H, H5-triaz.), 7.39–7.33 (m, 2H, Ar-H), 5.28 (s, 2H, CH2), 5.28 (s, 2H, CH2), 4.36–4.32 (m, 2H, Fc-H), 4.22–4.19 (m, 2H, Fc-H), 4.17 
(s, 5H, Fc-H). 13C NMR (151 MHz, CDCl3) δ 194.16 (Re-CO), 193.95 (Re-CO), 156.98, 153.84, 148.87, 143.52, 126.11, 124.55, 120.86 
(q, J = 320.5 Hz, CF3SO3-), 123.85, 78.94, 69.58, 69.38, 68.98, 52.58, 51.87. IR (KBr)/cm-1: 2957 (sp3 C-H stretch), 2925 (sp3 C-H 
stretch), 2853 (sp3 C-H stretch), 2034 (M-C≡O sym. stretch), 1913 (M-C≡O asym. stretch), 1637 (sp2 C=N stretch), 1605 (sp2 C=N 
stretch), 1472 (sp2 C=C Ar stretch), 1447 (sp2 C=C Ar stretch), 1384, 1368, 1262, 1224, 1158, 1030, 813, 766, 638, 481. Calc. for 
C28H22F3FeN6O6ReS: C. 38.67, H. 2.55, N. 9.66, exp. C. 38.81, H. 2.71, N. 9.79. 

X-Ray Crystallography 

The X-ray intensity data were collected on Oxford diffraction (Xcalibur) or XtaLAB Synergy (Dualflex) CCD diffractometers using 
monochromatic Cu-Kα (λ = 1.54184 Å) radiation. Basic experimental data are given in Table S1. The data were processed with 
CrysalisPro program,83 used for unit cell determination and data reduction. Structures were solved by direct methods using SHELXT 
program84 and refined against F2 on all data by a full-matrix least squares procedure with SHELXL program.85 All non-hydrogen 
atoms were refined in an anisotropic model of atomic displacement parameters.  
The structures of two ligand compounds 2b and 3 were solved and refined without any difficulties and they are represented in 
usual structural model in which hydrogen atoms are included at geometrically calculated positions. Due to observation of two 
distinctive peaks in difference electron density map corresponding to two opposite positions of ortho-hydrogen atom from 
pyridine unit in 3, occupancies of both orientations of pyridine unit were refined and additional “rigid body” restraints were added 
(RIGU restraints). The refined occupancy for the “cis” orientation is 0.64(3) and for the “trans” orientation is 0.36(3). The 
orientation in which torsion angle N1-C6-C7-N12 is ≈ 60o or ≈ ‒120o are taken as “cis” or “trans” orientations, respectively (Figure 
S3). Regarding structures with Re atoms (2aRe, 3Re, 4aRe and 4bRe∙OTf) the residual electron density around Re atoms in all 
structures showed significant deviations. The lowest quality data were for 4aRe [Rint = 11.60 %, the fraction of unique reflections 
measured up to Θ of 67.68o is 0.93, with significant number of missing reflections (336)] which leaded to structure having high R 
values (Table S1), although the structure was undoubtedly solved by SHELXT and least square cycles of SXELXL refinement showed 
convergence of all parameters (Δmax/su ≈ 0). In order to prevent unphysical behaviour of the anisotropic displacement parameters 
for non-hydrogen atoms, the “rigid body” restraints were added to all atoms in the last refinement cycles. Data for structure 3Re 
were of better quality (Rint = 7.55 %, the fraction of unique reflections measured up to Θ of 67.68o is 0.985). Despite of this better 
data set quality, the four residual peaks of difference electron density in the vicinity of Re atoms were unusually high (above 5 
el/Å3) (two Re atoms from two molecules in the asymmetric unit). Because all atoms bonded to Re should be ≈ 2 Å distant and 
peaks were located at distance close to 1 Å from Re atoms, it is assumed that additional peaks come from other, less occupied 
positions of the whole molecules. Because the Re atom is the heaviest, the less occupied positions of other atoms are probably 
immersed in the noise of electron density. Therefore, in the last refinement cycles the highest peaks around Re atoms were treated 
as lower occupied positions of nearby Re atoms with restraint that sum of occupations for each position in one Re group is 1. Such 
treatment was already encountered in the structure of Re(5-H2NCO-phen)(CO)3Cl86 and it was treated in the same way. Similar to 
the results of Kemmerdy et all,86 refined occupancies for the central, most populated positions of Re1 and Re2 atoms in each Re 
group were above 0.93, while additional nearby peaks represent disordered Re atoms with occupancies below 0.04. Additionally, 
due to large displacement parameters of carbon atom from ferrocene units, the rigid body restraint was used. Although the most 
significant peaks of difference electron density for 2aRe were also in the vicinity of Re atoms, they were not as much high as for 
3Re, therefore additional modelling of the disorder of Re atoms were not performed for 2aRe. The only observation is that 
displacement parameters on atoms of the free cyclopentadienyl ring of ferrocene unit were significantly larger than displacement 
parameters on other atoms, so rigid body restraints were used for atoms of the ferrocene unit. Only in the structure of 4bRe∙OTf, 
(the only structure without Cl- anion coordinating the Re atom) the highest peak in the difference electron density is in the vicinity 
of the S atom from the triflate anion. This anion shows enlarged displacement parameters and one additional, disordered molecule 
of chloroform is recognized in the structure. The CCDC 2254508-2254513 contain the supplementary crystallographic data for this 
paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via 
www.ccdc.cam.ac.uk/data_request/cif. 

Interactions with biomolecules 

Aqueous buffer solution (pH = 7.0, I = 0.05 M, sodium cacodylate buffer) was used for all the measurements. UV-Vis spectra were 
recorded on a Varian Cary 100 Bio spectrometer, fluorescence spectra were recorded on a Varian Cary Eclipse fluorimeter and CD 
spectra were recorded on a JASCO J815 spectropolarimeter. Fluorescence decay measurements were performed on Edinburgh 
Instruments FS5 Spectrofluorometer by time-correlated single-photon counting (TC-SPC), and absolute quantum yields were 
determined using the Integrating sphere SC-30 on FS5 Spectrofluorometer. All measurements were taken at 25.0 °C using 
appropriate quartz cuvettes with a path length of 1 cm. 
Polynucleotides were purchased as noted: calf thymus (ct)–DNA (Sigma Aldrich), poly A–poly U (Sigma Aldrich) and dissolved in 
sodium cacodylate buffer. ct-DNA was additionally sonicated and filtered through a 0.45 mm filter to obtain mostly short rod-like 
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B-helical DNA fragments.87 Polynucleotide concentration was determined as the concentration of phosphates (corresponds to 
c(nucleobase), λmax = 260 nm) spectroscopically.76 Human serum albumin (HSA, Sigma Aldrich) was dissolved in milliQ water at a 
concentration of c = 1 × 10-3 M.  
Fluorimetric titrations were performed by adding DNA, RNA or protein stock solution aliquots into buffered solutions of 
fluorophores and collecting emission spectra. Titration data were processed by means of Scatchard equation (for DNA, RNA),73 
yielding binding constants; whereas titration with HSA gave the best fit for the 1 : 1 stoichiometry dye : HSA. 
Thermal denaturation experiments were done in aqueous buffer by measuring the absorption change of polynucleotides and their 
complexes at 260 nm as a function of temperature. Tm values were determined from the maximum of the first derivative and 
represent the midpoints of the transition curves. ΔTm values were obtained by subtraction of the Tm of free nucleic acid from the 
Tm of the complex of nucleic acid and compound. Tm values reported here are averages of at least two measurements and the 
error in ΔTm is ± 0.5 °C. 
Circular dichroism (CD) studies were conducted in aqueous buffer with a scanning speed of 200 nm/min and averaging 3 
accumulations. The titrations were performed by addition of compound solutions into polynucleotide solution (c = 2 × 10-5 M) and 
background (buffer) was subtracted from each measurement.  

Cell Culture 

The CT-26 cell line was cultured in DMEM medium, the HT-29 cell line in McCoy’s 5A (modified) medium and the RPE-1 cell line in 
DMEM-F12 medium. All cell line media were supplemented with 10% fetal calf serum (Gibco) and 1% Penicillin-Streptomycin 
antibiotic (Gibco). Cell lines were maintained in a humidified atmosphere at 37 °C with 5% CO2. 

Cytotoxicity Assay Using a 2D Cellular Model 

The cytotoxicity of the tested complexes was assessed by a fluorometric cell viability assay using Resazurin (Acros Organics). Cells 
were seeded in triplicates in 96-well plates (100 μl/well). Cells were seeded at a 4 × 103 cells/ well for CT26, 5 × 103 cells/ well for 
HT29 and 10 × 103 cells/ well for RPE-1. After 24 h, cells were treated with increasing concentrations of the Re complexes and 
CDDP control. Dilutions for complexes were prepared as follows: 10 mM stock in DMSO was diluted to 100–0.01 μM with media. 
After 48 h of incubation, the medium was removed, and 100 μL of complete medium containing resazurin (0.2 mg/mL final 
concentration) was added. After 4 h of incubation at 37 °C, the fluorescence signal of the resorufin product was read (λex 540 nm, 
λem 590 nm) in an Infinite 200 PRO Microplate Reader from TECAN. IC50 values were then calculated using GraphPad Prism software. 

Cellular localization 

CT26 cells (5 x 104 cells) were seeded in 35 mm culture dishes for 24 h. Cell medium was then replaced by fresh medium containing 
7 µM of 9Re. After incubation for 3h at 37 °C, cells were washed with PBS. Cells were then labelled with LysoTracker™ Deep Red 
(Thermofisher, 500 nM) at 37 °C for 10 min. Live cells were imaged in a confocal laser scanning microscope (Leica SP8) equipped 
with a x63/1.40 plan apochromatic objective. The LysoTracker™ Deep Red was excited at 638 nm and its emission collected 
between 650 and 750 nm (displayed in cyan). Complex 9Re was excited at 405 nm and its fluorescence collected between 415 and 
550 nm (displayed in magenta). The negative control is shown in Figures S101 and S102 and the confocal imaging of the complex 
in Figures S103 and S104. 
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