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Abstract

In this paper, we use a data-driven Wasserstein distributionally robust
framework to consider uncertain parameters in optimization problems.

Distributionally robust optimization is an approach to optimization
under uncertainty that assumes only partial information on the probabil-
ity distribution of the uncertain parameters. Unlike the classic approach
of stochastic optimization, in DRO, the exact probability distribution is
unknown. Instead, we assume that it belongs to an ambiguity set of dis-
tributions. The ambiguity set we use is a Wasserstein ball which is, using
the Wasserstein metric, the ball centered at the empirical distribution of
the training samples dataset, with a chosen radius ε. This particular case
of DRO is called data-driven Wasserstein DRO.

In the case of a combinatorial optimization problem when only the
cost function is affected by uncertainties, we show that the data-driven
Wasserstein distributionally robust counterpart of a polynomial problem
remains polynomial. More precisely, we prove that, if the optimization
problem can be written as a 0-1 integer linear program with n variables,
the complexity of solving the distributionally robust counterpart is at
most n + 1 times the complexity of solving the original problem. This
means that every complexity results (related to polynomiality) of an op-
timization problem is kept for its robust counterpart. For example, the
robust counterpart of any α-approximable NP-hard 0-1 discrete problem
is also α-approximable.

Keywords: distributionally robust optimization, data-driven wasser-
stein distributionally robust optimization, optimization under uncertainty,
computational complexity, approximability
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1 Introduction

Stochastic optimization and robust optimization are two classic approaches to
consider uncertain parameters in optimization problems. In stochastic opti-
mization, the probability distribution of uncertainties is assumed to be known.
Usually, uncertainty affects the objective function and the goal is to compute
a feasible solution minimizing the expected cost. In robust optimization, un-
certainty is described by a set of scenarios, each scenario setting the objective
function, and the goal is to compute a solution minimizing the worst case ob-
jective function among all the scenarios. Distributionally robust optimization
(DRO) is another modeling paradigm that can be seen as the unification of the
previous two approaches [4, 9]. We are given a set of distributions of the uncer-
tainties and the goal is to compute a feasible solution minimizing the expected
cost of the worst case distribution. Data-driven Wasserstein DRO (WDRO) is
a particular case of DRO where a central distribution P is estimated given a set
of historical data and the set of distributions is defined, given a real ε > 0 as
the ball of radius ε centered at P using the p-Wasserstein metric for some given

p ∈ R+
.

Exemple 1. A delivery man must choose a path among three. Each day the
traffic is subject to uncertainty and affects the driving time of the delivery. A
set of 4 historical data was measured. Based on this data, the delivery man
must choose the path he will follow tomorrow.

paths S1 S2 S3 S4 Tomorrow
P1 1 1 8 6 ?
P2 6 6 5 3 ?
P3 7 3 8 2 ?

In stochastic optimization, the distribution is usually known. In this ex-
ample, we assume that the distribution can be deduced from the data (known
as sample average approximation), for instance, by assuming each of the four
scenarios may appear with the same probability tomorrow: in that case the
expected value of P1, P2 and P3 are respectively 4, 5 and 5, leading to the
decision P1. In robust optimization, we assume one of the four scenarios will
appear tomorrow and we want to choose the path that minimizes the worst case
scenario. For P1, P2 and P3, this worst case scenario is respectively S3 with
value 8, S1 with value 6 and S3 with value 8, leading to the decision P2.

DRO is an extension of stochastic optimization and robust optimization
where the real distribution of the data is unknown. For instance, we assume the
delivery man knows that the real distribution for tomorrow is one of the two
possible distributions:

• Distribution D1 : each of S1 and S2 may appear with a probability 1
2

• Distribution D2 : each of S3 and S4 may appear with a probability 1
2

With no more information on which one is the real distribution, a DRO decision
consists in computing the expected value of each path for each distribution and
then choosing the path for which the worst expected value is minimum.

With D1, the expected values of P1, P2 and P3 are respectively 1, 6 and 5.
With D2, the expected values are respectively 7, 4 and 5. If the delivery man

2



chooses P1, the worst case distribution is D2, with an expected value of 7. If he
chooses P2, D1 is the worst with an expected value of 6. If he finally chooses
P3, D2 is the worst with an expected value of 5. This finally leads to the choice
of P3.

Usually, computing a list of candidates distributions is not possible. This is
why we use particular cases of DRO like WDRO. In this case, we consider that
the estimated distribution D used in the stochastic optimization model (each
scenario may appear with a probability 1

4 ) is a good approximation of the real
distribution but not the real one which is included in a ball around D. A formal
definition of WDRO is given in Section 2.

DRO can be seen as the unification of stochastic and robust optimization.
In practice, the decision maker does not know the real distribution. Thus,
DRO offers more robustness than stochastic optimization because instead of
considering that we know the real distribution, we optimize inside of a set of
candidate distributions. In general, DRO is less conservative than optimizing the
worst-case scenario in robust optimization because an historical data can contain
outliers due to errors or bad measures. When the distribution set is reduced to
one single distribution D, DRO is equivalent to stochastic optimization using
D as the real distribution.

Recently, data-driven Wasserstein DRO gained attention in operations re-
search and machine learning literature [5, 6, 8]. As a generalization of the
stochastic optimization and the robust optimization, WDRO is obviously NP-
Hard. In [5], the authors prove different results on WDRO and especially, for
some particular objective functions, computing the worst case distribution given
a feasible solution is a tractable problem.

In [1], the authors give a framework to transform a combinatorial problem
into a particular robust optimization problem and show that the transformation
preserves the polynomial complexity and approximability when only the objec-
tive function is subject to uncertainty. Similarly, the data-driven Wasserstein
DRO can be seen as a framework to transform a combinatorial problem into a
DRO problem. In this paper, we show that this transformation also preserves
the polynomial complexity and approximability of the problem when only the
objective function is subject to uncertainty, whatever the parameter p chosen
for the p-Wasserstein distance. This implies, for instance, the WDRO-Shortest
Path problem, the WDRO-minimum spanning tree problem and the WDRO-
Knapsack (with polynomial weights) problem remain polynomial. In addition,
polynomial approximability of NP-Hard problems like the WDRO-Steiner tree
problem, the WDRO-Traveling Salesman problem and the WDRO-Set Cover
problem are preserved.

To do so, we consider the general case where the combinatorial optimization
problem is written as a 0-1 integer linear program and is given with a black box
exact algorithm or a black box approximation algorithm with ratio alpha for
the problem. Our framework transforms this program into an instance of the
WDRO counterpart of the problem. We show, by reformulating this instance
into a deterministic mathematical program, that it can be solved or approx-
imated to within the same ratio α using at most n + 1 times the black box
algorithm.

Note that we do not consider uncertainties on the constraints coefficients,
as each scenario would lead to a distinct set of feasible solutions and it would
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not be possible to define a unique solution satisfying all the constraints for
all the scenarios. A way to deal with those uncertainties is, for instance, the
distributionallly robust chance constrained model [3, 7, 10].

In the second section, we first define the necessary notations and concepts
used in this paper (as the Distributionally Robust Optimization and the p-
Wasserstein distance), and secondly we define formally our framework. We then,
in the third section, reformulate the problem into a deterministic mathematical
program. The fourth section is dedicated to describing our main algorithm and
proving our complexity result.
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2 Definition of the framework

This section is dedicated to giving the necessary notations and concepts used
in this paper. We first review models for optimizing under uncertainty, includ-
ing the Distributionally Robust Optimization and the data-driven Wasserstein
DRO. We finish by explaining how we transform a combinatorial problem into
an instance of the WDRO problem.

2.1 Optimizing under uncertainty

Stochastic optimization and robust optimization are two classic frameworks to
model uncertainty in optimization problems. Distributionally robust optimiza-
tion is an alternative framework that unifies both approaches.

In this part, we consider an optimization where x ∈ X ⊂ {0; 1}n is the
decision vector and h is the cost function we want to optimize. This function
is subject to uncertainty. We write ξ ∈ Ξ ⊂ Rn the uncertain parameter and
h(x, ξ) as the objective value of x given a fixed value ξ of uncertainty.

Stochastic optimization In stochastic optimization, we assume that the ex-
act probability distribution P ∗ of ξ is known. The random variable associated to
uncertainties is called ξ̃. We want to compute a feasible solution x minimizing
the expected value of h(x, ξ̃). In other words:

inf
x∈X

EP∗ [h(x, ξ̃)]

Robust optimization In robust optimization, we consider that only the sup-
port of the uncertain parameters is known which means that we know all the
different values that can be taken by the uncertain parameters. The objective
is to compute a feasible solution x minimizing the maximum possible value of
h(x, ξ).

inf
x∈X

sup
ξ∈Ξ

h(x, ξ)

Distributionally robust optimization Distributionally robust optimiza-
tion is an approach to optimization under uncertainty that assumes only partial
distributional information. Unlike the classic approach of stochastic optimiza-
tion, in DRO, the exact probability distribution P ∗ is unknown. Instead, we
assume that it belongs to an ambiguity set P of distributions constructed from
the partial information. We compute a feasible solution x minimizing the max-
imum expected value of h(x, ξ̃) among all the possible distributions. In some
way, DRO is a robust optimization model where Ξ is replaced by the set P of
distributions.

inf
x∈X

sup
Q∈P

EQ[h(x, ξ̃)]

5



2.2 Data-driven Wasserstein DRO

The exact probability distribution P ∗ can be estimated through a finite sample
dataset. A natural method is the sample average approximation (SAA) where
P ∗ is replaced by the empirical distribution obtained by averaging of the sample
dataset.

Définition 1. Given a list Ξ̂ of N values from Ξ. We define the empirical
distribution P̂N with 1

N

∑
ξ∈Ξ̂

δξ where δξ is the dirac distribution at ξ ∈ Ξ.

From this empirical distribution, we build our set of distributions P with
a ball of distributions centered at P̂N . The metric used to define that ball is
the p-Wasserstein distance. We define with M(Ξ) the set of all probability
distributions on Ξ.

Définition 2 (p-Wasserstein distance). Let Q1, Q2 ∈M(Ξ) and 1 ≤ p ≤ +∞.

dWp
(Q1, Q2) = inf

Π∈Γ(Q1,Q2)

∫
Ξ2

∥ξ1 − ξ2∥pΠ(dξ1, dξ2)

where Γ(Q1, Q2) is the set of distributions on Ξ × Ξ with marginal Q1 and
Q2.

The Wasserstein distance can be used to compare any two distributions Q1

and Q2 that can be discrete or continuous. It can be interpreted, as in Figure 1
as the minimum transportation cost for moving from the probability density
function of Q1 to the one of Q2. The p-norm is used to evaluate the cost of
moving some probability from the vector ξ1 to ξ2.

Définition 3 (Wasserstein ball of radius ε > 0 centered at P̂N ).

Bp,ε(P̂N ) :=
{
Q ∈M(Ξ) : dWp

(P̂N , Q) ≤ ε
}

The Wasserstein ball of radius ε centered at P̂N contains all the probability
distributions that are at most at a distance of ε using the Wasserstein metric.
When ε = 0, it only contains the empirical distribution P̂N .

2.3 Transform a problem into a WDRO problem

We consider a combinatorial optimization problem Pb written as a 0-1 ILP:

Pb


inf
x

cx

s.c Ax ≤ b

x ∈ {0; 1}n

The vector c is subject to uncertainty. As done previously, Ξ is the set
of values that can be taken by this parameter and ξ̃ is the random variable
associated to this uncertainty. The exact distribution P ∗ is not known but a
finite sample dataset Ξ̂ is given from which we deduce the empirical distribution
P̂N .

Finally, given a integer 1 ≤ p ≤ +∞ and a real ε > 0, we define the (p, ε)-
WDRO-Pb problem.
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Figure 1: Transformations from histogram Q1 (upper left) to histogram Q2 (up-
per right) representing probabilities of apparition of three vectors (−1,−1), (0, 0)
and (1, 1). Wasserstein distance can be visualized as the best transportation for
moving from Q1 to Q2. In the three lower histograms, we can see two possible
transformations of the histogram Q1 to histogram Q2. The second plot seems
more efficient since it only moves a portion of the second bar of Q1, whereas,
in the first plot, all the three bars are moved, including the whole second bar.
The cost from moving a portion from one bar to another depends on the norm
we use. For instance, assuming we use the 2-norm, moving a fraction ε from
(1, 1) to (0, 0) costs ε · ∥(1, 1)− (0, 0)∥2 = ε

√
2. In this example, the cost of the

upper transformation would be 0.3
√
8+0.15

√
2+0.5

√
2 ≃ 1.77. The cost of the

lower transformation would be 0.35
√
2 ≃ 0.5. The p-Wasserstein distance is the

minimum cost (using the p-norm) obtained by the best transformation among
all the transformations possible from Q1 to Q2. In this case, the distance is at
most 0.5.

(p, ε)-WDRO-Pb



inf
x

sup
Q

EQ[ξ̃x]

s.c Ax ≤ b

x ∈ {0; 1}n

Q ∈ Bp,ε(P̂N )
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3 Reformulation

We will reformulate the problem by simplifying the expression supQ∈Bp,ε(P̂N ) EQ[ξ̃x].

We first give some intermediate lemmas.

Lemme 3.1. Let P and Q be two distributions on Ξ. Then ∥EP [ξ̃]−EQ[ξ̃]∥p ≤
dWp(P,Q)

Proof. We recall that dWp(Q1, Q2) = inf
Π∈Γ(P,Q)

∫
Ξ2

∥ξ1 − ξ2∥pΠ(dξ1, dξ2)

Let Π ∈ Γ(P,Q)

EP [ξ̃] =
∫
Ξ
ξ P (dξ) =

∫
Ξ2 ξ1 Π(dξ1, dξ2)

EQ[ξ̃] =
∫
Ξ
ξ Q(dξ) =

∫
Ξ2 ξ2 Π(dξ1, dξ2)

∥EP [ξ̃]− EQ[ξ̃]∥p =
∥∥∥∫

Ξ2

(ξ1 − ξ2) Π(dξ1, dξ2)
∥∥∥
p

≤
∫
Ξ2

∥ξ1 − ξ2∥p Π(dξ1, dξ2)

≤ dWp(P,Q)

Lemme 3.2. sup
Q∈Bp,ε(P̂N )

EQ[xξ̃] = sup
∥∆∥p≤ε

EP∗ [x(ξ̃ + ∆)]

Proof. We first prove that sup
Q∈Bp,ε(P̂N )

EQ[xξ̃] ≤ sup
∥∆∥p≤ε

EP∗ [x(ξ̃ + ∆)] and then

the second inequality.
Let Q ∈ Bp,ε(P̂N ).

EQ[xξ̃] = EP∗ [xξ̃] + EQ[xξ̃]− EP∗ [xξ̃]

= EP∗ [xξ̃] + x(EQ[ξ̃]− EP∗ [ξ̃])

We have ∥EQ[ξ̃]− EP∗ [ξ̃]∥p ≤ ε using Lemma 3.1. So

≤ sup
∥∆∥p≤ε

EP∗ [xξ̃] + x∆

≤ sup
∥∆∥p≤ε

EP∗ [x(ξ̃ + ∆)]

As this inequality is true for any Q ∈ Bp,ε(P̂N ), it results

sup
Q∈Bp,ε(P̂N )

EQ[xξ̃] ≤ sup
∥∆∥p≤ε

EP∗ [x(ξ̃ + ∆)]

The first inequality is then proved. Let now ∥∆∥p ≤ ε, with ∆ = (∆1, . . . ,∆n).
We show that we can construct a distribution Q such that its Wasserstein dis-
tance to P ∗ is less than ε.

Let Q = 1
N

∑
ξ∈Ξ̂

δξ+∆. The Wasserstein distance between P ∗ and Q is the

optimal transport needed to obtain Q from P ∗. One way to obtain Q from P ∗

is to move ξ to ξ +∆ for each component ξ ∈ Ξ̂. So we obtain :

dWp(P
∗, Q) ≤ 1

N

∑
ξ∈Ξ̂

d(δξ, δξ+∆) ≤ 1

N

∑
ξ∈Ξ̂

∥∆∥p ≤ ∥∆∥p ≤ ε
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Thus Q ∈ Bp,ε(P̂N ). In addition,

EP∗ [x(ξ̃ +∆)] = EP∗ [xξ̃] + x∆ =
1

N

∑
ξ∈Ξ̂

xξ + x∆

EQ[xξ̃] =
1

N

∑
ξ∈Ξ̂

x(ξ +∆) =
1

N

∑
ξ∈Ξ̂

xξ + x∆

As Q ∈ Bp,ε(P̂N ),

EP∗ [x(ξ̃ +∆)] ≤ sup
Q∈Bp,ε(P̂N )

EQ[xξ̃]

As this is true for every vector ∆ with ∥∆∥p ≤ ε,

sup
∥∆∥p≤ε

EP∗ [x(ξ̃ +∆)] ≤ sup
Q∈Bp,ε(P̂N )

EQ[xξ̃]

We now prove our main theorem that reformulates the probabilistic objective
function of (p, ε)-WDRO-Pb into a deterministic objective function. Recall that
the dual norm of ∥.∥p is ∥.∥q with q such as 1

p +
1
q = 1 (p (resp q) can be infinite

if q = 1 (resp. p = 1)) which means that ∥z∥q = supx{zx | ∥x∥p ≤ 1}.

Théorème 3.1. inf
x∈J0;1Kn
Ax≤b

sup
Q∈Bp,ε(P̂N )

EQ[xξ̃] = inf
x∈J0;1Kn
Ax≤b

∥x∥q · ε+
1

N

∑
ξ∈Ξ̂

xξ

Proof. Let x ∈ J0; 1Kn such that Ax ≤ b. By Lemma 3.2,

sup
Q∈Bp,ε(P̂N )

EQ[xξ̃] = sup
∥∆∥p≤ε

EP∗ [x(ξ̃ + ∆)]

= sup
∥∆∥p≤ε

(EP∗ [xξ̃] + EP∗ [x∆])

= EP∗ [xξ̃] + sup
∥∆∥p≤ε

x∆

=
1

N

∑
ξ∈Ξ̂

xξ + sup
∥Θ∥p≤1

xΘ · ε

By the definition of dual norm

=
1

N

∑
ξ∈Ξ̂

xξ + ∥x∥q · ε

Remarque 1. Note that this result can also be shown using the duality theory
from the original problem. It is a special case of the reformulation done in [5].

Remarque 2. The new term ∥x∥q added from the reformulation can be seen
as a penalty from the number of uncertain elements we choose in our solution.
The more uncertain elements we use to construct our solution, the more penalty
we get from this term ∥x∥q. What this reformulation means is that we want a
good trade-off between the evaluation of a solution using the past data and its
uncertainty.
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4 Main algorithm

In the following section, we note J = (A, b, P ) an instance of (p, ε)-WDRO-Pb
where A, b are the constraint coefficients matrix and vector which defines the
set of feasible solutions and P is the empirical distribution, which is the center
of the distribution ambiguity set. We also note I = (A, b, c an instance of Pb
where A, b are the constraint coefficients matrix and vector which defines the
set of feasible solutions and c is the cost coeffients vector.

Theorem 3.1 shows that (p, ε)-WDRO-Pb can be reformulated into a prob-
lem with a deterministic objective function, without any notion of probability
distributions.

(p, ε)-WDRO-Pb


inf
x
∥x∥q · ε+

1

N

∑
ξ∈Ξ̂

xξ

s.c Ax ≤ b

x ∈ {0; 1}n

As x is a binary vector, we can rewrite ∥x∥q = q
√∑

i x
q
i = q

√∑
i xi =

q
√
|x|

where |x| =
∑

i xi.
Suppose that an algorithm A can return a solution of (Pb). We provide a

method to solve its WDRO counterpart using the same algorithm A. Remark
that unlike (Pb), the objective function in (p, ε)-WDRO-Pb is not linear. Solv-
ing such a problem can be hard in general cases. The idea of our method is to
linearize the non linear part of the objective function. To do so, we want to
replace f(|x|) = q

√
|x| by tangents gi : k 7→ aik + bi where gi is the tangent of

f at value |x| = i. Particular attention was paid on the polynomiality of our
method and computing those coefficients can be potentially hard. So we first
prove that it is possible to compute coefficients that are close enough to the real
coefficients. Those coefficients have the same properties we need than the real
tangent coefficients. When the objective function is linearized, we are able to
solve it using the algorithm A. This procedure is described with Algorithm 1.
We write ⌊r⌋k the real r rounded to k decimals.

Lemme 4.1. Assuming A is a polynomial algorithm, the complexity of Algo-
rithm 1 is also polynomial.

Proof. If p ̸= 1, Algorithm 1 makes n+1 iterations of a for loop. Each iteration
performs the following operations.

• It builds ai by computing the θ-th decimals of q
√
i+ 1 and q

√
i. Each

decimal of q
√
x can be returned by comparing (⌊ q

√
x⌋θ′−1 + d · 10−θ′

)q and
x for all d ≤ 9 and θ′ ≤ θ . Thus ai is computed in polynomial time.

• It runs one time the algorithm A, in polynomial time with polynomial size
inputs.

• It compares ωi + ε · q
√
i and ω which is of the form ωj + ε · q

√
j for some

j < i where ωi and ωj are (polynomial size) rationals. This comparison
can be done in polynomial time [2].

On the other hand, if p = 1 then the algorithm runs one time A and does
one comparison in polynomial time.
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Algorithm 1 Algorithm to solve (p, ε)-WDRO-Pb

Require: An algorithm A for Pb returning a feasible solution and an instance
J = (A, b, P̂N ) of (p, ε)-WDRO-Pb

Ensure: A feasible solution x of J
if p = 1 then

x← A(A, b, c = 1
N

∑
ξ∈Ξ̂

ξ)

return x if c · x+ ε < 0 and the vector 0 otherwise
else

q ← p
p−1

ω ← +∞
x← 0
θ ←

⌈
log10(4 · q2(n+ 1)6)

⌉
for i from 0 to n do

ai ←
⌊

q
√
i+ 1

⌋
θ
−
⌊

q
√
i
⌋
θ
+ 10−θ .

x(i) ← A(A, b, c = 1
N

∑
ξ∈Ξ̂

ξ + εai · 1)

ωi ← 1
N

∑
ξ∈Ξ̂

ξ · x(i)

if ωi + ε · q
√
i < ω then

ω ← ωi + ε · q
√
i

x← x(i)

return x

In order to prove the correctness, we first prove the following useful lemmas.

Lemme 4.2. For every i < j ∈ J0;nK, q ≥ 1 and r ≥ 1, q
√
j
r − q
√
i
r ≥ j−i

qn2 .

Proof. If, firstly i = 0 then j ≥ 1 and q
√
j
r− q
√
i
r ≥ 1 ≥ j

qn2 . On the other hand,
if i ≥ 1, recall that, if x > y ≥ 1 then xr−yr ≥ x−y. In that case, we then prove

the lemma only for r = 1. We use the identity xq− yq = (x− y) ·
q−1∑
k=0

xk · yq−k−1

which leads to

q
√
j − q
√
i =

j − i
q−1∑
k=0

q
√
j
k · q
√
i
q−k−1

≥ j − i
q−1∑
k=0

j · i
≥ j − i

qn2

Lemme 4.3. For every i, j ∈ J0;nK, q
√
i+ ai · (j − i) ≥ q

√
j.

Proof. As i 7→ q
√
i is concave, proving that the lemma is true for j ∈ {i−1, i+1}

is sufficient.
For j = i+ 1, we have

q
√
i+ ai · (j − i) =

q
√
i+

⌊
q
√
i+ 1

⌋
θ
−
⌊

q
√
i
⌋
θ
+ 10−θ

As ⌊x⌋θ ∈ [x− 10−θ;x]

≥ q
√
i+ q
√
i+ 1− 10θ − q

√
i+ 10−θ ≥ q

√
i+ 1
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For j = i − 1, assuming i > 0, we first prove the following intermediate
result: ( q

√
i − q
√
i− 1) − ( q

√
i+ 1 − q

√
i) ≥ 1

q2(n+1)6 . We use again the formula

xq − yq = (x− y) ·
q−1∑
k=0

xkyq−k−1. Thus,

(
q
√
i− q
√
i− 1)− ( q

√
i+ 1− q

√
i) =

1
q−1∑
k=0

q
√
i
k q
√
i− 1

q−k−1
− 1

q−1∑
k=0

q
√
i+ 1

k q
√
i
q−k−1

=
1

q−1∑
k=0

q
√
i
k q
√
i− 1

q−k−1
− 1

q−1∑
k=0

q
√
i
k q
√
i+ 1

q−k−1

=

q−1∑
k=0

q
√
i
k q
√
i+ 1

q−k−1 −
q−1∑
k=0

q
√
i
k q
√
i− 1

q−k−1

q−1∑
k=0

q
√
i
k q
√
i− 1

q−k−1 ·
q−1∑
k=0

q
√
i
k q
√
i+ 1

q−k−1

=

q−2∑
k=0

q
√
i
k · ( q
√
i+ 1

q−k−1 − q
√
i− 1

q−k−1
)

q−1∑
k=0

q
√
i
k q
√
i− 1

q−k−1 ·
q−1∑
k=0

q
√
i
k q
√
i+ 1

q−k−1

As i > 0, i ≤ n and by Lemma 4.2

≥

q−2∑
k=0

2/(q(n+ 1)2)

(qn2) · (q(n+ 1)2)
=

2 · (q − 1)/(q(n+ 1)2)

(qn2) · (q(n+ 1)2)

≥ 1

q2(n+ 1)6

Recall that, in Algorithm 1, θ is set to
⌈
log10(4 · q2(n+ 1)6)

⌉
≥ log10(4 ·

q2(n+ 1)6). Then 4 · 10−θ ≤ 1
q2(n+1)6 . Consequently

q
√
i− q
√
i− 1 ≥ q

√
i+ 1− q

√
i+ 4 · 10−θ⌊

q
√
i
⌋
θ
−
⌊

q
√
i− 1

⌋
θ
+ 10−θ ≥

⌊
q
√
i+ 1

⌋
θ
−

⌊
q
√
i
⌋
θ
− 10−θ + 4 · 10−θ

2 ·
⌊

q
√
i
⌋
θ
−
⌊

q
√
i+ 1

⌋
θ
− 10−θ ≥

⌊
q
√
i− 1

⌋
θ
+ ·10−θ⌊

q
√
i
⌋
θ
− ai ≥

⌊
q
√
i− 1

⌋
θ
+ ·10−θ

q
√
i− ai ≥ q

√
i− 1

Lemme 4.4. Let bi =
q
√
i− ai · i. Let J = (A, b, P̂N ) be an instance of (p, ε)-

WDRO-Pb. We assume p ̸= 1, let x∗ be an optimal solution of J with value
ω∗ and, for i ∈ J0;nK, let x∗

i be an optimal solution of Ii, the instance of (Pb)
defined as Ii = (A, b, c = 1

N

∑
ξ∈Ξ̂

ξ + ε · ai · 1) and let ω∗
i be its optimal value.

Then min
i∈J0;nK

ω∗
i + ε · bi = ω∗.
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Proof. First, ω∗ = 1
N

∑
ξ∈Ξ̂

ξ ·x∗ + ε · q
√
|x∗| = 1

N

∑
ξ∈Ξ̂

ξ ·x∗ + a|x∗| · |x∗|+ ε · b|x∗|.

Note that 1
N

∑
ξ∈Ξ̂

ξ · x∗ + a|x∗| · |x∗| is the objective value of x∗ in I|x∗| then is

greater than ω|x∗|. Then ω∗ ≥ ω|x∗| + εb|x∗| ≥ min
i∈J0;nK

ω∗
i + ε · bi.

We now prove the second inequality. Let gi : j 7→ ai ·j+bi. Lemma 4.3 shows
that for i, j ∈ J0;nK, gi(j) = ai · j + q

√
i− ai · i ≥ q

√
j. Then, given x ∈ {0; 1}n,

we know that q
√
|x| ≤ ai|x|+ bi for any i ∈ J0;nK.

Suppose that x∗
i is such that |x∗

i | = j ̸= i. Then solving Ij gives a better
solution for J than x∗

i , in other words: ω∗
j + ε · bj ≤ ω∗

i + ε · bi.

ω∗
j + ε · bj =

1

N

∑
ξ∈Ξ̂

ξ · x∗
j + ε · aj · |x∗

j |+ ε · ( q
√

j − aj · j)

By optimality of x∗
j

≤ 1

N

∑
ξ∈Ξ̂

ξ · x∗
i + ε · aj · |x∗

i |+ ε · ( q
√

j − aj · j)

≤ 1

N

∑
ξ∈Ξ̂

ξ · x∗
i + ε · aj · |x∗

i |+ ε · (ai · j + q
√
i− ai · i− aj · j)

≤ 1

N

∑
ξ∈Ξ̂

ξ · x∗
i + ε · ai · |x∗

i |+ ε · bi = ω∗
i + ε · bi

Thus, if j = arg min
i∈J0;nK

ω∗
i + ε · bi, then |xj

∗| = j. We then deduce that

ω∗
j + ε · bj = 1

N

∑
ξ∈Ξ̂

ξ · x∗
j + ε · aj · |x∗

j |+ ε · ( q
√
j − aj · j) = 1

N

∑
ξ∈Ξ̂

ξ · x∗
j + ε · q

√
j

which is the objective value of x∗
j in J , thus is greater than ω∗.
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Théorème 4.1. If Pb is α-approximable in polynomial time, then, for any
p ∈ R∗

+ ∪ {+∞} and ε > 0, (p, ε)-WDRO-Pb is α-approximable in polynomial
time.

Proof. Let A be a polynomial α-approximation algorithm for (Pb) and J =

(A, b, P̂N ) an instance of (p, ε)-WDRO-Pb. We keep the same notation as
Lemma 4.4.

If p = 1, we note x the solution given by A(A, b, c = 1
N

∑
ξ∈Ξ̂

ξ) and x∗ an

optimal solution of the associated instance. We have c · x∗ ≤ c · x ≤ αc · x∗

because A is α-approximable. If c ·x+ ε < 0, we obtain c ·x∗ + ε ≤ c ·x+ ε ≤
αc·x∗+ε ≤ α(c·x∗+ε). If c·x+ε ≥ 0, the optimal solution is 0, the zero vector,
which is also what Algorithm 1 returns. Thus, Algorithm 1 is α-approximable
for (p, ε)-WDRO-Pb if p = 1.

If p ̸= 1, at each iteration i of Algorithm 1, x(i) is a solution of Ii with value
ωi given by the algorithm A. Since A is an α-approximation, ω∗

i ≤ ωi ≤ αω∗
i .

We showed that min
i∈J0;nK

ω∗
i = ω∗ in Lemma 4.4. Since ω∗

i ≤ ωi ≤ αω∗
i holds

for any i ∈ J0;nK, it proves that ω∗ ≤ min
i∈J0;nK

ωi ≤ αω∗ thus, Algorithm 1 is an

α-approximation for (p, ε)-WDRO-Pb. By Lemma 4.1, this approximation is
polynomial.

Remarque 3. Note that when the decision vector of (Pb) is a vector of bounded
integers instead of binaries, we can apply the same idea of Algorithm 1 to
obtain a pseudo-polynomial time complexity algorithm to solve (p, ε)-WDRO-
Pb. Indeed, the only parameter that changes is the number of states of |x| for
x ∈ J0;MKn. When the decision vector is binary, 0 ≤ |x| ≤ n and when it is a
bounded integer between 0 and M, 0 ≤ |x| ≤ nM .

Remarque 4. When our framework is applied to the shortest path problem,
we obtain a polynomial distributionally robust shortest path problem whereas
most of the robust versions of the shortest path problem are known to be NP-
Hard. This result is similar to the one in [1]. This is due to the fact that, using
Wasserstein metric, the worst case distribution is usually easy to compute.

5 Conclusion and perspectives

In this paper, we describe distributionally robust optimization paradigm to take
account of uncertainties, especially the data-driven Wasserstein distributionally
robust optimization framework. Knowing a black box algorithm to solve a 0-1
discrete optimization problem, we propose an algorithm to solve its distribu-
tionally robust counterpart. Complexity results related to polynomiality of the
original problem are still available for the new problem. We are aware that the
purpose of our algorithm is only to give a strong theoretical complexity result
on the WDRO problems. From a practical point of view, this algorithm should
obviously be adapted to each combinatorial optimization problem on a case-
by-case basis. For example, adapting the Dijkstra algorithm should provide
a better time complexity than our Algorithm 1 for the WDRO shortest path
problem.

An interesting perspective is to assume that the constraint coefficients are
subject to uncertainty. In this case, we have to describe another framework that

14



can take account of the modification of the feasible solution set by the uncertain
coefficients. For example, one paradigm that can be used is the distributionally
robust chance constrained programs studied in [3, 7, 10].
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