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Modeling and control of a hybrid PV-T collector using machine learning

Zain Ul Abdin and Ahmed Rachid

Abstract— Photovoltaic-thermal (PV-T) systems are expected
to fulfil an increasingly vital role in future energy production.
The current research endeavors to showcase machine learning
modeling and control of a water-based PV-T collector. In this
work, the PV-T collector is modeled using a decision tree
algorithm and artificial neural network (ANN). The predicted
outputs are compared with the actual outputs to validate the
models. The ANN-based model performed better and proved
its efficacy in training and testing. Further, various control
strategies are implemented and their performance is compared.
All the techniques presented are illustrated through simulation
results.

Index Terms— PV-T collector, modeling, decision tree algo-
rithm, artificial neural network, control

I. INTRODUCTION

Artificial intelligence (AI) and solar energy are emerging
technologies and are expected to grow rapidly. AI is a
machine’s ability to perform tasks that require intelligence
e.g., digital assistants, vehicle recognition and identification,
etc. Machine learning is a sub-field of AI that allows the
machine to learn and improve from past experiences and data
to identify patterns and make predictions. On the other hand,
photovoltaic-thermal (PV-T) collector is popular renewable
energy technology for homeowners [1]. A PV-T system
combines a photovoltaic (PV) module and solar thermal (ST)
module into one integrated unit to provide heat and low-
carbon electricity simultaneously. The working fluid mostly
flows below the PV module and it is not only used for heating
purposes but also enhances the PV efficiency by extracting
the heat from the PV module. Various studies have been con-
ducted and a variety of different design configurations of PV-
T collectors are addressed in the literature. The performance
of a PV-T collector is evaluated both numerically and experi-
mentally [2], [3], [4], [5]. A water-based PV-T collector with
numerous flow designs is a common domestically used panel
and produces more energy than individual conventional PV
and ST panels installed over the same area [6]. These systems
have various potential applications such as drying, heating,
cooling, etc [7], [8], [9]. These collectors are associated with
a number of drawbacks, including technically more complex,
having corrosion issues, low heat transfer compared to other
liquids and a large storage capacity is required.

Zamen et al. [10] implemented three different intelligent
algorithms that are multilayer perceptron artificial neural
network (ANN), adaptive neuro-fuzzy inference system, and
least squares support vector machine by constructing a
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relationship between thermal efficiency of solar collector
and inlet temperature, flow rate, and solar radiation. The
findings revealed that the neural network model gave the
best performance compared to the other two models. A
new model for predicting the performance of the PV-T
system incorporated with electrolytic hydrogen production
was presented by Elaziz et al. [11]. The optimized model was
based on a modified version of the random vector functional
link, in which Mayfly-based optimization is applied as an
optimization technique to determine the best parameters. The
ANN-based model was presented by Ravaee et al. [12] to
evaluate the thermal and electrical performance of a PV-T
system. The results confirmed that the ANN could be used as
a powerful tool for PV-T collectors modeling. A comparison
between multiple learning algorithms methods to forecast
the performance evaluation criteria of building integrated
PV-T was presented in [13] and it was observed that the
random forest model is superior to other proposed models.
The efficiency of a semi-transparent air-based photovoltaic
thermal double pass collector was compared with a single
pass air-based collector using an artificial neural network
approach for the New Delhi weather station [14]. The model
was based on a feed-forward back propagation algorithm
with two hidden layers and a fair agreement was observed
between the analytical and ANN models. Neural networks
have been applied to a number of industrial applications, such
as the improvement of thermal comfort indices accurately
[15]. A reference-model-based neural network controller
with integral-proportional-derivative compensation has been
proposed by Xu et al. [16] for temperature control systems.

In this paper, two different approaches are used to model
water-based PV-T collector and numerous control schemes
are provided based on neural network. The two developed
artificial intelligent models are presented in section 2. In
section 3, control strategies are presented leading to a precise
tracking of the system’s desired reference signal. Simulation
results are given in section 4 to highlight the usefulness of
the proposed design. The paper ends with conclusive remarks
and perspectives.

II. PHYSICAL MODELING

A solar hybrid water-based PV-T collector that is com-
posed of several layers; a protective transparent glass cover,
a mono-crystalline PV cell layer, a protective tedlar layer
below the cells, an absorber, water tubes, fluid that flows
within the tubes (mostly water) and thermal insulation to
reduce heat losses as illustrated in Fig. 1.



Fig. 1: Water-based photovoltaic-thermal collector [5].

A. Thermal model

A dynamic thermal model of a water-based PV-T collector
considering radiative, convective and conductive thermal
exchanges between the layers is given in [5]. The funda-
mental equation for each of the layer is determined using
a bond graph approach. The mean temperature with inlet
temperature Twi and output temperature of the water channel
Two and can be expressed as;

Tw =
(Twi + Two)

2
(1)

Applying useful energy gain, the thermal performance ηth
of PV-T collector is;

ηth =
ṁwCw(Two − Twi)

AmodIsun
(2)

The electric power Ep produced by PV module [4] can be
written as;

Ep = IsunAmodηr

[
1− βp(Tc − Tc,r) + δln

(
Isun
Isun,r

)]
(3)

and electrical efficiency ηpv can be then expressed as;

ηpv =
Ep

AmodIsun
(4)

The thermal model can be expressed using a general
nonlinear state space form{

ẋ = f(x, u, p)
y = g(x, u)

, (5)

where the state x contains the temperatures of each layer
as state variables. For instance, in this case of water-based
PV-T, it is

x =
[
Tg Tc Tt Tr Tm Tw Ti

]T
,

the control input u is the mass flow rate ṁw and p are the
perturbations,

p =
[
Tam Isun Twi

]T
and the output y is the outlet temperature Two.

The state-space description is useful for the simulation of
the system’s dynamic behavior and will allow us to generate
the input-output data which are necessary for the learning
process. Here, four inputs (i.e, solar radiation Isun, ambient
temperature Tam, wind speed Vw and mass flow ṁw) and
two outputs (i.e., outlet water temperature Two and electrical
efficiency ηpv) are considered. Simulations are performed for
the water-based model and the values of the two outputs are
obtained by considering the inputs data.

B. Decision tree algorithm
A decision tree makes use of input-output data sets to

train models and the algorithm determines the contribution
value of input parameters [17]. A regression model is built
in the form of a tree structure and the goal is to develop a
model that predicts the target variable based on several input
variables. The data is split using a binary tree and starts at
the root node until left with leaf nodes or terminal nodes.
A regression model is used and a multi-output decision tree
algorithm is implemented in this study. The model can be
developed using the following steps:

• import data set;
• separate the target variable;
• split data into a train set and a test set (see Fig. 2);
• scaling is done using a min-max function;
• model creation and implementation (decision tree multi-

output regressor is used);
• mean squared error (MSE) and accuracy are calculated;
• lastly, validation is done using the test data.

Fig. 2: Schematic representation.

The data can be expressed in the form:

(I, Y ) = (I1, I2, I3, I4, Y1, Y2) (6)

Y is the target and dependent variable whereas I consists
of features that are used for the task. Mean squared error is
the average squared difference between actual value and the
estimated value and is written as:

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2, (7)

where n is the sample size, Yi is the actual value of ith case
and Ŷi represents the predicted value of ith case. Similarly,
root-mean square error (RMSE) is calculated using [18]:

RMSE =
√

MSE. (8)



C. Artificial neural network

ANNs have high learning ability and the capability of
identifying complex nonlinear systems. Hence, the ANN
modeling technique is used, as a powerful tool, to predict
and determine the thermal output and photovoltaic efficiency
of the collector. In a multilayer neural network, one or more
hidden layers are utilized in order to obtain accurate results.
The network consists of an input, output and at least one
hidden layer sandwiched between the input and output layers
as illustrated in Fig. 3 where the data processing is done.
Here, there are four input nodes and the output of the linear
combiner is the sum of the product of all the inputs with
their respective weights and is written as:

y =

n∑
i=1

WiIi, (9)

whereas the output signal becomes

Y = f(y − Th) (10)

Fig. 3: Typical structure of the neural network.

The output of the neural network is compared with the
target output and the difference between the two is computed
which is the error. The process is continued until the error
converges to zero or the difference is within the target
threshold and when it is achieved the neural network is
trained. For training, only input-output data is required and
based on this data, the neural network understands and learns
the relation between input and output.

III. NEURAL NETWORK BASED CONTROL

A neural network is an effective tool for highly nonlinear
systems and from the control point of view, it can be
taken into consideration as a nonlinear dynamic block. Its
performance is generally better than conventional control
methods. In this section, numerous controllers based on
neural network approach are discussed with the aim to
control the temperature of the PV-T water output. The
presented techniques are practical and simple to construct
and implement the controller.

A. Basic neural network controller

In this part, an artificial neural network-based control
system is presented and the approach is to train the con-
troller by collecting data through simulations. Since the aim
is to track the desired water temperature and control the

Fig. 4: Scheme for basic neural network controller imple-
mentation.

mass flow, so for training, the outputs are mass flow and
PV efficiency whereas solar radiation, ambient temperature,
wind speed and outlet temperature are chosen as inputs.
The ANN goes into the training process for its learning
and understanding the relationship between the inputs and
outputs. Once the network is trained, the reference value for
the output temperature is set and the obtained mass flow can
be directly injected to the nonlinear model. Basically, the
controller is trained as an inverse model of the system and
connected to it as shown in Fig. 4.

B. Neural network predictive control

In this part, a neural network model predictive controller
for the system described in section 2 is presented. It is
basically a type of model-based predictive control, where
the model for predictions is a neural network. It is based on
solving an optimization problem for the control actions [19].
The optimizer computes future control actions that minimize
the difference between a model of the system and desired
performance. Two steps are involved; system identification
of the plant model, which is a multilayer network where the
network is trained and control design where the control input
is calculated by the controller that will optimize the system’s
performance over a specified time. The predictions are used
within an optimization algorithm to determine the control
signal. For the reason that optimization algorithm is used,
the controller requires a substantial amount of on-line com-
putation. The control evaluation consists of the minimization
problem of the following performance criterion:

Fig. 5: Structure of model predictive control process.

J =

n2∑
i=n1

(yd(t+ i)− ym(t+ i))2 + ζ

nu∑
i=1

(u(t+ i− 1)−

u(t+ i− 2))2, (11)



where u is the tentative control signal determined by the
optimization block and minimizes the performance index J ,
n is the prediction horizon for output (e.g. n2: cost horizon
& nu:control horizon), yd is the desired signal and ym is the
neural network model signal. The optimal control signal u
is injected into the plant and ζ determines the contribution
on the performance index. The block scheme of the model
predictive control process is illustrated in Fig. 5.

C. NARMA-L2 control

In this part, nonlinear moving average autoregressive-
linearization level 2 (NARMA-L2) control also referred to as
feedback linearization control is presented for the described
system. It transforms nonlinear system dynamics into linear
dynamics by cancelling the non-linearities. Similar to neural
network predictive control, the first step is system identifica-
tion. NARMA is a standard model and mimics the behavior
of a discrete-time non-linear system. The control input u(k)
must be determined based on output y(k) at the same time
and the model of the given form is used [20].

y(k + a) = f [Y,U ] + g[Y,U ]u(k + 1), (12)

where a ≥ 2 and the two sub-functions, f and g are the
two functions of previous inputs and outputs. This model
representation is used in the form of past, current and future
system parameters. The relation between the control input
and the output is linear and the control input is determined
easily. Using the NARMA-L2 model, the controller can be
expressed as:

u(k + 1) =
yd(k + a)− f [Y,U ]

g[Y,U ]
, (13)

which is realizable for a ≥ 2.

Y = [y(k), y(k − 1), . . . , y(k − n+ 1)] (14)

and
U = [u(k), u(k − 1), . . . , u(k − n+ 1)], (15)

where yd(k+ a) is the reference signal for output at a time
steps ahead. If the plant is a minimum phase system and
the relative degree is well defined, the closed loop system
is stable. The structure of the controller is given in Fig. 6
where TDL (Tapped Delay Line) supplies the signal at each
specified time delay.

Fig. 6: Structure of NARMA-L2 controller.

IV. RESULTS AND DISCUSSION

Simulink and Matlab program are used to model and test
control algorithms for the system. The findings of this work
are divided into two sections. In the first section, comparative
results of the decision tree algorithm and neural network are
presented while in the second section neural network-based
control results are discussed. The upper and lower bounds of
the inputs are presented in Table I and the aim is to develop
a model which must work within these limits.

TABLE I: Lower and upper bounds of input variables.

Input variable lower bound upper bound
Isun (Wm−2) 100 700
Tam (oC) 21 31
Vw (ms−1) 1 5
ṁw (kgs−1) 0.005 0.05

In the decision tree algorithm, 70% of the data is used
for learning whereas 30% of the dataset is employed as test
data and is later used for validation purpose. An accuracy
score of 75% is achieved with a mean squared error of
1.14x10−2 and the root mean square error calculated is
0.107. The obtained results in Fig. 7 are satisfactory and
indicate that there is under-fitting and the actual results are
not accurately predicted. Therefore, in order to predict the
outputs accurately, ANN is a good solution to move forward.
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Fig. 7: Comparison of actual and predicted outputs using
decision tree algorithm.

In the developed neural network, there are three layers
with the visible input layer having four neurons, two neurons
for the output layer and sixteen neurons for the hidden layer
that is sandwiched between the input and output layers. For
the training purpose, Levenberg-Marquardt Backpropagation
algorithm is used because of its fast and accurate results.
The threshold limit or the convergence limit, in this case,
is 1x10−7. The performance is checked using mean squared
error and the best performance is successfully reached.

The results found in Fig. 8 show that the actual outputs
are accurately predicted using a neural network. There are
minor differences in the PV efficiency output but the output
water temperature is accurately predicted for all the samples.

The initial results showed that the outputs are accurately
and efficiently predicted. Random input values as shown in
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Fig. 8: Comparison of actual and predicted outputs using
neural network.

Fig. 9 are chosen. The reference value of the water output
temperature is set in order to obtain the control input which
is the mass flow of the fluid and PV efficiency (see Fig. 10).
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Fig. 9: External inputs imposed on the water-based system.
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Fig. 10: Evolution of the PV efficiency and control input.

The control input is then injected into the real water-
based PV-T mathematical model, and the results in Fig.
11 show that the reference point is perfectly tracked even
with the external inputs. Similarly, the corresponding state’s
temperature evolution using the control input and external
inputs is depicted in Fig. 12. To demonstrate the performance
of the proposed ANN-based controller, a set of simulations
are carried out. The best performance is successfully reached
and is checked through mean squared error.

In order to control the system, the first step is to get a
NARMA model and predictive model of the system to be
controlled. After accepting the generalization of the model-
ing of the presented structure, testing of the models can be

0 1000 2000 3000 4000 5000 6000

 time [sec]

20

25

30

35

o
u
tp

u
t 
te

m
p
e
ra

tu
re

 [
o
C

]

T
wo

T
wo,ref

Fig. 11: Evolution of the outlet water temperature and
disturbance rejection.
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Fig. 12: Evolution of state temperatures.

done with the unseen data. Table II presents the parameters
for the predictive controller and NARMA-L2 controller.

TABLE II: Parameters for predictive and NARMA-L2 con-
trollers.

controller predictive NARMA-L2
delayed inputs 2 2

delayed outputs 2 2
hidden layer 16 16

ζ 0.05 -
n2 & nu 7 & 2 -
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Fig. 13: Response using basic controller, predictive controller
and NARMA-L2 controller.

The response of the proposed controllers are compared in
Fig. 13. The obtained results indicate that the desired points
are tracked by the controllers. It can be observed that the
predictive controller is more accurate compared to the other
two controllers. However, the performance of the controllers
depends on the accuracy of the plant identification. It should



be noted that the designed controllers using neural network
are directly implemented into the real mathematical model
presented above. The intention is to illustrate a variety of
control methods that can be utilized to control the output
temperature of the plant.

V. CONCLUSIONS

In this paper, PV-T is modeled using a decision tree
algorithm and ANN to describe the system’s dynamics
represented by physical equations. A key advantage of using
AI modeling is that the models can learn patterns and
relationships in data. This implies that AI models can often
find solutions that may not be readily apparent by traditional
mathematical modeling. This approach can handle complex
and inconsistent data. Through this paper, it can be concluded
that ANN has better accuracy in predicting the outputs
compared to the decision tree algorithm.

Designing a controller is a challenging task and AI can be
used to accurately track the desired output. A simple neural
network control for the collector with uncertain dynamics
is presented. The performance of the control techniques has
been shown considering different disturbance scenarios. In
fact, the disturbances are rejected and the controller tracks
the desired output accurately and efficiently.

As a perspective of this work, the presented results will
be confronted with physical experimentation to guarantee its
feasibility and efficiency in real conditions.

NOMENCLATURE

Symbols
Amod area
Cw specific heat capacity
I input
Isun solar radiation
T temperature
Th threshold
W weight
wd width of collector
y output of linear combiner
Greek letters
βp temperature coefficient
δ solar radiation coefficient
ηr reference efficiency
Subscripts
am ambient
c PV cell
g glass cover
i thermal insulator
m tube
r absorber
t tedlar
w fluid (water)
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