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Abstract: The study of the viscoelastic properties of polymer systems containing huge internal two-
dimensional interfacial areas, such as blends, foams and multilayer films, is of growing interest and
plays a significant role in a variety of industrial fields. Hence, interfacial rheology can represent a
powerful tool to directly investigate these complex polymer–polymer interfaces. First, the current
review summarizes the theoretical basics and fundamentals of interfacial shear rheology. Particular
attention has been devoted to the double-wall ring (DWR), bicone, Du Noüy ring and oscillating
needle (ISR) systems. The measurement of surface and interfacial rheological properties requires a
consideration of the relative contributions of the surface stress arising from the bulk sub-phases. Here,
the experimental procedures and methodologies used to correct the numerical data are described
considering the viscoelastic nature of the interface. Second, the interfacial dilational rheology is
discussed, starting with the theory and underlying principles. In particular, the Langmuir trough
method, the oscillating spinning drop technique and the oscillating pendant drop technique are
investigated. The major pioneering studies and latest innovations dedicated to interfacial rheology
in both shear and dilatation–compression are highlighted. Finally, the major challenges and limits
related to the development of high-temperature interfacial rheology at the molten state are presented.
The latter shows great potential for assessing the interfaces of polymer systems encountered in many
high-value applications.

Keywords: interfacial shear rheology; interfacial dilational rheology; double-wall ring; bicone;
oscillating drop tensiometry

1. Introduction

Polymers are rarely miscible because of their high viscosity. When two immiscible
polymers meet, a surface called an “interface” is defined. This surface is thermodynamically
created due to the positive free enthalpy of mixing (Gibbs) related to the structural proper-
ties of the polymers. In particular, it is due to the low entropy of the macromolecular chains
(low number of possible mixed configurations) and the poor chemical affinity (repulsive
interactions) between the polymer constituents. The “interface” can be described as an
“interphase,” which is a tridimensional entity. We make must a distinction between a phys-
ical interphase and a chemical interphase. A physical interphase is created when the two
coexisting polymers are fully or partially miscible, or when prepared by forced assembly in
the molten state, resulting in a physical intra-entanglement as in the coextrusion process [1].
A chemical interphase is created when a chemical reaction occurs at the interface of these
two polymers, forming an interfacial copolymer [2].
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The interfacial properties in multiphase polymer systems can control their morphology
(e.g., a dispersion of one polymer phase within another polymer phase, coalescence) [3],
their stability (e.g., emulsions [4], foams [5], polymer solutions [6]), their reinforcement
(e.g., polymer/clay nanocomposites [7]) and their healing degree (e.g., multi-layered
polymers [8]). Interfacial rheology is, thus, a powerful way to probe the polymer systems
in different fields, including crude oil recovery [9], plastic processing [10], cosmetics [11],
biomedical applications [12] and foods [13].

Interfacial rheology directly investigates the viscoelastic responses of the interface un-
der the application of a stress or strain (i.e., the same formalism and techniques developed
in bulk rheology). This two-dimensional area possesses properties that differ from those of
the two sub-phases. This interface can be considered the third phase and is characterized
not only by its interfacial tension but also by its rheological properties. The latter can affect
the overall system [14].

The extensive state-of-the-art research reveals that most experimental studies devoted
to interfacial rheology have concerned high flow rate liquid systems (suspensions, emul-
sions, etc.). However, reports investigating the particular case of high molecular weight
polymer systems are not plentiful. This is related to the constraints that occur during the
study of polymers, such as the viscosity, high inertia or fragility of the interfacial fixtures
and the temperature limit (measurements are often made below 80 ◦C to ensure a stable,
homogeneous temperature at the interface). Developing new interfacial rheological setups
is a subject of increasing interest in the industrial and academic communities.

Hence, a large section of the present paper is dedicated to these issues. First, the
sufficient theoretical models and concepts related to the interfacial rheology during shear
and dilatation or compression have been reviewed.

A good deal of the present paper details the methods of correction of the apparent
measured interfacial properties in both oscillatory and steady-flow modes, taking into
account the contributions of the sub-phases during the gathering of the numerical data.

Finally, this review ends by summarizing the major pioneering studies, experimental
techniques and related applications of the interfacial rheology of polymer systems.

2. History

The term “rheology”, invented by Bingham in 1928, refers to the study of material
movement and deformation in both fluid and solid states. In other words, it is the analysis
of deformations under the impact of applied stress. In particular, rheologists have studied
the rheology of different kinds of fluids, such as molten polymers, to better understand
their processability and to monitor their industrial-scale implementation.

The study of multiphase systems is of great importance in academia, as well as in
industry. From this perspective, it has been extremely valuable to study the deformation
of their interfaces through interfacial rheology, i.e., the study of the stress–strain relation-
ships taking place within interfaces, in the two-dimensional area located just between the
two immiscible fluids, such as the interfacial layer of the surfactant or in the solid particles.

The term “interfacial viscosity” was introduced by Plateau in 1869 [15] to explain the
slowing of the oscillation of a needle on the surface of water (gas–water surface). In the
beginning, Plateau thought that he had used pure water, but this was not the case. The
origin of these findings was related to the presence of impurities that remained on the
surface of the water. He also described the surface gradient mechanisms that can be at the
origin of convection movement, now known as the “Marangoni effect” [16].

Next, Rayleigh [17] confirmed Plateau’s assumption. He positioned a ring of thin brass
wire on the surface of water dusted over with fine sulfur and set the system into rotation
using an external magnet, namely a magnetized sewing needle (Figure 1a). He found no
noticeable movement on the surface around the ring, and argued that an ordinary water
surface does not appreciably resist the shear. Then, he slightly modified the apparatus
by adding a material diameter of the same brass wire to the ring (Figure 1b), and found
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that the sulfur indicated that the entire water surface included within the semicircles now
shared in the motion. In this case, Marangoni’s assumptions were also shown to be correct.
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Figure 1. (a) Rayleigh’s experiment involving a ring of thin brass wire placed on the surface of the
water and dusted over with fine sulfur. The system was magnetically rotated using a magnetized
sewing needle (NS). (b) A material diameter of the same brass wire was added to the ring. Reprinted
with permission from Ref. [17]. Copyright 1890 Copyright Royal Society.

In 1913, Boussinesq [18] used the term “surface viscosity” to explain the measured
drop in velocity of a drop of mercury in castor oil, which differs from that predicted by the
theory when the dissipation of the interface is neglected. Many models have described
the interface between two immiscible liquids, such as those proposed by Boussinesq [18],
Kasperski [19] and Shikhmurzaev [20]. Here, we present the Boussinesq model. In the static
equilibrium, the isotropy in the volume is maintained by molecular agitation and results
in the presence of a pressure field. Boussinesq imagined the surface as a superposition
of layers with variable density (ρ0, ρ1, ρ2) (Figure 2). This density gradient gives enough
force to the fluid to maintain it within a fixed range [21].
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3. Vectors and Tensors on Interfaces

The flow in the liquid phases that establish the interface is described by conservation
equations for the mass (continuity equation, Equation (1)), momentum (Navier–Stokes
equation, Equation (2)) and energy.

∂ρ

∂t
+∇.(ρv) = 0 (1)

ρ(
∂v
∂t

+ v.∇v) = − ∇p + ηb∇2v + f (2)
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where ρ is the density, t is the time, v is the velocity, p is the pressure, ηb is the bulk viscosity
and f is the external body force.

The question that one might ask now is the position of the interface. The location
of the dividing surface is not unique. Gibbs described an interface as a two-dimensional
dividing area embedded in a 3D space that is located between two bulk liquids. We can
refer to this as a sharp interface (few nanometer~nm) [22]. Figure 3 shows that the bulk
properties are extrapolated up to this surface, and any excess quantity that is not accounted
for by the bulk is assigned to the interface. The most transparent approach is to set the
location of the interface by considering ρs = 0.
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Figure 3. Schematic plot of the density ρ as a function of position x crossing the interface.

The properties of the interface are important parameters to define. According to
the studies by Boussinesq, in addition to the surface tension γ, the interfacial stress τs
(Equation (3)) is a function of another intrinsic property of the interface, τe, which is the
extra stress corresponding to the interfacial rheological properties.

τs = γ.Is + τe (3)

In addition to the kinematic condition, the free surface must satisfy the conditions of
continuity of the velocity and stress across the interface. The excess momentum balance
equation is obtained by collecting all of the forces that act on interfacial element A (Figure 4)
and identifying them as sources of momentum, starting with the interfacial inertia (left
side of Equation (4)), the bulk stress (τ1 and τ2) and the interfacial stress (right side of
Equation (4)) [23].

x

A

ρs
Dsv
Dt

dA =
x

A

(τ2 − τ1).ndA +
x

A

∇s.τsdA (4)

where Ds()
Dt is the time derivative.
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The interfacial inertia is generally neglected in the case of a sharp interface (ρs = 0). By
substituting the expression for the interfacial stress tensor into Equation (4), we obtain the
following equation:

(τ1 − τ2).n = ∇sγ− γ(∇s.n)n +∇sτe = 0 (5)

representing the bulk stress, Marangoni stress, and extra-capillarity surface stress.
Equation (5) links the transport phenomena (equation of state, i.e., γ(Г(t,x,y,z)) with

the interfacial and bulk rheology (constitutive equations).
In 1959, Scriven [24] proposed a constitutive model describing the response of a

purely Newtonian interface based on the Newton–Cauchy–Poisson law. This interface
has thermodynamic properties corresponding to the surface (or interfacial) tension and
rheological properties based on the interfacial dilatational viscosity (Pa.s.m) and the in-
terfacial shear viscosity (Pa.s.m). This constitutive equation is known as the generalized
Boussinesq–Scriven surface fluid model. This model describes the surface (or interfacial)
stress tensor τs (with units of force per unit length) as a linear function of the surface rate
of the deformation tensor Ds and can be expressed as:

τe =
[
(ηd − ηs) divsVs

]
.Is+2ηs Ds (6)

Ds =
∇sVs.Is + Is .

(
∇sVs

)T

2
(7)

This constitutive equation includes ηd, the surface dilatational viscosity; ηs, the surface
shear viscosity; γ, the thermodynamic (equilibrium) surface (or interfacial) tension; Is,
the surface unit tensor; τe, the extra stress component due to the deformation tensor; Vs,
the surface (or interfacial) velocity vector; divs, the surface (or interfacial) divergence
operator; ∇s, the surface (or interfacial) gradient operator; and Ds, the tensor of the
surface deformation rate. Note that Vs has normal and tangential components to the
interface. The Boussinesq–Scriven model describes a Newtonian interface. It has limited
functionality for non-Newtonian interfaces, because they exhibit a complex, non-linear
stress–strain relationship.

The behavior of a solid-like elastic surface can be described by a linear elastic
model [24,25] identical to Equation (6), which is valid for infinitely small deformations.

τe =
[
(Ks −Gs) divs Vs].Is+2GsUs (8)

Us =
∇sVs.Is + Is .

(
∇sVs

)T

2
(9)

where Ks is the interfacial dilatational modulus, Gs is the interfacial shear modulus, vs is the
displacement vector on the interface and Us is the interfacial infinitesimal strain tensor. Note
that these two constitutive equations describe the behavior of purely viscous and purely
elastic plane interfaces. Another tensor projection P onto the interface needs to be performed
for the general case of a curved interface with regular components in the interfacial velocity
or displacement [26]. Pepicelli et al. [27] recently developed a “neo-Hookean” constitutive
equation from a strain energy function, which separates the dilatational or compressional
contributions from the contributions related to shear deformations, yielding the interfacial
or surface elastic stress tensor. With all of these equations, as in 3D rheology, developing a
modeling equation as well as numerical methods for a complex interface becomes possible
and remains a task in progress [23,26,28–33].

From an experimental point of view, a sinusoidal deformation is often applied in order
to characterize viscoelastic interfaces, because in rheology, time becomes an essential vari-
able in the experiment. The principle and interpretation of the interfacial analysis depend
on the type of stress applied (shear or dilatation) and on the nature of the deformation
(constant speed deformation or sinusoidal deformation). In the current review, particular
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attention has been dedicated to summarizing the theoretical basics and principles of the
devices used to study interfacial shear and dilational rheology.

4. Interfacial Shear Rheology

This analysis consists of deforming the interface (without changing its area) by mov-
ing an object with variable geometry (needle, bi-cone, ring, etc.). The resistance of the
interface is recorded by the sensor of the rheometer. The solicitation mode (force or torque)
makes it possible to determine the interfacial stress τs (N.m−1 or Pa.m). However, the
object movement analysis makes it possible to determine the interfacial deformation εs
(dimensionless magnitude) and the rate of the interfacial deformation

.
εs (s−1), which gives

a rheogram τs = f(
.
εs).

4.1. Interfacial Rheological Magnitudes
4.1.1. With Imposed Stress (or Creep Measurement)

In static measurements, a constant stress τ0 is applied, and the compliance J (t) (in
m/N) is measured as:

J (t) =
ε(t)
τ0

(10)

where ε(t) is the interfacial deformation.
In harmonic measurements, a sinusoidal stress with magnitude τ0 is applied, and the

complex compliance J*(ω) is measured with:

J*(ω) = J′-i J′′ (11)

4.1.2. With Imposed Strain (or Relaxation Measurement)

In static measurements, a constant strain ε0 is applied, and the interfacial shear
modulus G (t) (in N m) is measured:

G (t) =
τ(t)
ε0

(12)

where τ(t) is the interfacial stress.
In harmonic measurements, on the other hand, a sinusoidal strain with magnitude ε0

is applied, and the complex interfacial shear modulus G*(ω) is measured:

G*(ω) = G′ (ω) + iG
′′
(ω) =

∣∣∣G*
∣∣∣eiδ(ω) = −iωη*(ω) (13)

The G* modulus is expressed via its real and imaginary components, which depend
on the oscillation frequency. In this case, the dimension of the components of the complex
modulus is also N/m or Pa.m. The real component G′, which is in phase with the applied
deformation profiles, characterizes the elastic properties, while the imaginary component
G′′, which is out of phase with the applied deformation profiles, describes the viscous
properties of the interface.

Viscoelastic interfaces can be also described by the complex viscosity η*(Pa.s.m) and
phase angle δ (◦), where:

η*(ω)= η′ (ω) − iη′′ (ω) (14)

And:

tan δ =
G
′′
(ω)

G
′
(ω)

(15)

4.2. Positioning of the Shear Geometry at the Interface

Presently, there are two methods for positioning the shear geometry at the interface.
In the first method, the geometry can be positioned at the interface using a technique called
normal force assistance (Figure 5). The geometry is lowered from a known gap toward
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the surface while the rheometer measures the axial force. The normal force increases
dramatically upon contact with the sub-phase surface of greater density.

Polymers 2022, 14, x FOR PEER REVIEW 7 of 39 
 

 

Viscoelastic interfaces can be also described by the complex viscosity 𝜂*(Pa.s.m) and 

phase angle δ (°), where: 

𝜂*(ω)= 𝜂' (ω) − i𝜂'' (ω) (14) 

And: 

tan δ = 
𝐆′′(𝛚)

𝐆′(𝛚)
  (15) 

4.2. Positioning of the Shear Geometry at the Interface 

Presently, there are two methods for positioning the shear geometry at the interface. 

In the first method, the geometry can be positioned at the interface using a technique 

called normal force assistance (Figure 5). The geometry is lowered from a known gap 

toward the surface while the rheometer measures the axial force. The normal force 

increases dramatically upon contact with the sub-phase surface of greater density. 

 

Figure 5. Positioning of the object at the interface with normal force assistance. 

In the second method, the geometry can be positioned at the interface by means of a 

visualization system (Figure 6) [34] that is used to ensure that the edge of the geometry is 

precisely located at the interface. 

Figure 5. Positioning of the object at the interface with normal force assistance.

In the second method, the geometry can be positioned at the interface by means of a
visualization system (Figure 6) [34] that is used to ensure that the edge of the geometry is
precisely located at the interface.
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Figure 6. Positioning of the object at the interface using a visualization system. Reprinted from
Ref. [35]. Copyright 2022 Copyright Clearance Center.

In addition to the difficulty of positioning the shear geometry at the interface, making
accurate measurements is not straightforward. This is related to the sensitivity of the
instrument employed, i.e., the contact surface between the geometry and the interface.
In general, the interfaces are very thin, making the measurement difficult due to the low
interfacial measured torque T (a few mN.m), which is usually very close to the limits of the
rheometer and is affected by the inertia of the instrument and of the geometry [36].
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4.3. The Boussinesq Number

In surface rheology measurements, it is very important to realize that the rheometer
is going to measure the total response (stress or strain), including the responses of the
interface and the sub-phases. The measurement of the interfacial rheological properties
makes it necessary to consider the relative contributions of the interfacial stress and the
stress resulting from the bulk liquid. The ratio of these two stresses is described by the
Boussinesq number (Bo) [37].

In other words, the Bo allows us to foresee if the effects of the sub-phases can be
neglected with respect to the interfacial effect. The Boussinesq number can be expressed as
follows (Equation (16)):

Bo =
surface drag force

sub-phases drag forces
=

ηs.P. V
Ls

ηv.A. V
Lv

=
ηs

l.ηv
(16)

where ηs (Pa.s.m) is the surface viscosity in a steady shear flow that is calculated from
the geometry adopted in the interfacial rheological measurements and from the measured
torque; ηv is the bulk viscosity (Pa.s) = (η1 + η2), with η1 and η2 representing the viscosities
of sub-phases 1 and 2, respectively; V is the characteristic velocity (m/s); Ls and Lv are the
characteristic length scales over which the characteristic velocity decays at the interface and
in the sub-phases, respectively (m); P is the contact perimeter between the shear geometry
and the interface (m); A is the contact area between the geometry and the surrounding
sub-phases (m2).

The Boussinesq number is dimensionless. It is a product of two parts: the first one is a
material part that is the ratio between the interfacial and bulk viscosities. The more viscous
the sub-phases are, the higher their drag forces become. The second part is a geometrical
one that depends on the ratio 1/1, which has units of length and defines a characteristic
length scale “l” associated with the measurement techniques.

In practice, as “l” is mainly determined by the ratio of A to P, the Boussinesq number
is simplified to:

Bo =
ηs· P
ηv· A

(17)

The interface and sub-phases can independently show non-Newtonian behavior.
The sub-phases or the interface can have a shear-rate-dependent viscosity, such as in
a generalized Newtonian fluid or a non-linear viscoelastic fluid. In the case of oscillatory
measurements, the viscosities will depend on the frequency and the Boussinesq number
will turn into a complex number Bo* [38,39].

Bo* =
η*

s
l.η*

v
=

G*
s

−l.ω.i.η*
v
=

G”(ω)− iG’(ω)

l.ω.η*
v

(18)

According to the value of Bo, there are two cases, as below.
If the Bo value is high (Bo >> 1), the contribution of the sub-phases to the interfacial

flow is very negligible (i.e., very little fluid viscosity). This is true when the interface is
rigid (high viscosity ηs) or when the geometric ratio (1/1) is high (low contact area between
the geometry and the interface).

If the Bo value is low (Bo << 1), the interfacial rheological properties could be overesti-
mated due to the high contributions of the flow in the sub-phase. In such instances, specific
numerical corrections need to be carried out to the measurable magnitudes [36,40].

4.4. Correction for the Contributions of the Sub-Phases

The velocity profiles v in the sub-phases and at the interface need to be calculated
for different Boussinesq numbers in the cylindrical coordinate system (r, θ, z) in order to
solve the Navier–Stokes equation (Figure 7) [36]. Supposing that the inertial effects are
neglected; the interfaces are planar, incompressible and of very low Reynolds numbers;
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and the stress–deformation behavior of the liquid interface may be represented by the
generalized Boussinesq surface fluid model (described above), then the velocity profiles
can be obtained from the Navier–Stokes equation (based on the fundamental principle of
dynamics (FDP)).
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Approximations and boundary conditions:

- Boundary conditions:

1. No sliding at the walls of the tank and maximum speed at the walls of the geometry:

vs (Cup boundary) = 0 and vs (Geometry boundary) = max

2. Zero speed along z: v (z) = 0;
3. Boussinesq–Scriven model (balance of tangential stress) at the interface.

- The tangential stress balance condition is as follows (under steady-state conditions):

η1
∂v1

∂z
− η2

∂v2

∂z
= ±ηs

∂

∂r
(

1
r

∂

∂r
(r.vs)) (19)

The ± sign refers to the condition for the inner and outer gaps, respectively.
The surface viscosity ηs should be replaced by the complex number ηs* for oscillatory

flow.

- Separation of variables:
vj = aj(r,z).Ω (20)

Ω = θ0.i.ω.eiωt (21)

where vj is the velocity in phase j; aj is the amplitude of the velocity, which is a func-
tion of r and z; Ω is the angular velocity; ω is the frequency; and θ0 is the angular
velocity amplitude.

An iterative system that is based on the calculation of the velocity profiles is used
for the subtraction of the contribution of the sub-phases. In the first step of the iteration,
the authors calculate the initial value of the interfacial viscosity, based particularly on the
formulas of equivalent geometry known as the double-wall ring [36] or the biconical bob
geometry [40].

This often happens by evaluating a test inside a loop and imposing a convergence
condition. The following steps share a common structure for the loop, starting with the
first measured value of interfacial viscosity, called the “seed”:

• Enter the “seed” interfacial viscosity;
• Compute the drag force and solve the Navier–Stokes equation, respecting the previ-

ously mentioned approximations and boundary conditions;
• Extract the new value of the interfacial viscosity;
• Check the convergence condition;
• If the convergence condition is verified, end the loop; if not, go back to the first step by

using the first corrected value of the interfacial viscosity as a seed value.
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All of these steps allow the computation of the corrected value of the torque TC and
the interfacial viscosity for a steady flow using this equation:

ηk+1
s = ηk

s .
TA

TC
(22)

where TA refers to the measured torque and k to the iteration step. The iteration is repeated
until the deviation of the interfacial viscosity between two successive iterations is lower
than 0.05% [40].

It is useful to mention that at high frequencies, the effect of fluid inertia (Reynolds num-
ber, Re) also needs to be taken into account in the corrections according to the methodology
developed by Reynaert et al. [38].

Nowadays, in the rheometer market, many geometries allow the characterization of
the interfacial rheological properties; these geometries are divided into two categories with
two different measurement principles, namely translation and rotation. We are particularly
interested here in three commercially available geometries: the oscillating needle, the
bicone and the ring.

4.5. Interfacial Translational Rheometers
4.5.1. Oscillating Needle

The use of the oscillating needle as an interfacial rheological fixture was first proposed
by Shahin [41]. The operating principle of the interfacial translational rheometer is practi-
cally the same as that of the bulk rheology. A magnetized needle is set up on the interface
and oscillates longitudinally (Figure 8). This needle is aligned along with the flow cell
(silanized hydrophobic glass capillary). The sheared interface is the horizontal surface
between the needle and the edge of the capillary [41]. A gradient in the magnetic field is
generated by applying a different current through the two Helmholtz coils, which drives
(translates or oscillates) the magnetic needle along the glass channel, with the resulting
needle position being captured by a camera [42].
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The first oscillating needle was manufactured by Plateau [15]. Currently, it is marketed
under the name of the Interfacial Shear Rheometer (ISR) (Figure 9). It can operate in
two different modes: the static or harmonic regime.
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In this case, the Boussinesq number can be expressed as:

Bo =
Pηs

A ηv
=

(2L + 4a)ηs

2(π− θ)aLηv
=

ηs

a(π− θ)ηv
(23)

where ηs is the surface viscosity, ηv is the viscosity of the bulk fluids, P is the perimeter
of the probe in contact with the interface, A is the area of the probe in contact with the
sub-phase, θ is the contact angle of the liquid on the probe, L is the length of the rod and a
is the radius.

The interfacial viscosity is calculated from the shearing velocity (Figure 9) of the
magnetic needle (analogy with the rheology of the bulk).

.
ε =

V
h

(24)

τs =
F

2L
(25)

ηs =
τs

.
ε

(26)

The complex interfacial modulus is calculated as follows:

τs =
F

2L
= G*s

z
R− a

(27)

GS* =
F
z

R− a
2L

=
τs

ε0
eiτ(ω) = G′ (ω) + iG′′ (ω) (28)

with
G′(ω) = (

τs

ε0
).cos(δ) (29)

and
G′′ (ω) = (

τs

ε0
).sin (δ) (30)

where F is the amplitude of the total drag force exerted on the needle; V, L and a are
respectively the velocity, the length of the needle and the radius of the needle; R is the
distance between the axis of the needle and the semi-cylindrical glass cell; and z is the
amplitude of displacement of the needle.

The magnetic needle rheometer can produce a very high Boussinesq number due
to its low surface contact with the interface. If the geometrical factor is not sufficient to
compensate for the drag forces of the sub-phases, corrections must be applied as explained
above (Section 4.4). The algorithm is described in [36], and the implemented codes are
available for download (https://softmat.mat.ethz.ch/opensource.html; last accessed 8
July 2022).

It is important to note that this technique is widely used in interfacial rheological
studies, particularly in biology, to measure the surface (gas–liquid) tension and viscosity.
This is the most sensitive technique among the interfacial shear measurements (the mea-
sured interfacial viscosity covers a wide range, from 10−6 to 10−1 Pa.s.m.); it is, however,

https://softmat.mat.ethz.ch/opensource.html
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more delicate to control because it is sometimes complicated to control the flotation of the
needle, which relies on the surface tension (when the surface tension is too low, the needle
sinks). This geometry is not appropriate for the study of interfacial rheological properties
of viscous systems at low and high temperatures, such as polymer systems, because of their
high viscosity and high melt temperature.

Pioneering Studies on the ISR

Based on the sensitivity of the ISR, there exist many studies that use this geometry to
characterize interfaces. Here, we mention several studies on the ISR. The field of biology is
the most studied with this geometry. Hermans and Vermant [43] focused on the study of the
surface rheological properties of a phospholipid, DPPC (dipalmitoylphosphatidylcholine),
on the air–water surface. They performed a complete temperature and surface pressure
analysis of the interfacial shear rheology of DPPC, showing that the monolayer behaves as
a viscoelastic liquid with a structure domain.

In another work [44], Hermans et al. studied the mechanisms affecting the stability
of thin layers loaded with surfactants during their diffusion, using the drainage flows
of a hemispherical dome. They concluded via the ISR that the presence of pulmonary
surfactant replacement layers and DPPC monolayers at the air–fluid interface can improve
the stability of thin films.

Gavranovic et al. [45] studied Langmuir monolayers of mixtures of straight and
branched-chain hexadecanol forms using surface pressure isotherms on the ISR, at the
air–water interface. The addition of branched molecules leads to a non-monotonic increase
in surface viscosity.

Leiske et al. [46] studied the main components of the lipid layer of the tear film,
referred to as the meibomian lipids. Using the ISR, they concluded that the interfacial
meibum films were highly viscoelastic at 17 ◦C, but when the films were heated to 30 ◦C,
the surface moduli decreased by more than two orders of magnitude.

Reynaert et al. [38] studied a purely viscous interface of known viscosity, produced
by spreading thin silicon oil films onto a water layer, and a time-dependent viscoelastic
interface was generated via the surface gelation of a lysozyme solution.

Freer et al. [47] studied protein adsorption at fluid–fluid interfaces after long-term
exposure to produce interfacial gel-like networks. They used the ISR to examine the
structure of a globular protein, lysozyme, and a disordered protein, α-casein, and to study
the kinetics of the network formation at the hexadecane–water interface. For lysozyme, the
shear moduli grow with interfacial aging, indicating a transition from fluid-like behavior at
early stages to network formation (solid-like behavior). Conversely, the interfacial shear
moduli of α-casein change very little with interfacial aging.

4.6. Interfacial Rotational Rheometers

The principle of the interfacial rotational rheometer is based on a two-dimensional
Couette geometry, in which the rotor with a radius of R1 rotates inside the stator with a
radius of R2 [48]. The following equations can be used to compute the interfacial viscosity:

τint =
1

4π
R2

2 −R1
2

R12 R22 T (31)

εint =
R2

2 + R1
2

R22 − R12 ϕ (32)

.
εint =

R2
2 + R1

2

R22 − R12 Ω (33)

ηint =
τint
.
εint

(34)

ηint =
1

4π
(

1
R12 −

1
R22 ).

T
Ω

(35)
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where T, ϕ and Ω respectively represent the torque applied to the rotor, the angle of
rotation of the rotor and the angular velocity of the rotor. These equations are rigorously
valid only for Newtonian liquids or in the case of a narrow air gap (R2 − R1)/R1 << 1
(sufficiently high Bo).

4.6.1. Du Noüy Ring

In the beginning, this method was used for measuring the surface tension of a liquid.
It is based on the same principle as the Wilhelmy plate method. Then, it was used for
interfacial rheological measurements [49]. A horizontal ring is placed at the interface (or
on the surface) and rotates or oscillates around its axis of rotation. This ring has a circular
section, and a schematic profile of this geometry is displayed in Figure 10.
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To measure the shear viscoelastic modulus, the applied equations are similar to the
equations corresponding to the bidimensional cylindrical Couette geometry (they can be
applied directly). The interfacial viscosity can be calculated by using the previous formulas
of ηint (Equation (35)).

Noting that R1 is the radius of the ring and R2 is the radius of the cup containing the
sub-phases, M and Ω respectively represent the torque applied to the rotor and the angular
velocity of the rotor.

In this case, the Boussinesq number can be expressed as:

Bo =
ηint

η1 + η2

P
A

=
ηint

η1 + η2

(4πR1)(
2π2R1D

) =
ηint

η1 + η2

2
(πD)

(36)

where D is the diameter of the wire of the ring (0.36 mm), and η1 and η2 are respectively
the viscosities of sub-phases 1 and 2.

The Du Noüy ring has a very light geometry with a low moment of inertia, which
allows the measurement of interfacial properties. Furthermore, the geometrical factor 2/πD
is very high, so the surface contact with the interface is low, leading to a high Boussinesq
number. Nevertheless, if the geometrical factor is not enough to compensate for the drag
forces of sub-phases (in other words, when Bo << 1), a numerical correction must be made
to consider the effects of the sub-phases [36].

Despite this advantage, the Du Noüy ring also has some disadvantages, such as its
fragility. It is easy to twist it during measurement (parts of the ring will be inside a sub-
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phase and not within the interface), which will lead to an erroneous calculation. Therefore,
it is unsuitable for characterizing rigid interfaces (high interfacial viscosity ηs) or high-
viscosity sub-phases (for instance, polymers). Another inconvenience of this geometry is
the way the Du Noüy ring is placed in the interface. This is related to its low contact area
with the interface and its wetting properties (square section). Hence, the variation of the
normal force is undetectable [49].

4.6.2. Bicone

The bicone [40] is a robust geometry used to probe surfaces and interfaces. It is a two-
dimensional projection of the Couette geometry used in bulk rheology. It is significantly
tapered at its end (Figure 11). The densest liquid is poured first, and then the bicone is
placed at the surface.
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Figure 11. Profile section of the bicone device.

The edges of the bicone need to be located exactly at the interface between the two
immiscible liquids. This geometry is marketed by TA Instruments and Anton Paar. It can
easily be attached to a rheometer and performs both the steady and oscillating tests. The
bicone Boussinesq number is expressed as:

Bo =
ηint

η1 + η2

1
Rb

(37)

where Rb is the radius of the bicone.
Independently of the ratio of the viscosities ( ηint

η1+η2
) of the studied system, the value of

the Boussinesq number will decrease due to the geometrical factor ( 1
Rb

) being low. This
geometry is not often used to characterize fragile interfaces (with very low interfacial
viscosity) and is rarely used for viscous sub-phases because the drag forces produced on
the bicone are sometimes non-negligible.

When Bo << 1, a numerical correction based on an iterative method of the apparent
data needs to be made to consider the effects of the sub-phases and to define the corrected
value of the measured torque Tc (see the previous expressions). The implemented routine is
available for download (https://data.mendeley.com/datasets/4tmy9k4ys3/1; last accessed
8 July 2022).

Soo-Gun and Slattery [48] demonstrated an exact solution of the velocity profiles
in the two sub-phases and at the interface. The authors made assumptions for the sub-
phases as well as for the interface. First, they supposed that the mass and momentum
were conserved for the sub-phases. Second, they assumed that there was a jump in mass
balance at the interface, i.e., that the velocity was continuous at the interface, which

https://data.mendeley.com/datasets/4tmy9k4ys3/1
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means that the dynamics of each of the two fluids were driven by the continuity and
Navier−Stokes equations.

div vθ = 0 with vθ = Vs (in the above Equation(6)) (38)

where vθ is the interfacial velocity vector.
Moreover, the authors defined a jump in momentum balance at the interface; in

other words, the balance between the pressure and bulk viscous stress jumps through
the interface, the stress generated by the interfacial viscosity and elasticity and the stress
resulting from the dynamic interfacial tension, which includes the equilibrium interfacial
tension, the Marangoni effect and Gibbs elasticity.

τ1.n1 + τ2.n2 + div(τ) +ρs.g = 0 (39)

where τ is the interfacial stress tensor given in the Scriven–Boussinesq equation
(Equation (6)), n1 and n2 are the normal vectors perpendicular to the interface point-
ing into phases 1 and 2, ρs is the mass density of the interface and g is the gravity per
unit mass.

Finally, Soo-Gun and Slattery imposed a few boundary conditions. (a) Both of the
sub-phases, as well as the interface, are incompressible and Newtonian. (b) The velocity
of the sub-phases on the top, bottom and side of the walls is zero, while at the edge of the
rotating bicone it is equal to the velocity of the bicone. (c) Supposing that the interface
is flat, the shape and velocity distribution of the interface are stationary (steady flow).
(d) The interfacial deflection is ignored. Therefore, the usual stress jump does not involve
Laplace pressure. The research assumes a low Reynolds number and neglects the secondary
flows. (e) The interfacial mass balance simplifies the surface divergence term. There are no
Marangoni effects in the tangential stress balance.

Once this distribution of velocities is known, the reduced torque (T) exerted by both
liquids on the bicone and the interface (Figure 12) is determined according to:

T= Rc3 Bo
∂

∂r

(
vθ
r

)∣∣∣∣
r=Rc

−
∫ Rc

0

∂v1
θ

∂z

∣∣∣∣∣
z=H1

r2 dr +
1
Y

∫ Rc

0

∂v2
θ

∂z

∣∣∣∣∣
z=H1

r2 r dr (40)

Y =
η1

η2
; r =

r
R1

; z =
z

R1
; H1 =

H1

R1
; vj
θ =

vj
θ

R1Ω− r
(41)

The exact solution of the reduced torque T proposed by Soo-Gun and Slattery is:

T =
T

2πΩRb
3(η1 + η2)

(42)

In this case, T is replaced by T in the expression of the interfacial viscosity
(Equation (30)).

ηint,corr =
1

4π
(

1
Rb2
− 1

Rc2
).

T
Ω

(43)

Soo-Gun and Slattery [48] have shown that the graphs of reduced torque as a function
of Bo (Figure 13) are represented by curves that depend on the ratio of the volume viscosities.
These curves all converge toward the same linear asymptote for high values of Bo according
to the following relation:

T=
2Rb2

Rc2−Rb2
Bo (44)
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(Line equation when Bo >> 1).
When the studied interface is rigid and the Boussinesq number is high, the interfacial

stress must be calculated when Rc/H1 and Rc/Rb tend toward 0. The interfacial viscosity
will be expressed as:

ηint =
T− 8

3 Rc
3 (η1 + η2) Ω

4πRc2 Ω
(45)
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It should be noted that interfacial rheology measurements are not straightforward,
especially when performed at the rheometer’s torque limit. The biconical geometry has
a high weight (high momentum inertia); after extracting the inertia of the geometry and
correcting for the effects of the sub-phases, the measured interfacial torque is very low or
sometimes non-measurable, which makes the bicone less sensitive in this case and leads
to less information from the collected data, particularly in the oscillating test, where the
inertia is much more significant compared to the steady test. For this purpose, it is often
used to characterize the viscoelastic properties of rigid interfaces (high interfacial viscosity).
Probing the interfaces between two viscous polymers requires the adoption of a rigid,
sturdy geometry in order to avoid deformation due to the high mechanical resistance of
the polymers. El Omari et al. [51] introduced a novel biconical geometry manufactured
from titanium (Ti) instead of stainless steel. This titanium-based geometry is half as dense
as its stainless-steel equivalent, decreasing the geometry inertia and making the geometry
more sensitive. This measuring setup also allows interfacial rheology measurements up to
200 ◦C, and gives the possibility of studying a wide range of molten polymer systems.

Pioneering Studies on the Bicone

The bicone is infrequently used in interfacial rheology because of its inertia and its
average sensitivity. Here, we highlight some examples of pioneering studies. In the field
of biology, Erni et al. [50] studied steady shear and oscillatory experiments, as well as
creep recovery and stress relaxation tests at both oil–water and air–water interfaces with
the adsorbed films of a globular protein (ovalbumin) and spread films of a surfactant
(sorbitan tristearate).

The authors used the bicone in another work [52] to study the shear rheology of
condensed interfacial layers (sorbitan tristearate) at the air–water interface. They defined
the viscoelastic regime before performing shear experiments to avoid the destruction of
the sample. By combining the interfacial rheology with microscopy, they concluded that
interfacial films are both viscoelastic and fragile and are subject to fracture under small
deformations, as shown by Brewster’s angular microscopy method performed in situ in
rheological experiments to record surface morphology.

Ruhs et al. [53] studied the interfacial shear rheology of three systems: β-lactoglobulin
fibrils, peptides and monomers adsorbed at the water–MCT (medium-chain triglycerides)
interface at pH 2 through a time sweep at constant frequency and deformation. The
amplitude sweeps were performed after 16 h, and no differences between these systems
could be observed at pH 2. The interfacial elastic and viscous moduli increased when the
pH increased.

It is useful to emphasize that this geometry can be efficient for probing rigid interfaces.
Fan et al. [54] used the biconical geometry to study the interfacial shear rheology of
asphaltenes (molecular substances that are found in crude oil) at the oil–water interface
and their relation to the emulsion stability. They obtained a rigid interfacial film with a
cross-linked structure due to the dispersion of the asphaltenes above a critical concentration
in 20 h.

Ligiero et al. [55] studied the stability of oil–water emulsions by examining the inter-
facial films of surfactants already present in the crude oil. The authors used the bicone
cell to define the shear interfacial rheological properties. They concluded that a perfect
correlation with the emulsion stability and stronger mechanical properties lead to a more
stable water–oil emulsion.

El Omari et al. [51] used a new bicone to study the interfacial properties at the interface
of the two model fluids, polydimethylsiloxane (PDMS) and polyisobutylene (PIB). The
authors also probed the interface of the immiscible molten polymers polycaprolactone (PCL)
and polyethylene glycol (PEG). The apparent interfacial shear properties were measured
in both oscillatory and steady flow modes. The contribution of the bulk sub-phases was
corrected during the processing of the data, and the effects of the temperature and the
molecular weight were also highlighted.
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4.6.3. Double-Wall Ring (DWR)

The double-wall ring (DWR) combines the advantages of the Du Noüy ring, which
is lightweight (less inertia), and the bicone (the contact area is more important than the
Du Noüy ring). It is a geometry developed by TA Instruments [35]. Thus, just like the
double-gap cylindrical Couette geometry, the double-wall ring has two gaps in which the
interface is sheared (Figure 14).
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Figure 14. Schematic diagram of the double-wall ring (DWR) device.

It consists of a thin ring and a cup (in Delrin®, Teflon or metal) with a rounded channel.
The segment of the ring resembles a square (with a precise edge in contact with the interface
(Figure 15)) and is denoted a, which allows a better “grip” of the interface to the ring, in
contrast to the rounded segment in the Du Noüy ring.
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In order to benefit from the chemical inertness as well as the ease of cleaning and
wettability, the ring and support feet are made of a platinum/iridium (Pt/Ir) material.

The double-wall ring (DWR) geometry is used to characterize interfacial thin films
at both the gas–liquid surfaces and liquid–liquid interfaces. It helps to measure viscous
as well as viscoelastic interfaces in the continuous shear and oscillatory experiments. The
DWR can be attached to two types of rheometer: a CMT (combined motor transducer) and
an SMT (separate motor transducer). The ring rotates or oscillates on the CMT rheometer,
whereas on the SMT rheometer the cup rotates or oscillates [56].

In this case, the expression of the Boussinesq number is:

Bo =
ηint

η1 + η2

1
a

(46)

where a is the diameter of the wire of the ring.
The interfacial stress can be expressed as:

τint =
T

2π
(
R2

5 + R2
6
) (47)
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The rate of interfacial deformation is given by:

.
εint=

 1(
R5
R1

)2
− 1

+
1

1−
(

R6
R1

)2

Ω (48)

The expression of the interfacial viscosity using the DWR is:

ηint =
T

2Ω π(R52 + R62)

[
1(

R5
R1

)2
−1

+ 1

1−
(

R6
R1

)2

] (49)

The geometrical factor 1
a is beneficial for obtaining a high Boussinesq number. If the

Bo is low, i.e., if the interfaces are sensitive (when the interfacial viscosity is low), numerical
corrections can be carried out. The velocity profiles in the sub-phases can be determined
using the Navier–Stokes equation in the cylindrical coordinates (r, θ, z). The boundary
conditions [35] are listed below.

The no-slip condition at the inner and outer walls of the DWR:

v1(R1) = v2(R2) = v1(R3) = v2(R4) = 0 (50)

The no-slip condition at the moving ring surface:

vj (R5) = R5.Ω (51)

vj (R6) = R6.Ω (52)

Moreover, the stress condition at the interface is ruled by the balance of the tangential
stress (Boussinesq–Scriven equation) at the interface (see Equation (19)).

As mentioned previously, the determination of the corrected interfacial viscosity is
based on an iterative approach using the numerical computation of the velocity profiles
(see Equation (13)) [35]. In this context, the expression of the calculated torque is given by:

Tc = 2.п.ηint.R3
5

d
dr
( vint

r
)∣∣r = R5 − 2.п.ηint.R3

6
d
dr
( vs

r
)∣∣r = R5 − 2.п.η1.

∫ Rr
R5

dv1
dp1

r2.dr

− 2.п.η1.
∫ R6

Rr

dv1
dp2 r2.dr − 2.п.η2 .

∫ Rr
R5

dv2
dp3

r2.dr − 2.п.η2.
∫ R6

Rr

dv2
dp4

r2.dr
(53)

The algorithm is described in [36], and the implemented codes are available for
download at https://softmat.mat.ethz.ch/opensource.html (last accessed 8 July 2022).

It should be noted that the DWR presents some disadvantages, such as the fragility of
the ring. Moreover, the temperature range of the measurements is restricted because of the
heating system, which is not thermally insulated (much of the heat is exchanged with the
ambient air outside). To conclude, a large range of polymers cannot be studied with this
technique; this includes polymers with a high melting point and high viscosity.

DWR and Controlled Surface Pressure

The double-wall ring can also be used for measurements under pressure [35]. In
such cases, the measuring cell is modified; the idea is to merge the Langmuir balance
(explained in the next section covering the interfacial dilatational rheology) and the DWR
and to homogenize the pressure inside and outside the ring. The geometry of the ring is
changed to achieve this kind of manipulation by adding three 5 mm openings to the ring
(Figure 11 in [35]). The temperature can be controlled by a fluid bath. The surface pressure
is controlled using a Wilhelmy plate in both the Langmuir trough and the DWR cup during
the compression–expansion cycle.

https://softmat.mat.ethz.ch/opensource.html
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DWR and Dilatational Measurements

In interfacial rheology, the shear and expansion measurement techniques are examined
separately. Verwijlen et al. [57] designed a new geometry by modifying the DWR cell to
make it sinusoidal, referring to it as the DWSR (Figure 1 in reference [57]), to simultane-
ously monitor both the expansion and the shear of the interface based on the following
constitutive equation:

τs = [σ + ( ηd − ηs)divs.vs + (K− G) div.us]I + 2 ηsDs + 2GUs (54)

where us is the surface displacement vector (m), Us is the surface strain tensor for small
deformation, and K and G are respectively the surface dilatational elasticity and shear
elasticity (Pa.m).

This equation adds an elastic contribution to the Boussinesq–Scriven constitutive law.
Due to the design of this geometry, the surface can be exposed and sheared, leading to a
mixed flow. The elastic effect can be determined from the torque measurements.

In order to measure the complex dilatational interfacial viscosity from the torque
measurements, a highly sensitive rotational rheometer is required, as well as a complex
fluid interface whose torque is measurable in the sensitive region, with sensitivity values
|Θ| between 20 and 2000.

The limitation of the torque is mainly affected by the shear surface viscosity, and the
measured values are affected very little by interfacial rheology during dilatation (they are
about 25 times more affected by interfacial shear). It should be noted that the interpretation
of the raw data requires knowledge of linear interfacial shear rheology as well as a high
Boussinesq number. In other words, it is necessary to perform a manipulation of the
interfacial shear rheology with the different geometries we previously explained (DWR,
ISR, bicone) before interpreting the DWSR raw data.

Pioneering Studies on the DWR

Vandebril et al. [35] were the first scientists who tried to study interfaces using
a DWR cell. They probed the behavior of complex interfaces such as the interface of
poly(octadecylmethacrylate) (PODMA)–water, an interfacial layer of lysozyme (protein) on
the air–water surface and a commercial lung surfactant on the air–water surface.

In another application, the DWR was also used to study the role of the interface in
coalescence in polymer blends using nanoparticles as compatibilizing agents. Vandebril
et al. [3] demonstrated that the nanoparticles mainly affect the surface rheological properties
between an immiscible system, e.g., polydimethylsiloxane (PDMS)–polyisobutylene (PIB).
Based on the frequency sweep at a fixed strain on a layer of an ellipsoidal particle at the
PIB–PDMS interface, they concluded that increasing the particle volume fraction suppresses
the coalescence more efficiently. For highly loaded polymer blends, the microstructure
even becomes independent of the shear rate and no coalescence happens.

One of the fields most studied using the DWR is biology. For instance, Sharma et al. [58]
combined bulk and interfacial rheology to study the behavior of surfactant-free bovine
serum albumin (BSA) solutions. They used the interfacial flow sweep to demonstrate that
the origin of this yield-like behavior, which is manifested as a highly shear-thinning bulk
rheological response, lies in the formation of a film of adsorbed protein formed at the
solution–gas interface.

This conclusion was confirmed in another work by Jaishankar et al. [59] by com-
paring the interfacial rheological measurements with the corresponding interface; they
demonstrated that the apparent yield strength presented by these solutions comes from
the presence of a viscoelastic layer formed by the adsorption of protein molecules at the
air–water interface.

Wang et al. [60] studied the behavior of the interfacial viscoelastic natural silk fibroin
(protein) at both the air–water and oil–water interfaces. This natural multiblock copolymer
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forms a stable film at these interfaces. This interfacial layer presents a rheologically complex
behavior with strong surface elastic moduli that is only slightly frequency-dependent.

The DWR has also been used in the study of foams and emulsions. Barman et al. [34]
utilized the DWR to study the stability of foams and Pickering emulsions through the
particle-laden interfaces (PLI) adsorbed on an air–water or oil–water interface. The bulk
rheology and the stability of these foams and emulsions depend on the interfacial rheology
of the PLI. This study required the correlation of the rheology with the microstructure by
modifying the DWR cell to allow real-time, simultaneous interfacial visualization and shear
rheology measurements. They demonstrated that the interfacial viscosity increases with
increasing PLI concentrations and presents a shear thinning behavior.

Felix et al. [61] studied the dynamics of heterogeneous food products such as emul-
sions. These can be significantly affected by the interfacial properties of their interfaces.
Proteins are widely used to increase the stability of these food products. This work com-
pared the interfacial properties of a model protein (whey protein isolate, WPI) and silkworm
pupae (SLW) adsorbed at the oil–water interface. A natural aldehyde (cinnamaldehyde,
CNM) was used for both protein systems to promote protein–protein interactions. The
results obtained from interfacial shear tests showed that the use of CNM resulted in the
development of more robust interfaces, with higher values for the surface storage moduli
and a lower loss tangent.

4.6.4. Comparison between the Different Geometries

Here, we give a simple comparison between the geometrical factor that depends on
the 1

l ratio of each geometry to give an idea of the Boussinesq number (Table 1):

Table 1. Geometrical ratios of interfacial shear geometries.

Geometry DWR (TA Instruments) Bicone (Anton Paar) ISR (KSV)
1
l
(
m−1) 1428.57 0.03 55.55

5. Interfacial Dilatational Rheology

In contrast to the interfacial shear analysis, in interfacial dilational rheology, the test
consists of measuring the surface or interfacial tension when the area of the interface
changes [39]. In the expansion–compression tests, the viscoelastic properties of the interface
are characterized by the 2D elastic modulus Ed and the 2D dilatational viscosity ηd:

Ed= A0
dγ
dA

=
dγ

dlnA
(55)

and
ηd =

dγ
dlnA/dt

(56)

where A0 is the initial interface area, γ is the surface tension and A is the interface area
at time t. In the case of oscillatory measurements (harmonic testing of the interface at a
frequencyω), a sinusoidal change in the surface tension can be observed with the presence
of a phase shift. This can be explained by the viscoelastic nature of the interface. With
low-amplitude surface deformation, the response of the interface (surface tension variation)
is linear. It can be expressed as follows:

γ = γ0 + ∆γ sin (ωt + δ) (57)

A = A0 + ∆A sin (ωt) (58)

where ∆A and ∆γ are respectively the amplitude of the interfacial area and surface tension,
while A0 and γ0 are respectively the interfacial area and surface tension just before the
oscillatory deformation. In this case, we define the dilatational complex modulus Ed* with
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a real part, the elastic modulus E′, presenting the stored and recoverable energy, and an
imaginary part, the viscous modulus E′′, referring to the energy dissipated by the system:

Ed* = E′ + iE′′ = |Ed|cosδ+ i|Ed|sinδ (59)

Before performing a frequency sweep, it is mandatory to define the linear region. In
other words, we need to define the critical deformation in order to study the viscoelastic
properties of the surfaces (or interfaces) in their reversible equilibrium state without any
change to their structure. Therefore, an amplitude sweep experiment at a specific frequency
needs to first be performed. When the interfacial viscoelastic modulus begins to decrease
at the highest strain amplitude, we refer to the non-linear regime.

Another alternative to this classic strain sweep representation can be found in Lissajous–
Bowditch plots (often referred to as Lissajous plots). This model was used extensively for
bulk rheology and subsequently has been transposed for shear [62,63] and dilatational [63]
deformations of the interface. Lissajous plots are graphically presented for surface (or
interface) shear experiments by plotting the stress responses versus the shear rate or strain
amplitude, and for dilational rheology by plotting the complex modulus E* or surface
tension (or alternatively surface pressure) versus the deformation [64]. Figure 16 presents
specific curves enabling the prediction of the linear (1) and non-linear (2) viscoelastic
behaviors of the interfaces. In the case of linear dilatational interfacial rheology, the
Lissajous plots are symmetrical, the variation of the dilatational modulus is independent of
the applied strain and the variation of the interfacial tension follows a perfect sinusoidal
curve, unlike the non-linear region.

Polymers 2022, 14, x FOR PEER REVIEW 23 of 39 
 

 

 

Figure 16. Lissajous plots in interfacial rheology: (1) the behavior in the linear domain and (2) the 

behavior in the non-linear region. 

Concerning the experimental part, there are two techniques that can be used to 

measure the interfacial dilational rheological properties. The first one is a direct 

measurement that consists of measuring the surface pressure (Langmuir balance). The 

second one is based on an optical contour analysis (oscillating pendant drop and 

spinning drop). 

5.1. Langmuir Balance (or Langmuir Trough) 

5.1.1. Description 

The Langmuir balance uses the Wilhelmy plate (Figure 17). The latter is a perfectly 

clean blade with a constant thickness e and length L (e << L) connected to a precise 

balance and immersed in a liquid. The liquid exerts an attractive force on the Wilhelmy 

plate, which depends on the nature of the liquid and the length of the blade [35]. 

 

Figure 17. Schematic diagram of the Langmuir balance. 

Figure 16. Lissajous plots in interfacial rheology: (1) the behavior in the linear domain and (2) the
behavior in the non-linear region.

Concerning the experimental part, there are two techniques that can be used to mea-
sure the interfacial dilational rheological properties. The first one is a direct measurement
that consists of measuring the surface pressure (Langmuir balance). The second one is
based on an optical contour analysis (oscillating pendant drop and spinning drop).
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5.1. Langmuir Balance (or Langmuir Trough)
5.1.1. Description

The Langmuir balance uses the Wilhelmy plate (Figure 17). The latter is a perfectly
clean blade with a constant thickness e and length L (e << L) connected to a precise balance
and immersed in a liquid. The liquid exerts an attractive force on the Wilhelmy plate, which
depends on the nature of the liquid and the length of the blade [35].
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When the Wilhelmy plate is immersed in a liquid, a meniscus is formed along the
perimeter of the blade. The force exerted on the blade (blade pull-out force) is related to the
surface tension by:

F = P γ cosθ (60)

where P is the perimeter of the blade, γ is the surface tension and θ is the contact angle.
The machine contains two barriers allowing the compression of the surface, while

a pressure sensor above the tank allows the measurement of the surface pressure as a
function of time and the area between the barriers. The two types of measurements are
defined as described below.

5.1.2. Compression at Constant Velocity Followed by Relaxation

Here, we measure the variation of the surface pressure:

∆P = ∆Pe + ∆Pt (61)

where ∆Pe is the variation of the equilibrium pressure:

∆Pe = Ee
∆A
A0

(62)

while ∆Pt is the transient pressure (dissipated energy):

∆Pt = Et
∆A.τ

A0
(1− exp(

−t
τ
)) (63)

and ∆Pt is monitored as a function of time.

5.1.3. Harmonic Stress (Oscillation) at a Frequencyω

In the methods involving a Langmuir trough, the deformation is a combination of
shear and dilatation. For this reason, Pepicelli et al. [27] designed another custom radial
surface compression system, in which the deformation field is noticeably simpler, purely
comprising dilation or compression. An elastic barrier is used to control the compression.
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Twelve fingers are used to apply uniform deformation to a radially shaped cup to facilitate
a fluid mechanics analysis (Figure 18).
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Figure 18. Schematic diagram of the radial trough setup composed of a circular Teflon trough with
an elastic barrier and aluminum fingers, controlled by a stepper motor. Adapted from Ref. [27].
Copyright 1855 Copyright Taylor and Francis.

Note that the Langmuir balance allows an understanding of the dilatational rheological
properties of surfaces of low-viscosity sub-phases. The design of this device does not permit
measurements to be performed at high temperatures, and equipping this instrument with
a heating system can help overcome this limitation.

5.2. Oscillating Drop Tensiometry
5.2.1. Description of the Pendant Drop Method

The oscillating drop tensiometry method is based on the study of the shape of a liquid
(or gaseous) pendant drop (or a rising drop) at the end of a capillary within another liquid
or gaseous phase (Figure 19).
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The shape of the drop depends on the interfacial tension, which tends to make the
drop spherical, and the difference between the density of the two fluids (gravitational
effects), which tends to expand the drop and changes its spherical shape. The drop then
takes on the form of a “bulb” [65].

In theoretical terms, at equilibrium, the drop (or bubble) obeys the Young–Laplace
equation linking the Laplace pressure to both the radius of the curvature and the
interfacial tension:

γ

(
1

R1
+

1
R2

)
= ∆P = ∆P0 − ∆ρgz (64)

where γ is the surface (or interfacial) tension, R1 and R2 are respectively the first and
second principal radii of curvature, and ∆P = Pin − Pout is the Laplace pressure, which is
the pressure difference across the interface.

Here, ∆P0 is a reference pressure at z = 0, whereas ∆ρgz is the hydrostatic pressure;
∆ρ = ρd − ρc is the density difference; ρd and ρc are respectively the density of the

drop phase and the density of the continuous phase.
By fitting the drop contour, the surface (or interfacial) tension can be extracted from

the images of the drop (Figure 20).
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Figure 20. A pendant drop image indicating the coordinate system used for determining the surface
tension. The drop shape is fit to a solution of the Young–Laplace equation.

Another important parameter that needs to be well defined is the Bond number
Bd (dimensionless) [65]. It represents the ratio between the gravitational forces and the
interfacial tension. The shape of the drop depends on this number:

Bd =
g∆ρR2

app

γ
(65)

The more the drop is spherical, the lower the Bond number becomes and the more
the relative error of the measurement increases. By observing the expression of Bd, and
in order to increase the accuracy of the measurement, it is recommended to increase the
Bond number by increasing the radius of curvature (increasing the volume of the drop) or
by increasing the difference in densities of the coexisting phases [50].

The Young–Laplace equation can be expressed in cylindrical coordinates r and x,
according to differential equations in terms of the arc length s measured from the drop’s
apex, the Bond number Bd and the tangent angleφ in a curvilinear coordinate system of
x(s) and z(s) (the smoothed solution of the Laplace equation).
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The first and second principal radii of curvature are defined as:

R1 =
ds
dφ

(66)

R2 =
x

sinφ
(67)

Considering the axisymmetry of the drop or bubble, the curvature at the apex is
constant in all directions:

Rapex = R1 = R2 (68)

The reference pressure can be expressed as:

∆P0 =
2γ

Rapex
(69)

Therefore, Equation (64) can be obtained as a coupled set of differential equations in
terms of the arc length x measured from the drop apex:

dφ
ds

= 2− Bdz− sinφ
x

(70)

dx
ds

= cosφ (71)

dz
ds

= sinφ (72)

where Rapex is the radius of curvature of the surface.
Here, a comment needs to be added. The fitted Young–Laplace solution can also be

used to give additional data, such as the drop volume Vd and drop surface area Ad, which
are defined as:

Vd = π
∫

r2sinφ ds (73)

and:
Ad = 2π

∫
rds (74)

These two relationships allow the extraction of other interesting interfacial data. For ex-
ample, the percentage of evaporation of the pendant drop can be quantitatively determined
by monitoring the variation over time of the volume of the drop (or bubble) [66].

5.2.2. Precision of the Pendant Drop Method: The Worthington Number

According to the Bond number expression, it is interesting to note that as the diam-
eter of the needle decreases, the minimum Bond number value needed for an accurate
calculation decreases. Berry et al. [65] introduced a universal solution independent of the
needle diameter by using a dimensionless number, which represents the ratio of the drop
volume Vd (calculated with Equation (73)) to the theoretical maximum drop volume Vmax.
Berry et al. [65] referred to this parameter as the Worthington number Wo (Figure 21). It is
expressed as follows:

Wo =
Vd

Vmax
(75)

where Vmax is expressed as:

Vmax =
πDnγ

∆ρg
(76)

and Dn is the external diameter of the needle.
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It should be noted that before launching the measurements, it is necessary to determine
the volume corresponding to the detachment of the drop, Vmax.

5.2.3. Rheological Measurements in the Harmonic Regime (Oscillation at
a Given Frequency)

The drop is subjected to a change in volume (through a piezoelectric or mechanical
piston (Figure 22)) with a sinusoidal deformation profile (Figure 23), and the shape of the
drop at each oscillation makes it possible to calculate the surface or interfacial tension via
the Young–Laplace equation.
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Figure 23. The interfacial tension (mN/m), surface area A (mm2) and drop volume V (mm3) versus
time t (s).

Since the pioneering articles that appeared in 1983 [67], developing the computational
routines used for all available data of the pendant drop profile, which greatly increased the
precision of the fitting methods, other papers have been published [65]; among these, we
can cite the recent article by Kratz and Kierfeld [68].

5.2.4. Influence of the Viscosity and Elasticity on the Interfacial Dilatational Measurements
Effect of the Continuous-Phase and Drop-Phase Viscosity

When measuring the static surface or interfacial tension with the pendant drop method,
the gravitational effects acting on the drop or bubble are in equilibrium with the interfacial
effects. In this case, the Young–Laplace equation is valid.

However, in the case of oscillatory measurements, other forces appear because of the
change in the interfacial area during the experiment. In this instance, inertial and viscous
forces modify the shape of the drop or bubble. Consequently, the Young–Laplace equation
is invalid, and the measuring frequency range is restricted (the maximum frequency is
limited) [69].

Other parameters need to be quantified in order to estimate the inertial and viscous
forces [69]. They are the capillary number Ca, defined as the ratio of viscous to capillary
forces, and the Weber number We, defined as the ratio of inertial to capillary forces:

We =
∆ρω2∆V2
γR3

c
(77)

Ca =
∆ηω∆V
γRc2

(78)

where ∆η and ∆ρ are respectively the differences between the Newtonian viscosities and
the densities of the drop and the continuous fluid, ω is the oscillation frequency of the
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drop, ∆V is the amplitude of volume oscillation, σ is the equilibrium interfacial tension
and Rc is the radius of the capillary.

In the limits of Ca << 1 and We << 1, the drop shape is that of a static drop and is well
described by the Young–Laplace equation.

To determine the dilatational behavior of viscous systems where the inertia is im-
portant, the principle of the time–temperature superposition is used to artificially extend
the pulsation gap at a given temperature. Bouriat et al. [70] demonstrated that for a wide
range of pulsations between 0.001 and 10 rad/s, the log–log curve of the elastic modulus
E (expansion test) is a straight line, while the loss angle stays constant. Chambon and
Winter [71] showed that for a crosslinking polymer system near its gelation point, the loss
and storage moduli are parallel at the gel point, with a pulsation dependence of:

E′ ∝ E′′ ∝ωn (79)

where 0 < n < 1 is a relaxation exponent. A gel with n approaching 1 is purely viscous,
whereas for n approaching 0 it is purely elastic. The loss angle δ is related to n by:

δ =
nπ
2

(80)

Abi Chebel et al. [72] demonstrated that for moderately aged crude oil droplets
(≤5000 s), the elasticity and viscosity at a high frequency (10−80 Hz) could be extrapolated
from low-frequency measurements (≤1 Hz) by the same power law of the frequency,ωn.

Main Physical Contributions to the Measured Signal and Calculated Surface
Rheological Parameters

Regardless of the nature of the interface, the Laplace equation can be written for each
point of the interface as:

∆P = Pin − Pout =
T1

R1
+

T2

R2
(81)

where T1 and T2 are respectively the surface tensions in two perpendicular directions along
the interface (Figure 24).

Polymers 2022, 14, x FOR PEER REVIEW 30 of 39 
 

 

To determine the dilatational behavior of viscous systems where the inertia is 

important, the principle of the time–temperature superposition is used to artificially 

extend the pulsation gap at a given temperature. Bouriat et al. [70] demonstrated that for 

a wide range of pulsations between 0.001 and 10 rad/s, the log–log curve of the elastic 

modulus E (expansion test) is a straight line, while the loss angle stays constant. 

Chambon and Winter [71] showed that for a crosslinking polymer system near its 

gelation point, the loss and storage moduli are parallel at the gel point, with a pulsation 

dependence of: 

E’ ∝ E’’ ∝ ωn  (79) 

where 0 < n < 1 is a relaxation exponent. A gel with n approaching 1 is purely viscous, 

whereas for n approaching 0 it is purely elastic. The loss angle δ is related to n by: 

δ = 
𝐧𝛑

𝟐
  (80) 

Abi Chebel et al. [72] demonstrated that for moderately aged crude oil droplets (≤ 

5000 s), the elasticity and viscosity at a high frequency (10−80 Hz) could be extrapolated 

from low-frequency measurements (≤1 Hz) by the same power law of the frequency, ωn. 

Main Physical Contributions to the Measured Signal and Calculated Surface Rheological 

Parameters 

Regardless of the nature of the interface, the Laplace equation can be written for 

each point of the interface as: 

∆𝐏 = 𝐏𝐢𝐧 − 𝐏𝐨𝐮𝐭 =
𝐓𝟏

𝐑𝟏
+

𝐓𝟐

𝐑𝟐
 (81) 

where T1 and T2 are respectively the surface tensions in two perpendicular directions 

along the interface (Figure 24). 

 

Figure 24. Representation of the parameters defining the interface. 

In static measurements, according to the Laplace equation, the surface (or 
interfacial) tension [73] varies linearly with the capillary pressure Pc. For reasons of 

symmetry, every direction is equivalent, so Equation (81) becomes: 

𝛄 = 
𝐏𝐜.𝐑𝐚𝐩𝐞𝐱

𝟐
  (82) 

However, in the dynamic measurements, Papp, the pressure applied to form the drop 

or bubble contains the capillary pressure (Pc) in addition to other contributions, such as 

the hydrostatic pressure, Phydr (considered negligible), and Pdyn, the dynamic pressure 

(due to the deformation of the drop volume) [70]. 

Papp = Phydr + Pdyn + Pc (83) 

Figure 24. Representation of the parameters defining the interface.

In static measurements, according to the Laplace equation, the surface (or interfacial)
tension [73] varies linearly with the capillary pressure Pc. For reasons of symmetry, every
direction is equivalent, so Equation (81) becomes:

γ=
Pc.Rapex

2
(82)

However, in the dynamic measurements, Papp, the pressure applied to form the drop
or bubble contains the capillary pressure (Pc) in addition to other contributions, such as the
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hydrostatic pressure, Phydr (considered negligible), and Pdyn, the dynamic pressure (due to
the deformation of the drop volume) [70].

Papp = Phydr + Pdyn + Pc (83)

Note that in the static measurements, the dynamic pressure equals zero (mechanical
equilibrium, where Pc = function (γ) and Pdyn = 0). In contrast to this case, during the
oscillatory measurements, the capillary pressure is proportional not only to the surface
tension but also to the viscous forces.

The complex interfacial modulus is obtained by replacing Equations (82) and (83)
in the expression of the surface tension and generalizing Equation (8) from [74] to the
following equation:

E* =
dγ

d lnA
=

(
1 −

Rs,eq

Hs,eq
) +

Rs,eq

2
d

d lnA
(
Papp − Phydr − Pdyn

)
(84)

where Hs,eq and Rs,eq are respectively the initial drop height and the initial radius (apex)
before starting the oscillation (the equilibrium value). Equation (84) can be written in a
revised form:

E* = E*0 −
Rs,eq

Hs,eq

dPdyn

d lnA
, (85)

E*0 ≡ γ

(
1 −

Rs,eq

Hs,eq
) +

Rs,eq

2
d

d lnA
(
Papp − Phydr

)
(86)

Viscous and inertial contributions are included in Pdyn. For frequencies larger than
10 Hz, the inertial term in Pdyn becomes more significant (the inertial forces are neglected
by using frequencies lower than 10 Hz). Hence, the viscous contribution in Pdyn consists of
two parts.

The first part is the Poiseuille pressure (PPois) due to the flow in the capillary
(Figure 25); for a Newtonian fluid, PPois is given by the Poiseuille equation.

PPois =
8ηinnL
πr4

inn

dV
dt

= 8
R2

s,eqHs,eq L
r4

inn

dlnA
dt

(87)

where ηinn is the dynamic viscosity of the drop phase moving inside the capillary, L and
rinn are respectively the capillary length and its inner radius and dV/dt is the flow rate
(the variation of the drop volume (cm3/s) V, as a function of time).
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Figure 25. The flow of a Poiseuille tube inside a needle.

The second part of the viscous contribution in Pdyn is the viscous pressure (Pvisc) due to
the bulk viscous forces acting from both adjacent phases on the drop surface. Two different
methods are used to compute the Pvisc [75]:
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In the first place, by using the method of similarity and dimensional analyses in [76,77],
the following relationship for Pvisc is obtained:

Pvisc = χ
ηout

rc

dHs

dt
= χ

(ηout − ηinn)Rs,eq

rc

dlnA
dt

(88)

where rc is the radius of the drop contact line, while the dimensionless parameter χ accounts
for the drop geometry (χ should be a function of the ratio χ = Hs/rc).

In the second place, by theoretically solving the hydrodynamic problem of a dilata-
tional or compressive spherical drop attached to a capillary in an outer fluid phase in [77],
the hydrodynamic drag force (Fvisc) can be calculated. When this force is applied in
the circular section of the capillary, it creates pressure. This pressure can be expressed
as follows:

Pvisc =
Fvisc

πr2
c

πr2
inn
πr2

c
=

R2
s,eqHs,eqr2

inn
πr5

c
[ηinn fa, 0 + ηout(fab + fb)]

dlnA
dt

(89)

As is obvious from Equations (88) and (89), the viscous stress contributions in Pvisc
depend on the rate of the surface deformation (dlnAs/dt). They only contribute to the imag-
inary part of the complex interfacial modulus. Therefore, the expression of the dilatational
elastic modulus (the real part of the complex modulus E*) (see Equation (86)) is:

E′ = E′0 (90)

while the dilatational loss modulus can be presented as:

E′′ = E′′0 − E′′Pois − E′′visc (91)

where E′′Pois and E′′visc are the dynamic corrections to the loss modulus due to the flow in
the capillary and to the drop in dilatation or compression, respectively.

E′′visc = χ ω
(ηout − ηinn)R2s,eq

rc
(92)

E′′Pois = 4ωηinn
R3

s,eqHs,eq L
r4

inn
(93)

E′′ = E′′0 − χ ω
(ηout − ηinn)R2s,eq

rc
− 4ωηinn

R3
s,eqHs,eq L

r4
inn

(94)

Equation (94) shows that it is necessary to carry out the above for each correction of the
dilatational loss modulus through the subtraction of the viscous and inertial contributions.

5.2.5. Effect of the Elasticity of the Interface

When the interface (or surface) is elastic, i.e., the interface can support a shear stress
in the interfacial plane, the elasticity of the interface in the dilatational measurement is
the sum of the interfacial tension γ and the interfacial elastic tensor. This is very often
used in the study of interfacial membranes [78] when the variation in the surface shear
modulus reflects changes in the thermophysical properties of the interfacial film or the
number density (cross-link density) of intermolecular interactions at the interface [79].
A neo-Hookean model was used to model the small deformation of the interface in this
instance. The interfacial elastic tensor is given in Equation (4) from [79].

As mentioned earlier, a drop shape analysis or pressure tensiometry is used to extract
the surface–material properties of these complex interfaces. The use of the Young–Laplace
equation needs to be generalized to account for the extra and anisotropic stresses at the inter-
face [80]. Shape-fitting methods, when combined with an adequate constitutive approach,
do not perform well in defining the elastic stresses, especially for small deformations.
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Nagel et al. [81] used an additional measurement of the pressure or capillary pressure ten-
siometry to improve the sensitivity. This requires knowledge of the undeformed reference
state (when the interfacial elastic tensor is negligible), which may be challenging to achieve
in practice.

5.2.6. Operating Parameters That Can Disturb the Measurement

Many parameters can modify the measurements. Among these parameters, some may
even disturb the measurements.

Vibration:
The first parameter that can disturb the measurements is the vibration due to the

external environment (workplace insulation, sound, noise, etc.). To limit vibrations during
the measurement, the box that contains the device should be equipped with rubber shock
absorbers and placed on a stable support.

Verticality of the needle:
The symmetry of the drop and the balance of the forces exerted on the drop can be

changed if the needle is not strictly vertical.
Impurities:
The presence of an impurity can disturb the measurements either by modifying the

properties of the environment or by complicating the visualization of the drop, as well
as the detection of the edges of the drop (or bubble). For example, air bubbles may be
considered an impurity. To fix this problem, the samples should be degassed.

Drop configuration:
If the value of ∆ρ is positive (∆ρ > 0), we must use the pendant drop; if it is negative

(∆ρ < 0), we must use the rising drop. In this case, the drop is formed upward at the tip of
a U-bend (Figure 26).
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Figure 26. Rising drop formed upward at the tip of a U-bend.

Stabilization time:
First we form the drop, then the variation of the interfacial tension is monitored as

a function of time until a constant value (plateau) is reached. Note that the experimental
conditions should be constant, especially the parameters that most affect the interfacial (or
surface) tension, such as the temperature and vibration.

Another issue that should be mentioned is the material characteristics, which could in-
fluence the accuracy of the measurement. For example, in the case of thermo-sensitive poly-
mers, when the temperature increases and if the stabilization time to reach the equilibrium
is long, the polymer may be degraded. Therefore, the measurements will be wrong. Taking
this into consideration, the measurements should be made under an inert atmosphere.
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Some pioneering studies on dilational interfacial rheology based on the oscillating
drop method

Ruhs et al. [77] performed oscillatory surface amplitude measurements with a pendant
drop tensiometer to determine the linear regime of β-lactoglobulin fibrils and their deriva-
tives. The deformation experiments combined with a frequency sweep of the interfacial
films showed different surface rheological behaviors at high and low frequencies. These
observed dilatational rheological responses were described using two different adsorption
models, the Maxwell model and a modified Lucassen and van den Temple model.

Rühs et al. studied in another work [53] the static and dilatational responses of β-
lactoglobulin fibrils and native β-lactoglobulin (monomers) at the water–air and water–oil
interfaces at pH 2 using the pendant drop method. The resulting adsorption behavior
and the viscoelasticity were dependent on the concentration and adsorption time. They
observed that with higher concentrations, they achieved fast adsorption kinetics and slightly
higher interfacial and surface pressures, but this did not lead to higher viscoelastic moduli.

Understanding the properties and behaviors of diluted bitumen–water interfaces
under stresses is essential to find a solution to emulsion problems in bitumen production.
Angle and Hua. [82] studied the interfacial dilational rheology of toluene-diluted mineral-
free Athabasca bitumen. For all oscillation frequencies studied, they observed that the
interfacial viscoelastic modulus of Athabasca bitumen in toluene reached a maximum at
0.865 g/L (0.1 wt%) bitumen, then declined as the bitumen concentration increased.

A recent work by Gimenez et al. [83] focused on escin (a natural mixture of triter-
penoid saponins isolated from horse chestnut seeds). The stabilized air–water interfaces
displayed a highly non-linear behavior during dilatation, as evidenced by the Lissajous
plot method. The use of surface rheological measurements beyond the commonly mea-
sured linear domain has provided new insights into the behavior of these interfaces and
their microstructure.

The oscillating pendant (or rising) drop is also present in the study of oil extraction.
Ligiero et al. [73] explored the characterization of a crude oil interfacial film (IM) isolated
from wet silica via the oscillating rising drop method at 30 ◦C. Dilatational rheology mea-
surements revealed that successive IM extracts from crude oil are composed of molecules
that behave increasingly like insoluble surfactants that aggregate at the water–oil interface.
These surfactants would be responsible for hindering the mechanical characteristics of
the interface.

Abi-Chebel et al. [72] evaluated the dilatational rheology of a pendant-shaped diluted
crude oil within water with an interface that contained a significant amount of surfactant.
At a low frequency, the fluid viscosity and inertia were negligible, which allowed a direct
determination of the dilatational interfacial rheology. This interfacial film underwent a
viscoelastic behavior, with the elastic moduli being larger than the viscous moduli.

5.3. Spinning Drop Method

Based on the same principle as the pendant drop method, spinning drop tensiometry
uses the optical contour analysis of a drop to determine the minimal interfacial tensions
(below 1 mN/m), which cannot be performed with the other interfacial tension devices.
Instead of dosing a drop using a syringe and a needle, a drop of the less dense liquid is put
inside another liquid of higher density. The drop is exposed to gravity and placed inside a
rotating capillary tube. Due to the centrifugal forces, the drop is deformed cylindrically
toward the rotational axis (Figure 27) and its interfacial area increases. The interfacial
tension counteracts this increase in area and can, thus, be determined by analyzing the
shape of the drop in the equilibrium state.
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This method was developed by Vonnegut [84]. The interfacial tension can be de-
termined if the drop length is at least four times longer than the drop radius: L > 4R
(Equation (95)).

γ =
∆ρ ·R3 ·ω2

4
(95)

whereω is the angular velocity and R is the radius of the spinning drop.
To investigate the viscoelastic properties of systems with such low interfacial tension,

the spinning drop is deformed with a known frequency instead of a steady rotational veloc-
ity, which directly results in a sinusoidal change of the interfacial area. In this instance, the
interface elongation–compression is performed by oscillating the continuous phase. The cal-
culation of the dilational modulus Ed and viscosity ηd is the same as explained previously.

The spinning drop method in oscillation was developed for the first time in 2018 by
Zamora et al. [85], who used the oscillating spinning drop method to study surfactant-free
systems, soluble surfactant systems and insoluble surface-active species (asphaltenes in a
solvent–brine interface).

6. Conclusions and Perspectives

In this review, the theoretical and experimental aspects of interfacial rheology are
highlighted. This particular branch of rheology has been used to study liquid–liquid or
air–liquid systems with or without an active agent at the surface (or interface). In order
to probe the interfacial viscoelastic properties and follow the same formalism as in bulk
rheology, an interface must be deformed, either by shear force, in which the interfacial
area remains constant, or by elongation, in which the interfacial area changes. Each type
of deformation provides information about the surface (or interface), depending on the
application studied.

As shown in the different parts of this report, interfacial shear rheology requires the
use of a geometry positioned at the interface of the two sub-phases. The oscillating needle,
the bicone and the double-wall ring (DWR) are the most common geometries used to
probe the interface. Deforming an interface generates a flow at the sub-phase level, and
the recorded response is the sum of the interfacial effects and the bulk effects; hence, the
interest in quantifying a unitless macroscopic number, the Boussinesq number, which
represents the ratio of these two effects. At low Boussinesq numbers, the subtraction of
the contribution of the sub-phases is accomplished numerically with an iterative method
(DWR and oscillating needle) or directly using an exact solution (bicone).

When the interface (or surface) has to be expanded (or compressed), interfacial dilata-
tional rheology is involved. Several studies have been based on the Langmuir balance or
the oscillating pendant drop method. The principle of these techniques is to measure the
change in interfacial tension after a change in interfacial area, either via imaging (rising or
pendant drop) or by measuring the surface pressure (Langmuir balance). The correction of
the viscoelastic moduli by subtracting the effects of the sub-phase viscosity and elasticity
has also been documented.

The oscillating drop method has potential for the study of the interfacial expansion
of molten polymers if it can be adapted, in the same way as discussed in the case of the
shear force, using a heated closed cell and isolation with suitable syringes and needles
(low-capillary and Weber numbers).
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The interfacial rheology of polymer systems in the molten state has rarely been in-
vestigated due to the difficulty of manipulating these materials and due to their intrinsic
properties, such as their viscosity and high melting points. On the other hand, current
commercial interfacial rheological devices have not been designed to study molten polymer
systems, which require an adaptation of these techniques.

Probing the interfaces between two molten polymers requires the overcoming of tech-
nical or material constraints. A heating system is essential to broaden the range of polymers
studied, as well as an innovative shear geometry that is both robust mechanically, to de-
form viscous polymer interfaces, and also light with a high geometric factor (Boussinesq
number), to reduce its inertia when performing experiments within the limits of current
rheometers and tensiometers.

Contrary to the conventional indirect modeling methods used for the assessment of
polymer–polymer interfacial properties, the application of interfacial rheology to molten
polymer systems might allow the direct measurement of their interfacial behavior, which is
predominant in the case of polymer blends, coextruded multilayer polymers and polymer
foams. Additionally, interfacial rheology can be essential to study interdiffusion and
interphase formation from one polymer to another in the case of reactive interfaces, such as
reactive compatibilized immiscible polymer melts. For all these reasons, high-temperature
interfacial rheology appears to be one of the most promising techniques that should be
further developed in the near future to probe the different polymer–polymer interfaces
encountered in the processing and formation of multiphase polymer systems.
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