
HAL Id: hal-04143257
https://hal.science/hal-04143257

Submitted on 27 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Kube5G: A Cloud-Native 5G Service Platform
Osama Arouk, Navid Nikaein

To cite this version:
Osama Arouk, Navid Nikaein. Kube5G: A Cloud-Native 5G Service Platform. GLOBECOM
2020, IEEE Global Communications Conference, IEEE, Dec 2020, Taipei, Taiwan. pp.1-6,
�10.1109/GLOBECOM42002.2020.9348073�. �hal-04143257�

https://hal.science/hal-04143257
https://hal.archives-ouvertes.fr


Kube5G: A Cloud-Native 5G Service Platform
Osama Arouk and Navid Nikaein

Communications Systems Department - EURECOM, Biot, France - Email: firstname.lastname@eurecom.fr

Abstract—With the proliferation of use-cases envisioned to be
supported by 5G networks, the focus is not only on the perfor-
mance, but also on the service agility and elasticity. Cloud native
principal is a methodology of designing lightweight, isolated-
context, and deployable at scale applications that natively exploit
the features of cloud. However, supporting telco applications (e.g.,
4G/5G services) in the cloud brings up many challenges, such as
the coexistence of physical and virtual functions, (near) realtime
resource provisioning, service continuity, and strict latency and
data rates. In this paper, we propose Kube5G, as a realizable agile
service platform in support of 4G/5G cloud native applications.
Kube5G introduces a novel approach in building and packaging
a cloud-native compliant telco network function (NF) in a form
of nested well-defined layers. In addition, we present a workflow
for continuous integration and development operations in support
of multi-version network functions (physical, virtual and cloud
functions). We also present a concrete prototype implementation
of Kube5G with experimental results indicating its efficiency and
highlighting user and network perceived performance.

Index Terms—5G, Cloud-Native, Mosaic5G, Kubernetes.

I. INTRODUCTION

Fast, access at scale, frequent deployment of services, and
quick failure recovery (e.g., service availability ≥ 99.999%)
became important features to support current and novel 5G
network services in divers virtualized/cloud environments.
Supporting such flexibility in 5G networks as required to
realize network slicing as well as service elasticity (e.g.,
service update/upgrade and scaling), can be achieved via soft-
warization, virtualization, and cloud computing technologies.

Cloud-native approach is a complete methodology to de-
velop, build, run, and manage applications that fully exploit the
cloud computing model. Cloud-native applications have three
main design patterns: (1) microservices1, where an app may
be composed of many services that are meshed and operating
independently from each other, (2) containerization, where
an app is packaged in one or multiple isolated containers
and managed by means of a set of standard APIs, and (3)
continuous integration and delivery (CI/CD), where an app
goes through a fast cycles of development, build, test, release,
and deployment. Twelve-factor2 is a well-known approach for
designing cloud-native software as a service (SaaS) including
portability, isolation, stateless, unified and declarative APIs as
a mean for inter-service communications. This paper leverages
these principles in design and development of cloud-native
telco applications, mainly in 4G/5G networking.

Microservices and containers are featured by small foot-
print, fast start time and comparative bare-metal performance,
making them highly eligible for the deployment of 5G in

1 https://martinfowler.com/articles/microservices.html
2 https://12factor.net/

the (edge) cloud. There are many containerization technolo-
gies, such as linux container (LXC), Containerd, CRI-O, and
Docker, with relatively similar performance3. However, the
number of containers grows drastically on per service basis
(i.e., network slices and sub-slices), which calls for an efficient
5G service management and orchestration, able to achieve the
envisioned performance, scalability, and agility. Several frame-
works are already exist, such as Kubernetes, Docker Swarm,
and Apache Mesos. For the ease of packaging, deploying and
managing Kubernetes applications, Operator framework4 is
introduced under telcoKubernetes environment to encapsulate
the lifecyle management operations and thus facilitate service
automation. It has to be noted that telcoKubernetes is con-
sidered as defacto candidate for the orchestration of 5G and
beyond in cloud environment as it has the largest community,
better support, and promising future [1]. The same also holds
for Docker container model5.

Compared to IT applications, telco has many fundamental
differences, making its adoption in the cloud a very chal-
lenging task. According to 5G-PPP [1], six fundamental telco
features shall be supported in 5G. Here, we highlight the most
important ones. Supporting meshing network service (as one
application may be composed of many microservices) im-
poses the support of multiple networks per microservice. This
requires extendable lifecycle management API to customize
divers service operations. Telco applications and network
functions (NFs) have very different behavior, some functions
are light or non-real time while others are computational-
intensive and/or real time, which may require particular hard-
ware acceleration [1], [2]. Three types of networks functions
are expected to co-exist: (i) physical network functions (PNFs)
that either heavily rely on hardware (or implemented in a
particular hardware) or are hardware assisted (i.e., running
on specific hardware for e.g. acceleration), (ii) virtualized
network function (VNF) that are software implemented and
thus running on generic hardware, iii) cloud native network
function (CNF) that are runnable against any platform. Sup-
porting all of these network functions (NFs) types (i.e., multi-
version functions) requires the awareness of the container man-
agement framework of the underlying platform’s capabilities
that needs to be supported. Different from the classical cloud
applications, telco applications are geographically distributed
across multiple datacenters. Therefore, multi-site support is of
paramount for 5G.

Previous works, as elaborated in the next section, repre-
sent extreme points in the design space and therefore have
managed to only partially address some of the aforementioned
3 https://kubedex.com/kubernetes-container-runtimes/
4 https://coreos.com/blog/introducing-operators.html
5 https://bit.ly/3ekwpvT



objectives. In this paper, we propose a cloud native framework
that is tailored to telco applications. The design of Kube5G
natively supports a multi-version 5G CNF, in particular during
the CI/CD process. The lifecycle management in Kube5G is
automated and supports advanced operations such runtime re-
configuration, and failover. In summary, this paper makes the
following contributions:

• (Section III) a realizable cloud native 5G service platform
in the form of Kube5G;

• (Sections IV) a novel framework for building and au-
tomating the lifecycle of 5G cloud-native NFs, as well as
concrete implementation details of Kube5G based on Ope-
nAirInterface (OAI), Mosaic5G, Ubuntu Snaps, Docker
and Kubernetes;

• (Section V) experimental evaluation of the various aspects
of Kube5G highlighting its performance as well as various
capabilities compared to the state-of-the-art solutions.

II. RELATED WORK

In the literature, there are few works about the automation
of the deployment of containerized 5G NFs. The authors in [3]
propose a cloud native solution for scaling the core network
(CN) entity MME (Mobility Management Entity) for handling
the control signaling overhead from Radio Access Network
(RAN). The authors in [4] propose a 5G-aware testbed, with
the support of containers and virtual machines orchestration.
Another platform in the vein of 5G is the work in [5], where
the authors propose a platform as a service for the development
and operation of network services. The authors claimed that
the platform offers better flexibility and also lowers the barriers
for unifying the broad spectrum between technologies and
services in telco landscape. However, these later works do
not focus on how to build and automate the lifecycle of 5G
functions in a cloud environment. The focus of the authors
in [6] is more about how to build a 5G mobile network using
the open-source OpenAirInterface (OAI), without any focus
on how to build the 5G functions and automate them in a
cloudified environment. With a focus on the RAN as open-
source for Mobile Edge Computing (MEC) applications in the
context of 5G networks, the authors in [7] present an auto-
mated way using devops for the development and deployment
of 5G MECs. However, none of these works tackle the problem
of building and automating the lifecycle of 5G NFs following
cloud-native computing principles. In this paper, we present
a novel framework for designing and building 4G/5G cloud-
native NFs and automating the lifecyle of 4G/5G network
services for both RAN and Core Network (CN) domains.
It is worth noting that there are many opensource projects
fostering the deployment of 5G and beyond in cloud native
environment, such Open-RAN (O-RAN), and Cloud Native
Computing Foundation (CNCF)6. Further, many efforts have
been made to build operational 5G testbed facilities in Europe,
and US considering cloud native design patterns, namely
5G-EVE, 5G-VINI, 5G-GENESIS, EMPOWER (EU-US) and
PAWR.
6 O-RAN: https://www.o-ran.org, CNCF: https://www.cncf.io

BareMetal Any CloudVirtual machine

API API

Fig. 1: High-level Architecture of Kube5G

III. KUBE5G OVERVIEW

The core contribution of this paper, Kube5G, is a novel cloud
native 5G design that is inline with the spirit of CNCF and the
needs of an agile, scalable, and on-demand service-oriented
mobile network architecture. Being able to simultaneously
satisfy (a) building and packaging cloud-native 5G NFs, and
(b) runtime service automation and capability exposure in
the context of 4G/5G RAN and CN, is the main, yet not
resolved, challenge addressed by Kube5G. Kube5G architecture
is illustrated in Fig. 1 that is composed of (from bottom
to top) (i) infrastructure and Software defined resources, (ii)
container orchestration, (iii) runtime execution environment,
(iv) packaged cloud native applications, and (v) extensions.
The architecture (ideally) supports any type of deployment,
regardless whether it is baremetal, virtual machine (e.g., vir-
tualbox), or any private/public/hybrid cloud. In order to fully
optimize the resources, future data centers shall support full
disaggregation and abstraction of resources [8]. The container
orchestration acts as both infrastructure manager, i.e. cloud-
native infrastructure manager (CIM), and application man-
ager, i.e. cloud-native network function manager (CNFM) [9].
Thus the container orchestration is responsible of control-
ling infrastructure resources like compute and networking.
Like virtualized infrastructure manager [9], CIM has many
responsibilities/functionalities, such as orchestrating the allo-
cation/upgrade/release/reclamation of resources (including re-
sources’ optimization), and managing the mapping of virtual-
physical resources. As CNFM, container orchestration is
responsible of i) CNF instantiating and (pre)configuration, ii)
CNFM software update and/or upgrade/downgrad (whenever
needed) and CNF scaling, iii) CNF automated healing and
termination and lifecycle management change notification and
monitoring [9]. Kube5G supports the co-existance of both VNF
and CNF as currently required for 4G/5G NFs. VNF is any
virtual function not developed to be cloud native compliant,
which are generally monolithic functions or environments
and/or hardware-dependent NFs or entities. In order to allow
VNFs to be executed in a cloud native environment (e.g.,
Kubernetes), the runtime execution environment is needed,
such as Virtlet and Kubevirt. As detailed later in the design of
a cloud-native application, supporting APIs as binding ports is
important for CNFs for communications between services, as



Meshing Services
(e.g., MySQL, RabbitMQ)

Binding ports 
(e.g. openAPI, Monitoring)

Container

Utils & Hooks

App Data

Sandbox

Frontend

libs/bins

App

Fig. 2: Nested-layer design of cloud native-compliant NF

well as remote interactions with them. Further, packaging the
application with software development kit (SDK) and APIs in
containers provides agility, isolation and portability, and thus
the operability against any platform. In this context, SDK is
a set of layers decoupling an application from its data, tools,
and hooks, and provide specific functions and methods to be
accessed through one or more API calls (Fig. 2).

Finally, the extensions play an important role in Kube5G, in
order to support many value added functionalities. Examples
of such extensions are: (i) management and orchestration
(MANO) like OSM, (ii) monitoring and network intelligence
like kubeflow7, (iii) cloud native network deployment and
automation via Kube5G-Operator8 that is openshift operator.

IV. KUBE5G DESIGN AND IMPLEMENTATION

A. cloud native-compliant network function (NF) design

Fig. 2 illustrates the proposed novel design of a cloud-native
NF as a set of nested layers, compliant with the twelve factor
methodology. Layers are loosely coupled with each other to
allow independent lifecycle management process to occur.
Similar in spirit with Docker, the nested-layer design allows
reusability across layers. This is of paramount importance in
cloud environment to (a) minimize application update/upgrade
time due to CI/CD, (b) retain service continuity when up-
dating/upgrading the application by keeping application data
outside of the sandbox, and (c) allow application portability
across different execution environments. In the following, we
present each layer separately.
Sandbox: isolates the application from its runtime execution

environment and grant access to resources required for proper
operation of the app (e.g., analogy with Android and IOS
apps). It is a self-contained package, where all application’s
dependencies are embedded, thus achieving application porta-
bility. Snap9 is a good example of sandbox. As illustrated
in Fig. 2, the sandbox contains i) the application, ii) its
library and binary dependencies, iii) frontend as a value
added services such as versioning, capabilities, monitoring and
configuration APIs, exposed by the application.

7 https://www.kubeflow.org/ 8 http://mosaic-5g.io/kube5g/
9 https://snapcraft.io/docs/getting-started

App Data: stores all the application-specific data required for
service elasticity (e.g., redeployment, scalability). It includes
credentials, configuration, and runtime stats and logs stored
across different app revisions. Application frontend is in
charge of maintaining App Data. Such a decoupling makes
the application stateless and thus significantly improves the
efficiency of lifecycle management processes.
Utils and Hooks: Utils are a set of helper tools that are needed

inside the container to perform runtime testing or monitoring
of the application. They are used to realize service scalability
and agility (e.g., monitoring the load and scaling up/down
the resources). On the other hand, Hooks are in charge of
application lifecycle management inside the container, such as
application restarting, (re)configuration, or sandbox upgrading.
Container: is a software package containing everything re-

quired to run the application properly. Different from Sandbox,
Container includes system tools, libraries, and settings, thus
making the software completely independent of the system on
which the application is running. One of the main important
features of Container is its elasticity, where many instances of
the same application can be run on the same host, or being
distributed over many environments. Container supports two
types of ports: (1) binding ports needed to connect to external
applications as service producer/consumer for the purpose of
logging and monitoring (e.g., flask and OpenAPI), and (2)
meshing service needed to connect to external applications and
share states for a proper operation of the embedded application
(e.g., database). This port is also used to store the App Data
outside of the container when needed (e.g., container upgrade
or failover).

B. CI/CD Workflow

Fig. 3 illustrates the proposed workflow of continuous
integration and deployment in support of 4G/5G NFs. All
the different versions of NFs (i.e., PNF, VNF, and CNF) are
supported in this workflow. The workflow starts when there
is a change/update in the project (application), where these
changes are pushed to the version control (e.g., git/gitlab)
that will trigger an automatic testing of the change/update
(e.g., jenkins), which in general includes run/build/test the
code. After successfully testing the code and if the application
exists in a form of PNF (i.e., it needs to run on specific
hardware like accelerator), the application is pushed to PNF
registry. After that, this PNF function will be registered in
the PNF catalog of management framework (MF). MF is the
orchestration framework that manages and orchestrates the
deployment of multi-version functions in the underlying cloud
infrastructure [1]. Note that for the other type of PNF function,
i.e. functions implemented as hardware, it is assumed that they
are already registered in the PNF catalog when the underlying
platform exposes its capabilities (Fig. 3). The next step is to
create the sandbox version (refer to Fig. 2) of VNF by passing
the NF to sandboxing operation. Similarly, the sandbox version
of the application will be registered in sandbox registry (e.g.,
pushing the new version of sandboxed app to snapcraft store),
and MF will register this function in the VNF catalog. The



hookContinuous Delivery (CD)

VNF builder CNF builder

sandboxing

Container registry
e.g. docker, Quay

                                              Any Cloud
                         

Expose capabilities
Deployment

Monitoring
Logs
Tracing

CNF App

VNF App

PNF App

Sandbox registry
e.g., snapcraft

PNF registry

Continuous Integration (CI)

PNF environment

   
   

   
   

   
   

   
   

   
   

   
 M

an
ag

em
en

t 
Fr

am
ew

or
k

CNF catalogue

VNF catalogue

PNF catalogue

App

Feedback

containerizing 
(Descriptor, Utils, Hooks)

Generic 
Dockerfile

Sandbox

App

D
ev

el
op

m
en

t
ve

rs
io

n
co

nt
ro

l

run, test, build

Fig. 3: Kube5G CI/CD workflow

final step is to containerize the application (refer to Fig. 2) by
passing its sandbox version into containerizing operation, and
then push it to the container registry. The containerization is
done using one of the containerization technologies such as
Docker or Mesos. Finally, this function will be registered in
the CNF catalog of MF.

C. CNF implementation

We realize 4G/5G CNF implementation by leveraging
Ubuntu Snap as a sandboxing technology, Linux shared mem-
ory to store app data, docker hooks and python libs to manage
the application, and Docker to containerize the Mosaic5G NFs.
Since Mosaic5G functions10 are sandboxed in snap version,
we exploit them to build the Docker containers. Notice that
the OAI source code used to build the Mosaic5G snaps is
developed following Devops principles11. Docker provides two
ways to run an application: (i) get the application’s Docker
image from Docker’s store (e.g., Docker hub), or (ii) build the
Docker image of the application using Dockerfile. Dockerfile
can be defined as a script file containing all the commands that
a user needs to call on the commandline for doing everything
to make the application runnable inside the Docker container.
In order to automate the creation of Docker images using the
same Dockerfile, we create build script (c.f. CNF builder in
Fig. 3). The configuration and running of Mosaic5G snaps are
done using hooks, which are copied inside the Docker image
during build process. Note that the hooks act as an application
interface (e.g., entrypoint) inside the container.

D. Operator service automation

In order to automate the application lifecycle management
in runtime, we use Kubernetes and develop a Kube5G-
Operator12 on the top of Operator framework. Kubernetes
introduces a powerful tool, called Custom Resource Definition
(CRD), allowing users to create new types of resources. With
CRD, Kube5G-Operator exposes 4G/5G network service as
a single object that only exposes service-specific APIs that
make sense for service providers rather than a collection of
primitives like Pods, Deployments, Services or ConfigMaps.
To this end, Kube5G-Operator implements and automates
both basic (e.g. installation, configuration, and monitoring)
and advanced (e.g. re-configuration, update, backup, failover,
restore) operations in a form of a portable Kubernetes-native

10 http://mosaic-5g.io/store/ 11 https://bit.ly/3c5RyYW
12 https://gitlab.eurecom.fr/mosaic5g/kube5g/tree/master/openshift/m5g-operator

CR 1: monolithic 
RAN

CR 2: disaggregated 
RAN

CR 3: monolithic RAN and 
CN ..

.

CR 
n

Catalog Operator

K
u

b
er

n
et

es
 C

lu
st

er
 A

d
m

in

4. Manage CR instances

M5G 
controller

M5G custom Resource Definition (CRD)

Operator Lifecycle Manager (OLM)

3. Install/Upgrade2. Monitor Registration1. Register

1. Register

Fig. 4: Kube5G-Operator workflow

applications running inside a Kubernetes cluster. In addition,
it is capable of managing complex 5G services (e.g., flexi-
ble network deployment), which is traditionally managed by
administrators and their operational scripts (e.g., Ansible).

As shown in Fig. 4, the Operator utilizes what is called
Controller. Multiple controllers may exist, depending on the
capabilities of the Operator, to monitor a certain CRD. Consid-
ered as one of the core concepts of Kubernetes, a Controller
is an entity that continuously loops on the master node of
Kubernetes, while listening to the cluster for detecting any
changes. If an event happens on a watched resource type like
failure of a pod, a reconcile cycle will start. This is done
through the reconciler object associated with the concerned
controller, where every controller has a reconciler object.
The output of the reconcile function will decide whether it
should be run again or the reconciliation is finished. For
example, a controller may listen to any changes to its pods,
and makes changes if the state of pods is incorrect. On the
top of the Operator lies Operator Lifecycle Manager (OLM)
for managing openshift Operators like installation and update,
as well as managing their associated services running across
Kubernetes clusters. In order to make such automation more
dynamic, we expose a set of configuration parameters to the
users that facilitates runtime service reconfiguration, e.g. DNS,
bandwidth, and frequency bands13. The capabilities currently
supported by the Kube5G-Operator are: (i) deployment and
release, (ii) configuration and reconfiguration, (iii) network
update, upgrade, and downgrade, (iv) network re-aggregation,
disaggregation, and (v) CNF monitoring (health and metrics).
It has to be mentioned that the current implementation of
Kube5G-Operator does not fully support the insight and auto-
pilot features of an Operator14.

V. PERFORMANCE EVALUATION

In this section, we assess experimental results related to
the efficiency of Kube5G platform as well as the perceived
user and network performance. We used OAI and Mosaic5G
platforms to deploy an operational 4G+ network that supports
disaggregated RAN (i.e., flexible functional split, and in par-
ticular F1 interface). In our setup, a private cloud consisting
of two powerful workstations under Ubuntu 18.04, is used.
The remote radio head is built based on the USRP B210,
duplexer, and antenna operating in FDD SISO mode, Band

13 https://hub.docker.com/r/mosaic5gecosys/oairan
14 https://www.openshift.com/learn/topics/operators



Ba
re

m
et

al
 (S

na
p)

 
M

ut
ab

le
 In

fra
st

ru
ct

ur
e

D
oc

ke
r 

Im
m

ut
ab

le
 In

fra
st

ru
ct

ur
e

Ku
be

5G
-O

pe
ra

to
r 

Im
m

ut
ab

le
 In

fra
. 

PC1USRP+
Anetnna

iface

Internet

OAI-CN
127.0.1.10/24

Mysql
127.0.0.1

192.168.12.94

veth0veth0veth0 loopack

OAI-RAN
127.0.10.3/24

PC1USRP+
Anetnna

10.244.1.1/24

10.244.1.0/16

192.168.12.94

docker0

flennel

iface

POD

eth0 10.244.1.3

Mosaic5G
Operator

POD

eth0 10.244.1.2

OAI-RAN

PC2

10.244.2.1/24

10.244.1.0/16

192.168.12.95

docker0

flennel

iface

POD

eth0 10.244.2.3

MysqlPOD

eth0 10.244.2.2

OAI-CN

Internet A
ut

o 
co

nfi
gu

ra
tio

n
Fa

ul
t T

ol
er

an
ce

A
ut

o-
R

ec
on

fig
ur

at
io

n
A

ut
o 

co
nfi

gu
ra

tio
n

M
an

ua
l c

on
fig

ur
at

io
n

PC1USRP+
Anetnna 192.168.12.94 iface

Internet

Docker0	172.17.0.1
veth0 veth0 veth0

Container

eth0 172.1.0.4

MysqlContainer

eth0 172.1.0.3

OAI-CN
Container

eth0 172.1.0.2

OAI-RAN

Fig. 5: Network topology setup

7, with 5 MHz channel bandwitdh. The user equipment (UE)
is an iPhone SE.

A. Performance Metrics
We compare and analyze the lifecycle operations in a setup

with OAI Snaps15 in three settings: (i) bare metal (Snap), (ii)
Docker and docker-compose, and (iii) Kube5G-Operator. Note
that Snap deployment is considered as mutable infrastructure,
while Docker and Kubernetes are immutable infrastructure
[10]. The three considered network setups are shown in Fig. 5,
where two evaluation metrics have been considered:

Deployment and reconfiguration time: The deployment
time represents both the download and provisioning time. The
former is the time to download the snaps for the bare-metal
case or to pull the Docker images of OAIs from Docker hub for
the two other cases16, while the later is the time to bring up the
network service til the users start consuming the service. Thus
the provisioning time includes the configuration time plus the
deployment time. Concerning the case of snaps, it is assumed
that the provision time of the snaps is done semi-automatically
using different scripts that are run after the download. As for
the memory footprints, sandboxed snaps and their associated
Docker images are designed and built to support different de-
ployment scenarios ranging from monolithic to disaggregated.
For example, OAI-CN snap and its Docker image may act
either as a standalone core network or just as one network
entity such as AMF/MME (Access and Mobility Management
Function/Mobility Management Entity).

Network and user experience: we consider two different
measurements: (i) TCP/UDP performance using iperf3 , (ii)
application level performance using nperf17. The nperf tool
includes: DL/UL rates, latency, browsing and stream perfor-
mance percentage index. Note that the browse (navigation)
performance reflects the loading time of different websites,
while the video performance index is the ratio of loading and
playing time of video to its nominal duration.
15 https://snapcraft.io/search?q=mosaic-5g
16 https://hub.docker.com/u/mosaic5gecosys 17 iperf3:https://iperf.fr/,
nperf:https://www.nperf.com

B. Results

1) Deployment and reconfiguration time: Fig. 6 shows the
download, service provision, and runtime reconfiguration time,
for the considered deployments. It is clear that the download
time for Docker and Kubernetes is more than the double
compared to that of snaps. This is because of a larger memory
footprint of Docker images compared to Snaps, i.e. 528MB for
CN and 745MB for RAN images versus 58MB for CN and
247MB for RAN Snaps. Although it takes about 30 seconds
more to download the images, the benefit of using containers
is clear when comparing with the service provision time
(configuration and deployment time until connecting the UE).
It can be observed from the figure that the service provisioning
time is higher by a factor of 3 for snaps compared to Docker
or Kube5G-Operator. Concerning Kube5G-Operator, the mean
time for provisioning a service is about 1 minutes and 12
seconds, which takes (on average) 16 seconds more compared
to docker. Therefore, service automation can be significantly
improved using docker and Kube5G-Operator framework.

When comparing service runtime reconfiguration, it can
be seen from Fig. 6 that the Kube5G-Operator is able to
lower the time by a factor of 2 compared to Docker and
baremetal (Snap). The main reason behind this is that the
Kube5G-Operator redeploys only those entities for which a
custom resources (CR) is applied (e.g., reconfiguration) while
retaining the others18, whereas Docker redeploys the whole
network service. Notice that two reconfiguration times are
measured for Kube5G-Operator: (i) both RAN and CN recon-
figuration, and (ii) only RAN reconfiguration. In the former
case, the reduction in reconfiguration time for Kube5G-Operator
comes from the definition of CR that reconfigures RAN and
CN without changing the HSS database (mysql in Fig. 5).
It can also be observed that the Baremetal (Snaps) reconf
has a lower reconfiguration time than that of Docker and
very comparable time with respect to Kube5G-Operator. This is
because both Docker and Kubernetes-Operator are based on
an immutable infrastructure [10], and thus require to redeploy
the network (fully and partially), whereas Snaps just require
(manual) service reconfiguration.

It has to be noted that when a failure happens, network-
wide redeployment process may be triggered for both Docker
and Baremetal (Snap). Instead, Kube5G-Operator leverages
CRD to recover from a failure, for example by redeploying
those entities concerned by the failure19 or network auto-
configuration. Moreover, it is even very complex and not
feasible to reconfigure many tens (even hundreds) of entities
without breaking/degrading the service when using Baremetal
(Snap) or Docker. The above results demonstrate that Kube5G-
Operator significantly improves the efficiency of service au-
tomation in terms of lifecycle management, scalability, and
failover when compared to Baremetal (Snap) or Docker.

2) User and Network experiences: Fig. 7 illustrates the
sustainable TCP and UDP performances. From the figure, it is

18 The deployment is done without scaling, i.e, there is one instance of an entity
19 https://bit.ly/36EeEEV, https://bit.ly/2X7jYO4



0

50

100

150

200

250

Download Service Provision Reconfig

Ti
m

e 
(s

ec
o

n
d

s)
Baremetal (Snap)
Docker
Kube5G-Operator
Kube5G-Operator: Reconfig RAN+CN
Kube5G-Operator: Reconfig RAN

Fig. 6: Download, Service provision, and reconfiguration times

17.13
17.14
17.15
17.16
17.17
17.18
17.19
17.20

6.70
6.90
7.10
7.30
7.50
7.70
7.90
8.10
8.30

Baremetal (Snap) Docker Kube5G-Operator

U
D

P
 r

at
e 

(M
b

it
s/

se
c)

TC
P

 r
at

e 
(M

b
it

s/
se

c)

TCP UDP

Fig. 7: TCP/UDP traffic for the considered deployments

B
ar

em
et

al
(S

n
ap

)
Ku

b
e5

G
-

O
p

er
at

o
r

D
o

ck
er

0
20
40
60
80
100

0
20
40
60
80
100

0
20
40
60
80
100

TCP traffic UDP traffic

C
PU

 U
ti

liz
at

io
n

 (
%

)

Fig. 8: Instantaneous CPU utilization for TCP/UDP traffic

clear that the deployments (namely baremetal (Snap), Docker
and Kube5G-Operator) have comparative performance. The
difference in the mean TCP traffic between baremetal (from
one side) and Docker and telcoKubernetes (from the other
side) is about 1%, while it is close to zero between Docker
and telcoKubernetes. Regarding UDP traffic, the difference in
the mean value between different deployments is close to zero.
Instantaneous CPU utilization when generating TCP and UDP
traffics is shown in Fig. 8, where only one CPU is exploited to
carry the traffic. It can be observed that the CPU utilization for
TCP traffic is more fluctuating for Snap and Docker than that
of Kube5G-Operator, mostly due to bidirectional behavior of
TCP. The maximum CPU utilization in case for Snap is 90%
(both TCP and UDP), and for Docker and Kube5G-Operator
is 80% (UDP) and 85% (TCP). These results reveal also that
the CPU resource utilization profile for Kube5G-Operator is
more efficient and stable than that of Snap and Docker.

Fig. 9 shows application level performance for the three
considered deployments. Again, it can be observed that they
achieve a comparative performance, with a slightly better score
for Kube5G-Operator. These results confirm the feasibility of
cloud native deployments of 4G/5G network service while re-
taining user and service perceived performance. This indicates
that the 4G/5G network, and more generally telco applications,
can be provided on as-a-service basis in a very short time scale
exploiting service elasticity, scalablity, and agility.

VI. CONCLUSIONS
Cloud-native technologies are the main enabler for efficient

service deployment, fast recovery, agility, elasticity, and access
at scale for 5G services. In this paper, we present Kube5G as
an agile service platform for supporting 4G/5G networks in

(a) Baremetal (Snap) (b) Docker (c) Kube5G-Operator
Fig. 9: Network and User experience

cloud-native environments. Kube5G proposes a novel CNF
design as a nested reusable layers to ease building, packaging,
and upgrading of multi-version NFs during CI/CD process. A
concrete implementation of 4G/5G cloud-native functions is
presented with automated lifecycle management operations us-
ing Kube5G Operator. Kube5G is benchmarked against Baremetal
(Snap) and Docker deployments demonstrating its feasibility
and efficiency for fast roll-out of 4G/5G network services. The
results confirm that 4G/5G network can be provisioned in less
than two minutes, and updated/reconfigured (as a part of auto-
pilot feature) in less than a minute. In future, we plan to model
and support natively near-realtime CNF for 5G applications
and services in Kube5G.

ACKNOWLEDGMENT

The research leading to these results has received funding
from Davidson Consulting as well as European H2020 5G-
Victori and Affordable5G projects under grand agreement
857201 and 957317.

REFERENCES

[1] 5G-PPP, “From Webscale to Telco, the Cloud Native Journey,” 5G-PPP
Software Network Working Group, Tech. Rep., 08 2018.

[2] N. Nikaein, E. Schiller et al., Towards a Cloud-Native Radio Access
Network. Cham: Springer International Publishing, 2017, pp. 171–202.

[3] P. C. Amogh, G. Veeramachaneni et al., “A cloud native solution for
dynamic auto scaling of mme in lte,” in 2017 IEEE 28th Annual
International Symposium on Personal, Indoor, and Mobile Radio Com-
munications (PIMRC), 2017, pp. 1–7.

[4] L. T. Bolivar, C. Tselios et al., “On the deployment of an open-source,
5g-aware evaluation testbed,” in 2018 6th IEEE International Conference
on Mobile Cloud Computing, Services, and Engineering (MobileCloud),
March 2018, pp. 51–58.

[5] S. Van Rossem, B. Sayadi et al., “A vision for the next generation
platform-as-a-service,” in 2018 IEEE 5G World Forum (5GWF), July
2018, pp. 14–19.

[6] B. Dzogovic, V. T. Do et al., “Building virtualized 5g networks using
open source software,” in IEEE Symposium on Computer Applications
Industrial Electronics (ISCAIE), April 2018, pp. 360–366.

[7] J. Haavisto, M. Arif et al., “Open-source rans in practice: an over-the-air
deployment for 5g MEC,” CoRR, vol. abs/1905.03883, 2019.

[8] S. Han, N. Egi et al., “Network support for resource disaggregation
in next-generation datacenters,” in Proceedings of the Twelfth ACM
Workshop on Hot Topics in Networks, 2013.

[9] ETSI GS NFV-MAN 001 V1.1.1, “Network Functions Virtualisation
(NFV); Management and Orchestration ,” December 2014.

[10] K. Hightower, B. Burns, and J. Beda, Kubernetes: up and running: dive
into the future of infrastructure. " O’Reilly Media, Inc.", 2017.


