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ABSTRACT
Unlike previous mobile networks, 5G New Radio (5G-NR) provides
unprecedented �exibility in the radio access network (RAN) to sup-
port diverse use cases in amulti-tenant environment. In this context,
the need for programmability and control through software-de�ned
radio access networking (SD-RAN) is well established. While the
underlying RAN is designed to be ultra �exible and lean, existing
SD-RAN controllers are either not �exible to address all use cases
or use a one-size-�ts-all approach.

In this paper, we present FlexRIC, a �exible and e�cient software
development kit (SDK) that enables to build specialized service-
oriented controllers. FlexRIC has a modular architecture with mini-
mal footprint and is designed with extensibility in mind.

We validate the SDK building concrete implementations of two
specialized controllers for state-of-the-art 5G use cases: (1) a re-
cursive RAN controller that virtualizes the network to allow mul-
tiple tenants to concurrently control and operate their services in
a shared infrastructure over the heterogeneous landscape of 5G
networks, and (2) an SD-RAN controller providing programma-
bility for multi-radio access technology (RAT) RAN slicing, and
�ow-based tra�c control targeting low-latency communications.
The results reveal that FlexRIC reduces the round-trip time by two
while incurring 83 % less CPU compared with O-RAN’s reference
implementation, and uses 10x less CPU and one third of the mem-
ory when compared to FlexRAN. Such performance is required to
unleash the potential of emerging 5G use cases.
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1 INTRODUCTION
5G shifts the current paradigm beyond new radio and spectrum in
three major areas: (i) from monolithic to disaggregated architecture,
(ii) from proprietary protocols and closed systems to commodity
hardware and standardized interfaces, and (iii) from a communication-
oriented to service-oriented networking. To this end, �exibility,
forward compatibility, and ultra-lean design are fundamental de-
sign principles of 5G that allow to not only satisfy diverse services,
deployments and requirements, but also to ensure sustainability
and future evolution to support a wide range of use cases, many of
which are not yet de�ned or cannot be foreseen.

In general, what is needed from networking equipment, such as
a base station, is simplicity, reliability and high-performance. To-
wards this end, the whitebox approach suggests a newmodel, where
advanced networking with di�erent or evolving use case-speci�c
requirements is just general-purpose computing on commoditized
equipment with possibility to remotely monitor, control and pro-
gram network entities, known as software-de�ned networking
(SDN).While the need for SDN in 5G and beyond is well-established,
there is still a lack of proper software-de�ned radio access network-
ing (SD-RAN) design and a prototype implementation that adheres
to the fundamental design principles of 5G.

FlexRAN [1] was the �rst attempt to realize a real-time SD-RAN
platform for research purposes. It applies the principles of SDN
(i.e., decoupling of control plane and user plane) by de�ning a
south-bound control protocol, which connects the radio access
network (RAN) to a centralized controller. However, its protocol
is tightly coupled with the underlying radio access technology
(RAT), and its architectural design was not designed to support
5G’s required modularity for protocol and service extensions in
a multi-RAT, multi-vendor environment. Further, FlexRAN adds
overhead by requiring applications to poll for new messages (e.g.,
statistics updates). Additionally, FlexRAN does not scale as the
number of UEs increases: for instance, we measured a x10 times
more CPU usage and x3 times memory utilization in considered
scenarios (see Section 5.3).

O-RAN1 is a recent operator-led attempt to standardize SD-RAN
by specifying the control protocol between the RAN and a RAN In-
telligent Controller (RIC), termed E2 [2]. E2 exposes RAN internals
to external applications (designated as “xApps”) to perform di�er-
ent tasks, e.g., radio resource management, through a set of “service
models” (SM). SMs expose functionality that can be monitored or
controlled, e.g., key performance indicators. (Table 1 summarizes
the E2 terminology used in this paper; Appendix A provides a
primer about E2.) For the purpose of validating the design, O-RAN
provides a reference implementation of the RIC (throughout this
document, we refer to its “Cherry” release). Following a micro-
service architecture, O-RAN proposes to implement each controller
1https://www.o-ran.org/
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Table 1: Terminology used in this paper.

Abbrev. Meaning

E2 O-RAN-de�ned interface RIC/RAN elements
E2AP Application Protocol for E2 management and SM

encapsulation
E2SM, SM Service Model/Speci�cation for information exchange
iApp Internal application for controller specialization
RAN Radio Access Network
RAN function Controllable functionality within E2 Node
RIC RAN Intelligent Controller
SD-RAN Software-De�ned Radio Access Networking
SDK Software Development Kit
xApp External application, communicating with the RIC

platform component (e.g. E2 termination, databases, monitoring
and logging frameworks) and xApps in separate containers, orches-
trated by a Kubernetes cluster. Such decision establishes architec-
tural boundaries to the development of future RICs and xApps. It
couples the RIC with a containerized technology, contrary to an
open technologically agnostic design. Furthermore, it imposes an
isolation between processes that may not suit all use cases. Using
C++ terminology, it violates the “zero-overhead principle” [3] as it
imposes overhead adding non required features, proposing a “one-
size-�ts-all” design. In fact, due to the O-RAN RIC implementation,
transmitting and receiving an Ethernet Maximum Transmission
Unit (MTU, i.e., 1500 B) within an unloaded modern workstation
(i.e., local host) lasts approximately 1ms (see Section 5.4), limit-
ing its usage in various scenarios found in low latency services.
Additionally, O-RAN’s reference implementation consumes large
amount of resources (e.g., 160 GB of storage are recommended2),
requires knowledge of Docker and Kubernetes, and various pro-
gramming languages.

A number of challenges arise when designing an SD-RAN that
is (1) RAT-agnostic and vendor-independent, (2) ultra-lean, �exible
and forward-compatible towards heterogeneous use case require-
ments, and that allows to (3) specialize the SD-RAN infrastructure
towards these use cases. To this end, we propose FlexRIC, a novel
event-driven software development kit (SDK) to build a range of
SD-RAN controllers, each specialized for (i) a set of use cases, such
as tra�c control or slice control, (ii) network entities including
5G centralized unit (CU) or distributed unit (DU), (iii) radio access
technologies like 4G and 5G, and (iv) software/equipment vendors
such OpenAirInterface or SRSRAN. By combining the FlexRIC SDK,
consisting of an agent and server library, with application-speci�c
logic and communication interfaces, specialized controllers can
be composed to build a multi-service disaggregated SD-RAN in-
frastructure to meet the requirement of one or multiple use-cases.
FlexRIC unleashes the potential of SD-RAN in the envisioned 5G
use cases [4], where (i) the radio spectrum, (ii) the tra�c �ows, and
(iii) user associations and handovers can be controlled, coordinated,
and optimized through xApps. In terms of interoperability, FlexRIC
is O-RAN compatible by means of E2AP control protocol, and has

2Source: Getting started guide of Cherry release, https://wiki.o-ran-sc.org/display/GS/
Near+Realtime+RIC+Installation

an internal representation to adapt the E2 protocol to diverse encod-
ing/decoding schemes and transport protocol. Finally, FlexRIC is
also relevant for industrial and private 5G networking-related use-
cases, where a one-size-�ts-all SD-RAN approach, like the O-RAN
RIC, is too complex and/or its overhead could become a bottleneck
or even prohibitive.

In summary, this paper makes the following contributions:

• Present a �exible, forward compatible, ultra-lean SDK design,
in the form of FlexRIC, that enables to build a range of SD-
RAN controllers and to compose a recursive or multi-service
SD-RAN infrastructure tailored to particular use cases.

• Introduce a novel set of extendable and composable SMs,
including monitoring, slicing and tra�c control, to enable
a higher level of abstraction needed for emerging use cases
(i.e., �ow-level tra�c control and radio resource slicing).

• Provide concrete implementations of specialized FlexRIC
controllers: (a) service-speci�c SD-RAN controllers, and (b) a
recursive controller, centered around 5G use cases, together
with a detailed experimental evaluation of the various as-
pects of the SDK that highlight its scalability, adaptability,
and performance compared to state-of-the-art solutions.

2 RELATEDWORK
SD-RAN. A number of SD-RAN controllers brought the separa-

tion of control and user plane with the associated programmability.
FlexRAN [1] pioneered the �rst practical open-source implementa-
tion of an SD-RAN controller on top of an LTE cellular network.
FlexRAN provides a separation of the RAN control and data plane
through a custom protocol with a focus on real-time RAN control
applications. Unfortunately, the south-bound protocol is tailored
towards speci�c control operations, limiting its extensibility, and it
lacks modularity, which limited the contributions that it received
during the last years. Furthermore, it incurs unnecessary over-
head by requiring applications to poll for updates such as RAN
statistics instead of notifying them via a publish/subscribe pattern.
Another implementation of an SD-RAN controller, the EmPOWER
platform [5], focuses on management of RAN via policies without
support of (real-time) RAN control, limiting its deployment use
cases. Moreover, similarly to FlexRAN, it uses a non-standardized
custom south-bound interface.

More recently, the industry initiative O-RANwas formed to man-
age the increasingly complex cellular network [6]. As part of this
e�ort, an interface between base stations and controllers (E2) [2]
was standardized. Furthermore, O-RAN developed a reference SD-
RAN platform, the O-RAN RIC, to validate their architecture. O-
RAN’s RIC is based on a micro-service architecture (deployed over
Docker and orchestrated through Kubernetes), and its design re-
quires the use of a non-negligible amount of resources, since a
default deployment requires platform functions in 15 containers
(using storage and RAM), and, for instance, E2AP messages need to
be decoded both at the “E2 termination” and xApp (see Section 5.4).
Furthermore, O-RAN also decided to couple their RIC design to
speci�c implementations (e.g., Redis or Prometheus), limiting its
forward compatibility, and applications need to poll these databases
to discover new agents, bearing overhead. Such architectural de-
sign and implementation decision clearly violates the ultra-lean
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design of 5G to minimize the platform footprints. In essence, there
exists a considerable amount of use-cases found in low-latency
scenarios, for which O-RAN design will not be able to provide the
required constraints, making it in�exible. Similarly, the OpenNet-
workingFoundation recently announced that they also developed
and integrated an O-RAN compliant E2 agent and RIC [7]. Un-
fortunately, the implementation is closed, and thus, we could not
investigate further.

Network Virtualization. FlowVisor [8] is a proxy that enables net-
work virtualization. It uses OpenFlow [9] as the abstraction layer to
virtualize the network resources and slice the network to allow mul-
tiple SDN controllers to concurrently control their (virtual) network.
It has been used for slicing the RAN with OpenRoads [10, 11], an
SDN controller for Wi-Fi/WiMAX networks, but does not provide
the necessary primitives to virtualize RANs, since there is no sup-
port for managing the scarce radio resources. The theoretic work of
RadioVisor [12] proposes an abstraction to virtualize the network. It
de�nes slices in the form of resource sub-grids to isolate operators
from each other, which can then sub-slice their network according
to subscriber attributes. Finally, full slice virtualization in the RAN
has been explored through Orion [13]. Orion uses a hypervisor on a
base station to isolate and abstract services and multiplexes the ra-
dio resources of each service onto the common resources. However,
Orion’s virtualization is limited to radio resource scheduling, and
does not provide support for connection, mobility management, or
�ow control. Additionally, since it relies on a single hypervisor at
the base station, its design limits its deployment in disaggregated
base stations and the feasibility of interference management due to
the absence of coordination between hypervisors.

In summary and to the best of the authors’ knowledge, there is
no platform that uni�es previous approaches to SD-RAN and virtu-
alization. In this paper, we propose the event-driven FlexRIC SDK to
enable SD-RAN controllers that can be �exibly specialized towards
diverse requirements, following the 5G principles of �exibility and
forward-compatibility. FlexRIC is designed to be ultra-lean, consum-
ing the resources demanded by the service, without adding extra
features when they are not required. Additionally, by adopting the
E2 protocol structure, it remains fully compliant to industry e�orts,
and is vendor-independent. Its modular SDK structure allows a
smooth composition of service-speci�c controllers, including radio
resource scheduling for multiple services.

3 FLEXRIC SDK OVERVIEW
FlexRIC is a SDK, consisting of a server library and an agent li-
brary with two optional extensions: controller-internal applications
(iApps) and communication interfaces. The objective of the SDK
is to facilitate the realization of specialized SD-RAN controllers to
target speci�c use cases, while being simple to use. FlexRIC does not
support extra features endogenously following the zero-overhead
principle. In its simplest form, the SDK can be used to implement an
SD-RAN controller using an E2-compatible protocol, as it is shown
in Fig. 1.

The agent library is the basis to extend a base station with the
agent functionalities. It provides an API to implement custom RAN
functions, i.e., RAN functionality that can be monitored and/or
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Figure 1: The FlexRIC SDK consists of an agent and a server
library. The agent library provides integration of a base sta-
tion to a controller, which is specialized to a particular use
case using iApps.
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Controller
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Figure 2: Using the FlexRIC SDK, di�erent specialized con-
trollers can be built, like a “recursive” controller.

controlled by applications, and comes with a bundle of pre-de�ned
RAN functions that implement a set of SMs that can be included.

A controller is built through the server library, iApps, and op-
tionally a communication interface. The server library manages
agent connections, and multiplexes messages between iApps and
the agents. Through the iApps, it is possible to modularly build
specialized controllers: based on the considered use-case, iApps
can implement SMs themselves, or expose information to external
applications (xApps) via a northbound communication interface. In
the latter case, xApps can control the RAN while being functionally
isolated from the controller, which is the favored method of the
reference SD-RAN controller implemented by O-RAN, but bears a
certain overhead. Finally, it is even possible to recursively expose
an agent interface at the northbound by reusing the agent library,
as shown in Fig. 2. Such a controller employs a virtualization layer
to delegate control to multiple (per-slice) controllers, each operat-
ing on a di�erent set of SMs. Such recursive property of FlexRIC
allows not only to compose various specialized controllers into
a multi-service SD-RAN infrastructure but also abstract out the
heterogeneity of the 4G/5G deployment topology. We will explore
some possible controllers in Section 6.

The FlexRIC SDK provides an abstraction of the E2 interface via
an internal representation of E2 messages, and users of the SDK do
not have to be concerned with the actual encoding and transport of
the messages. It is therefore straight-forward to integrate FlexRIC
with pre-existing E2-compliant SD-RAN infrastructure. However,
the standard mandates an encapsulation of ASN.1-encoded data
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Figure 3: The FlexRIC agent architecture and its integration
with a user plane implementation.

inside of ASN.1 and its transport over the SCTP protocol, which
may be ine�cient in certain cases, for instance when the message
size becomes large (case for monitoring information). Therefore,
the SDK also supports to change both the encoding scheme and
transport protocol allowing the integration of vendor-speci�c pos-
sibly more e�cient E2 protocol for low-overhead, real-time control
between a controller and an agent.

4 FLEXRIC SDK ARCHITECTURE
In the following, we elaborate on the FlexRIC architecture, with a
particular focus on the following design challenges:

(1) A RAT-agnostic and vendor-independent SD-RAN design
and its integration of any base station implementation (Sec-
tion 4.1),

(2) An SD-RAN design according to 5G principles, i.e., (1) ultra-
lean for low-latency or resource-restricted use cases, avoid-
ing unnecessary overhead, andwith (2) �exibility and forward-
compatibility towards novel use cases (Sections 4.1-4.3),

(3) A low-coupled design that allows the specialization of SD-
RAN controllers (Section 4.2) towards particular use case
requirements, such as tra�c control, slicing, and recursive
slicing through network virtualization (as presented in Sec-
tion 6).

4.1 FlexRIC Agent
The main design principle of the agent library relies on its easy inte-
gration into various base station implementations and deployment
scenarios interfacing with an E2 controller, while at the same time
providing additional functionality for handling multiple controllers
in a multi-service environment, which are detailed in the following.

4.1.1 Agent Architecture. The architecture of an agent using the
FlexRIC SDK is shown in Fig. 3. It consists of the agent library, and
a base station.

The agent library provides the necessary support to connect
to a controller, such as O-RAN RIC. It consists of a networking
interface, the E2AP abstraction, a message handler, and a generic
RAN function API. The E2AP abstraction provides an intermediate
representation for the E2 protocol, relieving RAN functions from

E2 protocol speci�cities (see Section 4.3). Further, the agent pro-
vides the generic RAN function API to implement RAN functions
with custom SM-speci�c logic. This API de�nes callbacks for E2AP
messages, i.e., (i) subscription requests (for new information sub-
scription), (ii) subscription delete request (removal of subscriptions),
and (iii) control messages (to trigger SM-speci�c actions), which
need to be implemented by RAN functions. Finally, we pre-de�ned
SMs for the considered use cases, namely slicing control and tra�c
control (c.f. Section 6). The SMs are tailored towards speci�c RAN
sublayers (for statistics) or RAN control endpoints (for control) to
easily integrate the agent library in disaggregated base stations, and
expose a simpli�ed API, facilitating the integration with various
base station implementations.

The base station provides basic node information, such as the
public land mobile network (PLMN), and registers RAN functions
according to the underlying node’s capability: unlike what is shown
in Fig. 3, not all RAN layers are present in every node for disaggre-
gated base stations, and FlexRIC natively supports such disaggrega-
tion through the selection of appropriate RAN functions. The base
station uses the interface of pre-de�ned RAN functions to expose
data and handle control messages, or it might de�ne additional
RAN functions using the generic RAN function API.

The agent library is not tied to any existing cellular user plane
implementation or RAT and is therefore inherently vendor-neutral
and RAT-neutral, making it a reusable component for multi-vendor
and multi-RAT scenarios.

4.1.2 Multi-Controller Support at the Agent Library. The agent
library provides means to connect to multiple controllers. This
becomes useful in a multi-service context, e.g., for “recursive” con-
trollers that virtualize RAN control (Section 6.2) or base station
hypervisors like Orion [13], which permits shared control and
exposes information to multiple controllers while also providing
isolation between them.

The FlexRIC agent library assists the handling of multiple service
controllers through (1) the management of additional controllers
(setup, teardown, providing controller origin to RAN functions for
message handling), and (2) a UE-to-controller association.

The UE-to-controller association is used to indicate the UEs that
are to be exposed to each controller. An active E2 subscription
addresses all (or an indicated subset) of UEs. However, a given RAN
function does not know a priori which UEs are to be exposed to
a particular controller. Therefore, when handling messages, the
agent is able to look up and reveal the UEs that belong to the
corresponding controllers.

The agent library associates every UE to the �rst controller, and
provides no means for an automatic association of UEs to additional
controllers, e.g., through 5G RRC slice identi�ers (S-NSSAI). Rather,
this has to be triggered through a controller based on information
through SMs, as the agent might not always be capable to determine
an association. Consider the example of a split base station with
CU and DU, and separate controllers that are concerned with the
DU exposing a remote scheduling SM, as shown in Fig. 4. When a
new UE arrives and should be connected to the separate controller,
its association depends on the selected PLMN of the UE, which
is decoded in the CU. The agent of the DU therefore cannot infer
such an association and needs to be assisted from the CU controller
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about the arrival of this new UE, con�guring the agent to expose
the corresponding UE at the specialized controller.

Note that service-level agreements (SLA) are not part of multi-
controller management. In fact, SLAs are tied to speci�c SMs, as
the underlying resources vary (e.g., resource blocks in MAC or
queues in RLC/SDAP/PDCP). Therefore, it is the SM, implemented
by the RAN function, to perform su�cient admission control upon
subscriptions of the controllers, and ensure that the requested op-
erations are con�ict-free.

4.2 FlexRIC Controller
FlexRIC permits to smoothly create specialized, service-speci�c,
E2-compatible controllers. As shown in Fig. 5, it consists of (1) the
FlexRIC server library, providingmeans to communicatewith agents
using an E2AP abstraction, and (2) a controller specialization.

4.2.1 Controller Specialization. A controller specialization imple-
ments SD-RAN-related functionality, and is realized through inter-
nal applications (iApps), a communication interface, and external
applications (xApps). The iApps implement speci�c controller be-
havior, either directly through SMs within the iApps themselves, or
by providing platform services that can be leveraged by xApps. For

this purpose, a controller specialization typically exposes a north-
bound communication interface using a custom protocol, such as
a simple REST interface (e.g., FlexRAN [1]), the RMR library (e.g.,
O-RAN RIC), a message broker (e.g. Redis), or E2AP itself to inter-
act with other specialized controllers. In this regard, we describe
service-speci�c (slicing, tra�c control) and network virtualization
controller designs in Section 6.

4.2.2 FlexRIC Server Library. The FlexRIC server library’s objec-
tive is to multiplex agent connections and dispatch E2AP messages.
As the agent library, the server library abstracts the E2AP commu-
nication. The server library is designed as an event-driven/callback-
driven system, following the ultra-lean design principle to impose
minimal overhead. Thus, it invokes iApps only when there are new
messages, unlike systems like FlexRAN that use polling.

The RAN management functionality handles connection-related
events such as an agent connection. An application that subscribed
for new agent connections uses the included information to send
a subscription if it encounters suitable RAN functions. Further,
the RAN management functionality stores information in the RAN
database (RANDB), allowing to query information about the compo-
sition of the RAN network. For this purpose, the RAN management
also handles disaggregated deployments by merging agents that
belong to the same base station (e.g., CU agent and DU agent) into
the same RAN entity, facilitating base station control across agents,
and provides events to signal when a complete RAN is formed from
disaggregated entities.

The subscription management’s task is to (i) keep track of ex-
isting subscriptions and (ii) deliver arriving subscription-related
messages to the corresponding iApps. When an iApp requests a
new subscription directly or on-behalf of an xApp, it provides a set
of callbacks that are called to inform the iApp (and subsequently
the xApp) about the subscription outcome, and to dispatch the
corresponding indication messages. When a message arrives, the
subscription management simply selects the iApp for which the
message is sent and forwards it through the provided callback.

It has to be pointed out that the server library itself does not
implement any SM, and does not request any information from
the agent by itself. Instead, iApps have to trigger SM-related com-
munication (generally on behalf of xApps), and the server library
provides the platform to multiplex messages between agents and
iApps.

4.3 E2 Protocol Abstraction
We identi�ed four orthogonal abstractions in O-RAN’s E2 speci�-
cation.

(1) The transport protocol, de�ned by O-RAN to be SCTP.
(2) The encoding/decoding algorithms at the procedures de�ned

by O-RAN to be ASN.1 PER.
(3) The encoding/decoding algorithms at the SMs de�ned by

O-RAN to be ASN.1 PER.
(4) The semantic of E2AP.

For handling the transport protocol, a wrapper is created to
abstract the communication interface allowing to easily switch
between di�erent transport protocols. For the encoding/decoding
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of E2AP, we modeled an intermediate representation, represent-
ing E2AP procedures without loss of information and indepen-
dent of any particular encoding/decoding algorithms, and freeing
iApps/xApps from these encoding tasks. To this end, we imple-
mented the most common 20 out of 26 E2AP messages using the
O-RAN standard ASN.1 and 12 out of 26 messages using Google
Flatbu�ers (FB) [14]. This increases the �exibility of the SDK: if
the bandwidth is scarce, ASN.1 presents better compression rates,
while in scenarios where the CPU represents the bottleneck, FB is
preferred (see Section 5.2). Thanks to the intermediate represen-
tation, FlexRIC is open for adding new encoding/decoding algo-
rithms, without having to modify its source code, ensuring forward-
compatibility. Similarly, for the SMs, we allow custom encoding/de-
coding algorithms aiming to support future changes.

Finally, we did not create an abstraction around the semantic
of E2AP, as this would imply to completely redesign the proto-
col (e.g., making it stateless instead of the current stateful imple-
mentation that is achieved, for example through the setup request
procedure) [15].

4.4 Implementation of the SDK
The implementation of the SDK provides minimum, yet su�cient
mechanisms to implement a service-speci�c controller. The agent
and server libraries (SDK), including the E2 abstraction, are roughly
10K lines of C11 code (we use generics to achieve compile time
polymorphism), not using any external dependencies except for
Flatbu�ers and/or ASN and dedicating more than 4K lines to the
E2AP message encoding/decoding algorithms. We chose C as it
is the de facto lingua franca in computer science, and therefore,
an interface for another language can be easily implemented (e.g.,
through SWIG).

A controller might need to handle indication messages from
many agents. While the current implementation is single-threaded,
a multi-thread extension is conceivable. The interface between the
FlexRIC server library and iApps uses an event-based/callback-
based system to pass E2 messages. For scenarios where message
processing time is an issue, and given that the handling of indication
messages in the server library is stateless, it is possible to pass
messages to di�erent threads, facilitated by the event-based system,
and handle messages in multiple threads for better scalability. We
remark that POSIX sockets are thread-safe, and sending messages
from multiple threads is also feasible.

Since the RIC seems to become an essential part of the 5G ecosys-
tem, we intend to release FlexRIC as an open-source SD-RAN soft-
ware platform for research and development under appropriate
license to boost its adoption by both academia and industry. More-
over, since the RIC without SMs is of limited use, we also plan to
release the provided monitoring (i.e., MAC, RLC, PDCP, and RRC)
and control SMs (i.e., slice control) going beyond O-RAN de�ni-
tions, as well as the OAI 4G and 5G prototype integration and the
controller specializations of Section 6, as open-source.

5 PERFORMANCE EVALUATION
In this section, we rigorously evaluate the performance of the
FlexRIC SDK, starting from the agent library via the E2 abstraction
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Figure 6: Normalized CPU usage of FlexRIC and FlexRAN.
Note that the LTE cell has 8 cores, the NR cell 16.

to the server library, and �nally compare to the O-RAN RIC. De-
pending on the experiment, we use either a test agent, or a FlexRIC
agent on top of OpenAirInterface [16] (OAI) (tag 2021.w20). We
deactivate the CPU sleep states on all machines to ensure consistent
measurements.

5.1 Overhead in the User Plane
Wemeasure the CPU usage introduced by the FlexRIC agent library
and compare it to FlexRAN [1] (LTE only). To this end, we export
statistics measurement using the built-in statistics of FlexRAN and
the integrated statistics SMs of FlexRIC at 1ms frequency; in both
cases, we enable all statistics for MAC, RLC, and PDCP (excluding
HARQ), covering approximately the same data (PDCP/RLC packet
and byte counters, MAC statistics such as CQI and used resource
blocks, etc.). Note that both use di�erent encoding schemes (i.e.,
Protobuf [17] for FlexRAN, FB for FlexRIC); our purpose is to verify
that FlexRIC incurs comparable overhead as FlexRAN, which was
designed for real-time control.

We measure the CPU usage over both LTE and NR (non-stand-
alone mode, NSA) base stations. We used a RF setup with Ettus B210
radios for both cells. The LTE cell runs on an Intel Core i7 with 8
cores @ 3.2GHz, uses a bandwidth of 5MHz (25 RBs) and serves
3 UEs at MCS 28. The NR cell runs on an Intel Xeon Gold 6208Uwith
16 cores@ 2.9 GHz, has a bandwidth of 20MHz (106 RBs) and serves
3 UEs at MCS 20. Fig. 6a shows that both FlexRIC and FlexRAN incur
a small overhead. The relative overhead decreases when deploying
FlexRIC over NR, due to a more demanding physical layer.

To analyze the overhead for more UEs, we used the “L2 simulator”
of OAI, an emulation mode without the physical layer. Fig. 6b shows
that FlexRIC performs slightly better than FlexRAN especially for
more UEs, and thus, FlexRIC is valid for the same scenarios where
FlexRAN has been validated (e.g., real-time MAC scheduling). The
results con�rm the scalability of the FlexRIC agent library, achieving
slightly better performance for many UEs (up to 1 % less CPU load
for 32 UEs) due to more e�cient encoding of indication messages
through Flatbu�ers.

5.2 Impact of E2AP/E2SM Encoding
In the following, we evaluate the impact of two encoding schemes,
FB and ASN.1, for E2AP and the E2 service model (E2SM), on round-
trip time (RTT) and signaling rate. E2 enforces a double encoding
of messages: a �rst encoding pass is done for the “inner” E2SM, and
a second for the “outer” E2AP. We modi�ed the “Hello World” SM
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Figure 7: Comparison of E2AP/E2SM encoding schemes us-
ing E2SM-HW ping.

(HW-E2SM) provided by O-RAN to perform a ping by sending a
control message to the RAN function, to which the agent responds
with an indication message. To also study the impact of the E2SM
encoding, we translated the SM 1:1 from ASN.1 to FB. Further, we
modi�ed FlexRAN to measure the RTT and signaling rate. FlexRAN
does not oblige a double encoding as described above.

To measure the RTT, the iApp pings the agent every second for
small (100 B) and medium (1500 B) message payloads. The results
in Fig. 7a indicate that switching from all-ASN.1 to all-FB encoding
reduces the average RTT by roughly 25% and 66% for small and
medium payloads, due to the encoding overhead of ASN.1. Using
an ASN.1/FB (E2AP/E2SM) encoding even increases the round-trip
time, since the larger FB E2SM message (for each FB message, we
observe 30-40B overhead) needs to be encoded again by ASN.1
for E2AP. Thus, where ultra-low latency is required, FB might be
preferable, especially for larger payloads, but networking delay (our
Ethernet-based campus network has RTTs below 1ms) would make
this di�erence much less pronounced. The results of FlexRAN indi-
cate the arrival of ping replies at its networking queues. We observe
that its absolute RTT and relative RTT increase is between that of
FB and ASN.1 cases, most likely due to the Protobuf encoding, but
always slower than the FB E2AP encoding of FlexRIC. Furthermore,
due to FlexRAN’s design, an application has to poll for the results
every ms; thus, in FlexRAN, the RTT from an application’s point of
view is always one ms, which we omit for readability.

To put the RTT improvements into perspective, we measured
the generated message signaling rate for a high ping rate (one
packet every 1ms, which is 4G’s transmission time interval). The
results in Fig. 7b indicate that switching from an ASN.1/ASN.1 to
an FB/FB encoding increases the signaling rate by 67% for small
payloads due to the overhead of FB; for large payloads, however, the
signaling rate overhead is almost negligible. Comparing the “mixed”
encodings, we see that the FB/ASN.1 encoding signaling overhead
only slightly increases compared to ASN.1/ASN.1, whereas the
ASN.1/FB combination does not decrease signaling load, rendering
this combination useless. In comparison, FlexRAN has the smallest
signaling rate, since it does not enforce a double encoding. This
advantage almost vanishes for large payloads.

In conclusion, FB encoding is useful for larger payloads and/or
frequent message exchange under the assumption that the wired
capacity is not the bottleneck, at least for E2AP. On the other hand, if
the wired capacity is the bottleneck or if infrequent, small messages
are forwarded, ASN.1’s processing overhead in terms of CPU is
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Figure 8: CPU usage at the controller.

balanced by a lower signaling overhead. In general, it might be
preferable to use FB in E2AP, as it only slightly increases signaling
overhead while keeping round-trip times low.

5.3 Scalability of the Controller
Next, we evaluate the scalability of the FlexRIC server library in
terms of CPU utilization and memory usage and compare it to
FlexRAN [1]. The FlexRIC controller consists of the server library
and a statistics iApp that saves incoming messages to an in-memory
data structure, similar to FlexRAN. We only consider the agent-to-
controller direction, which typically carries more tra�c than in the
opposite direction, even for high-tra�c scenarios such as remote
scheduling [1]. Both controllers are on an Intel Core-i7 machine
with 12 cores at 3.2 GHz. As can be seen in Fig. 8a, FlexRIC incurs
only one tenth of the CPU usage of FlexRAN, due to using FB instead
of Protobuf. Also, FlexRIC organizes its internal data structure more
e�ciently, leading to reduced memory consumption.

To further understand the limitations of FlexRIC, we test using
dummy test agents (not connected to any base station) that export
the same statistics (in FB) as from a real base station (statistics for
MAC excluding HARQ, and RLC and PDCP), each agent emulating
a connection of 32 UEs with a unique default bearer. Fig. 8b shows
the CPU utilization of FlexRIC over varying number of agents when
using a FB or ASN.1 encoding for E2AP. It is apparent that FB has
around 4 times lower CPU usage than ASN.1. Since FB’s design
avoids an explicit decoding step, reading directly from “raw” bytes,
the subscription management in the server library can look up the
corresponding subscriptionmuch faster, resulting in less CPU usage,
directly translating to serving manymore agents. This suggests that
ASN.1 encoding on E2AP can become a limiting factor in terms of
CPU, whereas FB is rather limited by the network, as for 18 agents,
the signaling reaches almost 700Mbps. When reducing the message
frequency to 10ms, the FlexRIC SDKwas furthermore able to handle
around 100 agents (not depicted in the �gure), con�rming FlexRIC’s
scalability.

5.4 Comparison to O-RAN RIC
The reference O-RAN RIC architecture relies on micro-services,
containerized through Docker and orchestrated by Kubernetes.
Correspondingly, each micro-service’s image uses disk space. Ta-
ble 2 lists the image sizes of a dockerized FlexRIC for a RTT test (as
in Section 5.2) and a statistics use case (as in Section 5.3), and the
O-RAN RIC platform (15 platform components) with corresponding
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Table 2: Docker image sizes.

Component Size (MB)

FlexRIC + HW-E2SM 76
FlexRIC + Stats E2SMs (FB) 94

O-RAN RIC (platform) 2469
HW xApp 170
Stats xApp 166
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Figure 9: Comparison of O-RAN RIC and (dockerized)
FlexRIC.

O-RAN xApps. It is apparent that due to containerization of all plat-
form components individually, the O-RAN RIC requires much more
storage, going contrary the 5G design principle of ultra-leanness,
forcing to need resources even for scenarios where the advantages
o�ered by Docker and Kubernetes are not needed.

The O-RAN architecture impacts the latency, since it imposes
two hops for messages (from xApp via “E2 termination” to agent). In
the following experiment, we measured the RTT with two distinct
payloads (i.e., 100 B and 1500 B) as in Section 5.2, between (i) a
FlexRIC agent and a FlexRIC controller utilizing the E2SM-HW, and
(ii) a FlexRIC agent and O-RAN RIC. In FlexRIC, we use a relaying
controller to emulate two hops, which, unlike O-RAN RIC, is not
imposed by FlexRIC but added to carry out a fair comparison. As it
can be observed from Fig. 9a, O-RAN RIC increases the RTT by at
least three times for small and two times for medium load compared
to FlexRIC.

In a second experiment, we consider a monitoring use case simi-
lar to Section 5.3, in which 10 dummy agents export MAC statistics
(excluding HARQ) for 32 UEs using E2AP indication messages every
ms. We measure CPU usage and memory footprint as reported by
docker stats, shown in Fig. 9b. (For the O-RAN case, we added the
CPU and memory usage of the platform components and xApp.)
The design of O-RAN RIC imposes that indication messages are de-
coded twice, once in the “E2 termination”, and the xApp. The CPU
usage of FlexRIC is 83 % lower than O-RAN RIC, the O-RAN xApp
alone using as much CPU as FlexRIC, and the rest being used by
the “E2 termination”. We attribute this to an ine�cient implemen-
tation (we used the default “E2 termination” image, version 5.4.8).
Also, the O-RAN RIC uses much more RAM, which is due to the
high number of platform functions running in separate containers,
which are also partially written in higher-level languages, such as
Go, as opposed to FlexRIC’s C. These �ndings con�rm that O-RAN

RIC imposes additional overhead by design for communication be-
tween xApps and agents, even if not required, which might become
a bottleneck.

6 CONTROLLER SPECIALIZATIONS
FlexRIC’s modular design permits to easily compose specialized
controllers on top of the server library through the SMs, iApps and
xApps. Moreover, its design opens up new opportunities for the
development of state-of-the-art research controllers (e.g., recursive
or multi-RAT controllers).

Some tradeo�s that need to be evaluated when designing a new
controller can be summarized in the following:

(1) Transport. FlexRIC’s internal representation of the E2AP
messages, permits di�erent encodings for the messages. Ad-
ditionally, new encoding schemes could be easily aggregated
in the future if needed, following the forward compatibility
principle of 5G.

(2) SMs. The controller exposes or modi�es the RAN through
the SMs. Therefore, suitable SMs that forward/receive data
to/from the controller need to be present at the RAN. How-
ever, adding SMs that are not needed by the controller just
consumes resources, which violates the ultra-lean design
principle.

(3) iApps/communication interface/xApps. SMs are either han-
dled by iApps directly or over the communication interface
through xApps. Use-case requirements, e.g., low-latency or
security, might require or preclude xApps. In the case of
xApps, an iApp submits the RAN information to the xApps
and may receive commands from them. Thus, �exibly se-
lecting a correct mechanism to communicate with the xApp
may be crucial in some scenarios.

(4) Isolation. FlexRIC, iApps and xApps are software programs.
Therefore, if security is a concern, techniques applied to
software programs can be used (e.g., virtual machines, con-
tainers) with their associated tradeo�s.

6.1 Service-Oriented SD-RAN Controllers
On the one hand, the heterogeneous scenarios for which 5G is
designed, hinders to identify the features that a controller should
implement, while on the other hand, 5G claims to provide forward
compatibility. Using the FlexRIC SDK, we customize controllers
tailored speci�cally to application needs, achieving the �exibility
which 5G necessitates.

Following, we present di�erent service-oriented SD-RAN con-
trollers that are prototyped on top of FlexRIC to validate its design
and that represent state-of-the-art 5G scenarios.

6.1.1 Flow-based Tra�ic Controller. Since latency requirements
have increased in 5G, controlling the tra�c is of utmost importance
in a packet-switched network, where TSN support through Packet
Delay Budget is standardized [18]. 5G inherits the bene�ts, as well
as the drawbacks, of previous packet-switched cellular networks
generations. One of its most important drawbacks is the phenome-
non known as bu�erbloat [19]. The bu�erbloat speci�cally occurs
at the cellular network since i) the bottleneck is commonly located
at the radio link; ii) the RLC sublayer is provided with large bu�ers
to absorb the brusque changes that the radio channel may su�er
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Figure 10: Sublayers with bu�ers in 5G downlink path.

and avoid starving it; and iii) most of contemporary tra�c is trans-
ported through a lossy based congestion control algorithm (i.e.,
TCP Cubic), where the algorithm cannot di�erentiate between the
propagation time and the large sojourn time that packets experience
in a bloated bu�er.

To avoid the bu�erbloat, standardization e�orts propose to seg-
regate into di�erent DRBs the tra�c of �ows prone to generate
the bu�erbloat and �ows that do not cause it [20], similar of how
slicing is designed for 5G where a new PDU Session is generated
per slice, and thus, the tra�c �ows are segregated in di�erent DRBs.
In a similar spirit, we designed a tra�c control SM (TC SM) to
abstract the con�guration of multiple �ows within the RAN, simi-
larly to how OpenFlow [9] abstracts �ows in a switch. As shown
in Fig. 10, the TC SM uses a classi�er to segregate packets into
�ows, schedules the queues, and limits the rates through a pacer. In
this manner, we enhanced current 3GPP speci�cations, similarly to
the architecture explored at [21]. An xApp subscribes to the RLC
and TC statistics through their monitoring SMs. We used Redis
as a message broker used by an iApp to forward messages to the
xApp. Similarly, we used a REST interface for submitting control
messages. The components of this specialization are summarized
in Table 3.

To illustrate a simple, yet complete and realistic example [22],
and show how a tra�c control xApp can improve the latency, we
generated two �ows in downlink. One emulating a one minute
G.711 VoIP conversation through UDP data frames of 172 bytes
with an interval of 20ms using irtt [23], resulting in a bandwidth
consumption of 64 Kbps, and a second �ow emulating a bu�erbloat-
prone �ow using iperf3. We start the irtt �ow 5 seconds before
the iperf3 �ow. However, instead of segregating the �ows in DRB
queues as suggested in [22], we created a second queue at the TC SM,
as shown in Fig 10b. We used the 5G Quectel 500Q-GL COTS as
the UE and OAI (tag 2021.w20) with an agent and validated the
proposed tra�c control SM.

The example can be summarized as follows: Once the xApp
notices that the sojourn time of the packets belonging to the low-
latency �ow increase beyond a limit, it decides to perform three
actions. As its �rst action, it generates a second FIFO queue. Next,
it creates a 5-tuple �lter (i.e., source and destination addresses and
ports, as well as, protocol) to segregate the low-latency �ow packets
from the rest. Following, it loads a 5G-BDP pacer [19], to backlog the

Table 3: TC controller specialization.

Comp. Used

xApp Custom program with libhiredis and libcurl [25]
Comm. IF Redis message broker, REST (POST)
iApps RLC, TC stats forwarder (Redis)

TC SM manager (REST command relay)
Support Server library

packets into the queues located at the TC, and thus, avoid bloating
the RLC DRB bu�er. Lastly, the scheduler is a simple Round Robin,
that pulls packets from active queues.

On one hand, Fig. 11a shows the bu�erbloat e�ect in vanilla cel-
lular network systems. TCP Cubic bloats the last bu�er before the
bottleneck link, which in this case is the RLC DRB bu�er. Therefore,
if �ows with low latency requirement share the data path with a
greedy �ow, they will su�er large sojourn times. On the other hand,
Fig. 11b shows how segregating the tra�c and using a pacer, limits
the bu�erbloat problem to �ows that share a queue with the greedy
�ow. The 5G-BDP pacer maintains the DRB bu�er uncongested
and backlogs the packets into the TC SM. It tries to submit just
enough packets to the DRB not to starve it, without bloating it. In
this manner, almost full RB utilization can be achieved, while main-
taining uncongested the DRB bu�er even when the radio channel
link varies under realistic tra�c conditions [21]. Moreover, gener-
ating a second queue and segregating the tra�c at the TC avoids
experiencing large sojourn times to the VoIP �ow’s packets. Lastly,
Fig. 11c shows the clear advantage of intelligently using TC through
an xApp. The RTT of the VoIP �ow when is previously segregated
is in the order of four times faster. However, Fig. 11c also shows
that even though the largest part of the delay is associated with
the downlink path, there exists other bu�ers that may need to be
investigated further, as the RTT when no iperf3 tra�c is added
varies between 20 and 40ms.

We implemented the queues, the classi�er, the scheduler and the
pacer as shared objects to enable loading them online. In this way,
the behavior of the tra�c �ows within our SM can be dynamically
changed according to tra�c and network conditions. The objects
could even be downloaded them from a trusted network store [24].

Some examples of 5G scenarios that will need tra�c control
capabilities to ful�ll their latency requirements are URLLC (e.g.,
V2X) or eMBB (cloud AR) services.

6.1.2 RAT-Unaware Slicing Controller. Network slicing is consid-
ered to be the enabler to multiplex heterogeneous services onto a
common network, where services are assigned to slices in the net-
work. On the one hand, the scarce radio resources of the RAN have
to be shared between multiple services, and isolation is necessary
if quality-of-service (QoS) is of concern. On the other hand, unused
resources should be shared among services to use the available
spectrum e�ciently.

To facilitate the con�guration and management of slices in the
RAN, we designed a slicing control SM (SC SM) that abstracts the
slice con�guration. The SM assumes a distinction between a slice
scheduler and a UE scheduler, as shown in Fig. 12. Upon the MAC
scheduling phase, �rst the slice scheduler distributes resources
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(a) Sojourn time in transparent mode. (b) Sojourn time in xApp case.
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Figure 11: Sojourn times for TC transparent mode and with two queues and CDF of VoIP �ows for both cases.
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Figure 12: The slice scheduler attributes resources to user
schedulers, which schedule UEs in their slice.

Table 4: Slicing controller specialization.

Comp. Used

xApp Command line: curl [25]
Comm. IF REST (GET/POST)
iApps Internal DB for RAN stats (cf. FlexRAN RIB [1])

SC SM manager (REST command relay)
Support Server library

among slices, and for each selected slice, the corresponding UE
scheduler distributes resources among the UEs. The SM allows to
con�gure the slice algorithm (setting the slice scheduler) and a
list of slices with algorithm-speci�c parameters (selecting the user
scheduler and con�guring its available resources). The xApp is
oblivious of the RAT, as the SM is designed in a RAT-independent
way, and supports any slice algorithm implemented in the user
plane. Further, through RRC UE noti�cations, the xApp discovers
the UE-to-service association through the selected PLMN identi�-
cation or slice information (S-NSSAI [18]) provided in the attach
procedure, con�gures new slices if necessary, and associates the
UE to its slice. The SC SM iApp at the controller exposes the con�g-
uration using an HTTP REST north-bound interface, making the
SM available to xApps. The components of this specialization are
summarized in Table 4.

In this example, we use OAI (tag 2021.w20) and Google Pixel 5
phones over a 106 RB (20MHz) NR carrier in band 78; themodulation-
and-coding scheme is �xed to 20 for all UEs. The UEs receive con-
stant downlink tra�c generated using iperf such that the radio
resources of the cell are exhausted at all times. A proportional fair
scheduler is used that equally distributes resources between UEs in
the absence of slicing. We employ the NVS algorithm [26].
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Figure 13: Resource slicing isolates services, but resources
might be shared for e�ciency.

In the �rst experiment, we demonstrate the isolation property
of slicing in 5G (Fig. 13a). The objective is to ensure that the UE
in slice 1 (white) gets 50 % of the resources, or around 30Mbps. At
time instance 1, no slicing is active; however, since only two UEs are
present, they equally share the resources. Upon a new connection
of a UE, at time instance 2, the resources are equally shared between
all three UEs, violating the requirement that the white UE receives
50% of resources. Therefore, at time instance 3, the xApp deploys
slices with equal resource share and associates the white UE to
slice 1 and the rest to slice 2, which ensures half of the resources
for the white UE. Similarly, at time 4, the user plane enforces the
xApp’s request of 66 % resources for slice 1.

A �xed allocation of resources can lead to underutilization of
the already scarce radio resources in the RAN. Therefore, it is
advantageous to �exibly distribute or share resources between slices
if UEs do not consume the resources reserved for their slice. In the
second experiment, we connect two UEs, associated with two slices
with 66 % (gray) and 34 % (black) of resources. In the upper graph of
Fig. 13a, we con�gured slices to not share any resources. This leads
to wasted resources as the gray slice does not use the additional
resources while the black slice is inactive. On the other hand, if
resource sharing is permitted, the gray slice increases throughput
by 50%, which shows how the NVS algorithm exploits the idea of
o�ering isolation while e�ciently using the radio spectrum.
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Figure 14: Control of the RAN can be shared between multi-
ple controllers through a virtualization layer.

5G scenarios that will bene�t from this SM are those related to
guaranteed SLA/QoS. Examples are industry 4.0, or any use case
that involves multiple services being multiplexed onto a common
structure, e.g., IoT or emergency services over public networks.

6.2 Recursive Slicing
As a consequence of increased densi�cation for base stations, capi-
tal and operational expenditure for cellular networks are further
increasing. RAN sharing is envisioned as a way to reduce costs.
O-RAN assumes that operators might host the virtual network
functions (VNF) of base stations of a visiting operator and enable
remote access (“remote” E2) to control those VNFs [27]. While this
allows a reduction of costs in infrastructure, there is no potential
for multiplexing gains when using dedicated base station VNFs. On
the other hand, since the operators are competitors, the sharing
operator does not want to give full access to prevent malicious
access or erroneous con�gurations.

We show how to share the VNFs between operators, enabling
full potential for multiplexing gains in the radio spectrum, and
give both operators the possibility to con�gure slices individually
within their (virtual) network. For this purpose, we propose a con-
troller specialization that forwards control to multiple northbound
controllers. However, it is of paramount importance to avoid any
con�icts resulting from control decisions of di�erent controllers.

We design such a controller specialization, as shown in Fig. 14a,
by reusing the agent library as the northbound communication
interface. It recursively exposes the E2 interface to multiple guest
controllers, using the agent library’s multi-controller functional-
ity (see Section 4.1.2). Multiple iApps, ful�lling the role of RAN
functions towards the agent library, implement a virtualization
layer. Since the sliceable resources within a base station are highly
heterogeneous, comprising �ow control for multiple bearers (e.g.,
TC SM), radio connection control, and resource scheduling (e.g.,
SC SM), such virtualization layer is SM-speci�c. We focus on slicing
the scheduling resources, using the SC SM abstraction presented
previously, and partition the MAC statistics. The components of
this specialization are summarized in Table 5.

Table 5: Virtualization layer specialization.

Comp. Used

xApp Slicing controller (cf. Section 6.1.2)
Comm. IF Agent library
iApps MAC stats (partitioning)

SC SM virtualization
Support Server library

The virtualization layer abstracts both the assigned radio re-
sources and slice IDs from their physical representation (south-
bound) to a virtual representation (north-bound). The service level
agreement (SLA) indicates the resource share of physical resources
that are assigned to an operator. The iApp virtualizes the resources
of NVS [26] by scaling the physical resource share by the inverse
of the SLA to a virtual resource share of 100 % (see Appendix B for
a detailed description). This scheme guarantees that no controller
can exceed its assigned resources, e�ectively avoiding any con�icts.
Since admission control of the virtual slices ensures that the total
resource share does not exceed 100%, the physical resource share
cannot be higher than the guaranteed SLA, and NVS ensures that
every slice receives its con�gured amount of resources. Further, as
the north-bound controllers can freely chose their slice IDs, con-
�icts between slice IDs are avoided by mapping (virtual) IDs in the
range 0-9 into (physical) IDs in disjoint intervals for each operator.
Finally, the MAC statistics SM is sliced by only revealing UEs to a
controller which are among the respective operator’s subscribers.

We compare the cases of two dedicated infrastructures of op-
erators A and B, and compare it to a shared infrastructure. In the
second case, the virtualization controller connects the slicing con-
trollers of the operators to the infrastructure. The virtualization
controller abstracts the resources and slices the user groups and
exposes relevant information to the RAN slicing controllers of op-
erators A and B. Both operators have a resource share of 50 % of
the total base station resources. We use OAI 4G/LTE (tag 2021.w20)
with four UEs (two per operator). The dedicated infrastructures
are two dedicated eNBs with each 25 RBs (5MHz), and the shared
infrastructure a single eNB with 50 RB (10MHz), all in band 7. Note
that in this case, we use the same slicing controllers over a 4G
infrastructure instead of 5G, highlighting the multi-RAT capability
of FlexRIC and its SC SM.

Fig. 15 shows the network throughput as perceived by the two
slicing controllers (the dashed lines mark the maximum throughput
of a single dedicated eNB). Initially, both controllers have no slice
con�gured, and since the resource share is the same (50 %), all UEs
have the same throughput. At around 8 and 11 s, operator A con�g-
ures two sub-slices (66 %, 33 %). This has no impact on operator B,
proving the isolation capabilities of the system. Once one of oper-
ator B’s UEs has no throughput, the other UE in the same virtual
network bene�ts from more resources. However, when operator
B has no tra�c, the resources are equally shared between the two
sub-slices of operator A in the shared infrastructure case, proving
the sharing capabilities. On the other hand, if the infrastructures
are dedicated, much of the resources are lost. If one operator is
unloaded, the multiplexing gain can attain 100 %.
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Figure 15: Comparison of dedicated and shared infrastructure of two operators with (in total) four UEs. The controllers can
freely recon�gure slices. In the sharing case (b), isolation and sharing properties are preserved.

To allow controllers to not only con�gure sub-slices within their
service, but exert direct control on the UE allocation, the virtualiza-
tion layer could be extended with the abstraction already described
in Orion [13]. However, unlike Orion, this virtualization layer is
recursive in that virtualization layers might be stacked recursively,
similar to FlowVisor [8].

Apart from virtualizing the control plane, a recursive controller
also allows to abstract the network topology. As shown in Fig. 14b,
a disaggregated base station deployment, consisting of CU and
DU, might simply be exposed as one base station entity. Similarly,
more complicated deployments, such as one CU and multiple DU,
might be exposed as multiple base stations, and control commands,
such as handover for mobility load balancing, are translated into the
appropriate control commands for the deployment in consideration.

The slicing concept de�ned by 3GPP imposes the use of a new
PDU session per slice, which compromises a new PDCP, RLC and
possibly SDAP entity per slice. Therefore, creating a slice within a
slice is a logical concept rather than physical one, as for example,
no RLC entity can be recursively generated inside an RLC entity.
However, the logical concept of recursively assigning resources
remains a valid a useful abstraction, applicable to many use cases.

Some examples of possible 5G scenarios include RAN sharing, or
a network operator that leases resources to service providers while
allowing certain level of con�guration and/or monitoring access.

6.3 Controller for Hosting O-RAN xApps
While FlexRIC employs an E2-compatible south-bound (allowing
the agent to interfacewith any E2-compatible controller), the FlexRIC
SDK does not provide a fully O-RAN-compatible non-realtime con-
troller [28]. Instead, it focuses on the core functionality of handling
E2 nodes, multiplexing the messages between iApps and RAN func-
tions, and allowing interoperability on the E2AP level between a
FlexRIC controller and an E2 node, following the 5G principles of
�exibility, forward compatibility, and ultra-lean design.

A number of services are required to host xApps [28]: (1) a
messaging infrastructure that allows xApps to send messages be-
tween xApps and the controller; (2) subscription management, e.g.,
merging identical subscriptions; (3) xApp management to deploy
xApps; (4) a database for xApps to write and read information

gathered through SMs; and (5) additional services such as security,
logging, and fault management. A FlexRIC controller specializa-
tion targeting O-RAN xApps needs to implement these services as
(SM-independent) iApps to push SM functionality into xApps.

Having a simple-to-use E2 controller, as opposed to cluster-based
implementations such as O-RAN RIC or ONF SD-RAN, is of high
importance. First, such a controller would facilitate research using
standard O-RAN xApps from commercial deployments, while using
signi�cantly less resources. Second, it would reduce xApp develop-
ment and debugging lifecycle, which does not need to communicate
with multiple services. The corresponding FlexRIC controller spe-
cialization could be used as a simple-to-use O-RANRIC replacement,
hosting xApps that implement standard O-RAN use cases [27].

7 CONCLUSION
In this paper, we presented FlexRIC, an SDK that serves as the
pillar to build specialized, multi-service SD-RAN controllers. Using
the abstractions provided by the SDK, it is possible to compose
customized controllers that smoothly adapt to the envisioned state-
of-the-art 5G scenarios. Additionally, we experimented with SMs
for �ow-level tra�c control (i.e., TC SM) and resource-level slic-
ing control (SC SM) and validated them to build service oriented
controllers that reduce the latency in modern cellular networks. Fur-
ther, we built an SD-RAN virtualization controller that multiplexes
virtual RANs of multiple tenants, such as operators, onto a shared
infrastructure while isolating their networks. Such virtualization
control exposes a virtualized view of the RAN and enables them
to independently control their network, even over disaggregated
base stations. Lastly, FlexRIC follows a “zero-overhead principle”,
resulting in better performance than real-time SD-RAN controllers,
without consuming resources imposed by unused features, con-
trary to O-RAN. We plan to open-source FlexRIC to the community
under appropriate license to boost its adoption by both academia
and industry. As future work we plan to deploy further SMs that
enhance FlexRIC capabilities (e.g., AI/ML SMs), port the existing
SMs to other base stations (i.e., SRSRAN), and develop an interface
for FlexRIC’s server for di�erent languages to facilitate its wider
adoption.
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A E2 PRIMER
To allow FlexRIC to remain compatible with the industry consor-
tium (O-RAN) e�ort to create standardized SD-RAN controller
interfaces, it adopts the E2 interface [2]. Due to E2’s novelty and
FlexRIC’s heavy usage of it, we provide a primer for the interested
reader in the following section.

A.1 E2 Overview
The interface for interconnecting RAN elements and a RAN con-
troller is the E2 interface. The RAN elements are called “E2 nodes”
and can refer to an eNB, gNB, or just a part thereof, e.g., CU or DU,
while the RAN controller is called the “Near-realtime RAN intelli-
gent controller” (RIC). The E2 interface has been de�ned by O-RAN
in an attempt to provide standardized interface, enabling interoper-
ability among diversemulti-vendor implementations [2, Section 5.1]

• Send pre-de�ned information on pre-de�ned trigger events
from the RAN to the RIC (reports),

• Send control messages and policies from RIC to RAN, and
• Enable the RIC to process procedures at the RAN’s place
(insert).

In short, the objectives of E2 are “exposure of selected E2 Node
data” (con�guration, statistics, measurements, . . . ) and “enabl[ing]
the Near-RT RIC to control selected functions” [2, Section 5.2] of
the RAN (such as triggering procedures, installing policies, RAN
con�guration, . . . ).

The E2 interface serves to connect xApps to RAN functions, as
shown in Fig. 16. A 1 to # relationship between the RIC and the
E2 Nodes is foreseen. Each E2 node has an agent, managing the E2
connection, and a number of RAN functions. RAN functions refer
to functionality within an E2 Node (e.g., triggering a handover).
The RIC is a controller that provides a terminating point for all
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Figure 16: E2 enables RIC applications (“xApps”) to control
the RAN through RAN functions. [2]

E2 Nodes, hosts external applications (i.e., xApps), and additional
services (e.g., database functionality).

As can be seen in the �gure, there exists a many-to-many map-
ping between xApps and RAN functions. This link allows xApps to
control the RAN functions. The interaction between the RIC and
xApps on one side and the E2 node and RAN functions on the other
is enabled through (i) the E2 application protocol (E2AP) [15] and
(ii) E2 service models (E2SM).

A.2 E2AP
“The E2AP supports the functions of E2 interface by signaling
procedures” [15] that allow RIC and E2 nodes to communicate.
The protocol messages are divided into the classes:

E2 Global Procedures are messages for connection manage-
ment between a controller and the agent.

E2 Functional Procedures aremessages speci�cally destined
to RAN functions within the E2 agent for functional message
exchange.

The functional procedures can be further divided into:

Subscription Allow xApps to subscribe to event triggers in
RAN functions.

Indication Allow RAN functions to forward information to
the RIC, and

Control Allow xApps to execute a procedure within a RAN
function.

A.3 E2SM
Until now, the actual interaction between an xApp and a RAN
function has not been described. This is the role of E2SMs, which
are speci�cations in their own right. Each model E2SM provide
the “service” that a RAN function can ful�ll. There are four basic
actions/services named report, insert, control, and policy, each of
which is transported through the E2AP procedures.

Reports contain information that are sent from the E2 nodes
to the RIC/xApps. As it can be seen in Fig. 17a, an xApp sends
an E2AP subscription for requesting a report. The E2SM speci�es
the types of reports (“action de�nition”) that can be sent and the
trigger events that lead to them. Once the trigger is detected, the
RAN function sends an E2SM report that is transported through an
E2AP indication message.

(a) Report (b) Insert

(c) Control (d) Policy

Figure 17: The four basic “services” that are speci�ed in
E2SMs to de�ne the interaction between an xApp and a RAN
function.

Inserts are messages sent from E2 nodes to inform an xApp of
an event. As it is shown in Fig. 17b, an xApp �rst subscribes for an
insert message via an E2AP subscription. Once the trigger has been
detected, the RAN function sends an E2SM insert message that is
transported via an E2AP indication.

Control messages are sent from the RIC/xApp to the RAN func-
tion to execute an operation, as highlighted in Fig. 17c.

Policies are prede�ned operations that the RAN function should
execute upon a trigger as shown in Fig. 17d.

A.4 Standardized E2SMs
At the time of writing this paper, two E2SMs have been standard-
ized:

(1) Performance metrics (E2SM-KPM) [29] de�nes various re-
port types on periodic timer expires.

(2) Network interface (E2SM-NI) [30] allows interface manip-
ulation, supporting interfaces such as X2, S1, etc. It de�nes
(i) report messages for message exchange on interface, (ii) in-
sert messages, copying the occurred interface message to
the xApp, (iii) control messages to inject interface messages
into interfaces, or (iv) policies to help the RAN function to
decide how to proceed with a message on a certain interface.

B VIRTUALIZING NVS
NVS de�nes (1) capacity slices with a share of resources 2B , and
(2) rate slices with a reserved rate A rsvB over a reference rate A refB .
The reference rate is an indicator for the minimum rate such slice
needs to achieve in scheduled slots to prevent excess utilization
of resources under bad channel conditions. NVS shows that both
slice types are equivalent and that each slice can be guaranteed its
reserved resources under the assumption that the total resource
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share does not exceed the base station resources for slices B:∑
B

2B +
∑
B

A rsvB

A refB

≤ 1 .

We reuse the NVS notation to show howmultiple controllers can
independently create their (sub-)slices within their virtual network
with a resource share @ (service level agreement). We assume a set
of slices S in the network, with

∑
B∈S @B ≤ 1. We have for virtual

slice B a physical resource representation:∑
8

2
phys
B,8

+
∑
8

A
rsv,phys
B,8

A
ref,phys
B,8

≤ @B

which is exposed as a virtualized resource representation∑
8

2virtB,8 +
∑
8

A
rsv,phys
B,8

A
ref,virt
B,8

≤ 1 ,

where each (sub-)slice’s virtual capacity 2virt is scaled by the factor
1
@B
. Note that a slice’s virtual rate is represented as the physical rate;

the scale operation is expressed by a scale of the physical reference
rate down by @B . As an example, consider a base station with a
throughput of 100Mbps that is shared equally (50Mbps) by two
operators. If one operator creates a slice with a 5Mbps slice over
reference 50Mbps (10% resources), it is mapped back into the real
resources as a 5Mbps slice and reference rate of 100Mbps (a 5%
share, corresponding to the SLA).

This scheme guarantees that no controller can exceed its assigned
resources, avoiding any con�icts. Since admission control of the
virtual slices ensures that the total resource share does not exceed
100%, the physical resource share cannot be higher than the SLA.
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